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We study the precession caused by electromagnetic radiation on a magnetic dipole located far from the
source. As we show, this entails a net rotation of the dipole in the plane orthogonal to the direction of wave
propagation, providing an electromagnetic analogue of gyroscopic gravitational memory. Like its
gravitational cousin, the precession rate falls off with the square of the distance to the source, and is
related to electric-magnetic duality and optical helicity on the celestial sphere. We use a multipolar
expansion to compute the memory effect due to localized sources such as moving point charges, and
highlight its occurrence in setups that break parity symmetry.
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I. INTRODUCTION

The passage of a burst of gravitational waves through a
detector typically leads to persistent effects, generally
known as gravitational memory [1–4]. Such phenomena
have received widespread attention in recent years. Indeed,
the seminal detection of gravitational waves [5] and the
growing number of subsequent observations provide
encouraging prospects for the detection of memory in
the near future [6–12], while the rich interplay between
memory effects, asymptotic symmetries, and soft theorems
in quantum gravity [13,14] makes them crucial from a
theoretical standpoint. This has led to numerous inves-
tigations of memory effects, corresponding observables,
and their relation with gravitational charges: see, e.g., the
sample [15–28] and references therein.
As is turns out, memory effects are not limited to general

relativity and occur quite generally in any gauge theory. It
was indeed shown in [29] that electromagneticwaves cause a
net change in the velocity of test charges near null infinity.
This is the “kick” memory effect of electrodynamics, the
simplest gauge-theoretic counterpart of the displacement
memory produced by gravitational radiation [1–4].
Analogous phenomena were later identified in other gauge
theories [30–32] and massless field theories more generally
[21]. In hindsight, this ubiquitousness of memory effects is

no surprise, since soft theorems and asymptotic symmetries
similarly occur in gauge theories other than gravity [33–37].
A key aspect of memory effects is their dependence on the

distance r between source and detector. This entails a
“hierarchy” of leading and subleading observables, accord-
ing to the rate of their decay at large r, but it also implies
differences in the way leading and subleading effects are
meant to be measured. For instance, the leading memory
effect in general relativity is a change of distance between test
masses, behaving as1=r at large r [1–4]. The same 1=r falloff
is satisfied by the aforementioned kick memory of electro-
dynamics [29]. At subleading order 1=r2, memory effects
encode information about subleading soft theorems and
various extended asymptotic symmetries [17,19,20,38,39].
For our purposes, the most relevant example in that context
is that of Refs. [40,41], which describe a gyroscopic memory
effect: a net rotation of a spinning gyroscope in the
“transverse plane”orthogonal to thedirectionof gravitational
wave propagation.
The present work is devoted to an electromagnetic

analogue of gyroscopic memory. It consists of a persistent
rotation caused by electromagnetic radiation on the orien-
tation of a distant magnetic dipole. This observable, which
we dub “gyromagneticmemory,” is remarkably similar to its
gyroscopic gravitational cousin [40,41]. Indeed, both effects
are subleading in that they decay as 1=r2. Furthermore,
gravitational gyroscopic memory contains two terms: one
that is linear in themetric perturbation and coincideswith the
spinmemory effect [17], and a second, nonlinear part related
to gravitational electric-magnetic duality and the helicity of
gravity waves. The same structure turns out to arise in
electrodynamics, despite one’s naive expectation that no
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nonlinear term should arise in Maxwell’s linear theory [42].
In particular, the nonlinear term is again related to electric-
magnetic duality and the optical helicity of radiation. Similar
quantities also occur in [43,44], which appeared while we
were finalizing this work.
An obvious advantage of the electromagnetic setup

compared to its gravitational version is its simplicity:
one can compute, with minimal effort, the radiative data
and memory caused by a given source. (This should be
contrasted with the gravitational case, where the extraction
of radiative data from dynamical sources involves intri-
cate numerical or perturbative frameworks [45–49].)
Accordingly, we eventually study the gyromagnetic pre-
cession produced by nonrelativistic moving point charges
and find that it crucially requires a breaking of parity
symmetry. This occurs for instance in the simple case of a
rotating point charge, suggesting that a similar gravitational
gyroscopic precession occurs for inspiralling binary black
holes; these will be studied in a separate work.
The paper is organized as follows. In Sec. II, we show how

electromagnetic radiation gives rise to the precession of a
magnetic dipole near null infinity. Section III is then devoted
to the relation between the resulting memory effect, electric-
magnetic duality, and optical helicity. Finally, in Sec. IV we
compute the gyromagnetic precession andmemory produced
at null infinity by moving point charges in the bulk; this
involves, in particular, amultipolar, nonrelativistic expansion,
also used in gravitational computations of the same kind.
Notation. We use Gaussian units and set c ¼ 1 through-

out, except at the very end of Sec. IV. Vectors are denoted
by bold letters, e.g., the position x ¼ xi∂i and the radial unit
vector n≡ x=jxj ¼ ni∂i. In addition, we interchangeably
use n and θ to represent a point on a unit (celestial)
sphere. We also define ΔfðuÞ≡ fðuÞ − fð−∞Þ and Δf ≡
limu→∞ΔfðuÞ for any time-dependent function fðuÞ
whose derivatives vanish at past and future infinities.
Finally, in Sec. IV, we will rely on the multi-index notation
XL ¼ Xi1i2���il to construct symmetric trace-free (STF)
harmonics n̂L ≡ nhLi, where angle brackets denote the
STF part of a tensor.

II. GYROMAGNETIC PRECESSION
AND MEMORY

Here we use the asymptotic behavior of electrodynamics
near null infinity to predict the precession rate of a
magnetic dipole located far away from a source of
electromagnetic waves, at leading order in the inverse
distance from the source. For radiation bursts that are
compactly supported in time, this leads to a net gyromag-
netic memory, which we compute.

A. Asymptotic electromagnetic field

Consider four-dimensional Minkowski spacetime with
inertial coordinates xμ ¼ ðt; xiÞ, i ¼ 1; 2; 3, and define

retarded Eddington-Finkelstein (Bondi) coordinates by
r≡ ffiffiffiffiffiffiffiffi

xixi
p

and u≡ t − r. Let also θB (B ¼ 1; 2) be local
coordinates on a (future) unit celestial sphere whose metric
is γBCðθÞdθBdθC. For later reference, introduce a time-
independent orthonormal dyad Ea

BðθÞ on S2 such that
Ea

BEb
CγBC ¼ δab, with frame indices a; b∈ f1; 2g. One

can then define a local Cartesian frame

er ¼ ni∂i; ea ¼ rEa
B ∂ni

∂θB
∂i ð1Þ

with ni ≡ xi=r. This frame will eventually be used to write
the components of a magnetic dipole.
Now let Jμðt; xÞ be some localized, generally time-

dependent, electric current density in the bulk of
Minkowski spacetime. It produces an electromagnetic
field Aμ which, in Lorenz gauge ∂μAμ ¼ 0, satisfies the
Maxwell equation □Aμ ¼ −4πJμ. The corresponding
causal solution is

Aμðt; xÞ ¼
Z

d3y
Z

t

−∞
dt0

δðt0 − tþ jx − yjÞ
jx − yj Jμðt0; yÞ: ð2Þ

The assumption of a compact source allows us to expand
jx − yj ¼ r − n · yþOð1=rÞ at large r, so that (2) gives
access to the electromagnetic field near future null infinity,
i.e., in the limit r → ∞ with finite retarded time u ¼ t − r.
One finds indeed

Aμðt; xÞ ¼
1

r
Aμðu; nÞ þOðr−2Þ ð3Þ

where Aμðu; nÞ is a smooth function on null infinity,
determined by the source according to

Aμðu; nÞ ¼
Z

d3yJμðuþ n · y; yÞ: ð4Þ

The Lorenz gauge condition then becomes equivalent, at
leading order, to the conservation equation ∂μJμ ¼ 0.
The leading components of the electric and magnetic

fields can immediately be deduced from (3) in terms of the
asymptotic data Aμðu; nÞ. In particular, the magnetic field
Bi ¼ 1

2
ϵijkF jk expressed in the local frame (1) is given by

F ra¼−
1

r
ȦaþOð1=r2Þ; F ab ¼

1

r2
FabþOð1=r3Þ ð5Þ

where Aa ≡ Ea
B ∂ni
∂θB

Ai and Fab ≡ ∂aAb − ∂bAa with ∂a ≡
Ea

A ∂

∂θA
. Note the different falloffs of radial and angular

components of the field strength; this will affect the large-r
expansion of the precession equation, to which we
now turn.
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B. Precession and memory

Consider a static magnetic dipole MiðtÞ in Minkowski
spacetime, with i ¼ 1; 2; 3, an index in any local Cartesian
frame. When the dipole is exposed to a magnetic field F ij,
its evolution equation reads

Ṁi ¼ kF ijMj; ð6Þ

where k is the dipole’s gyromagnetic ratio and F ij is
evaluated at the dipole’s location. (Note: Since the frame is
Cartesian, indices may be raised and lowered at will.) The
general solution of Eq. (6) is a time-ordered matrix
exponential

MiðtÞ ¼ T exp

�
k
Z

t

−∞
du½F ijðuÞ�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡WijðtÞ

·Mjð−∞Þ; ð7Þ

where we formally take the initial point to be t0 ¼ −∞,
implicitly assuming that the field F ijðuÞ is compactly
supported in time.
Now let F ij be produced by a distant dynamical source,

and express the precession equation (6) and its solution (7)
at large r in terms of the asymptotic data (3). One can
indeed use the field strength (5) to expand the rotation
matrix Wij in (7) as

Wra ¼
k
r

Z
t

−∞
duF ra ¼ −

k
r
ΔAaðtÞ þOðr−2Þ ð8Þ

Wab ¼ δabþ
k
r2

�Z
t

−∞
duFab−k

Z
t

−∞
du

Z
u

−∞
dvȦaðuÞȦbðvÞ

�

þOðr−3Þ; ð9Þ

where we chose the Cartesian frame (1) to distinguish radial
and angular directions and assumed that the dipole is
located at a fixed position in Cartesian coordinates xi. In
particular, the precession rate in the transverse plane is
encoded in the antisymmetric part of the integrand of
Eq. (9), i.e., Ω≡ 1

2
ϵabẆab, which in terms of the radiative

data reads

ΩðuÞ ¼ k
r2

�
DaÃ

aðuÞ − k
2
ȦaðuÞΔÃaðuÞ

�
; ð10Þ

where Ãa ≡ ϵa
bAb is the dual asymptotic data correspond-

ing to (3) and ΔÃaðuÞ≡ ÃaðuÞ − Ãað−∞Þ.
The precession rate (10) is remarkably similar to its

gravitational cousin. Indeed, the precession rate of a
gyroscopic subjected to gravitational radiation is [40,41]

Ωgrav ¼
1

4r2

�
DADBC̃

AB −
1

2
ĊABðuÞC̃AB

�
; ð11Þ

where C̃AB ≡ ϵCACBC is the dual shear tensor at null
infinity and ĊAB is the news tensor. This is exactly the
form of Eq. (10), with Ã replaced by dual shear. (All results
being covariant on S2, one is free to exchange dyad indices
a, b for coordinate indices A, B.) The only key difference is
the presence of the coupling constant k in Eq. (10), which is
absent in the gravitational case (11) owing to the equiv-
alence principle.
It is immediate to deduce the net rotation angle in the

transverse plane following a burst of electromagnetic
radiation: it is an integral Φ ¼ R∞

−∞ duΩðuÞ with Ω given
by Eq. (10). This angle is the gyromagnetic memory:

Φ ¼ k
r2

Z
∞

−∞
du

�
DBÃ

BðuÞ − k
2
ȦBðuÞΔÃBðuÞ

�
; ð12Þ

where AB ¼ Ea
BAa and DB is the covariant derivative

determined by the metric γBC on S2. Again, the similarity
between this expression and gravitational gyroscopic
memory [40,41] is striking: the gravitational result is just
obtained by integrating Eq. (11) over time.

III. MAGNETIC FIELD, DUALITY,
AND HELICITY

Herewe study the two terms of the gyromagneticmemory
effect (12). We start with the linear piece, which is nothing
but the (time integral of the) radial magnetic field. Then we
turn to the nonlinear term and show that it can be interpreted
in two equivalentways: either as a generator of local electric-
magnetic duality on a celestial sphere, or as a measure of the
difference between the numbers of left- and right-handed
photons crossing a given point on the celestial sphere. As
before, analogous interpretations hold in the gravitational
version of the setup [40,41].

A. Linear term

The term 2DBÃ
B ¼ ϵABFAB in Eq. (10) is manifestly the

radial magnetic field at null infinity. A less trivial fact is that
DBÃ

B may also be seen as a boundary current for dual large
gauge transformations [35]. Thus, it is analogous to the
dual mass aspect [50–55] that appears in the gravitational
case [40,41]. Note that this can be extrapolated to magnetic
monopoles: in that case, DBÃ

B would be replaced by a
nonzero constant, leading to a constant precession rate (10)
on top of the radiative contribution. The gravitational
analogue of this situation would be a gyroscope in a
Taub-NUT background [56,57].
Now consider the time integral of DBÃ

B in the memory
effect (12). It is an analogue of gravitational spin memory
[17] and it is related to the subleading soft photon theorem;
one can see this by rewriting Aa ¼

R
duȦa as a time integral

of the news, whereupon the linear term in Eq. (12) is a
double time integral reminiscent of subleading soft factors:
see, e.g., Ref. [58].
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B. Memory and duality

Let us now focus on the nonlinear term of the gyromag-
netic memory (12). Our first claim is that it can be seen as a
canonical generator of electric-magnetic duality transfor-
mations that are suitably local on future null infinity. To
prove this, we begin with a reminder: electric-magnetic
duality is a manifest symmetry of the vacuum Maxwell
equations; it mixes electric and magnetic fields through
rotations of the electromagnetic field F and its Hodge dual
�F . These can be enhanced to a symmetry of the action by
defining a second gauge potential C constrained by the
nonlocal condition dC ¼ �dA, whereupon duality trans-
formations become U(1) rotations of the pair ðA; CÞ. Things
simplify near null infinity, where one has Cμ ¼ Cμ=rþ
Oðr−2Þ in terms of an r-independent function Cμ; the above

constraint then reduces to a local relation Ċa ¼ ϵa
bȦb ¼ ˙̃Aa,

which yieldsCa ¼ Ãa up to integration functions. From this
perspective, duality induces global U(1) rotations of the pair
ðAa; ÃaÞ. Further details on the interplay of duality and
asymptotic symmetries can be found in [44,59–61].
Now, as far as radiative data at large distances is

concerned, one can in fact enhance duality transforma-
tions into local rotations on a celestial sphere. Indeed,
given any smooth function εðθÞ on S2, the infinitesimal
transformations

δεAB ¼ εðθÞÃB; δεÃB ¼ −εðθÞAB ð13Þ

preserve the radiative symplectic structure [62,63]

Γ ¼
Z

dud2θ
ffiffiffi
γ

p
δȦB ∧ δAB: ð14Þ

The corresponding Hamiltonian generator can be found
through the standard procedure and reads

Q½ε� ¼
Z

d2θ
ffiffiffi
γ

p
εðθÞDðθÞ; ð15Þ

with the local density [64]

DðθÞ ¼
Z þ∞

−∞
duȦBðu; θÞΔÃBðu; θÞ: ð16Þ

This all reduces to standard duality transformations for
εðθÞ ¼ const. However, locality is crucial here, since one
can then identify the density (16) with the nonlinear part of
the gyromagnetic memory (12). The latter is thus related to
local electric-magnetic duality on the celestial sphere, as
was to be shown.

C. Memory and optical helicity

Our second claim is that the nonlinear term in the
memory (12) measures optical helicity. To prove this, let

us write the local density (16) in terms of photonic Fock
space operators. We start from the mode expansion of the
radiative gauge field (with the conventions of [14]),

Aaðu; nÞ ¼ −i
Z þ∞

0

dωffiffiffiffiffiffi
2π

p ðeiωub†aðω;nÞ − H:c:Þ; ð17Þ

where b†aðω; nÞ creates a transverse photon of frequency ω,
propagating along nwith polarization along the direction a.
The celestial density (16) then becomes

DðθÞ ¼
Z þ∞

−∞
duȦaÃa ¼ 2iϵab

Z
dωωb†abb: ð18Þ

The geometric interpretation of this quantity is clearest in
the helicity basis, i.e., in terms of a complex null dyad Êa

B

on S2 such that the inverse volume form reads ϵab ¼
Êa

AÊ
b
Bϵ

AB ¼ diagð−i; iÞ. Indeed, Eq. (18) then reduces to

DðθÞ ¼ 2

Z
∞

0

dωωðb†þbþ − b†−b−Þ; ð19Þ

which is known as the optical helicity [59,65]: it measures
the difference between the numbers of right-handed and
left-handed photons emitted in the direction θA on the
future celestial sphere [66]. We have thus confirmed the
second interpretation of the nonlinear term in the gyro-
magnetic memory (12).
At this point, it is clear that gyromagnetic memory is

closely related to the electromagnetic radiative phase space.
But this comes with a word of caution: it does not imply
that gyromagnetic memory is due to a transition between
inequivalent vacua, as would be the case for the more
standard (and leading) “kick” memory [29]. A similar
disclaimer holds for gyroscopic gravitational memory
[40,41]. Of course, suitable subleading asymptotic sym-
metries may exist, that would identify gyromagnetic
memory with a vacuum transition; but this is an open
question that will not be addressed here.

IV. GYROMAGNETIC MEMORY
FROM LOCALIZED SOURCES

We conclude this work with an estimate of the gyro-
magnetic effect produced by nonrelativistic localized
sources. This is achieved in two different ways. First,
we directly solve (2) for a point charge and exhibit the
result for two kinds of oscillatory motion. Second, we
consider more general, arbitrary localized sources in the
multipolar expansion and find the leading nonrelativistic
effect in the gyromagnetic memory. This paves the way
for similar gravitational analyses in the post-Newtonian
framework [45].
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A. Pointlike sources

Consider a particle with charge q that follows some
(accelerated) path RðtÞ in space. The corresponding charge
density is ρðx; tÞ ¼ qδð3Þðx − RðtÞÞ and the current density
is Jðx; tÞ ¼ qvðtÞδð3Þðx − RðtÞÞ, where v ¼ Ṙ is the par-
ticle’s velocity. As a result, the y integral of the electro-
magnetic field (2) is straightforward and one finds

Aμðx; tÞ ¼ q
Z

t

−∞
dt0vμðt0Þ

δðt0 − tþ jx − Rðt0ÞjÞ
jx − Rðt0Þj ð20Þ

where v0 ≡ 1 and vi ¼ vi ¼ Ṙi. It now remains to carry out
the time integral, taking into account the nonlinear depend-
ence of the delta function on the integration variable t0. This
is most easily done near null infinity, where one may
expand t − jx − Rðt0Þj ¼ uþ n · Rðt0Þ þOð1=rÞ and the
electromagnetic field (20) gives the following special case
of Eq. (3):

Aμðx; tÞ ¼
q
r

vμðt�Þ
1 − n · vðt�Þ

þOðr−2Þ: ð21Þ

Here t� is the root of the transcendental equation

t0 ¼ uþ n · Rðt0Þ; ð22Þ

enforced by the delta function in (20) at leading order in
1=r. It can be found by iterating the function uþ n · Rð…Þ
infinitely many times, starting from the “seed” u:

t� ¼ uþ n · Rðuþ n · Rðuþ n · Rð� � � ðuÞ � � �ÞÞÞ: ð23Þ

Note that this iteration is guaranteed to converge. Indeed,
the root of Eq. (22) is unique and stable by virtue of the fact
that the particle’s velocity is lower than the speed of light.
One can then truncate the iteration (23) to a finite n-fold
composition to obtain the nonrelativistic approximation of
the electromagnetic field, incorporating the effects of the
source up to order jvjn ¼ ðjvj=cÞn.
Let us illustrate this with two examples of sources.

Consider first a particle that oscillates along the z axis, so
that RðtÞ ¼ −R cosðΩtÞez for some length R and some
frequency Ω such that v≡ ΩR ≪ 1. Equation (21) then
yields Ax ¼ Ay ¼ 0 and

Az ∼
q
r
v½sinðΩuÞ − v cosð2ΩuÞ cosðθÞ þOðv2Þ�; ð24Þ

where θ is the standard azimuthal polar coordinate and we
used the crudely approximate root t�∼u−RcosðθÞcosðΩuÞ
of Eq. (22). In terms of electromagnetic boundary data, one
finds Fab ¼ 0 and ȦaÃ

a ¼ 0, so there is no magnetic dipole
precession. Note that this remains true at any order in
the nonrelativistic expansion, because the only nonzero

component of the gauge field at null infinity is Aθ, which
only depends on u and θ.
Let us now turn to a source that breaks parity symmetry,

namely, a charged particle that moves along a circle in the
ðx; yÞ plane:

RðtÞ ¼ ðR cosðΩtÞ; R sinðΩtÞ; 0Þ; ð25Þ

again with v≡ΩR ≪ 1. Now limiting ourselves only to
the leading order in the nonrelativistic expansion, we find
in Bondi coordinates that Au ¼ Ar ¼ q=r and

Aθ ∼ qv sinðφ −ΩuÞ cos θ; ð26Þ

Aφ ∼ qv cosðφ − ΩuÞ sin θ: ð27Þ

It follows again that Fab ¼ 0, but this time the integrand of
optical helicity does not vanish:

ȦaÃ
a ¼ −q2R2Ω3 cos θ þOðjvj3Þ: ð28Þ

As a result, the precession rate (10) is nonzero. It depends
on the azimuthal location of the test magnetic dipole with
respect to the source, but the average of the precession rate
over the whole celestial sphere vanishes. One may expect a
similar behavior for the gyroscopic gravitational memory
produced by inspiralling binary systems, up to the fact that
the angular distribution should start from the l ¼ 2
harmonic.

B. Multipolar expansion

Let us now consider a generic compact source with
characteristic speed v, small with respect to the speed of
light c. For such sources, the multipolar expansion pro-
vides an efficient approximation scheme, since multipole
moments of order l in the radiation are suppressed by a
factor ðv=cÞl. We use Gaussian units and reinstate c until
the end of this work, as a bookkeeping parameter that
controls the order of the nonrelativistic expansion.
To begin, we decompose the radiative field (4) in terms

of two scalar functions ϕ� with definite parity:

Aaðu; nÞ ¼ Daϕ
þðu; nÞ þ ϵa

bDbϕ
−ðu; nÞ: ð29Þ

The linear and nonlinear terms in the gyromagnetic
precession rate (10) then are

DaÃ
a ¼ −D2ϕ−; ð30Þ

ȦaÃ
a ¼ −ðDaϕ̇

þDaϕ− −Daϕ̇
−DaϕþÞ

þ ϵabðDaϕ̇
þDbϕ

þ þDaϕ̇
−Dbϕ

−Þ: ð31Þ

The scalars ϕ� can be expanded in symmetric trace-free
(STF) harmonics on the sphere as ϕ�ðu; nÞ≡ ϕ�

L ðuÞnL,
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where L ¼ ði1i2…ilÞ is a multi-index and the STF coef-
ficients ϕ�

L ðuÞ are radiative multipole moments. These can
be derived through a multipole expansion of Eq. (2) [67],
which leads to

ϕþ
L ¼ 1

clll!
∂
l
uq

þ
L ; ϕ−

L ¼ 1

clþ1ðlþ 1Þ! ∂
l
uq−L ð32Þ

where the source multipole moments q�L are explicitly given
in [67], Eq. (4.17). In the nonrelativistic limit, they take the
simple form

qþL ¼
Z

d3xρx̂L þOð1=c2Þ; ð33Þ

q−L ¼
Z

d3xðx × JÞhixL−1i þOð1=c2Þ: ð34Þ

Note from (32)–(33) that the leading-order effect in the
nonrelativistic limit is determined by ϕþ

i ¼ 1
c ṗi, where pi is

the source’s electric dipole moment. As a result, the
nonlinear precession in (10) is given at leading order by
the third term in (31):

ȦaÃ
a ¼ 1

c2
ðp̈ × ṗÞ · nþOð1=c3Þ: ð35Þ

At the same time, the linear term term in the precession (10)
is determined by (30); this is given at leading order by the
magnetic dipole ϕ−

i ¼ 1
2c2 ṁi, so that

DaÃ
a ¼ 1

c2
ṁ · nþOð1=c3Þ: ð36Þ

It follows that the full gyromagnetic memory (12) is [68]

ΦðnÞ ∼ k
r2c3

�
Δm −

k
2c3

Z
duðp̈ × ṗÞ

�
· n ð37Þ

at leading order in the nonrelativistic limit. As a consistency
check, one can return to the example of the circular source
(25), where m ¼ qR2Ω and pðtÞ ¼ qRðtÞ so that (36)
vanishes while the nonlinear term (35) does not; Eq. (37)
then reproduces (28), now from an explicit multipolar
nonrelativistic expansion.
In a more general situation where both pieces in (37) are

nonvanishing, one might expect the second term to be
negligible with respect to the first one, owing to the relative
factor c−3. However, this is not so because the accumu-
lation due to the time integral of the nonlinear term results
in an effect that can be comparable to the linear term.
This can be verified by considering a point charge q with
mass m moving on a quasicircular orbit with radius RðtÞ in
an attractive Coulomb potential −Q=r. Because of its

acceleration, the particle radiates and RðtÞ shrinks in time.
The detailed evolution equation satisfied by RðtÞ is found
by noting that the rate of change of total mechanical energy
EðtÞ ¼ −Qq=2R (potential þ kinetic) is balanced by the
radiated energy which is given by the Larmor formula
Ė ¼ − 2

3
q2a2=c3, where a is the acceleration of the particle.

This implies that Ṙ ¼ − 4
3
ðqmÞ2 Qq

R2c3, which can be used to
compute both terms in (37). In fact, the second term is thus
found to be −3=8 times the first term, and the total
gyromagnetic memory is

ΦðnÞ ¼ 5q
16mr2c3

Δm · nþOðc−4Þ: ð38Þ

This confirms that both linear and nonlinear pieces in (37)
have the same order of magnitude in the nonrelativistic
limit, despite their seemingly different dependence on c.

V. CONCLUSION

This paper was devoted to a subleading electromagnetic
memory effect that affects the orientation of magnetic
dipoles; it mimics the gyroscopic gravitational memory
effect of [40,41]. Our main results are the precession rate
(10) and the ensuing memory (12), both of which are
deeply related to the magnetic (parity-odd) structure of the
electromagnetic radiative phase space.
A sharp difference between the electromagnetic and

gravitational setups is the simplicity of the former. In
particular, we provided explicit formulas [e.g., (28) and
(37)] for the precession rate of magnetic dipoles due to
bounded sources of electromagnetic radiation. Carrying out
the analogous computation for gravity will undoubtedly be
illuminating, but it is also much harder. We hope to address
this problem in the future.
A natural question is whether gyromagnetic memory

and/or its gravitational version can be observed. Again, the
electromagnetic setup has a clear advantage here, since it
can be produced in highly controlled experiments while the
detection of gravitational waves has only been possible for
a few years [5]. Note that electromagnetic effects sensitive
to the helicity (19) are known to occur in nature, e.g., in
magnetized plasmas (see [43] and references therein). One
may thus expect gyromagnetic memory to be very much
within the reach of current experiments.
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