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Principal component analysis (PCA) is an efficient tool to optimize multiparameter tests of general
relativity (GR), wherein one looks for simultaneous deviations in multiple post-Newtonian phasing
coefficients. This is accomplished by introducing non-GR deformation parameters in the phase evolution of
the gravitational-wave templates used in the analysis. A PCA is performed to construct the “best-measured”
linear combinations of the deformation parameters. This helps to set stringent limits on deviations from GR
and to more readily detect possible beyond-GR physics. In this paper, we study the effectiveness of this
method with the proposed next-generation gravitational-wave detectors, Cosmic Explorer (CE) and
Einstein Telescope (ET). For compact binaries at a luminosity distance of 500 Mpc and the detector-frame
total mass in the range 20–200M⊙, CE can measure the most dominant linear combination with a 1-σ
uncertainty ∼0.1% and the next two subdominant linear combinations with a 1-σ uncertainty of ≤ 10%. For
a specific range of masses, constraints from ETare better by a factor of a few than CE. This improvement is
because of the improved low frequency sensitivity of ET compared to CE (between 1–7 Hz). In addition,
we explain the sensitivity of the PCA parameters to the different post-Newtonian deformation parameters
and discuss their variation with total mass. We also discuss a criterion for quantifying the number of most
dominant linear combinations that capture the information in the signal up to a threshold.
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I. INTRODUCTION

Advanced LIGO [1] and Advanced Virgo [2] have
observed ∼100 gravitational wave (GW) signals from
compact binary coalescences [3–11] during their first three
observing runs, providing a unique opportunity to test the
validity of Einstein’s theory of general relativity (GR) in
the strong field regime [12–15]. To date, GW observations
have shown an excellent agreement with the predictions
of GR [16–18]. However, the planned upgrades in the
sensitivities of Advanced LIGO and Virgo [19], along with
the prospect of KAGRA [20] and LIGO-India [21] joining
the current network of GW detectors, will allow us to carry
out tests of GR with greater precision.
A theory-agnostic test of GR that is routinely performed

on GW signals is the parametrized tests of GR [22–28].

This is a set of null tests in which the phase of the GW
signal, as predicted by the post-Newtonian (PN) approxi-
mation to GR, is deformed at every order by introducing
fractional deformation parameters. These deformation
parameters capture potential GR violations via the physical
effects that appear at different PN orders [29] that are absent
in GR. This parametrization assumes that a modified theory
of gravity will result in phase evolution of the emitted
signal different from that in GR [30–32]. Such deviations
from GR at various PN orders may be detectable by
measuring these phenomenological PN deformation
parameters and testing for their consistency with the
predictions of GR [22,23,33,34].
In this paper, we study tests of GRusing the inspiral phase

of the GW signal. During this phase, the binary components
are adiabatically inspiralling towards each other under
gravitational radiation reaction. Higher order PN coeffi-
cients in the formula for the phase evolution contain
multiple nonlinear interactions (such as tails [35,36], tails
of tails [37,38]) and physical effects (such as spins-orbit and
spin-spin interactions [39–42]). Further, most of these
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effects appear at multiple PN orders [36–40]. Hence, from a
theoretical perspective, it is natural to expect that multiple
PN coefficients will get altered if the binary components
interact differently in a modified theory of gravity [30–32].
Therefore, simultaneous estimation of all the PN deforma-
tion parameters, along with the GR parameters (like the
componentmasses and spins, and other extrinsic parameters
such as the distance to the source) constitute a more robust
test of GR, when compared to tests that deform one PN
coefficient at a time.1 The resultant parametrized tests,where
more than one PN deformation parameter is measured along
with all the GR parameters, are often calledmultiparameter
tests of GR [22,44–46].
Multiparameter tests are less sensitive because of the high

correlations among the PN deformation parameters and
between them and the intrinsic GR parameters [22,26,47].
Therefore, single-parameter tests are performed where one
of the PN deformation parameters is measured, along with
the GR parameters, fixing the other deformation parameters
to their GR value, zero [18,23,26,47,48].
It has been shown that the brightest prospect for carrying

out multiparameter tests is by multiband observations of
binary black holes [44,45]. Multibanding combines obser-
vation of the same compact binary in the low-frequency
band by the Laser Interferometer Space Antenna [49] and
the high-frequency band by the next-generation terrestrial
detectors like the Einstein Telescope (ET) [50] or Cosmic
Explorer (CE) [51]. However, performing the multipara-
meter tests with only terrestrial or space-space detectors
alone remains challenging because of the aforementioned
parameter correlations.
One way to address this problem is to identify a new

set of basis functions in terms of which the variance-
covariance matrix of the problem is diagonal. We can do
this by using the method of principal component analysis
(PCA) on the variance-covariance matrix corresponding to
the PN deformation parameters after marginalizing over the
GR parameters [52,53]. The eigenvectors corresponding to
the smallest eigenvalues provide the best measured (small-
est measurement uncertainties) parameters, which are linear
combinations of the original PN deformation parameters.
In this paper, we diagonalize the inverse of the covari-

ance matrix, called the Fisher information matrix, to
identify the principal components. In the diagonalized
Fisher matrix, the most informative eigenvectors have
the highest eigenvalues. Hence, ranking the eigenvalues
in decreasing order and identifying the corresponding
eigenvectors help us deduce the set of most informative
new deformation parameters. The newly constructed
parameters are linear combinations of the original ones
and are zero in GR. We will call these new parameters as
PCA parameters in the rest of the paper.

The trace of the diagonalized Fisher matrix (sum of the
eigenvalues associated with the PCA parameters) captures
the total amount of information it carries. The ratio of the
eigenvalues to the trace of the Fisher matrix helps truncate
the matrix to a specified accuracy. In summary, PCA
provides a way to optimize the multiparameter tests and
extract maximum information from the data with fewer
additional “null” deformation parameters.
In a recent paper [53], we demonstrated the use of this

method to carry out multiparameter tests on GW events
detected during the first (O1) and second observing (O2)
runs of Advanced LIGO and Advanced Virgo, within the
framework of Bayesian inference. We also discussed the
effectiveness of the PCA parameters in detecting GR
violations with simulated non-GR signals. The GR viola-
tions were introduced at every PN order starting from
1.5PN to 3.5PN. We found that the most dominant PCA
parameter could recover the injected non-GR values by
excluding the GR value (zero) with high credibility.
However, due to the limited sensitivity of Advanced
LIGO and Virgo during O1/O2, we could only construct
the PCA parameters by simultaneously varying deforma-
tions from 1.5PN to 3.5PN (six-parameter tests). Recently,
an independent work [54] also explored this method in the
context of binary neutron star merger GW170817 [55]
albeit with a different parametrization and procedure.
In this paper, we investigate the application of PCA-

based multiparameter tests with CE and ET to be built in
the United States and Europe, respectively. The triangular
shaped ET has a noise power spectral density similar to the
CE, with a better strain sensitivity at frequencies below
about 7 Hz. The improved sensitivity of these detectors
should allow us to perform a powerful eight-parameter test
and compute the projected bounds on the corresponding
dominant PCA parameters, as opposed to the six-parameter
test available to the current generation of detectors. We use
the IMRPhenomD waveform model for this study, which
comprises inspiral, merger, and ringdown phases of the
binary evolution and considers spinning but nonprecessing
configurations [56].
More specifically, we consider the following questions:
(1) How many of the PCA parameters can be measured

with a 1-σ uncertainty of ≤ 10%, and how does this
number depend on the total mass of the binary?

(2) How does the performance of PCA-based multi-
parameter tests compare for the eight-parameter and
six-parameter cases?

(3) What is the relative contribution of each of the
original PN deformation parameters to the PCA
parameters, and how do they vary with the system’s
total mass?

(4) How can one decide the number of PCA parameters
required to capture the information in the signal up
to a given accuracy, and how does this number vary
with the total mass of the binary system?

1See, however, Ref. [43] for a recent study on the robustness of
the single-parameter tests.
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The rest of the paper is organized as follows. In Sec. II,
we elaborate on parametrized tests of GR and the details
related to the parameter space of the signal. In Sec. III, we
describe our method of performing PCA on the Fisher
information matrix, constructing the linear combinations of
the original PN deformation parameters to build new ones,
and computation of bounds on the new PCA parameters. In
Sec. IV we study the bounds obtained on the PCA
parameters as a function of total mass and investigate
the sensitivity of these new linear combinations on PN
deformation parameters. Finally, we investigate the hier-
archy in the significance of these new PCA parameters in
Sec. V, followed by a summary of results in Sec. VI.

II. PARAMETRIZED TESTS OF GR WITH
INSPIRAL-MERGER-RINGDOWN WAVEFORMS

Compact binary systems emit gravitational waves as they
inspiral towards each other and finally coalesce. In the
frequency domain, the waveform can be schematically
written as

h̃ðfÞ ¼ AðfÞeiΦðfÞ; ð2:1Þ

where AðfÞ and ΦðfÞ are the amplitude and phase of the
gravitational waves. The amplitude AðfÞ depends on the
source’s intrinsic parameters such as the component masses
m1 and m2, dimensionless spins χ 1 and χ 2 and the extrinsic
parameters like the luminosity distance DL, location and
orientation of the source binary with respect to the inter-
ferometer. At the leading order, the Fourier domain ampli-
tude of thewaveform in the inspiral regime is proportional to
M5=6D−1

L f−7=6, whereM ¼ Mη3=5 is called the chirpmass,
η ¼ m1m2=ðMÞ2 is the symmetric mass ratio and M ¼
m1 þm2 is the detector-frame total mass, or the redshifted
mass of the binary related to the source-frame total mass via
Msource by Mz ¼ Msourceð1þ zÞ.
When the compact binary components slowly inspiral

towards each other, the rate of change of the orbital period
is much smaller than the orbital period itself ðω̇=ω2 ≪ 1Þ.
In this regime, the phase and amplitude in Eq. (2.1) can be
expressed in terms of the PN expansion parameter,
v≡ ðπMfÞ1=3. The frequency domain phase evolution
for binaries in quasicircular orbits, constructed using inputs
from the PN theory, reads as [57]

ΦðfÞ¼2πftc−ϕcþ
3

128ηv5
XN
k¼0

h
ðϕkþϕkL lnvÞvk

i
; ð2:2Þ

where, tc and ϕc are the coalescence time and phase of the
signal, respectively. The PN coefficients, ϕk (k ¼ 0, 2, 3, 4,
6, 7) and ϕkL (k ¼ 5, 6), are unique functions of the source
properties, such as the component masses and dimension-
less spin magnitudes and directions [58].

An alternative theory of gravity can differ from GR in
several ways. These include the presence of extra fields,
higher dimensions, and violation of diffeomorphism invari-
ance [15,28]. Modifications due to these may show up in the
conservative and the dissipative dynamics of the binary,
leading tomodifications to theGRphase evolutionEq. (2.2),
resulting in a modified set of PN coefficients, ϕk and ϕkL.
One of the most generic ways to test for these deviations is
using a parametrized waveform model, which has deforma-
tion parameters at every PNorder. The PNcoefficients under
this “null parametrization” can be written as

ϕk → ϕGR
k ð1þ δϕ̂kÞ; ð2:3aÞ

ϕkL → ϕGR
kL ð1þ δϕ̂kLÞ: ð2:3bÞ

Here, δϕ̂k and δϕ̂kL are the fractional non-GR deformation
parameters. We do not consider deformation to the non-
logarithmic part of the 2.5PN coefficient as this term is
independent of frequency and hence can be absorbed into the
redefinition ofϕc [59,60]. Hence, we have eight non-GRPN
deformation parameters to constrain using GW data. These
PN deformation parameters encapsulate the deviations from
GRand are zero inGR [26,61]. If these parametersmeasured
by matching the above-mentioned parametrized waveforms
with the GW data are found to be consistent with zero, then
we may say the dynamics of the corresponding compact
binary merger is consistent with the predictions of GR.
We employ the IMRPHENOMD [56] waveform family in

this study. These semianalytical waveforms account for the
inspiral, merger, and ringdown phases of the evolution of
the binary in GR. The amplitude of this family of wave-
forms has only the leading quadrupolar mode and assumes
that the binary is composed of BHs whose spins are aligned
or antialigned with the orbital angular momentum and
hence the companions are nonprecessing. The inspiral part
of the IMRPHENOMD waveform follows from Eq. (2.2)
correct up to 3.5PN order. Since our method involves
testing only the structure of the inspiral phase as predicted
by the PN approximation to GR, we only need to change
the ansatz to the inspiral part of the IMRPhenomD model
by introducing PN deformation parameters as shown in
Eq. (2.3), while leaving the postmerger phase unchanged.
In a self-consistent modified theory of gravity, the inspiral
and postinspiral dynamics of the binary may both differ
from their GR predictions. However, our better under-
standing of the inspiral dynamics motivates the current
choice. In the spirit of null tests, this inspiral-only para-
metrization should help us detect a deviation, if present in
the observed signal, although deviations are not introduced
in the postmerger part of the waveform.
Having introduced the null parametrization, our param-

eter space for this analysis consists of seven GR and eight
non-GR deformation parameters:
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θi ¼
n
lnDL;tc;ϕc; lnMc;η;χ1;χ2;fδϕ̂kg;fδϕ̂kLg

o
; ð2:4Þ

where χ1 and χ2 are magnitudes of the companion spins in
the direction of the orbital angular momentum. The seven
GR parameters include the source’s intrinsic and extrinsic
parameters relevant for the signal observed in a single
detector. The curly brackets enclosing δϕ̂k and δϕ̂kL denote
the set of deformation parameters corresponding to the
nonlog and log types.

III. FISHER INFORMATION MATRIX AND
THE PRINCIPAL COMPONENT ANALYSIS

Fisher information matrix formalism [62,63] has been
widely used in GW research to forecast measurement
uncertainties in the parameter estimation problems. The
formalism assumes a waveform model for the astrophysical
signal in question and the detector noise’s power spectral
density (PSD) [57,60,64]. Fisher matrix is the noise-
weighted inner product of the derivatives of the gravita-
tional waveforms with respect to the physical parameters of
the waveform. More explicitly, the components of the
Fisher matrix can be written as [57,60,64,65],

Γmn ¼
�
∂h̃ðfÞ
∂θm

;
∂h̃ðfÞ
∂θn

�
; ð3:1Þ

where the noise weighted inner product is defined as

hajbi ¼ 2

Z
fhigh

flow

aðfÞbðfÞ� þ aðfÞ�bðfÞ
SnðfÞ

df: ð3:2Þ

In the above definition, flow and fhigh are suitably chosen
lower and upper frequency cutoffs such that the contribu-
tion to the integral from outside this range is negligibly
small, aðfÞ� denotes complex conjugate of the function
aðfÞ and SnðfÞ is the one-sided noise PSD of the detector
in question. We consider the noise PSD of CE given in
Ref. [66] and choose the lower frequency cutoff to be 5 Hz.
The noise PSD for ET is taken from Ref. [67], and the lower
frequency cutoff is set at 1 Hz. The upper frequency cutoffs
for both the detectors are chosen such that the ratio between
the characteristic amplitude 2

ffiffiffi
f

p jh̃ðfÞj and the CE/ET
noise amplitude spectral density is at most 10% [44,45].
If the detector noise is stationary and Gaussian and in the

limit of high signal-to-noise ratio (SNR), then the meas-
urement uncertainties in the parameters of the signal are
given by the square-root of the diagonal elements of the
variance-covariance matrix, which is the inverse of the
Fisher matrix. This is expected to be a reasonable approxi-
mation to the uncertainties one would get from a numerical
sampling of the likelihood function [68]. (See Ref. [65] for
a detailed discussion of possible caveats.)
In our problem, the dimensionality of the parameter space

is 15: seven GR parameters (θ⃗GR) and eight deformation

parameters θ⃗NGR. The parameters of our primary interest
here are the set of eight PN deformation parameters,
⃗θNGR ¼ fδϕ̂0; δϕ̂2; δϕ̂3; δϕ̂4; δϕ̂5L; δϕ̂6; δϕ̂6L; δϕ̂7g. The
Fisher matrix corresponding to this eight-dimensional space
can be obtained by marginalizing the full 15-dimensional
Fishermatrix in Eq. (3.1) over the sevenGRparameters θ⃗GR.
We use the Schur complement method [69] to marginalize
out the GR parameters [44,45]. The marginalized p-dimen-
sional Fisher matrix, Γ̃ can be calculated as

Γ̃p×p ¼ Γp×p − Γp×qΓ−1
q×qðΓTÞq×p; ð3:3Þ

where Γp×p and Γq×q are the non-GR and GR parameter
submatrices of the full Fisher matrix, respectively, and Γp×q

denotes cross terms between the two blocks. The variance-
covariance matrix for the non-GR parameters is the inverse
of this eight-dimensional marginalized Fisher matrix, Γ̃. It
represents an eight-dimensional error ellipsoid in a space
spanned by the deformation parameters θ⃗NGR.
The GR parameters, such as the chirp mass, mass ratio,

and component spins, appear at different PN orders, leading
to direct correlations with the corresponding PN deforma-
tion parameters. For instance, there are high correlations
between δϕ̂0 and chirp mass, δϕ̂2 and symmetric mass
ratio, δϕ̂3 and the component spins, and so on. Therefore,
the resulting Fisher matrix is ill conditioned and non-
invertible when one tries to simultaneously estimate all the
PN deformation parameters and the GR parameters.
Principal component analysis offers a way of addressing

the problem of correlations. We compute the eigenvalues of
the Fisher information matrix and keep only the dominant
few that carry most of the information. The corresponding
eigenvectors provide the new deformation parameters,
which are the best-measured linear combination of the
original ones. The number of new parameters retained will
depend on the accuracy with which we want to represent
the given data. These new parameters are uncorrelated by
construction and lead to a diagonal Fisher matrix in the new
representation.
We rewrite the 8 × 8 matrix Γ̃ in terms of basis vectors

that diagonalize Γ̃, which reads

Γ̃ ¼ USUT; ð3:4Þ

where U is an orthogonal transformation matrix whose
columns are the eigenvectors of Γ̃ and S is the diagonal
singular matrix whose elements are the eigenvalues.
Without loss of generality, we will assume that S is
arranged in decreasing order of the eigenvalues, i.e.,
S11 ≥ S22 ≥;…;≥ Spp. The relative magnitude of the
eigenvalues helps us determine the dominant linear combi-
nations of the deformation parameters, which we will call
the PCA parameters in this paper. Equation (3.4) represents
the transformation of the highly correlated Fisher matrix, Γ̃,
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to a space where it is diagonal (represented by S) with the
basis that are linear combinations of the original deforma-
tion parameters:

δϕ̂ðiÞ
PCA ¼

X
k

Uikδϕ̂k; ð3:5Þ

where Uik, k ¼ 1;…; p, are the elements of the ith column
of the transformation matrix U, corresponding to the ith
dominant PCA parameter. They determine the relative
weights of the original PN deformation parameters in
the PCA parameters. The values of the coefficients Uik

will, in general, depend on the properties of the source
binary and is studied in detail in Sec. IV.
As the Fisher matrix is now in the diagonal form, the

corresponding covariance matrix can be easily computed.
The 1-σ uncertainties on the PCA parameters are given by

Δ½δϕ̂ðiÞ
PCA� ¼

ffiffiffiffiffiffi
1

Sii

r
: ð3:6Þ

As mentioned earlier, the diagonal matrix S may be
truncated depending on the relative dominance of the
eigenvalues and the accuracy requirement of the problem.
The ratio of the eigenvalues is also expected to depend on
the source properties, such as masses and spins, and are
discussed in detail in Sec. V. We propose retaining as many
of the PCA parameters as is required to capture at least 99%
of the information in the marginalized non-GR Fisher
matrix, Γ̃. This procedure ensures that the eigenvectors
which carry the maximum information are kept and discard
those that make the Fisher matrix ill conditioned.
In the following section, we will employ the method

described above to compute the bounds on the new PCA
parameters and investigate how our ability to measure them
with CE and ET observatories varies with the total mass of
the binary.

IV. PROJECTED BOUNDS ON
THE NEW PCA PARAMETERS

In this section, we use the formalism explained in Sec. III
to investigate the variation in the bounds of the PCA
parameters as a function of the total mass of the binary. We
also study the composition of the PCA parameters in terms
of the original PN deformation parameters.

A. Variation of the PCA parameters
with total mass

We assume all binaries to have a mass ratio q equal to 2
and individual dimensionless spins, χ1 and χ2 set to 0.2 and
0.1, respectively. We consider sources at a luminosity
distance of 500 Mpc, with their redshifted total masses
Mz between 20 − 200M⊙. Binary systems in this mass
range have the highest SNR Oð102Þ–Oð103Þ accumulated

during the inspiral phase and hence are ideal for this
inspiral-based tests of GR.
We consider two kinds of multiparameter tests: (1) an

eight-parameter test, where we measure all the eight PN
deformation parameters simultaneously, and (2) a six-
parameter test, where only the last six PN deformation
parameters (1.5PN to 3.5PN) are measured together. In the
six-parameter test, the PN deformation parameters at 0PN
and 1PN are assumed to be consistent with their GR value
of zero. This is a scenario that allows the leading two PN
orders in the phase evolution to remain as in GR, but allows
simultaneous deviation in PN coefficients beyond 1PN,
broadly motivated by effective field theoretic extensions of
GR [70,71]. This also allows us to directly compare the
bounds obtained with CE and ET observatories with that of
Ref. [21], which also used this parametrization.
Figure 1 shows the projected 1-σ bounds on the PCA

parameters as a function of the total mass of the binary. The
solid (dashed) lines represent the bounds on the first three
(two) dominant PCA parameters for the eight-parameter
(six-parameter) test computed with the CE observatory. The
fainter lines denote the same quantities computed with the
ET observatory.
We will first discuss the bounds obtained with the CE

observatory. We find that for the eight-parameter test, the
three most dominant PCA parameters can be measured with
1-σ uncertainties less than 10%. For the six-parameter test,
we can constrain only two of the dominant PCA parameters
with similar uncertainties. The most dominant PCA param-

eter, δϕ̂ð1Þ
PCA for both the eight-parameter and six-parameter

cases have the best bounds ofOð10−3Þ. Hence, we will call

FIG. 1. The solid (fainter solid) lines show uncertainties in the
three most-dominant PCA parameters for the eight-parameter
case and the dashed (fainter dashed) lines show the uncertainties
in the two most-dominant PCA parameters for the six-parameter
case, computed with the CE (ET) noise PSD, as a function of total
redshifted mass Mz. The sources are all placed at a luminosity
distance of 500 Mpc.

MULTIPARAMETER TESTS OF GENERAL RELATIVITY USING … PHYS. REV. D 109, 044036 (2024)

044036-5



δϕ̂ð1Þ
PCA the best measured linear combination for the

corresponding multiparameter test. We do not show the
bounds on the rest of the subdominant PCA parameters, as
they have negligible information on the binary dynamics
and are dominated by numerical noise, as discussed in more
detail in Sec. V.
The uncertainties in the dominant PCA parameter for

both the eight- (solid black line) and six-parameter (dashed
black line) cases have similar features, as shown in Fig. 1.
The bounds slowly fall off with increasing total mass,
reaching a minimum around∼35M⊙. The gradual improve-
ment in the constraints occurs for the following reasons:
(1) the signal amplitude and the SNR increase with the total
mass of the system and (2) the late time dynamics of larger
mass systems is observed with greater sensitivity, making
the higher PN orders carry significant information. These
effects together help in resolving the degeneracies between
the lower order PN deformation parameters with the chirp
mass and mass ratio—predominantly Mc with δϕ̂0, and η
with δϕ̂0, δϕ̂2, and δϕ̂3. In the next subsection, we explore
the varying degree to which this happens across the mass
range and influences the bounds on the PCA parameters.
The minimum around ∼35M⊙ results from a complex
interplay between the two factors mentioned above. The
uncertainties worsen above ∼35M⊙ due to the decrease in
the in-band number of inspiral cycles as the total mass
increases.
The above two reasons also apply to the bounds on the

second-dominant PCA parameter δϕ̂ð2Þ
PCA for both the eight-

(solid pink line) and six-parameter (dashed pink line) cases,
which also decrease with increasing total mass. However,
the improvement in the bounds is steeper compared to the
dominant PCA parameter. This feature can be attributed to
the second dominant PCA parameter being more sensitive
to the higher PN order deformation parameters (subdomi-
nant dynamics of the system), which only become more
pronounced for systems with larger masses. We will study
this aspect in more detail in the following subsection.
The bounds on the dominant PCA parameter for the

eight-parameter case are better than the bounds from the
six-parameter case for every system. This is because in
the eight-parameter case, δϕ̂ð1Þ

PCA is a linear combination of
all the eight PN deformation parameters, which includes
the lowest two PN deformation parameters δϕ̂0 and δϕ̂2. As
these two lower order PN deformation parameters are well
measured and mostly contribute to the most dominant PCA
parameter, they yield better bounds than the six parameter
case. The same argument applies for the second-dominant

PCA parameter, δϕ̂ð2Þ
PCA, which is also a function of these

two PN parameters and provides a stronger bound in the
eight parameter case.
The order of magnitude estimates in measuring the PCA

parameters with the ET observatory do not differ much
from that of the CE observatory. For the eight-parameter

(six-parameter) case, the bounds on the leading PCA
parameter with the ET, improve by a factor of 2–3 (1.5)
for masses between 40 − 100M⊙, as compared to the CE.
The bounds on the third-dominant PCA parameter for the
eight-parameter case improve the most—by a factor of 2–9,
for higher mass systems (≳100M⊙), as shown in Fig. 1.
This improvement for the ET compared to the CE is due to
the improved low-frequency sensitivity of the former,
leading to an increase in the number of cycles between
1 and 5 Hz.

B. Sensitivity of the PCA parameters
to the different PN deformation parameters

Next, we explore in depth the composition of the PCA
parameters. The PCA parameters are optimal linear combi-
nations of the PN deformation parameters, as shown in
Eq. (3.5). In this section, we study the relative contribution
of the original PN deformation parameters to the bounds on
the PCA parameters and the variation with the total mass of
the system. We can study the composition of the PCA
parameters by comparing the magnitude of the elements of
the transformation matrix Uik in Eq. (3.5).
The transformation matrix is unique for every system

and strongly depends on the total mass. The structure of the
PCA parameters will also tell us about the dynamics they
probe. For example, a PCA parameter which is composed
of coefficients with large magnitudes corresponding to
lower-order PN deformation parameters, e.g., δϕ̂0, δϕ̂2, and
δϕ̂3, and negligible magnitudes corresponding to higher-
order deformation parameters, can only probe the early
inspiral phase.
We next study the composition of the different PCA

parameters in terms of the original PN ones in the case of
the CE observatory. The plots on the left and right columns
of the top row of Fig. 2 show the variation in the magnitude
of the coefficients of the dominant PCA parameter for the
eight- and six-parameter cases, respectively. The top-left
panel of Fig. 2 clearly shows that for the eight-parameter
case, only 0PN (δϕ̂0), 1PN (δϕ̂2), and 1.5PN (δϕ̂3)
deformation parameters contribute significantly to the

bounds on the dominant PCA parameter, δϕ̂ð1Þ
PCA. Similarly,

from the top-right panel of Fig. 2, we see that the most
dominant PCA parameter for the six-parameter case is
mostly sensitive to the 1.5PN (δϕ̂3) and 2.5PN-log (δϕ̂5L)
deformation parameters.
From the values of jU1kj in the top-left panel of Fig. 2,

1PN and 1.5PN deformation parameters dominate over
0PN for lower masses (up to∼50M⊙). With increasing total
mass, 0PN rises in dominance and dictates the overall

characteristics of the bounds on δϕ̂ð1Þ
PCA. This happens

because, for lower masses the contribution from the higher
PN orders is not enough to break the degeneracy between
the chirp mass and 0PN deformation parameter δϕ̂0. For
higher mass systems, the higher order PN coefficients
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become relevant to break the Mc-δϕ̂0 degeneracy along
with an increase in the SNR. This causes the 0PN
deformation parameter to influence the bounds on the

eight-parameter-δϕ̂ð1Þ
PCA the most (denoted by solid black

line in Fig. 1).
The relative values of jU1kj in the top-right panel of

Fig. 2 convey that, for the six-parameter case, it is the
1.5PN deformation parameter that has the strongest influ-
ence on the measurability of the most dominant PCA
parameter. However, as the total mass of the system
increases, the 2.5PN-log deformation parameter rises in
significance, although its relative contribution is almost
three times lower compared to the 1.5PN deformation
parameter, even for the highest masses.
The variation in the magnitude of the coefficients of the

second dominant PCA parameter δϕ̂ð2Þ
PCA for the eight- and

six-parameter cases are shown in the bottom-left and
bottom-right panels of Fig. 2, respectively. First important
observation from the bottom-left panel of Fig. 2 is that
0PN, 1PN, 1.5PN, and 2.5PN-log deformation parameters

are the dominant contributors to the eight-parameter δϕ̂ð2Þ
PCA.

Second, the contribution of δϕ̂ð0Þ decreases with increasing
mass in contrast to what we saw for the dominant PCA

parameter, δϕ̂ð1Þ
PCA. The values of jU23j and jU25Lj sharply

increase as a function of mass, indicating increased

sensitivity of δϕ̂ð2Þ
PCA to higher PN effects.

The bottom-right panel of Fig. 2 tells that for the six-
parameter case, all the deformation parameters starting
from 1.5PN contribute to the bounds on δϕ̂ð2Þ

PCA, with the
exception of jU27j which contributes the least. The bounds
on the second dominant PCA parameter for the six-
parameter case have the dominant contribution from the
2.5PN-log deformation parameter, unlike the dominant
PCA parameter, where the 1.5PN deformation parameter
contributes the most (shown in the top-right panel
of Fig. 2).
The rest of the subdominant PCA parameters should be

sensitive to higher PN deformation parameters. However,
they are uninformative because of the significant uncer-
tainties associated with their measurement. This reflects the
limitation of what one can do with the sensitivities of next-
generation detectors. Lastly, given the similarity in the

FIG. 2. Absolute values of the coefficients of the most dominant (top row) and second-dominant (bottom row) PCA parameter from
eight-parameter (left column) and six-parameter (right column) cases, as a function of redshifted total mass of the systems, Mz.
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overall features between the ET and CE curves, we do not
repeat the analysis for the ET.

V. DETERMINING THE NUMBER
OF SIGNIFICANT PCA PARAMETERS

We have seen in the previous section that the principal
components are unique to each binary and are determined
by the specific parameters characterizing the system.
Hence, it is only natural to expect that the relative
dominance of the PCA parameters will also depend on
the source properties. Evaluation of the relative dominance
of the PCA parameters will help us determine the number
of significant PCA parameters needed for an accurate
reconstruction of the information in the signal. In this
section we will describe our proposal to determine the
number of principal components that carry most of the
information relevant to parametrized tests of GR.
The eigenvalues of the Fisher information matrix encode

the relative importance of the eigenvectors in terms of the
amount of information they carry. The trace of the diagonal
Fisher matrix captures the total information contained in
the signal and it is invariant under the transformation in
Eq. (3.4). For any given system, let fλkg, k ¼ 1;…; n,
denote the eigenvalues obtained after finding the PCA
parameters from the n-dimensional marginalized Fisher
matrix calculated from Eq. (3.3). We shall further assume
that the eigenvalues have been ordered such that
λ1 ≥ λ2 ≥ … ≥ λn. The relative information carried by
the kth eigenvector is calculated by dividing the corre-
sponding eigenvalue by the trace of the matrix:

Ik ¼
λkP
n
k¼1 λk

: ð5:1Þ

The cumulative information carried by the m dominant
PCA parameters is calculated as

Xm
k¼1

Ik ¼
P

m
k¼1 λkP
n
k¼1 λk

ðm ≤ nÞ: ð5:2Þ

We calculate the cumulative information content of the
PCA parameters according to Eq. (5.2) for all the systems
and plot them as a function of mass in Fig. 3 (these plots are
called Scree plots [72]). We use these plots to determine the
number of significant PCA parameters for a given system
depending on the amount of information we want to
capture. We set a threshold of 99% for the total information
to be retained by the PCA parameters denoted by the gray
shaded line.
The cumulative information monotonically increases as

we include more subdominant PCA parameters. The
sharpest increase in the information is between the most-
dominant and the second-most-dominant PCA parameters.
The increment beyond this point is relatively slower and

quickly saturates to values very close to one as more of the
subdominant PCA parameters are included. This is why we
have shown only the five most dominant PCA parameters
in the plot.

The amount of information captured by δϕ̂ð1Þ
PCA gradually

increases from high to low mass systems. This is because
the dominant PCA parameter is mostly influenced by the
first three PN deformation parameters (δϕ̂0, δϕ̂2; δϕ̂3) as
shown in the top-left plot in Fig. 2. The GW signals become
increasingly inspiral dominated with decreasing mass,
allowing the lower PN orders to carry most of the
information. On the other hand, δϕ̂2

PCA carries more
information for higher mass systems as compared to lower
ones (see inset of Fig. 3). This is because high-mass
systems probe more relativistic dynamics encoded in the
higher order PN deformation parameters, to which δϕ̂2

PCA is
more sensitive as shown in the bottom-left panel of Fig. 2.
We find that the first PCA parameter captures over 90%

of the information for all the systems analyzed, but none
cross the required threshold (all the points lie below the
gray dashed line marking 99% of the information). This
suggests we must consider at least one of the subdominant
PCA parameters. The most-dominant and the second-most-
dominant PCA parameters together capture more than 99%
of the information as shown in the Fig. 3 and hence meet
our criteria.

VI. CONCLUSION

We discussed the optimization of multiparameter tests of
GR, where one simultaneously measures parametrized
departures from GR in the GW phase evolution predicted
by the PN theory, using the principal component analysis.
We studied this in the context of the Cosmic Explorer and
Einstein Telescope observatories. Principal component
analysis helps identify the best-measured deformation
parameters that are linear combinations of the original
PN deformation parameters. These new PCA parameters

FIG. 3. Cumulative information carried by the PCA parameters
as defined in Eq. (5.2) for different masses. Dashed horizontal
lines indicate 99% information.
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not only have the least statistical uncertainties but are also
sensitive to multiple PN deformation parameters, making
the test of GR more robust.
Below we list the most important findings of this paper

which answer the questions we posed in the introduction:
(1) Three (two) of the most dominant PCA parameters

can be constrained within a 1-σ uncertainty of less
than 10% for the case where all the eight (six) PN
deformation parameters were varied simultaneously.
The variation of the measurement uncertainties with
the total mass of the binary were explored in detail in
Sec. IVA and Fig. 1.

(2) The PCA parameters for the six-parameter test,
where the six PN deformation parameters (1.5PN
to 3.5PN) were varied, have weaker bounds com-
pared to the case where all the eight PN deformation
parameters are simultaneously measured. This dif-
ference arises because the 0PN and 1PN deformation
parameters that are very well measured from the GW
signal, are assumed to follow GR (fixed to their GR
value of zero) in the six-parameter test. In the eight-
parameter test the contribution from 0PN and 1PN
deformation parameters help in constraining the
PCA parameters better. This is explained in more
detail in Sec. IVA.

(3) The most dominant PCA parameter is sensitive to
lower order PN deformation parameters, whereas the
second dominant PCA parameter, captures higher
order PN effects better with increasing total mass.
Figure 2 shows these features and a detailed dis-
cussion can be found in Sec. IV B.

(4) Lastly, we proposed to use a truncation criterion based
on the information carried by each of the PCA
parameters. We retain only those PCA parameters
that together account for at least 99% of the informa-
tion contained in the full Fisher matrix. This criterion
may be changed depending on the exact science one is
interested in (see Fig. 3 and Sec. V for details).

Besides these salient points, we find that the relative
weights of PN deformation parameters beyond the 2.5PN
log-term are weak. This is true even in the case of six-
parameter tests, which implies that the next-generation
ground based detectors have limited ability to bound
deviations at the higher PN end.
Our waveform model does not account for spin-induced

precession and nonquadrupolar modes. Our method should
work even with a waveform that captures more complex
physics, though the constraints on the PCA parameters will
likely differ. Our goal here is to demonstrate the method’s
applicability in the era of next generation observatories
with a simple waveform model without having to deal with
technical issues that arise when dealing with a more
complex waveform.
In a future publication, we will discuss methods to carry

out PCA-assisted multiparameter tests of GR from a BBH
population. In a previous paper [21], we demonstrated a

method to combine the bounds on the PCA parameters
under the assumption that the deviation from GR at a
particular PN order is the same across all events, indepen-
dent of the source properties. We take the individual joint
posterior distributions of the PN deformation parameters
measured simultaneously for every event and combine
them by multiplying the individual likelihoods. The bounds
on the PCA parameters are then computed by diagonalizing
this combined joint posterior distribution of the PN
deformation parameters. In an upcoming publication, we
will demonstrate the use of hierarchical inference [73,74]
to combine a population of events to bound the PCA
parameters. In this method, we need not conform to the
assumption of a shared value of deviation from GR across
different events. This assumption is a natural fit for the
PCA-based tests where the dependence on the source
properties is explicit through Uik elements.
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APPENDIX: VARIATION IN THE BOUNDS
ON THE PCA PARAMETERS WITH

SYMMETRIC MASS RATIO

In Fig. 1, we studied the variation in the uncertainties on
the PCA parameters with total mass for sources with mass
ratio, q ¼ 2, and individual spin magnitudes, χ1 ¼ 0.2, and
χ1 ¼ 0.1. In this section, we study how the bounds vary
with changing mass ratio and spin magnitudes. We explore
the parameter space with only CE, as CE and ET yielded
similar constraints on the leading PCA parameters.
We first keep the spin magnitudes fixed at χ1 ¼ 0.2 and

χ1 ¼ 0.1, as before, and vary the mass ratio (q ¼ m1=m2,
where m1 > m2) from 1.01 to 10. The mass ratio, q ¼ 1.1,
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denotes an almost equal mass source. We avoid exactly
equal mass cases as they are prone to numerical inaccur-
acies arising from numerical differentiation methods. For
every value of the mass ratio, we vary the detector frame
masses from 20–200M⊙. The luminosity distance is fixed
at 500 Mpc. With these source parameter configurations,

we calculate the bounds on the first three dominant PCA
parameters for CE, as shown in Fig. 1.
The top, middle, and bottom panels in Fig. 4 show the

bounds on the first, second, and third dominant PCA
parameters for CE. The y axis of the plots denotes the
symmetric mass ratio (η), computed from the corresponding
mass ratio using η ¼ q=ð1þ qÞ2. Symmetric mass ratio,
η ¼ 0.25, represents sources with equal mass components.
The plots show that for a givenmass, the bounds improve for
the more symmetric systems compared to the asymmetric
ones. Although, asymmetric systems have larger number of
inspiral cycles, the higher SNRs for symmetric systems
contribute more to improving the bounds.
In Table I, we also show the variation in the bounds of

the first three most dominant PCA parameters with chang-
ing magnitudes of the individual spin components and mass
ratio. For both unequal mass (q ¼ 10) and almost equal
mass cases (q ¼ 1.1), high spin magnitude configurations
(χ1 ¼ 0.9, χ2 ¼ 0.8) give better bounds than low spin
magnitude configurations. This is because high spin mag-
nitudes lead to higher SNR and help break the correlations
between the component spins and higher PN order defor-
mation parameters starting from 1.5PN. Antialigned con-
figurations (χ1 ¼ 0.9, χ2 ¼ −0.8 and χ1 ¼ 0.2, χ2 ¼ −0.1)
of the systems considered in Table I give worse bounds as
the SNR decreases.
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