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In theories where physics depends on a global foliation of space-time, a black hole’s horizon is
surrounded by an “eternity skin”: a pile-up of spacelike leaves that in the far-out region cover all times from
the start of collapse to future eternity. Any future foliation-dependent change in the laws of physics would
be enacted in this region and affect the last stages of collapse toward black hole formation. We show how in
some cases the black hole never forms but, rather, bounces into an explosive event. There is also a nonlocal
transfer of energy between the asymptotic Universe and the formed black hole precursor, so that the back
hole (if formed) or the exploding star (otherwise) will have a different mass from what was initially thrown
in. These last matters are generic to nonlocal theories and can be traced to the breakdown of the local
Hamiltonian constraint.
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I. INTRODUCTION

The gravitational redshift effect around a black hole is a
very interesting phenomenon. It implies that an observer in
a far out region would have to wait an eternity to “see” a
collapsing star plunge through the Schwarzschild radius,
whereas an observer on the surface (or inside) such a star
would experience an unremarkable finite time. More
mathematically, this arises from the fact that the black
hole horizon (Hþ) is connected to the asymptotic timelike
infinity (ιþ) in the conformal Penrose-Carter diagram
(Fig. 1) [1]. As a result, any asymptotic spacelike surface
(i.e., ending in ι0) to the future of the start of collapse will
become a spacelike, near-null surface in the region just
outside the black hole horizon, no matter how remote this
future might be.
This fact potentially renders the black hole a remarkable

futurological probe: the further into the future of the
asymptotic outer Universe we want to probe, the closer
to the black hole horizon we must go. If something
dramatic were to happen globally in our future, this would
be reflected in the environment near the horizon of any
black hole, or in the final moments of collapse preceding
their formation. Obviously, such global event is forbidden
in theories where the laws of physics are purely local. But if
physics were hypersurface dependent (namely if there were

to be future evolution in the laws of physics in terms of a
global time variable [2]), then this would inevitably affect
the local physics near the horizon of a black hole. This is
the possibility to be investigated in this article.
In our pursuit we will be guided by a few test tube

examples. We consider only spherically symmetric black
hole solutions, and focus mainly on the collapse of a dust
ball within a Schwarzschild-like vacuole in a FRWUniverse.
This is a simple generalization of the Oppenheimer-Snyder
model [3–5] and will be our prototype for a Machian set up,
where a global outer Universe presides over local physics.
In Sec. II we review the setting as it appears in general

FIG. 1. The Penrose-Carter diagram of a standard dust ball
collapse (with surface at χ ¼ χ0), with two leaves of the preferred
foliation drawn. The upper leaf indicates a global event to the far
future, at τ ∼ τ⋆.
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relativity. Then, in Sec. III we show how it can relate to
Mach’s ideas, particularly as foliation dependent physics
is introduced, allowing for direct action between the
global Universe and local physics. We do this by defining
global “constants” and their conjugate “time variables”,
allowing for variability in the laws of physics [2].
Interestingly, the local Hamiltonian constrain is lost
during evolution (Sec. IV), even though it is still globally
valid, and approximately true for the “outer Universe” in a
Machian setting (Sec. V).
Having uncovered this important technicality, in

Secs. VI–VIII we return to our toy model for black hole
formation in theories where evolution takes place in the
future. We find that a possible remarkable feature is that the
collapse bounces into an explosive event and the black hole
never forms. Whether the black hole forms or not, generi-
cally the mass of the final object is different than the initial
mass, as a result of the energy conservation violation
associated with evolution. These striking features can be
interpreted as the effect of the Machian actions of the global
Universe upon local physics.

II. THE “ETERNITY SKIN”
IN GENERAL RELATIVITY

The presence of an “eternity skin” around a black hole is
not controversial even in GR, although the question
remains as to whether this could have physical effects
(see Ref. [6], for example). For a standard Schwarzschild
black hole with metric:

ds2 ¼ −
�
1 −

rS
r

�
dt2 þ dr2

1 − rS
r

þ r2dΩ2
2 ð1Þ

(where rS ¼ 2GM is the Schwarzschild radius, with c ¼ 1
in this Section) the asymptotically flat surfaces Σt become
outgoing near-null surfaces near the horizon, satisfying:

t ¼ r⋆ ¼ rþ rS ln
r − rS
rS

: ð2Þ

In standard GR the null horizon is observer independent,
and so are these near-null surfaces, the more so the closer to
the horizon one gets. Since t is also the proper time t∞ felt
by these surfaces asymptotically far from the black hole,
the “eternity skin” around the black hole horizon is there-
fore given by:

r − rS
rS

≈ e−
Δt∞
rS : ð3Þ

This expression relates how close to the horizon one must
get to probe the asymptotic time lapse Δt∞ since black hole
formation, as seen from infinity. The skin’s spatial volume is

VðΔt;∞Þ ¼ 64πm3e−
Δt
2rS ; ð4Þ

which is nothing but an expression of the exponential decay
of the luminosity of a collapsing star, as seen from infinity.
Hence, even without looking at the details of collapse, and
assuming that the black hole has already formed, one can
expect a mass top up coming from infinity in theories with
matter creation to the future [2], but we may expect this to
be very small, simply by examining the volume factor
involved (should the black hole form at all in such theories).
We thus turn to the process of black hole formation.
Focusing specifically on a popular “toy” collapse model

we take the Oppenheimer-Snyder (OS) homogeneous and
isotropic collapsing dust ball [3,4]. Inside the pressureless
ball we have FRW with k ¼ 1 (although this is not needed;
see Refs. [5,7] for k ≠ 1 examples):

ds2 ¼ −dτ2 þ a2ðτÞðdχ2 þ sin2χdΩ2
2Þ ð5Þ

up to χ0 (which we assume χ0 ≪ 1). The solution is

aðηÞ ¼ am
2
ð1þ cos ηÞ ð6Þ

τðηÞ ¼ am
2
ðηþ sin ηÞ ð7Þ

where we have adjusted the integration constants so that the
turnaround happens at η ¼ τ ¼ 0. The matter constant of
motion m is

m ¼ ρa3 ¼ 3

8πG
am ð8Þ

obtained from the Friedmann equation evaluated at the ȧ¼0
point (with conventions for a and angle χ so that k ¼ 1).
Outside the dust ball we have the Schwarzschild metric (1),
with geodesics given in parametric form by:

r ¼ Ri

2
ð1þ cos ηÞ ð9Þ

t ¼ rS ln

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri=rS − 1

p þ tanðη=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri=rS − 1

p
− tanðη=2Þ

����

þ rS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

rS
− 1

s �
ηþ Ri

2rS
ðηþ sin ηÞ

�
; ð10Þ

for which the proper time is

τ̃ ¼
ffiffiffiffiffiffiffi
R3
i

4rS

s
ðηþ sin ηÞ: ð11Þ

For some Ri (marking the boundary r > Ri for which (1) is
valid) this external geodesic must coincide with the internal
FRW geodesic χ ¼ χ0, for which the cosmological time, τ,
define by (5), is also proper time. Hence τ̃ ¼ τ for this
geodesic, and we can relate the FRW proper time with t by:
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τ ¼
ffiffiffiffiffiffiffi
R3
i

4rS

s
ðηþ sin ηÞ; ð12Þ

together with (10). In addition, matching the extrinsic and
intrinsic curvatures on both sides requires:

Ri ¼ am sin χ0 ð13Þ

rS ¼ am sin3χ0: ð14Þ

The above expressions define implicitly and parametrically
a function τðtÞ, and its inverse. For some η⋆, as η → η⋆ we
have rðηÞ → rS and τ → τ⋆, both finite, but t → ∞. This is
the collapse equivalent of the eternity skin mentioned above
for the vacuum solution. Wewill be examining the impact of
evolution in the laws of physics upon this model.

III. FOLIATION-DEPENDENT PHYSICS

Since its first statement (Ref. [8], Ch. II, Sec. VI) Mach’s
principle has developed a severe case of dissociative person-
ality disorder. Of its ten-plus versions [9] we will adopt the
variant that states that the Universe as a whole affects (rather
than fully determines) the local physics. This is the case in
theories where the local physics depends on a foliation of
space-time and on the global properties of the leaf where the
local event lives. As an example we take theories mimicking
the Henneaux-Teitelboim prescription [10] for implement-
ing unimodular gravity [10–16]. If S0 is a base action
depending on “parameters” α (“constants”, as it were), one
adds a term to the action:

S ¼
Z

d4xð∂μαÞ · T μ
α þ S0; ð15Þ

where T α is a density. This density is then used to produce a
foliation-dependent time variable [10,15–20] as follows.
Performing a 3þ 1 split, and solving for the Lagrange
mutiplier T i, we first obtain spatial constancy of α on the
leaves Σt. Retaining the gauge invariant zero-mode of T 0

(see Ref. [10] for details) we then define a time variable:

TαðtÞ ¼
1

Vc

Z
Σt

d3x T 0
α: ð16Þ

This is divided by the spatial coordinate volume Vc, so that
time is intensive [19,20]. For example, in the unimodular
case, for which the target α is ρΛ (the vacuum energy), the
time TΛ is 4-volume per unit of coordinate (comoving, in the
case of FRW) 3-volume.
Under this prescription, the constants α and their times

are conjugate variables that depend only on t, since the
action reads:

S ¼ Vc

Z
dt α̇ · Tα þ S0; ð17Þ

implying:

fα;Tαg ¼ 1

Vc
: ð18Þ

Because they only depend on t, they are global variables,
defined leaf by leaf. The set up fixes a preferred foliation
Σt, and this is particularly pertinent if we impose Tα
dependence upon S0, a situation described as “evolution in
the laws of physics” in [2]. For example, S0 may contain
other parameters β which are functions of Tα, according to
functions βðTαÞ, akin to evolution potentials [2]. Then, the
local physics (dependent on parameters α and β) is affected
by the global variables defined on the leaves Σt. We stress
that this construction may select a foliation, but it certainly
is an improvement upon a coordinate time-dependence,
since the times used are physical, and so the preferred
foliation is fixed by physical matter or geometrical entities.
Mach’s concept is predicated on the distinction between

“local” (e.g., a rotating bucket) and “Universe” (the “fixed
stars”). Obviously the Universe is made of a collection of
locals, but it is by coarse-graining their details and letting
them gang up as a whole that the “Universe” is defined. In
Mach’s vision we let the Universe affect a “local” detail we
have decided to focus on, be it a rotating bucket or the
formation of a black hole. In this spirit, we consider the OS
model described in the previous section, embedded in an
outer FRW dust Universe, with metric:

ds2 ¼ −dt̄2 þ ā2
�

dρ2

1 − k̄ρ2
þ ρ2dΩ2

2

�
; ð19Þ

providing the Universe. We could for example consider a
spherical collapse starting in the outer FRW (e.g., [5]). This
would create a vacuole, with an OS model in the middle.
The internal collapsing FRW patch of the OS model is then
connected to the asymptotic outer FRW via the intermedi-
ate Schwarzschild solution (see Fig. 2).
Assuming that the vacuole is sufficiently large, the

outer FRW cosmological proper time t̄ is the same as
Schwarzschild’s t:

t̄ ≈ t: ð20Þ

Hence, the outer cosmological proper time, t, and that of
the OS inner FRW model, τ, are implicitly related by
(10) and (12) (with τ ¼ τ̃ as discussed). There is a τ⋆ such
that as τ → τ⋆ we have t → ∞ (and R → rS). This
formalizes the eternity peel in this context. All we need
now is to find the dynamics for a theory with evolution
within this setup. However, a major difference is found with
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respect to minisuperspace reductions, as studied in [2], as
we now explain.

IV. STATUS OF THE HAMILTONIAN
CONSTRAINT

The crucial novelty is that if there is Tα dependence in S0
[e.g., via βðTαÞ], then we lose the local, but not the global
Hamiltonian constraint. This is because the theory is only
invariant under lapses and shifts of the form:

N ¼ NðtÞ ð21Þ

Ni ¼ Niðt; xjÞ ð22Þ

that is, N is not allowed to depend on xi. These are the
transformations that preserve the foliation Σt, and they are
the symmetries of any other foliation-dependent theory,
such as Horava-Lifshitz theory, cf. [21]. By varying with
respect to N we obtain the global Hamiltonian constraint:

H ¼ NðtÞ
Z

d3xHðxÞ ¼ 0; ð23Þ

yet, there is no local Hamiltonian constraint, HðxÞ ¼ 0.

Another way to see that under evolution H ¼ 0 could
not be true is to examine its associated secondary con-
straint Ḣ ¼ 0. This cannot be enforced, as we now show. It
is true that βðTαÞ evolution avoids a preferred foliation
defined directly in terms of coordinate time, and so the
local Hamiltonian is still independent of coordinate t.
However, it does depend on global (“Machian”) variables,
and this spoils the usual argument leading to Ḣ ¼ 0 even
if H does not depend on t. Indeed, writing HðxÞ ¼
HðqðxÞ; pðxÞ;α;TαÞ, where qðxÞ and pðxÞ are generic
local degrees of freedom, we can expand (suppressing the
x labels for clarity):

Ḣ ¼ ∂H
∂t

þ ∂H
∂q

q̇þ ∂H
∂p

ṗþ ∂H
∂α

α̇þ ∂H
∂Tα

Ṫα

¼ ∂H
∂α

α̇þ ∂H
∂Tα

Ṫα ð24Þ

where we have used Hamilton’s equations for the local
variables to cancel the second and third terms. However,
the Hamilton equations for the global variables are

α̇ ¼ fα; Hg ¼ 1

Vc

∂H
∂Tα

¼ NðtÞ
Vc

Z
d3x

∂H
∂Tα

ð25Þ

Ṫα ¼ fTα; Hg ¼ −
1

Vc

∂H
∂α

¼ −
NðtÞ
Vc

Z
d3x

∂H
∂α

ð26Þ

i.e., they employ H, not H. This spoils the equivalent
cancellation of the remaining terms, with:

Ḣ ¼ 1

Vc

�
∂H
∂α

∂H
∂Tα

−
∂H
∂Tα

∂H
∂α

�
≠ 0: ð27Þ

A more compact derivation leading to the same result,
appeals to the Poisson bracket:

Ḣ ¼ ∂H
∂t

þ fH; Hg ¼ fH; HgNL ð28Þ

where we denoted by ff; ggNL the terms in the Poisson
bracket involving the nonlocal variables. This alternative
derivation shows how Ḣ ≠ 0 can be traced to:

fHðxÞ;Hðx0Þg ≠ 0 ð29Þ

(with x ≠ x0) due to the dependence of H on α and Tα,
since we can also write:

ḢðxÞ ¼ fHðxÞ; Hg ¼ N
Z

d3x0fHðxÞ;Hðx0Þg: ð30Þ

Whichever expression we use the effect disappears if
integrated over the whole space:

Outer FRW (the Universe)

Inner FRW (collapsing dust ball )

Schwarzchild

FIG. 2. Our set up is a hybrid between the Oppenheimer-Snyder
model and a vacuole. Beside the inner collapsing FRW dust
model (playing “Newton’s bucket”), we consider an outer FRW
model (Mach’s “fixed stars”) linked to the Schwarzschild
solution in its far out region, and possibly a buffer region (which
does not change our discussion). In the usual theory the outer
model does not affect the inner collapse, but in the presence of
global variables it does, pointing to a breakdown of Birkhoff’s
theorem.
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Z
d3x ḢðxÞ ¼ 0; ð31Þ

so that (23) is consistent.
Hence, we find something that is absent in the usual

FRW or minisuperspace (MSS) setup. In that case there is
significant redundancy in obtaining the dynamics [2].
Recall that in the standard theory (with no evolution)
one can derive energy-momentum conservation either from
the gravitational equations and Bianchi identities (which
amount to the secondary constraint Ḣ ¼ 0), or directly
from the matter equations of motion. The same redundancy
applies to theories with time-dependence (evolution) when
reduced to MSS [2], with both methods leading to the same
source terms in the conservation equation. This redundancy
is lost if we have evolution and go beyond homogeneity
and isotropy, and focus on local equations, because we lose
the Hamiltonian constraint, and so the Bianchi identity.

V. HAMILTONIAN CONSTRAINT
IN A MACHIAN SETTING

The general statements made in the previous section, take
a special form in a Machian setting, where we can split the
system into a presiding Universe (here assumed homo-
geneous) with volume V∞ and Hamiltonian

H∞ ¼ NðtÞV∞H∞ðtÞ ð32Þ

and a local system with volume VL ≪ V∞ and Hamiltonian

HL ¼ NðtÞ
Z
L
d3xHLðxÞ: ð33Þ

Then, Eqs. (25) and (26) become approximately:

α̇ ¼ NðtÞ
Vc

�
V∞

∂H∞

∂Tα
þ
Z
L
d3x

∂HL

∂Tα

�
≈ NðtÞ ∂H∞

∂Tα

Ṫα ¼ −
NðtÞ
Vc

�
V∞

∂H∞

∂α
þ
Z
L
d3x

∂HL

∂α

�

≈ −NðtÞ ∂H∞

∂α
; ð34Þ

that is, when determining the global variables in a Machian
setting, the presiding Universe dominates due to its volume.
A direct implication is that, even though there is no local

Hamiltonian constraint (HL ≠ 0) under evolution, there is
still an approximate Hamiltonian constraint for the Machian
Universe, H∞ ¼ 0. The obstruction (24) is removed, since
inserting (34) leads to:

Ḣ∞ ¼ ∂H∞

∂α
α̇þ ∂H∞

∂Tα
Ṫα

≈ N

�
∂H∞

∂α
∂H∞

∂Tα
−
∂H∞

∂Tα

∂H∞

∂α

�
¼ 0; ð35Þ

and indeed varying the action with respect to N we find:

0 ¼ H ¼ VLHL þ V∞H∞ ≈ V∞H∞: ð36Þ

This makes sense, since it is the result found under the
assumption of homogeneity [2], and this assumption is
nothing but the result of coarse-graining detail, and focusing
on what wins by volume.
We add a few comments on this interesting result. First,

in a Machian setting, the global variables are an essentially
external input into the local physics. They affect the local
physics, but their dynamics are not dependent upon it.
Instead their dynamics can be inferred from the minisuper-
space solutions, independently of the local setting one
considers. We can plug any of the solutions found in [2]
into the local physics, independently of the latter details.
Secondly, the Machian “outer” Universe does not even

need to be our observable Universe; indeed, if there is a
cosmological horizon effect, it is not. Rather, it is the whole
Universe contained in each leaf Σt. By Occam’s razor we
can assume that whatever is outside our cosmological
horizon, and dominates the global variables’ equations,
has the same average properties we observe in a smoothed
version of our horizon, but this is not necessary. This
possibility has interesting implication for our local FRW
Universe, as we will investigate in [22].
Finally, if we identify the notorious problem of time in

quantum gravity [23,24] with the Hamiltonian constraint in
general relativity, then we can draw the following con-
clusions in the context of this theory. The less evolution
there is (i.e., the more constant the constants are), the more
we have a problem of time (i.e., a Hamiltonian constraint).
But also should there be evolution, the bigger the chunk of
the Universe we consider and coarse grain, then the bigger
the problem of time that is left unaffected by evolution. Still,
even under the tiniest amounts of evolution, the local scales
will always see a time, because the Hamiltonian constraint is
violated for them. The problem of time is then a problem for
both theories without evolution, and in theories with
evolution for the global coarse-grained Universe. Each
local region living therein fails to see what is the problem.

VI. FOLIATION-DEPENDENT
OPPENHEIMER-SNYDER COLLAPSE

We can now match the setting described at the end of
Sec. III (an OS model embedded in an outer FRW) into our
framework. We take for local system (HL) the inner
collapsing dust FRW with metric (5). For Machian
Universe we take the outer FRW metric (19), providing
H∞ and responsible for the dynamics of the global
variables, α, β, and Tα. Connecting the two we have a
Schwarzschild region.
Assume first that the functions βðTαÞ are either pulses

[delta functions of the form β ¼ δβδðTα − Tα⋆Þ] or steps

BLACK HOLES AND FOLIATION-DEPENDENT PHYSICS PHYS. REV. D 109, 044034 (2024)

044034-5



[Heaviside functions of the form β ¼ ΔβHðTα − Tα⋆Þ] in
the far future. Hence, at least up to the time Tα⋆, we can
assume the standard relation between the Schwarzschild
coordinate t [with t ≈ t̃, the asymptotic FRW proper
time, cf. (20)] and the inner FRW proper time τ, as given
implicitly by (10) and (12). GenerallyH∞ determines TαðtÞ
via (34). Hence when evaluating the effect upon the OS
inner FRW we must compute the chain of composite
functions:

βðτÞ ¼ βðTαðtðτÞÞÞ: ð37Þ

There is a τ⋆ such that as τ → τ⋆ we have t → ∞ (and
R → rS). Hence we do not even need to strictly assume that
βðTαÞ are pulses or steps, since any function varying only
over a finite duration in the future will be mapped into a
pulse or a step (or a combination) in βðτÞ at τ ¼ τ⋆.
To fix ideas, we focus on models extracted from a theory

where for clock generators we have:

α ¼
�
ρΛ;

3c2P
8πG

�
; ð38Þ

where ρΛ is the vacuum energy, cP is the speed of
light as it appears in the gravitational commutation
relations [2,19,20,25], and G is the gravitational constant
[19,20,26–28]. This is similar to sequestration [26–32]
and for base action:

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
α2
6
Rþ LM − ρΛ

�
; ð39Þ

(or its Einstein-Cartan variation [2], as we will assume
here) the associated times are

T1ðΣtÞ≡ TΛðΣtÞ ¼ −
Z

Σt

Σ0

d4x
ffiffiffiffiffiffi
−g

p ð40Þ

T2ðΣtÞ≡ TRðΣtÞ ¼
1

6

Z
Σt

Σ0

d4x
ffiffiffiffiffiffi
−g

p
R: ð41Þ

that is, minus the 4-volume between leaf Σt and a
conventional “zero-time” Σ0 leaf to its past, or unimodular
time [10], and its Ricci weighted counterpart. (We will
often omit the Σ in our expressions.) For simplicity we
will only consider the speed of gravity, c2g as a potential β
(see Refs. [33–35] for some background). The matter
action is that of dust for the inner FRW or a generic
perfect fluid (which may be dust) for the outer FRW, as
described in [2,36–38].
Reducing the Einstein-Cartan action to our setting, we

have two FRW situations, one for the collapsing dust ball,
another for the presiding Universe:

SL ¼ VL

Z
dt½α2ḃa2 þ ṁTm − NHL� ð42Þ

HL ¼ a
�
−α2ðb2 þ kc2gÞ þ

m
a

�
ð43Þ

S∞ ¼ V∞

Z
dt½α2 ˙̄bā2 þ ˙̄mT̄m − NH∞� ð44Þ

H∞ ¼ ā

�
−α2ðb̄2 þ k̄c2gÞ þ

m̄
ā1þ3w

�
: ð45Þ

Here a is the expansion factor, b the FRW connection
variable (which in the standard theory is ȧ on-shell, that is
the comoving inverse Hubble length), and the reduced
fluids have been represented following [2,36–38], with w
the equation of state andm their conserved quantity. We use
a bar for the outer variables and no bar for the inner
variables. This defines the Poisson brackets for all varia-
bles, as well as the Hamiltonian. The N is common to the
two systems.

VII. BOUNCING FROM COLLAPSE TO
EXPLOSION

Let us consider the evolution potential c2g ¼ c2gðTRÞ to
illustrate the general points made in Secs. IVand V. The fact
that we lose the Hamiltonian constraint HL ¼ 0 does not
mean that this is not a Hamiltonian system (most
Hamiltonian systems do not have a Hamiltonian constraint
after all). The usual framework applies, except that care
must be taken not to use standard manipulations which
implicitly use the Hamiltonian constraint. The Hamilton’s
equations lead to [2]:

ȧþ α̇2
2α2

a ¼ Nb ð46Þ

ḃ ¼ −
N
2a

ðb2 þ kc2gÞ ð47Þ

ρ̇þ 3
ȧ
a
ρ ¼ 0: ð48Þ

The first equation contains a correction typical of theories
with varying Planck Mass in the Einstein-Cartan frame-
work [2,39]. The second equation is the Raychaudhuri
equation stripped of its standard simplification using the
Friedman equations. The third equation arises directly from

ṁ ¼ fm;Hg ¼ 0; ð49Þ

rather than combining the first two equations with the
Hamiltonian constraint, as is usual both in standard theory
and under evolution in MSS [2] (see comments on
redundancy made at the end of Sec. IV).
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For the asymptotic FRW (assuming w̄ ¼ 0, but this is not
necessary1) we have the usual [2]:

b̄2 þ c2gk̄ ≈
ρ̄ā2

α2
ð50Þ

˙̄aþ α̇2
2α2

ā ¼ Nb̄ ð51Þ

˙̄b ≈ −
Nā
2α2

ρ̄ ð52Þ

˙̄ρþ 3
˙̄a
ā
ρ̄ ¼ 0 ð53Þ

resulting from the approximate Hamiltonian constraint (see
Sec. IV). For the global variables we have:

ṪR ≈
N
α2

ā3
ρ̄

2
ð54Þ

α̇2 ≈ −Nα2
dc2g
dTR

ā k̄ : ð55Þ

As explained in Sec. V (first comment at the end), in a
Machian setting the global variables are an external input
into the local physics and their solutions can be copied over
from their MSS counterparts.
Specifically, for simplicity, we could choose k̄ ¼ 0

so that α̇2 ¼ 0, leading to a simplified (46). We then solve
(46) and (47) assuming a pulse in c2g ¼ δc2gδðτ − τ⋆Þ. In the
N ¼ 1 gauge they can be combined into:

äþ ȧ2

2a
þ kc2g

2a
¼ 0: ð56Þ

and solved numerically. Alternatively, Eqs. (46) and (47)
imply a step in b and a cusp in a ¼ a⋆, with:

Δb ¼ −
kδc2g
2a⋆

: ð57Þ

By either method, we can easily find scenarios where the
collapse is reversed. In Figs. 3 and 4 we consider both
the standard OS model k ¼ 1 with a pulse with δc2g < 0 (so
that the gravitational geometry goes briefly Euclidean), and
an alternative OS model with k ¼ −1 (as described in [5,7])
and δc2g > 0.
Thus we see that a collapsing star, under the effects of

evolution to the far future, could actually explode into the
far future just as it was about to cross its Schwarzschild

radius. But as these examples show, this feature is not
generic within the space of theories in Sec. VI.

VIII. MASS TOP-UP AND DEFICIT

Whether a collapsing star forms a black hole or explodes,
its mass is generically changed by evolution in an energy
transfer process between the Machian and local Universe.
In contrast with the bounce phenomenon, this process is
generic (apart from very fine-tuned exceptions) and is
studied in detail in [22], but can be easily seen here.
Consider first the cases of the last section. The fact that

evolution is confined to a short period around τ ¼ τ⋆ does
not mean that the local Hamiltonian constraint (assumed
valid for τ < τ⋆) holds true for τ > τ⋆. The arguments in

2 4 6 8 10

2

4

6

8

FIG. 3. The effects of a negative pulse in c2g on a standard OS
model (with k ¼ 1). As we see the collapse is reversed by the
pulse. The bounce happens just before the dust ball falls through
the Schwarzschild radius because, that is where a pulse in the far
future is felt.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

1

2

3

4

FIG. 4. A similar bounce obtained with a k ¼ −1 version of the
OS model and a positive pulse in c2g . In this case there is no
chance of a recollapse. The black hole never forms and the
collapsing star is devolved as an explosion into the far future.

1Even with w̄ ¼ 0, the cosmic dust, ρ̄, does not need to be the
same matter specie as the collapsing dust ball, ρ. For example one
could be “dark matter,” the other “baryonic matter.”
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Sec. IV only imply that ḢL ¼ 0 once evolution stops.
Therefore HL must be a constant at τ > τ⋆, but this
constant generically suffers a step at τ⋆ given by:

ΔHL ¼
Z

dt ḢL ¼
Z

dtfHL;HgNL ð58Þ

where we can now use the various expressions found in
Sec. IV. In our case this can be more easily read off as:

ΔHL ¼ −a⋆α2Δb2 ¼ −a⋆α2ð2b−Δbþ ðΔbÞ2Þ ð59Þ

where b− ¼ bðτ⋆−Þ, and we have used (43). As comparison
with (43) promptly reveals, this is equivalent to preserving
HL ¼ 0 and adding to it a new pressureless component
(wH ¼ 0) with constant of motion mH ¼ −ΔHL and
energy density

ρH ¼ mH

a3
: ð60Þ

Since χ0 has not changed the total mass of the star changes.
The only exception is when Δb ¼ −2b−, that is when the
bþ ¼ −b− (a perfectly symmetric bounce), but this requires
fine-tuning δc2g , and this is an arbitrary external input.
As (59) shows, we can have a top-up or a deficit during a
bounce in this model depending on whether Δb > 2jb−j or
jb−j < Δb < 2jb−j, respectively.
We can consider any scenarios following from the

theories in Sec. VI, with or without bounces, to find this
phenomenon, but such an exercise would be dull and
pointless to present here.

IX. CONCLUSIONS

In this paper we studied the effect of nonlocal (or
“global”) physics on the formation of black holes. As
perusal of our calculations shows, our findings are generic
to theories with nonlocal, Machian structure, but the specific
setting we used was that of evolution in the laws of physics.
Evolution begs the question: in terms of what time? A
possible answer is provided by global time variables, dual to
the constants of Nature, as defined by a procedure mimick-
ing the Henneax-Teitelboim formulation of unimodular
gravity [10]. Such times are foliation-dependent, a matter
which has no physical effects, unless we use them to define
evolution [2]. In the latter case, the preferred foliation
induces a global structure leading to nonlocal interactions.

It was further argued in [2] that evolution, and its
concomitant energy production, does not need to be
confined to the early Universe. It could be happening here
and now with subtle effects on a cosmological scale, or to
our far future, with far more dramatic consequences. Future
cataclysms could even mirror those that led to the big bang,
to create a rough cyclic structure. Given the association of
such future events with global leaves Σt as t → ∞, this
would be reflected in the physics near the horizon of a black
hole, and in particular in the last infinitesimal moments of
collapse, before a black hole is formed.
We found that it was possible (but not general) for such

global effects to reverse the collapse. For some evolution
theories all the collapsing stars will explode into the far
future, rather than form black holes. The implications for
the information paradox are obvious, assuming the problem
is real and not self-inflicted (as are many supposed physics
problems of our time). Independently of this matter we
found that the mass of the black hole, if formed, or
exploding star, otherwise, is changed as a result of the
interaction with the whole leaf. While evolution is taking
place the Universe is in perfect Spinozian/Machian unity.
We close by noting that our arguments, using a spheri-

cally symmetric collapsing dust ball, are just an idealized
illustration. It was enough to make our points, but
questions arise as to what would happen in more realist
settings. What would be the impact of pressure? What
would be the impact of a peculiar velocity with respect to
the cosmological frame (given that the effect is frame
dependent)? More importantly, perhaps, how would the
black hole rotation (the ultimate Newton’s bucket) affect
these considerations? We also focused on Einstein-Cartan
theory, but some of our statements are general and only
depend on the existence of an horizon and future evolution.
Could there be novelties in other “base” theories (see
e.g. [40])? More generally one may wonder what happens
to theorems, such as the no-hair and Birkhoff’s theorems,
if global interactions are switched on.
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