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In this work, I study the tidal deformation of black holes in binary mergers in the strong field regime. A
different approach to the problem of tidal deformability of black holes is taken using the source multipole
moments of their dynamical horizons and numerical relativity, instead of the field multipole moments of the
gravitational field at infinity. I compute these source multipole moments in the inspiral phase of binary
black hole mergers, uncover several interesting new features in the evolution of the deformations of the
dynamical horizon geometry, and characterize how nonspinning black holes deform. Owing to the mutual
tidal interactions, I describe how the dynamical horizons of the two black holes deform and steadily acquire
various multipole moments that would otherwise vanish when the horizons are isolated. Out of these, the
dominant deformation is shown to be quadrupolar. I further show that their evolution has a familiar
chirplike behavior. I also find that these deformations encode detailed information about the dynamics of
the binary black hole system. Particularly, the dominant quadrupolar deformation is shown to be strongly
correlated with the gravitational field of the system at future null infinity. Therefore, the gravitational waves
carried away from the system contain imprints of the geometrical structure of the dynamical horizons in the
strong-field regime. Thus, although causally disconnected from observers, these correlations may present
us with a novel way to probe the strong field structure of gravitational fields in astrophysical scenarios. The
results here may be important in the strong field tests of black holes and general relativity, for the no-hair
conjecture in the strong field, dynamical regimes, and in astrophysical contexts especially when the black

holes are close to the merger.

DOI: 10.1103/PhysRevD.109.044033

I. INTRODUCTION

Numerous binary black hole mergers have been
observed to date starting with the first detection in 2015
[1-9]. The parameters of these binary systems, including
the masses and spins of the individual black holes, can be
inferred from the observed data [10]. These observations
have been used to extract information about the parameters
of the astrophysical systems. The observations have so far
been found to be consistent with standard general relativity
[11-13]. One of the aims of this work is to understand if the
gravitational radiation received from binary black hole
systems can provide information about the dynamics in the
strong field regime.

The dynamics of the gravitational field in the far field
regime, far away from the horizons of the merging black
holes is fairly well understood. In the static and stationary
scenarios, the multipole moments of the gravitational field
have been studied at infinity using the field multipole
moments [14,15]. In dynamical scenarios like a BBH
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merger, the multipole moments of gravitational radiation
are relevant [16-20]. Post-Newtonian and perturbative
techniques are frequently used to match the PN source
in the near-field regime and radiative multipole moments in
the far field regime [21], and construct post-Newtonian
waveforms for astrophysical systems. These further enable
the construction of templates for the detection of gravita-
tional waves. They have also been used to devise para-
metrized tests of the early inspiral phase using gravitational
wave observations [22-29].

In a binary black hole merger scenario, the black holes
are under the mutual influence of the gravitational inter-
actions of the companion and are thus tidally coupled. An
important question in astrophysical relativity is whether the
black holes tidally deform. In the regime where the effect of
the companion can be treated perturbatively, these tidal
effects can be calculated analytically [30-37]. However, as
the black holes close-in toward the merger, these tech-
niques can no longer be applied as the assumptions break
down in this regime.

Starting with our previous work [38], I aim to under-
stand the deformations of the black holes using an

© 2024 American Physical Society
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alternative approach that continues to be valid through the
inspiral and merger. During these phases, the horizons of
the black holes are tidally coupled and thus are expected to
deform under mutual gravitational influences. Instead of
studying the gravitational field of the black hole in the
asymptotic region, I study the deformations of the
dynamical horizons of black holes in the strong field
regime using numerical relativity. This would allow us to
go beyond the existing calculations, closer to the merger
where linear perturbation theory is not sufficient to
describe the strong field dynamics.

In the strong field regime, the physical boundaries of the
black hole regions are described by their dynamical horizons
[39] instead of the more familiar event horizons that have
severe limitations. First, event horizons are null surfaces of
black holes and cannot be defined, e.g., when the future null
infinity is incomplete [40]. They are also teleological in
nature. To locate event horizons, one would require knowl-
edge of the entire future of the spacetime. Due to their
teleological nature, event horizons can form and grow in
empty regions of spacetime in anticipation of matter/energy
that would fall in the distant future. In dynamical scenarios,
there is also no known way to construct preferred foliations
of the event horizons. Furthermore, event horizons can also
have nonsmooth features [41].

On the other hand. dynamical horizons are spacelike and
are located inside the event horizons and are outside of the
domain of outer communications. Isolated horizons have
proven to be very useful in describing black holes in
equilibrium (in an otherwise dynamical spacetime) and
dynamical horizons in dynamical scenarios when there is a
flux of matter/energy into the black hole [38,39,42-49].
They are quasilocal and free from the teleological nature of
event horizons.

The nonlinear dynamics of a binary black hole system
are responsible for the gravitational radiation that escapes
to future null infinity and is seen by us. The spacetime
region around the detectors that record these waves (in the
wave zone) has low curvatures compared to those in the
vicinity of the black holes, allowing the gravitational field
in the wave zone to be studied using perturbative tech-
niques. On the other hand, the strong field region can only
be described using numerical relativity, as all approxima-
tion schemes fail, even more so as the black holes close in
toward the merger. The use of numerical relativity, as I
propose here, opens up the possibility of indirectly infer-
ring the properties of the gravitational fields at the
boundaries of the black holes in the strong field regime
of binary black hole mergers. This allows us to envisage
probing the fundamental properties of black holes using
gravitational wave observations.

Due to the severe limitations of analytical methods and
the nonlinear structure of the field equations of general
relativity, it has been challenging to understand the dynam-
ics of the gravitational fields in the strong field regime.

Furthermore, the fact that the dynamical horizons lie inside
the event horizon and are causally disconnected from
observations adds to the difficulties. Despite these limi-
tations, several authors have conjectured and found evi-
dence for a correlation between the weak field dynamics
and the strong field dynamics of the black holes in head-on
collisions or postmerger scenarios [46,48,50]. In binary
black hole systems, the horizons of the black holes exist in
a tidal environment due to their companion, possess an
influx of energy and momentum and are hence dynamical.
In [49,51], I discovered that a part of the gravitational field
at the dynamical horizons of black holes in the inspiral,
merger, and ringdown are strongly correlated with the
gravitational radiation received at future null infinity, using
numerical simulations in full general relativity. This was
the first work to study and find evidence for the appli-
cability of this conjecture in the inspiral dynamics of binary
black hole mergers.

In our previous work [38], the axisymmetric deforma-
tions of the dynamical horizons in binary black hole
scenarios were studied, in which I proposed an alternative
approach to quantifying the strong field tidal deformability
of black holes using the source multipole moments of
dynamical horizons [38]. It was found that, unlike in the
existing approach using the field multipole moments,
the dynamical horizons of nonspinning black holes in
the strong field regime deform. They can be associated
with tidal deformability coefficients (Love numbers) that
are universal and independent of the parameters of the
system. Also, I showed that the tidal coefficients associated
with the dynamical horizons can be computed, using a
small set of numerical relativity simulations of nonspinning
binary black hole mergers.

In this work, I further add to the understanding of the
physics of deformations of the dynamical horizons and the
strong field dynamics of black holes in binary black hole
coalescence. In particular, I extend our previous results
in [38,49] by computing and describing for the first time,
the spectrum of deformations of the dynamical horizons in
BBH mergers and their relationship with the dynamics at
future null infinity.

I1. BASIC NOTIONS

To study the deformations of the dynamical horizons of
the black holes in a BBH merger scenario, I use their source
multipole moments. The generalized source multipole
moments are defined at a dynamical horizon H, [39,52]
obtained by a time evolution of marginally trapped surfa-
ces. As mentioned earlier, a dynamical horizon is located
inside the event horizon, which marks the boundary of a
four-dimensional trapped space-time region.

Additionally, to study the correlations between the
strong and weak field dynamics, I need the multipolar
structure of the gravitational field, described by the news
function, at future null infinity Z*. The future null infinity
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Z* is an invariantly defined null surface and is the end point
of future null-geodesics which escape to infinity [17,53].

For convenience, I consider { and Z* to be foliated
by 2-surfaces S of spherical topology. For the former,
I obtain a marginally trapped surface and for the latter, I
approximate it by large coordinate spheres in the numerical
domain, extrapolated to infinity. For every cross section S,
I assign outgoing and ingoing directions. Denote the
outgoing future-directed null vector normal to S by n™,
and the ingoing null normal as n~ satisfying n* - n= = —1.
Let x be a complex null vector tangent to S satisfying x -
X =1 (the over-bar denotes complex conjugation), and
nt-x=n"-x=0.

A. Dynamics at Z*

In the weak-field regime of a BBH merger, the vacuum
spacetime geometry is completely described by the Weyl
tensor C,,.4. In particular, outgoing transverse radiation is
described by the Weyl tensor component [54]

Wy = Copean™“xn 3. (1)

Y, can be expanded in spin-weighted spherical harmonics
LY, of spin weight =2 [55]. Let ¥ be the mode
component with #>2 and —m <# <m. The (£,m)
component of the news function N ") and its polar-
izations NV, , are defined as [17]

/\/(f’””(u) _ me) + lN&fm) _ /u

—0o0

v, (2)

The outgoing energy flux is related to the integral of |N|?
over all angles. In a numerical spacetime, it is in principle
possible to extract [56] or evolve ¥, going out all the way
to ZT [57] to reduce systematic errors and gauge changes.
I shall however follow the common approach of calculating
Y, on a sphere at a finite radial coordinate r and then
extrapolating it to Z* in postprocessing using modules
I developed in PYTHON [38,49,58]. I will now describe this
procedure.

First, I extrapolate the waveform to Z by implementing
an improved second-order perturbative procedure that
also includes corrections for the angular momentum of
the system up to the first order (detailed in Eq. [29] of [59]).
All time integrations are handled using fixed frequency
integration technique [60] and differentiations using an
11-point finite difference stencil. For all the simulations,
I use the ¥, gravitational waveform data computed at large
coordinate spheres of radius r = 500M from the center of
the spatial domain for extrapolation. Second, I transform
the waveform to the center of mass frame. I compute the
coordinate center of mass motion of the BBH system (see
Ref. [61] for details). I then use the methods described
in [62] and implemented in [58] to translate and boost the
gravitational waveform YW, that had been extrapolated

to Z*. In particular, for the translation transformation,
correction terms up to the leading order are retained. These
transformations are implemented using a staggered angular
grid on a sphere with a size of (121 by 240).

After these transformations, our waveforms are found
to agree quite well with those of the RIT [63] and SXS
catalogue [64], with phase evolution deviating at most by
1% during the inspiral phase.

Given the waveforms in the center of mass frame at Z,
I compute the news using the integral in the previous
equation (2), which is carried out over the simulation time
t/M instead of the retarded time coordinate u. The lower
limit in the integral is not —oo but the earliest time available
in the signals received at r = 500M. The news function is
then a function of time, starting from the earliest time
available. A further time integration of N would yield the
gravitational wave strain.

B. Dynamics at H

On the black hole, the basic object here is the dynamical
horizon H whose three-metric is denoted by ¢, and its
foliations by marginally outer trapped surface (MOTS)
denoted by S. This is a closed spacelike 2-surface with
vanishing outgoing expansion @ :

0. = ¢"V,n; =0. 3)

Its scalar curvature is denoted by R, the two-metric by G,
and its extrinsic curvature by K.

The shear of the dynamical horizon, which represents
part of the infalling radiation at the horizon and the tidal
coupling is denoted by ¢ = x%x” V,n;. In a previous work,
it was this quantity that was of primary interest. They were
shown to be strongly correlated with the outgoing gravi-
tational radiation [49] in the inspiral, merger and ringdown
phases of nonspinning BBH mergers. In this work, it is the
source mass multipole moments that are of primary interest.
I will continue to use the techniques developed previously,
improved and detailed here to correlate the source mass
multipole moments of the dynamical horizons with the
outgoing gravitational radiation.

At H, two sets of source multipole moments can be
defined; the mass M ,, and angular momentum multipoles
Jim)- Although defined on the foliations of the three-
dimensional dynamical horizon, these can be used to
invariantly reconstruct the horizon geometry [45].

These moments were first defined for isolated horizons
[44] and extended to axisymmetric [43] and nonaxisym-
metric dynamical horizons [45]. They can be used to study
the intrinsic geometry of dynamical horizons, and have
been used in predictions of the antikick in binary black hole
mergers [65], the study of the no-hair conjecture in general
astrophysical environments [47], and for studying tidal
deformations of black holes [38,47,66]. In a more recent
work [38], the axisymmetric tidal deformations of
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dynamical horizons in binary black mergers were studied
by using the source multipole moments of the dynamical
horizon in binary black hole scenarios.

I now describe how these moments have been com-
puted in this work." Consider a time slice of a numerical
simulation in which a MOTS S embedded in the three-
dimensional spatial hypersurface £ has been located.
First, a preferred coordinate system on the leaves S of
the dynamical horizon is constructed using an appropri-
ately defined axial vector field ¢“. I use the method of
Killing transport to compute the axial field [43,44]. This
method can be used to find an approximate symmetry field
with desired properties on the MOTS from an initial
guess. Here, approximate symmetry is not a requirement
and the method is merely used to obtain a favorable axial
field on every MOTS. E.g, this method yields a vector
field that coincides with the direction field ¢ of the Boyer-
Lindquist co-ordinates, which is also its Killing field,
when the horizon is isolated e.g., when the separation
between the black holes is large compared to their horizon
sizes, and at late times on the common dynamical horizon
when it asymptotes to an axisymmetric Kerr isolated
horizon. Thus, even though this vector field ¢ is not
an exact Killing field on the MOTS, it furnishes a field that
can be used to conveniently establish a coordinate system
on the dynamical horizon.

Once the axial field is defined and computed, an
invariant coordinate ¢ (analogous to the polar coordinate
variable cos(0) of the Boyer-Lindquist coordinates) can
be defined as:

S
Daé’ = R_éeab(p (4)

Here D, is the derivative operator and &, the volume form
on S compatible with the two-metric §,,, and Rg is the
areal radius of S. The freedom to add a constant to ¢ is
removed by requiring that §s¢d®S=0. In order to
compute the source multipole moments, one then needs
to construct a scalar harmonic basis on each S. This is
defined by mapping S to a unit sphere and using the
spherical harmonic functions )., of that unit sphere
whose axial field is ¢ and polar angle cos(d) = {. Using
these ingredients, one can define the mass multipole
moments as:

M

R! £—m)! [ -
M = gﬂs\/@m)ﬁ § Vs )

Similarly, the spin-multipole moments can be defined as:

'A more elaborate procedure proposed in [45] is reserved for a
future work.

Rf-‘rl £ — ! ~
T em = ésﬂ \/(25‘*‘ 1)%% EVK e\ Vemd®S,
(6)

Expressed in functional form, Y,,,({,¢) = P%({)e~™?.
Here K, is the extrinsic curvature of X, PJ are the
associated Legendre polynomials corresponding to the
eigenfunctions of the Laplacian on the unit round sphere,
and ¢ is an affine coordinate on the integral curves of the
vector field ¢¢. _,),,, are the spin weight —1 spherical
harmonics on S.

In this notation, M, is the mass M s of the slice S of the
dynamical horizon, and [J is its angular momentum Jg.
n! denotes the factorial of an integer n. These moments
are defined for all positive £ > |s|, and for each ¢, the
azimuthal mode number m takes integer values ranging
from (—Z,¢). Tt is to be noted that modes for which
m # 0 are complex in general and I denote their strength
as absolute magnitude or a quadratic sum |M,,|=

VRe(My )2 +Im(M,,

In this work, I use a small set of three numerical
simulations of nonspinning binary black holes to study
the deformations. Considering that this work deals with
nonspinning binary black hole mergers, I focus on the
source mass-multipole moments and address the spin-
multipoles in a future work.

The choice of conventions for defining the spherical
harmonics are as follows. For a given mode (£, m),

j{ VoV dS = 4. (7)

The Condon-Shortley phase has not been included in the
definition of our harmonics.

Given that these are not exact eigenfunctions of the
Laplacian operator on S, the harmonics from different
modes may not exactly be orthogonal to each other. Le., for
modes (£, m) # (¢, m'),

]4 VoV £0 (8)

However, I found that the departure from orthogonality was
minimal of the order of 21073, and can be safely neglected
for the purposes of this study. Also, a simplifying
assumption, I use the grid coordinate angle ¢ in place of
the affine coordinate on the integral curves of ¢“.

I then compute the mass dipole and the quadrupole
moments(£ = 1,7 = 2), |m| < £, and study their evolution
through the inspiral, merger, and ringdown phases of BBH
mergers. These correspond to the source mass multipole
moments of the individual dynamical horizons of the black
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holes during the inspiral phase, and that of the common
horizon in the postmerger phase.

I then study their relationship with the dynamics of the
binary black hole system and the gravitational news
function at Z+.

III. THE NUMERICAL SIMULATIONS

Our numerical simulations are performed using the
publicly available FEinstein Toolkit framework [67,68].
The initial data is generated based on the puncture approach
[69,70], which is then evolved through BSSNOK formu-
lation [71-73] using the 1 + log slicing and I'-driver shift
conditions. Gravitational waveforms are extracted [74] on
coordinate spheres at various radii between 100M to 5S00M.
The computational grid set-up is based on the multipatch
approach using Llama [75] and Carpet modules, along with
adaptive mesh refinement (AMR). The various horizons are
located using the method described in [76,77]. General
quasilocal physical quantities are computed on the horizons
following [42,43]. The framework to compute the gener-
alized multipole moments in Eq. (5) does not exist in the
Quasil.ocalMeasures thorn of the Einstein Toolkit. They
have been newly computed here in postprocessing in
PYTHON starting with the data from numerical relativity
simulations.

I consider nonspinning binary black holes on quasicir-
cular orbits with varying mass ratios ¢ = M,/M,, where
M, , are the component horizon masses (M > M;). I use
the GW150914 parameter file available from [78] as a
template. For each of the simulations, as input parameters
I provide initial separation between the two punctures D,
mass ratio g and the radial and azimuthal linear momenta
Pr Py respectively, while keeping the total physical
horizon masses M = M; + M, =1 fixed in our units.
Parameters are listed in Table I. I compute the correspond-
ing initial locations, the x, y, z components of linear
momentum for both black holes and grid refinement
levels, etc., before generating the initial data and evolving
it. I chose three nonspinning cases with mass-ratios
qg = 0.6, 0.7 and 1 for the purposes of this study, based
on the initial parameters listed in [79,80]. For computing
the quasilocal quantities, I use a uniform angular grid of

TABLE 1. [Initial parameters for nonspinning binary black
holes with quasicircular orbits. ¢ = M,/M, is the mass ratio,
D is the initial separation between the two holes, and p, and p,
are the linear momenta in the radial and azimuthal directions
respectively.

q D/M pr/M Py/M
1 9.5332 0 0.09932
0.6 11.5 —5.46 x 10~ 0.08206
0.7 12.0 —5.07 x 10~ 0.08246

size (36, 74) on each of the dynamical horizons. This grid
resolution allows us to safely study multipole moments of
up to £ = 2. I also carry out a convergence test of the
horizon data by simulating at two different grid resolu-
tions of the horizon.

Our simulations agree very well with the catalog
simulations [63], with merger time discrepancies of less
than a few per cent. The results presented here are the main
and general features that were seen across the simulations
g =1, 0.6, and 0.7 described in Table I. Sometimes when
I refer to one simulation, for concreteness, I would be
referring to the ¢ = 0.6 case unless mentioned otherwise.
The outer common horizon of the ¢ = 0.6 configuration
appears at t = 1656.045M, which I designate as merger
time. When the common horizon is found, it has an areal
radius of R. = 1.708M. 3D visualizations were created
using Vislt [81].

IV. RESULTS

To compute the generalized source multipole moments,
I track the two apparent horizons of the individual black
holes at every time step using AHFinderDirect [76]. Then,
using the spacetime data on the apparent horizon at every
time step and the developed packages, I compute in
postprocessing the generalized source mass-multipole
moments. I then use the package WAVEFORMTOOLS [58],
which has been developed to carry out data analysis with
numerical relativity data, to analyze the output. I describe
the most important results here.

A. The spectrum of deformation
and its evolution

I first discuss the relative strengths of the various
multipole moments |M,,,|. For both the black holes
across all of the simulations, among all the moments at
¢ =1, 2 multipolar order, the multipole moment M, .,
was found to have the largest and mostly monotonically
increasing amplitude in the inspiral phase, followed by
M, 1, and M, 4. Note that for an isolated Kerr horizon,
apart from its mass, only Z = 2, m = 0 mass moment is
nonzero up to the £ = 2 quadrupolar order). This can be
seen in the Figs. 1-4, and the movie [82] in which the
evolution of the 2D-Ricci scalars of the dynamical
horizons in the inspiral phase have been visualized. In
Fig. 1, a snapshot of the movie at one point in its orbit is
presented. The multipolar deformations of the horizon
geometries are found to be mutual and are dependent on
the location of the black holes in the binary system. The
dominant quadrupolar, i.e., £ = 2, m = 2 pattern can be
clearly seen in the movie.

The nonaxisymmetric multipole moments (i.e., m # 0)
of the individual dynamical horizons of the black holes are
oscillatory in nature. It was found that the multipole
moments M, , of the two black holes were in-phase with
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FIG. 1.
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Var: Ricci2
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The deformation of the dynamical horizons of the black holes in the inspiral can be directly visualized in terms of the 2-Ricci

scalars R of their respective two-dimensional slices S. Here the 2-Ricci scalars of S are visualized for the ¢ = 0.6 system when the black
holes are at a separation of d ~ 7.75M (about 67.4% of the initial separation), approximately 5 orbits after the start of the simulation, as
shown by the thick green line in the waveform plot below the figure. The total number of orbits before the merger is around 9 and the
corresponding waveform cycles in the simulation are shown by the thin red line. The more massive black hole BH1 is on the left. The
values of the Ricci scalar are shown on the color bars to the left of each black hole. A movie for ¢ = 0.6 can be viewed here [82]. This
movie shows that the deformation of the horizon geometry is mutual for both the horizons due to their tidal interactions, and the Ricci
scalar distribution patterns face each other at all points in the orbit. The dominant quadrupolar structure can be seen, which is reflected in
the numerical values of the strengths of the multipole moments in Figs. 2—4.

each other while the moments M, ., differed by a phase of
7 radians.

B. Relationship with the orbital dynamics and Z *

I found the multipole moments of the dynamical hori-
zons of the two black holes to be strongly correlated with
each other. Furthermore, the dominant multipole moment
M, , of the dynamical horizons was found to be strongly
correlated with the dominant (¢ = 2, m = 2) mode of the
gravitational wave strain extracted at a very large distance
r = 100M from the system. The movie [82] aids in the
visualization of some of these results.

In Fig. 5, I plot the time derivative of the multipole
moments M, ; and M,, vs the news function of the
gravitational waves emitted from the system (Eq. 2, suit-
ably normalized and aligned in time and phase. The time
shift was found to be 101.3M, approximately consistent
with the light travel time corresponding to the extraction
radius for W,. It was found that the quadrupole mass
moment M, ., encodes accurate information about the

phasing of the gravitational waveform from the system
whereas the dipole moment M, . reflects the orbital
phasing of the system and is correlated with the linear
momentum of the dynamical horizon. Thus like with the
waveform received at Z', these deformations encode
accurate information about the evolution of the binary
system, and the gravitational waveform itself contains
information about the deformation.

To demonstrate this, I show that the parameters of the
binary system can be recovered using the multipole moments
M, and a standard least squares figure of merit, using a
procedure detailed in [49]. To carry this out, a template bank
of gravitational wave strain in the mass-ratio, chirp-mass
parameter space was constructed using the well-known
phenomenological waveform model IMRPHenomPv2. It
is found that the parameters of the binary system could be
estimated quite accurately (with an error of 0.12% in the mass
ratio and 0.01% in the chirp-mass of the binary system).
Therefore the dynamical horizon carries accurate informa-
tion on the dynamics of the system and can be used to extract
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FIG. 2. The variation in time of the strengths (absolute magnitudes) of the multipole moments £ = 1, ¢ = 2 |m| < ¢ for the larger
black hole (BH1, left) and smaller black hole (BH2, right), for mass ratios ¢ = 0.6 (1 and 2). Here, the values below 108 depict the
numerical noise floors of the respective moments. The time of crossing of the light ring of the system is denoted as a dotted line in red. It
can be seen that the quadrupolar moment £ = 2, m = 2 has the largest strength for the majority of the inspiral phase. Toward the merger,
the dynamical horizons are strongly deformed as the multipole moments sharply acquire greater strengths as the black holes cross the

light ring of the system.
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the phase evolution of multipole moment M, , from the news function.
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information about the binary black hole system like their
masses, velocities, orbital angular momentum, etc.

These results also show that the source multipole
moments are strongly correlated with the multipole
moments of the gravitational field at null infinity [17-20].

C. Generic behavior

The evolution of the strengths of the multipole moments
was also found to display a generic behavior. By means of
maximizing a least-squares figure of merit, I found that the
evolution of the multipole moments of both the black holes
and across the two simulations can be described by a
generic tidal expansion of the form:

6|Mlm‘ S a;
LTI o)
i 2

where My, is the mass of the black hole that is being
discussed, and d is a measure of the distance of separation
between the holes. In particular, the dipole moment was
found to be well described by the above expansion that
includes terms up to the fourth order in 1/d and the
quadrupole moment required terms up to the sixth order
(see Fig. 6). These are consistent with the results of [38].
These moments can therefore be used to study the tidal
deformability of black holes and compute their corres-
ponding Love numbers in a manner described there, which
is reserved for another study. Apart from the real and
imaginary parts of the moments M, _,, their magnitudes
also display an oscillatory behavior as shown in Fig. 6.
These oscillations are decaying with time, and exist in the
multipole moments of both the dynamical horizons. To
understand this further, I decompose the evolution of the
magnitude of the moment into a nonoscillatory portion that
changes secularly, as described by fits to Eq. (9), and an
oscillatory part. This was done by first fitting the multipole
moment strength to Eq. (9) (call this the nonoscillatory
part), and then computing the normal distance of each data
point from the best-fit curve (the oscillatory part). The fit
was carried out on the data up to t = 1000M. I found that
the oscillatory part can be described by a superposition of
power-law damped sinusoids of the form:

|M2,2‘
Mj,

= ZAZ‘Z‘(_Y‘) Sin(w,-t -+ ¢l) (10)

with power law indices y = 1.47 and 2.29, respectively.
The periods of oscillations of these modes were found to be
at T; = 161.56M and T, = 124.71M respectively. It is
worth noting that the latter is close to half the average
orbital period (i.e., twice the orbital frequency) in the
domain considered. These values may be expected to be
dependent on the mass ratio of the system. As this feature
was observed in all three of the simulations ¢ = 1, 0.6, 0.7,
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FIG. 6. Top: The fits of the £ = 1, m = £1 multipole moments
of the larger black hole of the ¢ = 0.6 system to the relation in
Eq. (9), with two terms: one at the third and the other at the fourth
order in the inverse separation d, i.e., 1/d> and 1/d*. Middle: the
fits of the £ = 2, m = 42 multipole moments to the relation in
Eq. (9), with terms up to fourth, fifth, and sixth orders in the
inverse of the separation d. Bottom: the isolated oscillations of
the overall amplitude of the multipole moment | M, ,| seen in the
figure in the middle. Please see Sec. IV C for discussion.

we are led to speculate if these correspond to dynamic
tides or waves traveling on the horizon due to residual
eccentricities and perturbations about the quasicircular
inspiral, which decay in a quasinormal manner as the
simulations proceed in time, i.e., these could be quasinor-
mal like modes excited on the tidally coupled individual
dynamical horizons in the inspiral phase or are mere
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FIG.7. The time evolution of the # = 1, m =1 (top) and £ = 2, m = 2 (bottom) mass multipole moments of the dynamical horizons
for the larger black hole of the ¢ = 0.6 system. The # = 1, m = £1 moments are identical. The red line shows the temporal location of
the light ring r ~ 2.856. The close-up of these plots shows that the location where the steep increase in the growth pattern of the strength
of the multipole moments occurs is approximately aligned with the epoch of light ring crossing by the system.

numerical artefacts. Further study is necessary to con-  asseen in Figs. 2—4 and 7. While the majority of the portion

firm this.

D. Plunge

of the evolution of these moments reflected the adiabatic,
secular dynamics of the system, their behavior was seen to

go through a steeper increase in strength with the seizure

The multipole moments were found to qualitatively  of oscillations closer to the merger. I found that this epoch
display two distinct behaviors in the pre-merger phase, is very close to the time of crossing of the light ring
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of the binary black hole system. This was confirmed by
estimating the light ring radius r; of the system using the
adiabatic re-summed 1PN Hamiltonian [83]:

P=3rr+50=0 (11)

where v = MM,/ (M, + M,)? is the symmetric mass ratio
and then locating the time at which the separation reached
this value.

The multipole moments (7 =2, m = 1) which were
closer to their numerical noise floor ~1073 for the majority
of the inspiral phase, were found to slowly gain in
magnitude as the black holes approach each other. At
these times closer to the epoch of the crossing of the light
ring, the dynamical horizons will be boosted to high
velocities and are expected to significantly deform under
each other’s influences. Thus, during these last moments of
the inspiral of the individual horizons of the black holes, the
various multipole moments that were previously very small
can be seen to grow to comparable strengths.

E. Postmerger

The physical details of the product of the merger in
astrophysical and even numerical simulations, although
expected to be Kerr, is a nontrivial question and an
important question in itself. From an astrophysical per-
spective, this is akin to the test of the no-hair theorem and
general relativity. From a numerical relativity perspective,
the remnant black hole is a product of the long-term
evolution of the Einstein field equations, which are highly
dynamical and nonlinear in nature. The numerical simu-
lation began with the initial data of two black holes well
separated. The initial data of the system is not an exact
solution to the astrophysical system, and the deviations are
radiated away in the form of junk radiation in the early
inspiral. Therefore, it is useful to devise tests of the long-
term evolution of numerical simulations themselves.

The source multipole moments of the common dynami-
cal horizon formed provide an ideal avenue to test the
dynamical horizon formed in the merger process. This is
because the dynamical horizon formed is in the strong field
regime, which is expected to asymptote to a Kerr isolated
horizon at late times. The multipolar structure of the Kerr
isolated horizon is known in a gauge-independent fashion,
and thus any departures from these values would be useful
for quantifying deviations from the expected Kerr nature of
the remnant.

In this section, I present a preliminary analysis of the
multipole moments of the outer common dynamical hori-
zon in the postmerger phase, which is formed late into the
inspiral phase, since its formation. This would also serve as
a direct strong-field, long-term test of the numerical
simulations run here.

As the two black holes cross the light ring of the system,
common envelopes surrounding the individual black hole

horizons form. The outer common horizon when formed is
a spinning and highly distorted dynamical horizon of the
remnant, i.e., with gravitational “hairs,” that is expected to
eventually settle down to the Kerr isolated horizon. Thus,
one expects the multipole moments of the common horizon
formed to be significantly different from that of an isolated
Kerr horizon.

The dynamical horizon then proceeds to equilibrium by
absorbing radiation and losing hairs, i.e., the multipole
moments acquired at the merger. In this process, the source
multipole moments at the common dynamical horizon
are expected to decay to the corresponding Kerr isolated
horizon values at late times.

I compute the Z=1,2,|m|<¢ mass multipole
moments and plot their strengths in the left panel of
Fig. 8. This figure shows (although less accurately) that
the deformations acquired by the common dynamical
horizon decay exponentially with time, proceeding toward
a Kerr isolated horizon. Furthermore, the decay of these
multipole moments was found to be consistent with
quasinormal decay. The damping rate of the strengths of
the moments |[M,,| was found to be close to the
theoretical estimate of a Kerr black hole with the same
mass and spin as that of the remnant. E.g, damping rate of
M, , was found to be consistent with the n =0, ¢ = 2,
m = 2 mode with a deviation of 2.74%. Since the remnant
black hole is spinning, the coordinate system established on
the dynamical horizon can also rotate along with it and thus
real part of the quasinormal frequencies of one mode can
only be estimated relative to another without further
transformations. Therefore the estimation of the real part
of the quasinormal frequencies requires more care and
better resolution, which will be carried out in future work.
For an isolated Kerr horizon in the rest frame, the only
nonzero mass multipole moment at # = 1, 2 order is M, .
The moment M, , was found to approach the value of the
corresponding isolated horizon of a Kerr black hole with a
final deviation of 2.73% from the expected theoretical
estimate. This is shown in Fig. 8. The strengths of the
moments M ; are nonzero due to the boost from the final
kick of the horizon formed. However, it can be seen from
the same figure that the moment M, _,, which is expected
to go to zero at late times instead here decays to the order
of 107*. 1 suspect that this could be due to systematic errors
arising from the boost, rotation of the coordinate system on
the common horizon, its limited grid resolution, or the
accuracy of the numerical simulations themselves. This
could also be due to the fact that the Lie transport method
succeeds in finding the Kerr symmetry field. This is to be
investigated further. As expected from reflection symmetry,
the mass multipole moment M, is practically zero.

The quasinormal decay of the deformations observed
here is interesting because the dynamical horizon is present
in the strong field regime and adds continuity to the
conjecture that the strong field and weak field dynamics
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the three MOTS.

are strongly correlated to the postmerger phase. Note that,
although there have been various studies that suggest this
correlation in the postmerger phase, this is one of the first to
compute the nonaxisymmetric source multipole moments
of the common dynamical horizon in a binary black hole
merger scenario and study its evolution.

What decides the deformed state of the common horizon
once it is formed? The initial configuration of the parent
black holes is expected to decide the deformed state of the
common horizon once it is formed. Interestingly, I found
that the relative strengths of the mass multipole moments of
each of the two individual horizons of the black holes just
before the formation of the common dynamical horizon are
similar to that of the common dynamical horizon when it is
formed (more so for the horizon of the more massive black
hole). This can be seen in the right panel of Fig. 8. Thus the
deformed state of the individual horizons just before the
common horizon appears plays a role in the setting up of
the initial state and conditions of the common dynamical
horizon when it is formed for the postmerger dynamics.
The common horizon thus formed roughly inherits the
multipolar structure of the horizon geometry of the black
holes at the end of the inspiral phase and then loses them as
it absorbs gravitational radiation while settling down to
equilibrium at late times in the postmerger phase.

V. SUMMARY

The horizons of black holes in a binary environment are
not isolated; their horizon geometries are dynamical and
distorted due to their mutual tidal interactions, and details
of the strong field dynamics of the system. These dis-
tortions are captured by the source multipole moments of
the dynamical horizons. These source multipole moments
were computed and studied for the first time for

axisymmetric deformations of the individual dynamical
horizons of black holes in the inspiral phase of binary black
hole merger scenarios in [38]. Using the source moments, it
was shown that a set of tidal coefficients can be associated
with the dynamical horizons that are universal and inde-
pendent of the parameters of the system. In this work,
extending the previous, I define and show how to compute
the general nonaxisymmetric deformations of the dynami-
cal horizons due to the tidal interactions using numerical
relativity data of nonspinning binary black hole mergers.
These multipole moments have been computed and studied
here for the first time for the dynamical horizons of the
component black holes in binary black hole mergers.

The deformations of the dynamical horizons computed
via the defined generalized source multipole moments were
found to display interesting features. Firstly, the deforma-
tions were found to be mutual for both the dynamical
horizons. Furthermore, the dominant structure of the
deformation was shown to be quadrupolar in nature.

Secondly, the deformations of the dynamical horizons
were found to encode detailed information about the dynam-
ics of the system. They are oscillatory in nature and their
phasing is strongly correlated with the orbital dynamics of
the binary black hole system. The # = 1 dipolar deforma-
tions were found to be strongly correlated with the linear
momentum of the black holes. The multipole moments
quantifying these deformations were increasing in magni-
tude as the black holes closed in toward the merger. Using the
approach to strong field tidal deformability of black holes
in [38], it was found that the behavior of these multipole
moments can be modeled all the way up to the merger using
more and more terms in the tidal expansion. Thus, the source
multipole moments show a universal behavior.

An interesting feature was found in the strength of the
£—2, m=2 mode excited on the two individual
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dynamical horizons. Over and above the secular increase in
the strength of the deformation component, it also dis-
played an oscillatory behavior that can be described by a
quasinormal-like damped sinusoid with a power-law decay
through the inspiral phase. This leads us to speculate
whether this feature is describing dynamical disturbances
on the dynamical horizon due to residual eccentricities in
the binary black hole system.

While the strengths of the deformations increased, it was
found that their oscillatory behavior decreased and
appeared to cease, accompanied by a sharp increase in
their magnitude, around the same time the black holes
crossed the light ring of the system, thus carrying an
imprint of the plunge phase of the system.

Note that the dynamical horizons lie inside the event
horizons in the strong field regime, outside of the domain of
outer communications, while the future null infinity lies in
the asymptotic, weak-field regime. The curvature scales at
these two regions are entirely different. Thus, there is no
reason a priori to expect strong correlations between the
deformations of the dynamical horizons and the outgoing
gravitational radiation, especially in the inspiral phase.
However, motivated by the familiar chirplike behavior seen
in the multipole moments and the correlations with the
orbital dynamics of the system, their relationship with the
outgoing gravitational radiation from the system was
studied and found that they were strongly correlated. In
particular, the quadrupolar deformations of the dynamical
horizons of both the black holes were found to be strongly
correlated with each other and with the quadrupolar mode
of the news of outgoing gravitational radiation at infinity.
How strong are these correlations? To answer this, I carry
out parameter estimation using a template bank of News
waveforms constructed using IMRPhenomPv2, with input
waveform as the deformations. It was shown that the
parameters of the nonspinning binary black hole system
can be fully recovered.

These correlations could potentially allow us to probe the
strong field dynamical regime using gravitational wave
observations. The correlations of the source mass multipole
moments with the dynamics of the system allow the
analogous, indirect interpretation that the changing source
multipole moments are related to the emission of gravita-
tional waves from the system. I also expect these corre-
lations to extend to all multipolar orders, which will be
studied in future work. Owing to these and the previous
results in [49], we can conclude that the multipole moments
of a dynamical horizon could be strongly correlated with
the dynamics of the system. It thus is also strongly
correlated with the shear of its outgoing null normal,
and the outgoing gravitational radiation emitted from the
system. These results urge us to extend the existing
conjecture between the strong field and weak field dynam-
ics and state the following conjecture: In a dynamical
scenario involving binary black holes, the source multipole
moments associated with charges of the dynamical horizon

will be correlated with the multipolar structure of the Bondi
[flux of the outgoing gravitational radiation from the system
received at future null infinity T,

Potential applications of these results are numerous.
The nonaxisymmetric tidal deformability coefficients
associated with the generalized multipole moments can
be estimated following [38]. Together with the strong
correlations with the outgoing gravitational radiation, these
results show clearly that the dynamical horizons of non-
spinning black holes also deform, and have the potential to
affect the outgoing gravitational radiation from the system.
This opens up the interesting possibility of observing the
strong field structure of gravitational fields and tests of
general relativity using the tidal deformability of black
holes. Work is currently underway in understanding the
effect of these deformations of the dynamical horizons on
the outgoing gravitational radiation which could help us in
probing the nature of the compact object.

The deformations and the approach presented here
are valid and more relevant to understanding the deform-
ability of black holes closer to the merger where perturbative
techniques cannot be applied. The strong correlations dis-
covered here could be used to probe and test further important
aspects of the no-hair conjecture and probe the possible
nonstandard structure of gravity (e.g., quantum gravitational
corrections) in the strong field regime. In particular, together
with the approach described in the previous work [38], the
correlations found here suggest the possibility of directly
calculating the source multipole moments of dynamical
horizons and the associated tidal coefficients using the
gravitational wave observations, allowing to test GR.

In the modeling of gravitational waveforms from binary
black hole systems (e.g., in the post-Newtonian and effec-
tive one-body approach), the deformation of the dynamical
horizons is not usually taken into account. As shown here,
the dynamical horizons are strongly deformed in the late
inspiral phase, and this can potentially have effects on the
late-inspiral, plunge waveforms. The models described here
can potentially be used to inform the post-Newtonian
calculation to improve them.

The results presented also allow for the following simple
interpretation: In a binary black hole scenario, the indi-
vidual dynamical horizon geometries of black holes gain a
structure i.e., “gravitational hairs,” away from their isolated
Kerr geometries in the inspiral phase through the mutual
tidal interactions, and lose them in postmerger dynamics of
the common horizon.

Certain aspects of the calculations here can be improved.
On the numerical side, the computation of the source
multipole moments requires a choice of an axial vector field
on the horizon. In this work, this has been achieved by
using the method of Killing transport, which could lead to
inaccuracies in the construction of a preferred coordinate
system on the MOTS at times close to the merger. This has
been corroborated by the increasing nonorthogonality of
the spherical harmonic basis functions observed closer to
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the merger. Work is in progress on this front. It is to be
noted that some of the limitations of the methods used here
in the postmerger phase have been alleviated in a more
recent study [84], which implements the procedure dis-
cussed in [39] to construct the vector fields and appeared
consecutive to [85].

Furthermore, although the correlations in phasing are tight,
the amplitudes of the deformations were seen to increasingly
fall behind toward the merger. Accurate descriptions of the
merger phase would require a better choice of the axial vector
field. Future works could also extend in this direction.

Furthermore, the results presented here were found to be
the same in the qualitative details for the three numerical
simulations carried out here. It would be of interest to verify
the validity of these results in a wider range of parameters
of BBH mergers, including spinning black hole binaries,
which are currently underway.

Finally, the ringdown physics of the deformations of
the common dynamical horizon, although it was found to

qualitatively agree with quasinormal behavior, would
require more accurate simulations and warrants a separate
publication. In particular, the studies presented here could
be expanded to include the spin multipole moments.
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