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Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

(Received 16 March 2023; accepted 14 December 2023; published 15 February 2024)

We present a public catalog of numerical-relativity binary-black-hole simulations. The catalog contains
datasets from 80 distinct configurations of precessing binary-black-hole systems, with mass ratios up to

m2=m1 ¼ 8, dimensionless spin magnitudes on the larger black hole up to jS⃗2j=m2
2 ¼ 0.8 (the small black

hole is nonspinning), and a range of five values of spin misalignment for each mass-ratio/spin combination.
We discuss the physical properties of the configurations in our catalog, and assess the accuracy of the initial
configuration of each simulation and of the gravitational waveforms. We perform a careful analysis of the
errors due to the finite resolution of our simulations and the finite distance from the source at which we
extract the waveform data and provide a conservative estimate of the mismatch accuracy. We find that the
upper limit on the mismatch uncertainty of our waveforms (including multipoles l ≤ 5) is 0.4%. In doing
this we present a consistent approach to combining mismatch uncertainties from multiple error sources.
We compare this release to previous catalogs and discuss how these new simulations complement the
existing public datasets. In particular, this is the first catalog to uniformly cover this parameter space of
single-spin binaries and there was previously only sparse coverage of the precessing-binary parameter
space for mass ratios ≳5. We discuss applications of these new data, and the most urgent directions for
future simulation work.

DOI: 10.1103/PhysRevD.109.044032

I. INTRODUCTION

After several decades of research to solve the binary-
black-hole (BBH) problem, the first numerical relativity
(NR) BBH simulations through one orbit, merger and

ringdown were produced in 2005 [1–3]. Since then
many independent numerical relativity codes [4–11] have
been developed to simulate BBH systems for many
orbits and added support for more complex configurations
such as extremely high mass ratios and highly spinning
black holes [12–14].
The data products from NR have been crucial for

the field of gravitational-wave astronomy, including as
input to develop approximate gravitational wave models
[15–29], to calculate remnant properties of binary mergers
[30–39], and used directly for gravitational wave injection
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studies [40,41]. These NR-dependent tools have played a
central role in the direct detection of gravitational waves
and the measurement of their source properties since the
first direct detection of GWs in 2015 [42–44].
Gravitational wave observations during the first three

LIGO-Virgo-Kagra (LVK) observing runs [42–55] have
relied on theoretical models from three families; Phenom,
SEOBNR, and NRSurrogate. The Phenom and SEOBNR
families use NR waveforms to inform the merger-ringdown
part of the model by calibrating a theoretically motivated
ansatz to the numerical data; the NRSurrogate models are
constructed entirely from NR input. The simplest gravita-
tional wave models calibrated to NR data are aligned-spin
models [15,16,22], which capture the most important
features of the waveform but require NR waveforms that
cover only a three-dimensional parameter space. More
recent aligned spin models have benefitted from further
calibration to expanded datasets [17–19,24,26]. Many other
subsequent models have been based on these aligned-spin
models, thus indirectly benefitting from calibration to NR
data [56–63]. Recent expansions of NR catalogs to cover
the precessing parameter space have enabled the construc-
tion of the first generic-spin models calibrated entirely to
NR data [29].
NR has been useful beyond modeling. NR waveform

injections have been used in several studies, including
to assess the presence of systematic bias in waveform
models [64,65], and to estimate intermediate mass black
hole binary merger rates [66]. NR waveforms have also
been used for direct comparisons and parameter estimation
of gravitational waveobservations [67,68]. Further, NR data
can be used in the construction of fits to predict the remnant
properties of a BBH merger, namely the final mass and
spin as well as the gravitational recoil [69–77]. These fits
have a number of applications, such as tests of general
relativity [78–81].
Several large catalogs of BBH NR simulations

exist [82–88]. A quasicircular BBH is described by eight
intrinsic parameters; the masses of each of the black holes
m1 and m2 and their respective spins S1 and S2. The total
mass M ¼ m1 þm2 sets the overall frequency scale and
can be factored out. We therefore choose to set M ¼ 1.
The dimensionless spin is defined as χ⃗i ¼ Si=m2

i . The
majority of simulations contained within these catalogs
cover the precessing parameter space up to mass ratio
q ¼ m2=m1 ¼ 8 and dimensionless spin magnitudes
χ ≤ 0.8. However, the existence of simulations beyond
q ¼ 4 of sufficient length and accuracy to be useful in the
construction of gravitational wave models is fairly sparse.
There therefore exists no broad systematic covering of the
precessing parameter space up to q ¼ 8 with NR simu-
lations. One purpose of the current catalog is to provide a
systematic covering of that parameter space.
The primary objective of this catalog was to support the

development of a new precessing phenomenological model

that is calibrated to numerical relativity waveforms [20].
Experience with producing previous phenomenological
models suggests that we do not require an extremely dense
sampling of the parameter space to produce a reasonably
accurate model [15,16]. For the first catalog used to inform
the first precessing Phenom model we therefore chose no
more than five points in each parameter direction. We also
restrict to spins on the larger black hole, motivated by the
results in Refs. [58,89], which suggest that two-spin effects
will in general be difficult to measure in signals with signal-
to-noise ratios (SNRs) lower than ∼100. This choice was
found to be sufficient; the PhenomPNR model of the
dominant contribution to the signal [the (2,2) multipoles in
the coprecessing frame] [20], constructed from 19 aligned-
spin waveforms and 40 precessing-binary waveforms, is
of comparable accuracy to the equivalent contributions to
the NRSurrogate model [29], which was constructed from
more than 1000 simulations over a smaller volume of
parameter space. (It remains to be seen how many NR
simulations are required to accurately include two-spin
effects, higher multipoles, and mode asymmetries.)
Secondary objectives were to contribute data that is useful
to the waveform modeling community and to provide
processed datasets that are appropriate for parameter
estimation studies [64,66].
Our catalog contains datasets from 80 different configu-

rations of precessing BBH systems. These configurations
cover four mass ratios q ¼ m2=m1 ∈ f1; 2; 4; 8g at four
different spin magnitudes χ2¼jS⃗2j=m2

2∈f0.2;0.4;0.6;0.8g
each at five different spin orientations such that the angle
between the orbital angular momentum and spin vector of
the larger black hole is one of f30°; 60°; 90°; 120°; 150°g.
The configurations are specified at a reference orbital
frequency. The catalog can be accessed online at https://
data.cardiffgravity.org/bam-catalogue/.
In the following section we briefly summarize the

methods used by the BAM code [4,5] to perform numerical
simulations of BBH systems and describe the workflow we
use to produce low eccentricity initial data. In Sec. III we
provide a description of the properties of the simulations
contained within the catalog. In Sec. IV we perform a
waveform accuracy analysis to validate the catalog. Finally
we conclude with Sec. V where we discuss what regions
of parameter space and how the catalog can be used to
contribute to the continuing advance of gravitational wave
data analysis.

II. SUMMARY OF METHODS

A. Simulation method

The simulations in this catalog were produced using
BAM [4,5], a moving-box-based mesh-refinement numeri-
cal-relativity code that solves the 3þ 1 decomposed
Einstein equations. Specifically, for the simulations in this
catalog we evolve Bowen-York wormhole data [90–92] via
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the χ variant of the moving-puncture treatment [2,3] of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
[93,94]. Spatial derivatives are approximated algebraically
through sixth-order finite differencing in the bulk, which in
turn are evolved in time through fourth-order Runge-Kutta
time stepping; see Refs. [4,5] for full details on the treatment
of boundaries, buffer zones, advection derivatives, and
numerical dissipation. Finally, the gravitational wave content
of the system is extracted at some finite distance using the
Newman-Penrose scalar Ψ4 [95] following the procedure
outlined in Ref. [96]. Following these references, Ψ4 is
decomposed via the spherical multipolar decomposition

Ψ4ðΘ;ΦÞ ¼
X∞
l¼2

Xl
m¼l

ψ4;lm
−2YlmðΘ;ΦÞ; ð1Þ

where ψ4;lm are the individual multipole moments, −2Ylm

are the spin-weighted spherical harmonics over the unit-
sphere defined by Θ and Φ. The quantity Ψ4 can be
converted into the gravitational wave observable known
as the strain h via a double time integral. This is generally
the more useful quantity to consider for applications of the
numerical data, such as waveform modeling, since it is the
quantity measured by gravitational wave detectors and so
forms the starting point for all gravitational wave astronomy.
Where the strain is required, we obtain it in the frequency
domain by dividing the frequency domain Ψ4 data by ω2,
where ω is the angular Fourier frequency [97].
The numerical domain consists of nested Cartesian grids

of successively finer spacing, nested in the sense that
the grid at each level n is encompassed by that of level
n − 1. The grid spacing dn for each refinement level n
follows the scaling,

dn ¼
d0
2n

fn∈Zþg; ð2Þ

where d0 is the spacing on the coarsest level. The coarsest
levels (largest boxes) encompass both black holes and are
fixed, while for the finer levels (smaller boxes) there is a
box around each black hole, and these boxes move with
the punctures. The boxes are initially specified as cubes,
where the user provides the number of points along one
side for each level, i.e., if Nn is the number of points in
each direction on level n, then the user specifies a list of
Ni ¼ fN0; N1;…; N1max

g, where lmax is the finest level.
During evolution the code will dynamically adjust the
number of points, in particular near merger when individual
boxes around each puncture will be merged when they are
about to overlap. In addition, lmax differs for each puncture
so that dlmax;i=mi is approximately the same for each
puncture. See Ref. [4] for more details on the BAM grid
structure, and Ref. [98] for typical choices for numbers of
levels and relative box sizes. Section II B 2 provides further
details of the choices we made for the grid configurations.

The values Ni, lmax for each puncture, and the coarsest grid
spacing d0 are all provided in the public data release.
The temporal resolution is subject to a Berger-Oliger

refinement scheme in which the spacing between succes-
sive time steps halves with each successive level; the time
step is specified as dtn ¼ 0.25dn. The finest level consists
of two grids, one centered on each puncture, an arrange-
ment that is maintained as we move up the levels so long as
the grids are not so large that they would overlap. These
nested grids around each individual puncture move with the
punctures as they orbit. Beyond this level the two grids are
replaced by a single grid that encompasses all of the
moving boxes and is centered on the origin. It was found
in Ref. [4] that the Berger-Oliger time stepping becomes
unstable on the coarsest nonmoving grids, and for these
we revert to a single time step specified by a Courant factor
of 0.25 applied to the finest such grid. The details are
the same as those used in Refs. [4,5], except for the use of
0.25 rather than 0.5 for the Courant factor, which is
necessary to sufficiently reduce the time stepping error
in long simulations.
A pseudospectral elliptic solver is used to calculate

binary wormhole initial data [92], with eccentricity reduced
to < 2 × 10−3 through a series of manual iterations of the
linear momenta of the punctures in the initial parameters.
This process is described in more detail in Sec. II B 1.

B. Simulation workflow

1. Initial data construction

We wish our simulations to begin at a user specified
reference orbital frequency MΩorb with spin vector S≡ S2
on the larger black hole (which we designate the secon-
dary). The orientation of S2 can be defined by the angle
θLS ¼ arccosðL̂N · Ŝ2Þ between the spin vector S2 and
Newtonian orbital angular momentum vector LN, and the
angle ϕrS ¼ arccosðr̂ · Ŝ2⊥Þ between the projection of the
spin vector on to the orbital plane S2⊥ and the separation
vector r from the larger black hole to the smaller. For all
NR configurations in this work we choose ϕrS ¼ 0 at the
reference frequency MΩorb, and a range of misalignment
angles θLS. The positions and momenta of the black holes
consistent with these constraints must then be determined at
MΩorb, approximately chosen to minimize eccentricity.
Bowen-York wormhole data can then be generated from
these parameters. The main task of initial data construction
is therefore reduced to identifying the appropriate black-
hole positions and momenta at MΩorb. Two methods were
used for the simulations in this catalog.
For simulations with χ2 ∈ f0.4; 0.8g the initial data

parameters were determined by adapting the method used
in previous work [15,99,100]. For this method the physical
parameters of the system ðq; S1;S2Þ are specified at a much
larger separationDstart than the NR simulations will start at.
The effective-one-body (EOB) equations of motion are
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then evolved up to MΩorb and the parameters at this
frequency are used as input to a Bowen-York initial data
solver. However for precessing systems this method does
not allow the user to specify the exact system configuration
ðq; S1;S2Þ at MΩorb. During the course of inspiral from
Dstart to MΩorb for the single-spin precessing systems
in this catalog, the angle θLS can be seen to vary no more
than ∼1°, while ϕrS increases continuously (see Fig. 3 and
Fig. 4 in Ref. [101]). To achieve a specific choice of
ðθLS;ϕrSÞ at a prescribed value of MΩorb, the method was
extended with an iterative refinement of the angle ϕrS at
Dstart until the parameters at MΩorb are within a suitable
tolerance of our desired values. Full details of this adapted
method are given in Appendix A.
The simulations χ2 ∈ f0.2; 0.6g were performed later,

and were able to make use of a more recent method to
produce low-eccentricity initial parameters, as described in
Ref. [102]. This method provides a post-Newtonian esti-
mate of low-eccentricity parameters at a prescribed orbital
frequency, making it possible to specify ðθLS;ϕrSÞ without
the need for any iterative steps. This method also supports
additional iteration steps to further reduce the eccentricity
based on NR dynamics, however this additional iteration
was not used for the simulations in this catalog. We instead
relied upon the manual perturbation approach outlined in
Refs. [15,99,100] and described below.
While the initial data parameters generated from solving

the EOBequations of motion will lead to low eccentricity
simulations, in general this will not be low enough to
satisfy our definition of a quasicircular binary. We placed
an upper limit on the eccentricity at 2 × 10−3, based on the
observation in Ref. [98] that the puncture dynamics do not
give reliable eccentricity estimates below this value, due to
gauge effects. A standard iterative method to further reduce
eccentricity is to perform a low resolution simulation for
∼1000M, estimate the eccentricity, and make iterative
small perturbations to the momenta of the component
black holes [98,99]. For most of the simulations in this
work a perturbation of 0.1–0.8% is applied to the magni-
tude of the momenta. This is normally sufficient to reduce
the eccentricity below the desired threshold. However in
cases where this is not sufficient the radial component of
the momenta is also reduced by 25–75%. Once initial data
parameters are found that yield a sufficiently low eccen-
tricity then a high-resolution production simulation is
performed using the same parameters.
There are two different ways that eccentricity is

estimated for the simulations in this work. For the
shorter iterative eccentricity reduction simulations
where the merger time is not known, the puncture
separation D is fit using a quadratic function with data
typically in the range ½200; 700�M similar to the method
described in Ref. [103]. The eccentricity is then esti-
mated by the maximum absolute relative difference
between the fit and the data. For production simulations

the eccentricity is estimated using a fit that also incor-
porates the merger time [103].
In our production simulations we in general find that

true eccentricity differs from that calculated in our lower-
resolution eccentricity-reduction simulations. For a few of
the cases in this catalog the eccentricity of the lower-
resolution simulation was below our 2 × 10−3 threshold,
but the eccentricity of the production simulation exceeded
it, as can be seen in Tables I and II. Nonetheless, only a
handful of cases have eccentricities above 3 × 10−3, and
only one is close to 4 × 10−3 (CF_77).

2. Grid configurations

The simulations performed for this catalog are all
computationally expensive, requiring Oð105Þ CPU hours
for each production run, and we do not have the luxury of
exhaustive experiments to identify a choice of numerical
grids that provides a good balance between computational
efficiency and physical accuracy. In 3D simulations of
this scale it is impractical to perform standard convergence
tests where the grid spacing d0 is halved between succes-
sive runs, and indeed clean convergence has rarely been
observed in binary simulations with any code, and even
given promising convergence results for one binary con-
figuration, there exists no robust algorithm to determine the
resolution requirements to guarantee clean convergence for
a second configuration. Section IV presents a convergence
study of several of our configurations. In this section we
discuss the heuristic requirements we place on our grid
configurations, based on past experience with BAM binary
simulations.
Our first requirement is that the width of the smallest

moving box following each component black hole should
be between 1.2 and 1.5 times the maximum effective
coordinate diameter of the apparent horizon of its respec-
tive black hole before merger. This requirement is achieved
by changing the values of the grid spacing d0 on the
coarsest level, and the finest level that exists for the larger
black hole. The number of grid pointsNL on the finest level
can also be used to adjust the size of the finest box around
the black hole, if necessary, but we find in most cases that
adjusting d0 is sufficient.
The second requirement is to have at least ten grid points

per wavelength of the (4,4) multipole moment on the level
where gravitational waves are extracted. The maximum
frequency is estimated by doubling the (2,2) ringdown
frequency calculated by the aligned spin gravitational wave
model PhenomD [15,16], using the parameters ðq; 0; χ2Þ.
In precessing configurations the ringdown frequency will
always be lower than this estimate, and therefore this
provides a conservative estimate of the resolution require-
ments. One could use a more accurate estimate of the
ringdown frequency for each precessing configuration using,
for example, the method described in Refs. [101,104,105],
but for this work we found no need to do this. The required
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grid spacing on level n where gravitational waves are
extracted is then approximated as dn ≤ 1=ð20fRDÞ. This
requirement is achieved by changing the values of the finest
grid spacing d0. If this requirement cannot be satisfied on
level n and level n is not the last fixed box level, then
the number of grid points Nnþ1 on level nþ 1 is increased
until the box size Nnþ1 × dnþ1 is large enough to support
gravitational wave extraction at the radius required. The use

of much larger numbers of points on the wave-extraction
level means that the wave-extraction resolution requirements
are also a strong determinant of the overall computational
cost, along with the resolution requirements local to the
black hole.
Although details for each configuration are given in the

public data release, we provide an example here to give a
sense of the typical numbers of points, numbers of levels,

TABLE I. Initial data parameters and relaxed properties of the precessing BBH configurations in this catalog with mass ratio 1 or 2.
The smaller black hole has no initial spin. The associated properties of the larger black hole are identified with a subscript 2. The spin
magnitude S2=m2

2, the spin tilt angle arccosðL̂N · Ŝ2Þ, the effective spins χeff and χp and the separation D=M are derived from the initial
conditions of the simulations and relaxed times given in brackets. The eccentricity e is estimated over the region ½300; 800�M using the
method described in [103]. The orbital frequency Mωorb is derived from the dynamics at relaxed times. The number of orbits Norb is
from calculated from the relaxed time that Mωorb is reported at until the peak in the (2,2) multipole moment of Ψ4.

Name q χ θLSð°Þ χeff χp D=M eð×10−3Þ
MΩorb

ð×10−2Þ tM Norb Mf χf

vR
ðkm s−1Þ

CF_1 1 0.2 (0.200) 30.0 (29.9) 0.087 (0.087) 0.100 (0.100) 11.6 (11.4) 1.327 2.28 1710 9.61 0.949 0.713 188
CF_2 1 0.2 (0.200) 60.0 (59.9) 0.050 (0.050) 0.173 (0.173) 11.6 (11.4) 0.931 2.28 1685 9.43 0.950 0.703 96
CF_3 1 0.2 (0.200) 90.0 (89.8) 0.000 (0.000) 0.200 (0.200) 11.6 (11.4) 1.084 2.27 1667 9.25 0.951 0.688 176
CF_4 1 0.2 (0.200) 120.0 (119.8) −0.050 (−0.050) 0.173 (0.173) 11.6 (11.4) 0.759 2.28 1628 9.01 0.953 0.672 329
CF_5 1 0.2 (0.200) 150.0 (149.9) −0.087 (−0.086) 0.100 (0.100) 11.6 (11.4) 0.723 2.27 1610 8.86 0.953 0.661 147
CF_6 1 0.4 (0.400) 30.0 (29.9) 0.173 (0.174) 0.200 (0.200) 11.6 (11.3) 1.227 2.28 1768 10.0 0.946 0.740 120
CF_7 1 0.4 (0.400) 60.0 (59.9) 0.100 (0.101) 0.346 (0.346) 11.6 (11.3) 2.478 2.28 1723 9.69 0.948 0.720 735
CF_8 1 0.4 (0.400) 90.0 (89.9) 0.000 (0.001) 0.400 (0.400) 11.5 (11.3) 3.898 2.30 1626 9.11 0.951 0.691 757
CF_9 1 0.4 (0.400) 120.0 (119.9) −0.100 (−0.099) 0.346 (0.347) 11.6 (11.3) 3.213 2.29 1577 8.72 0.954 0.660 93
CF_10 1 0.4 (0.400) 150.0 (149.9) −0.173 (−0.173) 0.200 (0.201) 11.6 (11.4) 2.675 2.29 1542 8.45 0.956 0.634 324
CF_11 1 0.6 (0.600) 30.0 (29.9) 0.260 (0.260) 0.300 (0.299) 10.0 (9.79) 1.269 2.79 1064 7.34 0.943 0.767 189
CF_12 1 0.6 (0.601) 60.0 (59.8) 0.150 (0.151) 0.520 (0.519) 11.6 (11.3) 1.446 2.29 1737 9.81 0.946 0.740 977
CF_13 1 0.6 (0.600) 90.1 (89.8) 0.000 (0.001) 0.600 (0.600) 11.5 (11.3) 1.261 2.30 1625 9.11 0.950 0.697 1170
CF_14 1 0.6 (0.600) 120.0 (119.8) −0.150 (−0.149) 0.519 (0.521) 11.7 (11.4) 1.200 2.27 1589 8.65 0.955 0.651 98
CF_15 1 0.6 (0.600) 150.0 (149.9) −0.260 (−0.259) 0.300 (0.301) 11.6 (11.4) 1.761 2.29 1480 8.03 0.958 0.609 159
CF_16 1 0.8 (0.801) 30.0 (29.9) 0.346 (0.347) 0.400 (0.399) 11.6 (11.3) 2.958 2.28 1902 10.9 0.939 0.792 874
CF_17 1 0.8 (0.801) 60.0 (59.8) 0.200 (0.202) 0.693 (0.692) 11.6 (11.4) 2.691 2.27 1832 10.3 0.943 0.758 1690
CF_18 1 0.8 (0.801) 90.1 (89.8) 0.000 (0.002) 0.800 (0.801) 11.6 (11.3) 1.027 2.29 1644 9.17 0.950 0.707 1220
CF_19 1 0.8 (0.801) 120.1 (119.8) −0.200 (−0.198) 0.692 (0.696) 11.6 (11.3) 1.402 2.30 1503 8.26 0.955 0.641 1110
CF_20 1 0.8 (0.801) 150.0 (149.9) −0.347 (−0.346) 0.399 (0.403) 11.6 (11.3) 0.552 2.32 1374 7.48 0.959 0.584 394

CF_21 2 0.2 (0.200) 30.0 (29.9) 0.115 (0.116) 0.100 (0.100) 11.6 (11.4) 1.718 2.27 1934 10.6 0.958 0.680 114
CF_22 2 0.2 (0.200) 60.0 (59.9) 0.067 (0.067) 0.173 (0.173) 11.6 (11.4) 1.257 2.28 1887 10.3 0.959 0.659 374
CF_23 2 0.2 (0.200) 90.0 (89.8) 0.000 (0.000) 0.200 (0.200) 11.6 (11.4) 0.655 2.28 1823 9.84 0.961 0.629 207
CF_24 2 0.2 (0.200) 120.0 (119.8) −0.067 (−0.066) 0.173 (0.174) 11.6 (11.4) 1.159 2.29 1759 9.42 0.963 0.596 287
CF_25 2 0.2 (0.200) 150.0 (149.9) −0.116 (−0.115) 0.100 (0.100) 11.6 (11.4) 0.981 2.29 1713 9.13 0.964 0.569 227
CF_26 2 0.4 (0.400) 30.0 (29.9) 0.231 (0.231) 0.200 (0.200) 11.6 (11.4) 1.237 2.29 2005 11.2 0.954 0.737 209
CF_27 2 0.4 (0.400) 60.1 (59.9) 0.133 (0.134) 0.347 (0.346) 11.6 (11.5) 2.131 2.26 1979 10.8 0.956 0.700 713
CF_28 2 0.4 (0.400) 90.1 (89.9) −0.001 (0.001) 0.400 (0.400) 11.6 (11.4) 0.580 2.28 1838 9.91 0.961 0.646 169
CF_29 2 0.4 (0.400) 120.1 (119.8) −0.134 (−0.133) 0.346 (0.347) 11.6 (11.4) 2.226 2.30 1692 9.02 0.964 0.577 609
CF_30 2 0.4 (0.400) 150.1 (149.9) −0.231 (−0.231) 0.200 (0.201) 11.6 (11.4) 1.436 2.29 1626 8.53 0.966 0.518 270
CF_31 2 0.6 (0.601) 30.1 (29.9) 0.346 (0.347) 0.301 (0.300) 11.5 (11.4) 1.726 2.28 2118 12.0 0.948 0.795 154
CF_32 2 0.6 (0.600) 60.1 (59.8) 0.199 (0.201) 0.520 (0.519) 11.5 (11.3) 0.876 2.30 1950 10.9 0.952 0.746 1280
CF_33 2 0.6 (0.601) 90.1 (89.8) −0.001 (0.002) 0.600 (0.601) 11.7 (11.5) 0.681 2.25 1908 10.2 0.958 0.669 1270
CF_34 2 0.6 (0.601) 120.1 (119.8) −0.201 (−0.199) 0.519 (0.522) 11.5 (11.3) 1.531 2.31 1610 8.57 0.965 0.571 390
CF_35 2 0.6 (0.600) 150.1 (149.9) −0.347 (−0.346) 0.299 (0.301) 11.9 (11.6) 0.525 2.24 1657 8.39 0.968 0.471 395
CF_36 2 0.8 (0.802) 30.1 (29.9) 0.461 (0.463) 0.401 (0.399) 11.5 (11.2) 2.096 2.31 2156 12.4 0.940 0.851 866
CF_37 2 0.8 (0.802) 60.1 (59.7) 0.265 (0.269) 0.694 (0.692) 11.5 (11.3) 2.046 2.30 2014 11.4 0.948 0.800 903
CF_38 2 0.8 (0.802) 90.2 (89.7) −0.002 (0.003) 0.800 (0.802) 11.6 (11.4) 3.134 2.28 1844 10.0 0.958 0.707 720
CF_39 2 0.8 (0.802) 120.2 (119.7) −0.268 (−0.264) 0.691 (0.696) 11.5 (11.3) 0.869 2.32 1554 8.29 0.964 0.571 1180
CF_40 2 0.8 (0.802) 150.1 (149.9) −0.462 (−0.462) 0.398 (0.403) 11.6 (11.3) 0.801 2.32 1408 7.26 0.969 0.431 443
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and resolutions used in our simulations. This example is
for the ðq ¼ 8; χ ¼ 0.8; θLS ¼ 60°Þ configuration (CF_8).
For the low-resolution simulations used to reduce initial
eccentricity, we used 12 refinement levels for the larger
black hole and 15 for the smaller, so lmax ¼ 12, 15. The
numbers of points along each side of the box were Ni ¼
f120; 120; 120; 120; 160; 240; 320; 160; 80; 80; 80; 80; 80;
80; 80; 80g, where we recall that N0 ¼ 120 is the number
of points on the coarsest-level wave extraction is performed
on l¼6 where N6 ¼ 320, and on the finest level N15 ¼ 80.
The resolution on the coarsest level is d0 ¼ 80.28M, so that
the closest outer boundary to the origin is at Rmax ¼
N0d0=2 ¼ 3211M. The resolution on the finest level is
d15 ¼ d0=215 ¼ 0.0025M, or, in terms of the smaller black
hole’s mass m1 ¼ 1=ðqþ 1Þ ¼ 1=9, d15 ¼ m1=45. The
wave-extraction resolution is poor for this grid configura-
tion, but for the eccentricity-reduction steps we require only
the dynamics of the black holes, not the GW signal.
For the production simulation of this configuraton, we

used the same numbers of levels, but now Ni ¼ f144; 144;
144; 144; 144; 192; 288; 360; 96; 96; 96; 96; 96; 96; 96; 96g.
Now N0 ¼ 144, on the radiation extraction level N6 ¼ 360
and the finest level has N15 ¼ 96. The resolution on the
coarsest level is N0 ¼ 71.0M, the outer boundary is at
Rmax ¼ 6816M (given that the merger time of our simu-
lations was ∼2000M, in retrospect we could have removed
the coarsest level). The resolution on the finest level is
d15 ¼ 0.0022M, or m1=51.2. The wave-extraction level is
now l¼7, and the resolution there is d7¼d0=27¼0.555M;
note that the ringdown frequency for the dominant multi-
pole of this system is Mω22 ¼ 0.58, giving a time period
of 10.83M, so the wave-extraction level contains roughly
19 points per wavelength for the (2,2) multipole, and just
under 10 points per wavelength for the (4,4) multipole.
Gravitational-wave extraction is performed at Rex ¼

f50; 60; 70; 80; 90Mg on l ¼ 6. In the data release we
include multipoles up to l ≤ 5.

III. SIMULATION PROPERTIES

In this section we discuss the properties of the simu-
lations in our catalog. We first motivate our coverage of
the single-spin parameter space, our choice of starting
frequency for each binary, and our procedure to estimate
initial black-hole momenta and spins to achieve quasicir-
cular inspiral with a prescribed spin orientation. We then
discuss in detail the accuracy with which our desired
configurations are achieved, in particular the accuracy of
our specification of the black-hole masses and spins, and
the spin orientations. Finally, we summarize the properties
of the remnant black holes.

A. Simulation configurations

Our catalog consists of dynamics and waveform data from
NR simulations of 80 binary-black-hole configurations.

We chose configurations with four mass ratios q¼m2=m1∈
f1;2;4;8g, four values of the dimensionless spin on the
larger black hole, χ2 ¼ jS2j=m2

2 ∈ f0.2; 0.4; 0.6; 0.8g (the
smaller black hole has zero spin), and five values of
the misalignment of the black-hole spin with direction of
the Newtonian orbital angular momentum, θLS¼ arccosðL̂N·
Ŝ2Þ∈f30°;60°;90°;120°;150°g. The configurations with
spins χ2 ¼ f0.4; 0.8g were simulated first and used to
produce the first PhenomPNR model, and the later simu-
lations at χ2 ¼ f0.2; 0.6g were used as independent verifi-
cation waveforms [20].
For each simulation two mass parameters m1, m2 were

chosen such that M ¼ m1 þm2 ¼ 1. The initial data are
iteratively constructed from these parameters such that the
Arnowitt-Deser-Misner (ADM) mass of each puncture
equals its respective mass parameter to within 0.02% [4].
At subsequent times the masses of each black hole are
recorded as the apparent-horizon masses MAH;1;MAH;2 of
each puncture, which are related to the black hole hole
masses m1, m2 through the Christodoulou formula [106].
This approach agrees well with the ADM mass of each
puncture; the level of agreement is quantified further in
Sec. III B.
In addition to the masses and spins, we must also choose

the initial separation of the binary. For a binary undergoing
noneccentric inspiral there is a one-to-one correspondence
between the black-hole separation and the orbital fre-
quency, so we may alternatively specify the initial orbital
frequency, MΩorb. For this catalog we prefer to choose
MΩorb, because our primary purpose is to construct a
frequency-domain waveform model, and it would be
convenient if we were able to start to NR tuning at the
same frequency for each configuration. This also motivates
the iterative procedure described in Sec. II B 1, with the
goal of finding parameters consistent with noneccentric
inspiral for a configuration defined at a specified starting
frequency. For the first simulations we performed, at mass
ratios q ¼ 1 and q ¼ 2, we chose MΩorb ¼ 0.0225. This
value was chosen to produce simulations of ∼2000M in
length, which we expected to be sufficiently accurate for
our modeling purposes, based on the experience of pro-
ducing the aligned-spin simulations in Refs. [15,16].
The duration of the simulations varies with binary mass

ratio and the magnitude of the component of the spin
aligned with the orbital angular momentum. At leading
post-Newtonian order the merger time from a given starting
frequency scales with ΔT ∼ 1=η, where η ¼ m1m2=M2 is
the symmetric mass ratio. Therefore, if simulations at mass-
ratios q ¼ 1 (η ¼ 0.25) and q ¼ 8 (η ≈ 0.1) start at the
same orbital frequency, the q ¼ 8 simulation will take
roughly 2.5 times as long to merge. (This is a first-order
approximation, and we see in the final results that the
variation is not quite so extreme.) In addition, if the black-
hole spin is aligned with the orbital angular momentum, the
binary will inspiral more slowly, and this will also increase
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the time to merger. Conversely, a spin in the opposite
direction to the orbital angular momentum will decrease the
time to merger. This effect of spin is most easily seen in PN
calculations, e.g., Refs. [107,108]. For example, for our
q ¼ 2 configurations with χ2 ¼ 0.8, where all simulations
begin at MΩ ¼ 0.0225, we see that the θLS ¼ 30° con-
figuration merges in 2254M, while the θLS ¼ 150° con-
figuration merges in only 1505M. Since we do not wish to
perform expensive tests on the resolution requirements to
achieve similar levels of accuracy for much longer simu-
lations, for mass ratios q ¼ 4 and q ¼ 8, we adjust the
starting frequency to limit the time to merger to approx-
imately 2000M.
To meet the soft requirement of simulation merger

by 2000M we estimate the merger time using the
LALSimulation [109] implementation of PhenomD [16].
This provides a utility function XLALSimIMRPhenomD-
ChirpTime that calculates the time until the peak in the
(2,2)-strain of a specific system configuration given a
starting gravitational wavefrequency, which is approxi-
mately twice the orbital frequency. The starting frequency
is optimized using a simple interval bisection procedure
until the peak time is ∼2000M. A lower bound on the
orbital frequency is set at 0.0225. The average retarded
merger time (calculated as detailed below) for the simu-
lations that required a higher starting orbital frequency was
1983M, with a minimum of 1610, and a maximum of
2169M. While XLALSimIMRPhenomDChirpTime
performed sufficiently well, overall it slightly under esti-
mated the merger time. One simulation (CF_55) was
mistakenly performed using an increased starting fre-
quency, resulting in a much shorter simulation with a
retarded merger time of just 945M.
The properties of each simulation are presented in

Tables I and II. Each configuration is characterized by
its mass ratio q, the dimensionless spin magnitude
χ2 ¼ S2=m2

2, the spin angle θLS ¼ arccosðL̂N · Ŝ2Þ, the
initial orbital frequency MΩorb (or alternatively the initial
binary separation D=M), and the binary’s eccentricity, e.
For the final values reported in Tables I and II, the
eccentricity e is estimated over the region ½300; 800�M
using the method described in [103]. We also show the
effective spin parameters χeff and χp. The effective aligned
spin χeff is defined in terms of the individual parallel spin

components χki ¼ χi · L̂N as [110],

χeff ¼
m1χ

k
1 þm2χ

k
2

M
; ð3Þ

and parametrizes the dominant spin effect on the orbital
phasing, as discussed in Refs. [107,108,111]. The effective
precession spin χp is defined as [101],

χp ¼
Sp
m2

1

; ð4Þ

where A1Sp ¼ max ðA1S⊥1 ; A2S⊥2 Þ, A1 ¼ 2þ 3m2=ð2m1Þ,
and A2 ¼ 2þ 3m1=ð2m2Þ. In a generic two-spin system the
dominant precession effect can be approximated by a
single-spin system where the larger black hole has an in-
plane spin of χp, based on the leading-order spin-precession
effects [112,113]. In the single-spin configurations in this
catalog, we will always have χeff ¼ m2χ2 cos θLS=M and
χp ¼ χ2 sin θLS.
In Tables I and II we provide the quantities

ðχ; θLS; χeff ; χp; D=MÞ as specified in the initial data and
(in brackets) at a relaxed time, trel. This is the time at which
we estimate that the unphysical junk radiation in the initial
data have radiated away, and the GW data can be used for
analysis and modeling. We wish trel to be as early as
possible, to maximize the length of the usable waveform.
We choose a relaxed time of

trel ¼ tpeak þ 2tdamp; ð5Þ

where tpeak is the time of the peak amplitude of the junk
radiation in the (2,2) multipole moment of Ψ4 and tdamp is
an estimate of the exponential decay time of the junk
radiation, which we estimate as tdamp ¼ 76m2. The damp-
ing time of the (2,2,0) quasinormal mode for a nonspinning
black hole of mass m is approximately 71m, and approx-
imately 83m for a black hole with dimensionless spin
magnitude 0.8 [114]; we find that 76m is a reasonable
choice for all of the configurations in this catalog. In Table I
the initial orbital frequency MΩorb is calculated at trel and
the number of orbits Norb is calculated from trel to the
merger time, which we define to be the time at which
the peak in the l ¼ 2multipole moments ofΨ4 occurs. The
retarded merger time, which we denote as tM, is given by
the difference between the merger time and the tortoise
coordinate

r� ¼ rþ 2 ln

���� r2 − 1

����; ð6Þ

where r is the distance from the punctures at which the Ψ4

data is extracted.
The final black hole has a mass ofMf, a spin of χf and a

recoil velocity vR. We discuss the calculation of these
remnant quantities in more detail in Sec. III D below.

B. Initial black-hole masses

We estimate the black-hole masses using the ADM
mass calculated at the puncture. The black holes are
represented in the initial data as wormholes, and the
ADM mass calculated at the second asymptotically flat
end of each wormhole provides a good estimate of
that black hole’s mass. In the puncture framework, this
mass estimate is easy to calculate at each black hole’s
puncture [91]. The ADM puncture mass agrees well with
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the mass calculated from the area of the apparent horizon
in the case of nonspinning black holes [115], but becomes
less accurate for high spins [99].
Figure 1 demonstrates the effect spin magnitude has on

the initial data ADM puncture mass as a function of time
from the start of the simulation. The results in Appendix A
of Ref. [99] suggest that the error in the mass estimate could
be on the order of ∼0.5% for black holes with spin 0.8.

However, the estimates in that paper were made on the
initial data. Our results suggest that after the junk radiation
has left the system (most radiates to infinity, but some falls
back into the black hole), the apparent-horizon estimate of
the mass is closer to the original ADM-puncture-mass
estimate. We see that for black holes with spins of 0.4
the error due to using the ADM puncture mass is on the
order of ∼0.01%, while for spins of 0.8 it is ∼0.04%.

TABLE II. Initial data parameters and relaxed properties of the precessing BBH configurations in this catalog with mass ratio 4 or 8.
The smaller black hole has no initial spin. The associated properties of the larger black hole are identified with a subscript 2. The spin
magnitude S2=m2

2, the spin tilt angle arccosðL̂N · Ŝ2Þ, the effective spins χeff and χp and the separation D=M are derived from the initial
conditions of the simulations and relaxed times given in brackets. The eccentricity e is estimated over the region ½300; 800�M using the
method described in [103]. The orbital frequency Mωorb is derived from the dynamics at relaxed times. The number of orbits Norb is
from calculated from the relaxed time that Mωorb is reported at until the peak in the (2,2) multipole moment of Ψ4.

Name q χ θLSð°Þ χeff χp D=M eð×10−3Þ
MΩorb

ð×10−2Þ tM Norb Mf χf

vR
ðkm s−1Þ

CF_41 4 0.2 (0.200) 30.0 (29.9) 0.139 (0.139) 0.100 (0.100) 10.9 (10.9) 1.083 2.48 1998 11.4 0.975 0.566 175
CF_42 4 0.2 (0.200) 60.0 (59.8) 0.080 (0.080) 0.173 (0.173) 11.0 (10.9) 2.708 2.47 1982 11.1 0.976 0.536 154
CF_43 4 0.2 (0.200) 90.1 (89.9) 0.000 (0.000) 0.200 (0.200) 10.5 (10.5) 1.386 2.61 1610 9.34 0.977 0.488 170
CF_44 4 0.2 (0.200) 120.0 (119.8) −0.080 (−0.080) 0.173 (0.173) 11.2 (11.2) 1.390 2.38 2004 10.7 0.978 0.433 241
CF_45 4 0.2 (0.200) 150.0 (149.9) −0.139 (−0.138) 0.100 (0.100) 11.3 (11.3) 0.701 2.37 1980 10.4 0.979 0.385 192
CF_46 4 0.4 (0.400) 30.1 (29.9) 0.277 (0.277) 0.201 (0.201) 10.6 (10.6) 1.501 2.58 1947 11.7 0.972 0.664 234
CF_47 4 0.4 (0.400) 60.2 (59.9) 0.159 (0.160) 0.347 (0.347) 10.7 (10.7) 1.424 2.53 1929 11.2 0.974 0.616 164
CF_48 4 0.4 (0.400) 90.2 (89.9) −0.001 (0.000) 0.400 (0.400) 11.6 (11.5) 1.608 2.28 2378 12.4 0.977 0.533 448
CF_49 4 0.4 (0.400) 120.2 (119.9) −0.161 (−0.160) 0.346 (0.346) 11.6 (11.5) 0.758 2.30 2148 11.0 0.980 0.424 336
CF_50 4 0.4 (0.400) 150.1 (149.9) −0.277 (−0.277) 0.199 (0.200) 11.5 (11.5) 1.761 2.32 1954 9.87 0.981 0.313 272
CF_51 4 0.6 (0.600) 30.1 (29.9) 0.415 (0.415) 0.301 (0.301) 10.4 (10.3) 1.644 2.63 1982 12.5 0.967 0.762 413
CF_52 4 0.6 (0.601) 60.2 (59.8) 0.238 (0.239) 0.521 (0.521) 10.8 (10.7) 1.817 2.52 2054 12.1 0.970 0.704 782
CF_53 4 0.6 (0.602) 90.3 (89.8) −0.002 (−0.001) 0.600 (0.602) 11.0 (10.9) 2.232 2.46 1935 10.8 0.975 0.600 764
CF_54 4 0.6 (0.601) 120.3 (119.8) −0.242 (−0.241) 0.518 (0.520) 11.4 (11.4) 0.438 2.34 1949 10.0 0.980 0.451 524
CF_55 4 0.6 (0.600) 150.2 (149.8) −0.416 (−0.416) 0.298 (0.300) 10.1 (9.88) 3.600 2.88 945 5.45 0.983 0.270 296
CF_56 4 0.8 (0.801) 30.2 (29.9) 0.553 (0.554) 0.402 (0.402) 10.1 (10.0) 1.638 2.72 1951 13.1 0.959 0.859 722
CF_57 4 0.8 (0.802) 60.4 (59.7) 0.317 (0.318) 0.695 (0.696) 10.5 (10.4) 0.751 2.60 1968 12.2 0.965 0.800 1150
CF_58 4 0.8 (0.802) 90.4 (89.7) −0.004 (−0.002) 0.800 (0.802) 11.5 (11.4) 1.675 2.31 2342 12.3 0.973 0.684 1160
CF_59 4 0.8 (0.802) 120.4 (119.7) −0.324 (−0.323) 0.690 (0.693) 11.6 (11.5) 1.225 2.30 1984 9.92 0.979 0.506 710
CF_60 4 0.8 (0.801) 150.2 (149.8) −0.555 (−0.556) 0.397 (0.399) 11.6 (11.5) 0.565 2.31 1690 8.18 0.983 0.271 383

CF_61 8 0.2 (0.200) 30.0 (29.9) 0.154 (0.154) 0.100 (0.100) 9.84 (9.96) 1.359 2.86 2006 12.4 0.988 0.437 81
CF_62 8 0.2 (0.200) 60.0 (59.8) 0.089 (0.089) 0.173 (0.173) 9.95 (10.1) 0.656 2.82 2008 12.1 0.988 0.402 87
CF_63 8 0.2 (0.200) 90.0 (89.7) 0.000 (0.000) 0.200 (0.200) 10.1 (10.2) 1.147 2.77 1989 11.7 0.989 0.345 98
CF_64 8 0.2 (0.200) 120.0 (119.8) −0.089 (−0.089) 0.173 (0.174) 10.3 (10.4) 0.739 2.70 2001 11.3 0.990 0.273 100
CF_65 8 0.2 (0.200) 150.0 (149.9) −0.154 (−0.154) 0.100 (0.100) 10.4 (10.5) 1.909 2.67 1987 11.0 0.990 0.199 100
CF_66 8 0.4 (0.400) 30.2 (29.9) 0.307 (0.309) 0.201 (0.199) 9.54 (9.67) 1.360 2.96 2022 13.3 0.986 0.573 118
CF_67 8 0.4 (0.400) 60.3 (59.9) 0.176 (0.178) 0.347 (0.346) 9.69 (9.84) 1.921 2.90 1960 12.4 0.987 0.525 83
CF_68 8 0.4 (0.400) 90.3 (89.8) −0.002 (0.000) 0.400 (0.400) 10.1 (10.2) 1.222 2.76 2007 11.8 0.988 0.439 193
CF_69 8 0.4 (0.400) 120.3 (119.8) −0.179 (−0.178) 0.345 (0.346) 10.5 (10.6) 1.402 2.65 2022 11.1 0.990 0.318 166
CF_70 8 0.4 (0.400) 150.1 (149.9) −0.308 (−0.308) 0.199 (0.200) 10.8 (10.8) 1.578 2.56 2040 10.7 0.991 0.169 103
CF_71 8 0.6 (0.601) 30.2 (29.9) 0.461 (0.463) 0.302 (0.299) 9.28 (9.34) 2.038 3.07 2040 14.3 0.983 0.711 161
CF_72 8 0.6 (0.601) 60.4 (59.8) 0.263 (0.268) 0.522 (0.519) 9.60 (9.71) 2.220 2.92 2046 13.3 0.985 0.658 330
CF_73 8 0.6 (0.601) 90.5 (89.8) −0.004 (0.001) 0.600 (0.601) 10.0 (10.1) 2.370 2.78 1990 11.8 0.988 0.561 320
CF_74 8 0.6 (0.600) 120.4 (119.7) −0.270 (−0.271) 0.518 (0.517) 10.6 (10.7) 1.100 2.60 2008 10.8 0.990 0.420 124
CF_75 8 0.6 (0.601) 150.2 (149.9) −0.463 (−0.462) 0.298 (0.301) 10.6 (10.6) 0.482 2.64 1637 8.57 0.991 0.247 116
CF_76 8 0.8 (0.802) 30.3 (29.8) 0.614 (0.619) 0.404 (0.397) 8.96 (8.97) 1.145 3.20 2044 15.5 0.977 0.848 210
CF_77 8 0.8 (0.801) 60.5 (59.7) 0.350 (0.362) 0.697 (0.690) 9.37 (9.36) 1.334 3.04 2013 13.8 0.982 0.799 193
CF_78 8 0.8 (0.801) 90.6 (89.6) −0.008 (0.003) 0.800 (0.801) 10.0 (10.0) 2.868 2.80 2006 11.9 0.987 0.700 363
CF_79 8 0.8 (0.802) 120.5 (119.7) −0.361 (−0.359) 0.689 (0.693) 10.9 (10.9) 2.327 2.50 2145 11.1 0.990 0.548 207
CF_80 8 0.8 (0.802) 150.3 (149.8) −0.618 (−0.618) 0.397 (0.398) 11.5 (11.4) 0.701 2.36 2169 10.3 0.991 0.371 178
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(The oscillations in Fig. 1 are due to uncertainties in the
apparent-horizon estimate.) From this we conclude that the
errors in the mass estimates are negligible.

C. Initial black-hole spins

The black-hole spin S2 is specified as part of the Bowen-
York extrinsic curvature. The main source of uncertainty in
the dimensionless spin χ2 ¼ S2=m2

2 is the accuracy of the
mass; as some of the junk radiation falls into the black hole,
the mass increases, and so χ2 decreases. However, as we
saw previously, the final value of the mass as estimated
from the area of the apparent horizon agrees well with
the nominal value for each configuration. We also see in
Table I that there is only a small discrepancy in the spin
magnitude after the relaxation time. Since the initial black-
hole spins are prescribed analytically in the Bowen-York
initial data, we can reliably estimate the uncertainty in the
apparent-horizon measurement of the spin magnitude to be
within ∼0.001.
During the inspiral θLS is not constant; it will oscillate

due to the nutation of the orbital plane, as illustrated for
one configuration in Fig. 2. Ideally, we would set up our
simulations so that the mean value of θLS was equal to our
prescribed value at the start frequency. We see in Fig. 2 the
two ways in which our data deviate from this ideal.
(1) There is an inaccuracy in the initial value of θLS,
which is within the tolerance set in our initial-data con-
struction procedure, and (2) this value is at an extremum of
the oscillations in θLS, and so the mean will be offset from
the target value in the initial-data construction. We also see
that the mean value slowly varies over the course of the
simulation, although typically by only a fraction of a degree
over the entire inspiral.
In Tables I and II we report the mean value of θLS at the

start of the simulation and at the relaxed time. We estimate

the value at the relaxed time by fitting to θLS a sinusoidal
ansatz of the form,

ðA0 þ A1tÞ sinð2πðf0tþ f1t2Þ þ φÞ þ C0 þ C1t; ð7Þ

where A0, A1, f0, f1, φ, C0, and C1 are all free parameters,
from the relaxed time up to three orbits after the relaxed
time. The value of the linear part of the fit at the relaxed
time is reported in Tables I and II instead of the pointwise
value of the NR data for θLS. An example of this fit can be
seen in Fig. 2. The resulting value of θLS is used, along with
the relaxed-time value of the spin magnitude, to calculate
the relaxed-time values of χeff and χp.

D. Remnant properties

The final black hole that remains after the merger is
characterized by its mass, spin, and recoil. We report each
of these quantities in Tables I and II.
As with the relaxed-time quantities reported in Tables I

and II, the mass and spin of the final black hole,Mf and χf,
are calculated from the apparent horizon [116]. As a
consistency check we also estimate the mass and angular
momentum of the final spacetime from the gravitational-
wave signal. The mass can be calculated by subtracting the
radiated energy from the initial ADM mass of the space-
time. The radiated energy is in turn calculated from the
gravitational wave signal measured at a series of extraction
radii [4] and the result extrapolated to infinity. The final
mass estimated in this way typically agrees with the
horizon measure to within 5 × 10−4. Given the mass,
perturbation theory provides a relationship between the
black-hole spin and the frequency of the signal multipoles
during ringdown [105,117]. We calculate the ringdown

FIG. 1. Comparison of the relative percentage error between the
apparent-horizon mass and the initial-data ADM puncture mass for
the larger black hole, as a function of simulation time t. Both
simulations have initial parameters q ¼ 2, θLS ¼ 60. The solid
black line is for a configuration with dimensionless spin magnitude
χ2 ¼ 0.4 and the dashed black line represents χ2 ¼ 0.8.

FIG. 2. Linear trend of the angle θLS between the Newtonian
orbital angular momentum and spin of the spinning black hole as
a function of simulation time t. θLS as determined from NR data is
plotted as a thick black line. The initial data value of θLS is plotted
as a horizontal thick black line. The dashed black line is a
sinusoidal fit using Eq. (7). The vertical black lines mark the fit
bounds. The linear part of the sinusoidal fit is plotted as a solid
black line. The dotted black line marks the value of the linear
trend line at the lower bound. Lower opacity lines of the NR data
and extrapolated fit are plotted outside of the fit region.
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frequency of the ðl ¼ 2; jmj ¼ 2Þ multipoles by taking the
Fourier transform of the waveform between 10 and 100M
after merger [118], where merger is here defined as the time
at which the sum of the square of the l ¼ 2 multipoles is
maximized. The ringdown frequency is then the frequency
at which the peak in this frequency domain postmerger
waveform occurs [119]. This then allows us to make an
independent estimate of the final spin. We find that this
estimate of the final spin typically agrees with the horizon
measure to within 5 × 10−3.
We calculated the recoil (or kick) velocity of the final

black hole by integrating the radiated linear momentum
from the relaxed time trel until the end of the simulation. We
report here only the magnitude ofthe recoil velocity vR. The
linear momentum is itself calculated as described in [4].
We used the value of the linear momentum extracted at a
distance 90M from the source. Since the recoil velocity is
very sensitive to the in-plane spin directions, this catalog
does not comprehensively explore the range of recoil
velocities that can be seen for systems with mass ratios
up to q ¼ 8 and dimensionless spin magnitudes up to
χ ¼ 0.8. However, from the values presented in Tables I
and II, we can see that the largest magnitude kick velocities
tend to be seen for systems where the two initial black holes
are equal in mass, a general trend that can be seen even in
inspiral post-Newtonian estimates [113], and for full
merger calculations in the numerical-relativity recoil stud-
ies cited in the Introduction.
We investigated the effect of the finite resolution of the

simulations and the radius at which the rate of change of the
linear momentum was extracted on the calculation of
the final recoil velocity. The effect of the extraction radius
was found to be less than 10% of the final recoil velocity,
while the effect of the resolution was even smaller.
We compared the results of our calculation of the recoil

velocity with the prediction given by the NRSurrogate
model NRSur7dq4 [29] for those cases within the catalog

that lie within the calibration region of NRSur7dq4
(q ≤ 4). To obtain this prediction, we used the value of
the black hole spins, rotated into the LAL frame [120], and
the orbital frequency 100M prior to merger. This compari-
son is shown in Fig. 3. As can be seen from these results,
for most of the cases contained within the catalog, the
calculation from the radiated linear angular momentum
agrees well with the prediction by NRSur7dq4. However,
in a small number of cases (most notably CF_37 and
CF_38) the two values differ by around 50% of the value
calculated from the radiated linear momentum. However,
these values remain within the bounds predicted by
NRSur7dq4 for an equivalent configuration but with a
different value for the in-plane spin angle. We therefore do
not find these discrepancies too concerning, and we leave
determining their exact cause to a future investigation.

IV. WAVEFORM ACCURACY

In order to assess the accuracy of the data that comprise
this catalog we studied a subset of four of the configura-
tions described in Tables I and II. These four configurations
are CF_47, CF_59, CF_66, and CF_80, with physical
parameters ðq;χ;θLSÞ¼fð4;0.4;60Þ;ð4;0.8;120Þ;ð8;0.4;
30Þ;ð8;0.8;150Þg. The set of simulations used in the
accuracy analysis of the (4,0.4,60) case were performed
with a lower starting frequency ofMωorb ¼ 0.023 to provide
an assessment of the accuracy of a longer simulation.
The two main sources of error in our waveforms are the

finite resolution of the simulation and the finite radius at
which the data are extracted. In order to assess the effect of
the finite resolution, we performed a set of three simu-
lations with low, medium, and high resolution for each of
the four configurations listed above. We also performed an
additional simulation with very high resolution for the
(8,0.8,150) configuration. These resolutions correspond to
a number of grid points N ¼ f80; 96; 120; 144g in the

FIG. 3. A comparison of the calculation of the recoil velocity from the radiated linear momentum calculated by the BAM code (black
crosses) with the prediction by the NRSur7dq4 model (blue dots).
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boxes surrounding the punctures. Typically the width of the
smallest box around each black hole is on the order of
∼2m=N, where m is the mass of that black hole; the details
of how the grid is determined for each configuration are
given in Sec. II B 2. We extracted the waveform data at
Rext ¼ f50; 60; 70; 80; 90gM, which were all on the same
refinement level.
In quantifying the error in the waveforms due to these

two sources we focus on estimating the mismatch between
the medium resolution waveforms extracted at a distance of
90M from the source and the “true” waveform at infinitely
good resolution and infinitely far from the source. We
calculated the convergence order of the BAM code with
respect to the resolution and extraction radius then used
this to extrapolate the mismatch. We also used Richardson
extrapolation to estimate the truncation error due to
resolution and extraction radius.
Mismatches are calculated from a noise-weighted inner

product between waveforms, and extrapolate differently to
the quantities that are usually considered in a convergence
analysis, e.g., waveform amplitude and phase. In Sec. IV C 1
we sketch out how standard numerical convergence proper-
ties translate to the waveform mismatch, and provide more
detailed derivations in Appendices C and D.

A. Data quality

Our accuracy analysis of the gravitational waveforms
calculated from our simulations focuses on the mismatch
uncertainty as detailed in Sec. IV C. This is because it is the
overall mismatch uncertainty that is most relevant to most
gravitational-wave astronomy applications. We also con-
sider the error in the phase and amplitude of the dominant
multipole of the coprecessing waveform in Sec. IV B.
However, we often also wish to know the accuracy of the
individual signal multipoles, for example when using them
to construct waveform models, or when using the NR
waveforms as proxy signals to test gravitational-wave

data-analysis pipelines. In this paper we do not perform
a separate convergence analysis of the individual multi-
poles; given that clean convergence is rare in any binary-
black-hole waveforms, even for the dominant multipoles,
we do not expect a convergence analysis of subdominant
multipoles to be informative.
Here we simply note that the phasing accuracy of the

waveforms is dominated by the phase accuracy of the
inspiral dynamics, and this can be assessed through an
accuracy analysis of the dominant multipole. (An important
exception is the signal near merger, as discussed in
Ref. [121].) For the signal amplitude we assess the accuracy
by the presence of noise in the data. For example, Fig. 4
compares the relative strength of the gravitational-wave
multipoles for two simulations. We see that it is not
possible to conclude that a particular set of multipoles
will always be reliable. In the CF_7 simulation the (3,3)
and (5,5) multipoles cannot be trusted before merger; we
would not expect these to be useful, for example, to calibrate
a model of the signal amplitude. On the other hand, in the
CF_79 simulation we see that, despite a low level of noise at
early times, all of the multipoles in the figure could well be
used to model the amplitude. Rather than choose a set of
“trustworthy” multipoles, we instead suggest that for most
applications one should use only the parts of a postrelax-
ation-time ψ4;lm multipole with an amplitude above 10−5.
Depending on the application, of course, one may wish to
apply a more or less stringent requirement.

B. Amplitude and phase accuracy

In order to estimate the numerical error in the waveform
quantities due to the finite resolution of the simulation
and the finite radius at which the data were extracted, we
performed Richardson extrapolation; see Appendix C. This
requires first estimating the convergence order of the code
with respect to these quantities. We first processed the data,
removing the junk radiation from the waveform in the

FIG. 4. Comparison of coprecessing frame time domain amplitudes for the l ¼ m modes for l∈ f2; 3; 4; 5g. The left panel shows
CF_7 with initial parameters ðq; χ2; θÞ ¼ ð1; 0.4; 60Þ and the right panel shows CF_79 with parameters ðq; χ2; θÞ ¼ ð8; 0.8; 120Þ.
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inertial frame in which the simulation was performed. We
aligned the waveforms at merger, where merger is defined
to be the time at which the quantity

A2 ¼
X2
m¼−2

jψ4;2mðtÞj2; ð8Þ

is maximized and resampled using a constant time step of
0.1M. We then rotated the waveform into the coprecessing
frame and aligned the coprecessing phases at merger. The
coprecessing frame is one that precesses along with the
binary and is advantageous here as it means we can focus
on the error in a single multipole, (2,2), which is dominant
in this frame, rather than considering the error in each of the
l ¼ 2 multipoles (which all have appreciable power in the
inertial frame) independently. The quantities for which we
are interested in quantifying the numerical error are the
amplitude and phase of the (2,2) multipole in the copre-
cessing frame as well as two of the Euler angles α and β
required to rotate the waveform from the inertial frame into
the coprecessing frame. The Euler angles were calculated
using the method detailed in Refs [122,123]. (We do not
consider accuracy of the third Euler angle, γ, because it is
calculated from the other two; the accuracy of γ is of the
same order as that for α.)
The standard way to perform a convergence test with

respect to the resolution is to perform a set of three
simulations where the resolution improves by a factor of
two between each of the simulations. This is computation-
ally prohibitive; the high-resolution run would use 26 times
as much memory as the low resolution run. Similarly, with
BAM’s box-based mesh refinement we cannot extract a
waveform at three different radii on the same level a
reasonable distance from the source if each of the extraction
radii is twice as far away from the source as the previous
one; this would again lead to a factor of four increase is the
extent of the radiation-extraction level (over what is
currently required at Rext ¼ 90M, again requiring 26 times
more memory. As such, we consider a closer spacing in
numerical resolution and extraction radii in our conver-
gence analysis.
We nominally expect the error due to extraction radius

Rext to fall off as 1=Rext, although we will confirm that in
our analysis. The numerical-resolution convergence order
is less clear. The spatial finite-differencing in the bulk is
sixth-order, but the time-evolution is fourth-order; either
may dominate the error budget, depending on the resolution
choices and length of the simulation [4,5]. For both the
extraction radius and numerical resolution, we determine
the appropriate convergence order by studying the con-
vergence behavior of the phase of the ðl ¼ 2; m ¼ 2Þ
multipole in the coprecessing frame. We then identify the
value of n for which the quantity,

δ ¼ jϕðΔ1Þ − ϕðΔ2Þj − CjϕðΔ2Þ − ϕðΔ3Þj; ð9Þ

is minimized, where ϕ is the phase of the (2,2) multipole in

the coprecessing frame, C ¼ Δn
1
−Δn

2

Δn
2
−Δn

3

as in Eq. (C5), and Δi is

the variable in the error expansion, i.e., numerical reso-
lution or the inverse extraction radius. The quantity δðtÞ
was calculated over the length of the waveform up to
merger and the mean value δ ¼ hδðtÞi is shown in Fig. 5.
This was done for both waveforms of varying resolution
and extraction radius for the q ¼ 8, χ ¼ 0.8, θLS ¼ 150°
configuration. In calculating the convergence order with
respect to varying resolution we used waveforms with
Δf1;2;3g ¼ f1=144; 1=120; 1=96g while when considering
the convergence order with respect to extraction radius
we used Δf1;2;3g ¼ f1=90; 1=70; 1=60g. From the results
shown in Fig. 5, we conclude that the results are consistent
with fourth-order finite differencing, which implies that the
time stepping dominates the error budget. From inspecting
time-dependent δðtÞ calculated over the length of the
waveform, we also find that the spatial differencing (with
sixth-order accuracy) dominates the error over the first
∼1000M of the waveforms, but the fourth-order-accurate
time stepping dominates in the last ∼500M before merger,
and dominates overall. As expected, we see that the
radiation extraction errors fall off as 1=Rext.
We should note that in Eq. (9) we have used the

absolute value of the difference between the phases,
which is a weaker test of convergence than considering
ϕðΔ1Þ − ϕðΔ2Þ, for which we do not see the expected
convergence rate. This is consistent with previous work
(for example, the convergence analysis of the nonspinning
q ¼ 18 configuration in Ref. [15]), and indicates that
convergence is not clean enough to reliably apply
Richardson extrapolation. The Richardson extrapolated
quantities that we use below allow an approximate estimate
of the error. This may be an overly optimistic estimate of
the uncertainty in the numerically challenging ðq ¼ 8;
χ ¼ 0.8Þ configurations, but we expect it to be a
conservative estimate of the uncertainty for the rest of
the catalog.

FIG. 5. The value δ as given by Eq. (9) as a function of
convergence order. The circle markers represent waveforms of
differing resolution. The square markers represent waveforms at
differing extraction radii. The configuration q ¼ 8, χ ¼ 0.8,
θLS ¼ 150° was used in this analysis.
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For the wave-extraction error, we have data at multiple
extraction radii for every configuration, and can identify
configurations at all mass ratios and spins (roughly half of
all simulations) that satisfy clean 1=Rex falloff in the finite-
extraction-radius error. In this section we consider only the
ðq ¼ 8; χ ¼ 0.8; θLS ¼ 150°Þ configuration, but we will
use the full catalog when we consider mismatches below.
Assuming these convergence orders, we then calculate

the Richardson-extrapolated values of the amplitude,
phase, α and β, as functions of time, using Eq. (C4) in
Appendix C. We used the resolutions N ¼ f120; 144g and
the extraction radii Rext ¼ f80; 90g in calculating these
Richardson-extrapolated values, which were used to esti-
mate the error in each of these quantities. The error in the
waveform quantities does not monotonically increase
with decreasing resolution since not all of the resolutions
lie in the convergence regime. This is clearly demonstrated
in Fig. 6.
Since a time shift was performed to align the waveforms

at merger, where the phases were then aligned, rather than
aligning the frequencies at merger, the phase difference
does not show a quadratic fall off to zero but rather tends to
a constant value and then falls rapidly at merger. As can be
seen from Fig. 6, the dephasing of the waveform due to the
finite resolution is ∼0.1 radians for the medium resolution
(N ¼ 96) simulation. Similarly, from Fig. 7, the dephasing
due to the finite extraction radius is ∼0.4 radians for the
waveform extracted at 90M. Since the simulations com-
prising the bulk of the catalog were performed with
medium resolution and we recommend using the waveform
extracted at 90M, these are the key values to focus on. The
total phase error in the waveform is therefore estimated to
be about 0.4 radians by combining the errors in quadrature.
The relative error for each of the quantities we are

interested in are given in Table III. The quantities presented
in this table are calculated as follows; the relative error is
taken to be the maximum error, found from Richardson
extrapolation, as described above, divided by the maximum
value of the quantity, over the length of the waveform.

Since we aligned the phases at merger, both the error in the
phase and the phase itself are maximum at the start of the
waveform. In contrast, both the amplitude and the error in
the amplitude peak at merger. We therefore report here the
relative error in the peak of the (2,2) multipole in the
coprecessing frame. This gives an error around an order of
magnitude larger than during the inspiral, where we see a
total relative error of 0.1%. The order of the relative error in
the precession angles is fairly consistent over the length of
the waveform.
From the values given in Table III, we can see that the

maximum relative error in the amplitude of the coprecess-
ing waveform is of the order of a few percent, while the
relative error in the phase and in the precession angles is
around half a percent. This is relevant for the production of
a tuned precessing model using data from these simulations
since it implies that the model for the precession angles
cannot be accurate to more than 0.5%. Similar results
were seen for the other simulations for which we have
multiple resolutions.
The errors in the amplitude and the precession angles

are affected by the dephasing in the waveform. Therefore,
although these results are a good diagnostic for the
reliability of the code and a good way to compare accuracy
between different simulations performed with the same
code, they are difficult to translate into meaningful mea-
sures of the accuracy for waveform modeling or other

FIG. 6. Resolution dependence of the absolute error in the time
domain coprecessing phase, relative to the Richardson-extrapo-
lated phase. The phases have been aligned at merger.

FIG. 7. Extraction radius dependence of the absolute error in
the time domain co-precessing phase, relative to the Richardson-
extrapolated phase. The phases have been aligned at merger.

TABLE III. Relative error in the waveform quantities compared
with the Richardson extrapolated quantities for the q ¼ 8,
χ ¼ 0.8, θLS ¼ 150° configuration.

% Error

Resolution Extraction radius Total

ϕ 0.08 0.4 0.4
A 2.5 0.9 2.7
α 0.4 0.05 0.4
β 0.2 0.06 0.2
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gravitational wave applications. In order to get a more
meaningful estimate of the accuracy of the waveform
we performed the mismatch analysis presented in the
following section.

C. Matches

The waveform quantities examined in the previous
section are the standard quantities used when estimating
the convergence order and accuracy of a NR code. While
useful when comparing the accuracy between simulations
and codes, these accuracy measures are difficult to interpret
in gravitational-wave astronomy applications; the sensitiv-
ity of a search, or the accuracy of a measurement of the
properties of a binary system. When assessing the accuracy
of a waveform it is usually more useful to consider an
estimate of the mismatch error.
The match between two waveforms is defined using the

standard inner product weighted by the power spectral
density of the detector SnðfÞ,

hh1jh2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð10Þ

The match is then defined as the inner product optimized
over various sets of parameters Θ [107],

Mðh1; h2Þ ¼ max
Θ

hh1jh2i; ð11Þ

where the individual waveforms have been normalised so
that hhjhi ¼ 1. We also define the mismatch,

M ¼ 1 −Mðh1; h2Þ: ð12Þ

Since these are precessing configurations, we calculate
precessing matches as described in Appendix B of
Ref. [101]. In order to see how the match varies over a
range of total masses that might be observed by current
ground-based detectors, we further calculate the power-
weighted match as described in Appendix E, based on the
work in Ref. [124], using PhenomPv3 [57] as the model for
the low-frequency part of the waveform. We then calculate
the mismatch as given by Eq. (12). There are multiple ways
to estimate the error contribution from the NR waveform at
masses where the NR waveform will constitute only part of
the full waveform, and both the power-weighted mismatch
and a naive calculation that begins at the starting frequency
of the NR waveform (which is the most common approach)
are difficult to interpret. In Appendix. E we justify our use
of the power-weighted mismatch in this work.
The matches performed here employ the noise spectrum

of advanced LIGO at design sensitivity [125]. We optimize
the match over time and phase shifts and polarization. Since
in all cases we are comparing numerical simulations of
identical binary configurations, we do not optimize over the

in-plane spin angle as is sometimes done for precessing
systems, as an improvements in the match would likely be
largely artificial. We report the SNR-weighted average
match values, further averaged over a range of inclination
angles between 0 and π.
We first extrapolate the mismatch due to finite resolution

and extraction radius separately, assuming a particular fall-
off in the respective errors. In order to then find the overall
mismatch due to both finite resolution and extraction radius,
i.e., the mismatch with the infinitely far away, infinitely
well-resolved “true” waveform, we need to correctly com-
bine these calculations. The motivation for the correct way to
combine such errors is sketched out in the following section
and given in more detail in Appendices C and D. We use this
approach to combine estimates of the extraction-radius and
numerical-resolution mismatches to give an estimate of the
mismatch uncertainty of our NR waveforms.

1. Dependence on expansion parameter
and addition of mismatch

In the following we look at how the mismatch behaves
with respect to an expansion parameter, e.g., the numerical
resolution or the radius at which the gravitational-wave
signal is extracted. We then consider the addition of
mismatch errors. The calculation below, where the mis-
match is expanded in terms of either the amplitude or
phase, is a standard calculation, but we discuss it here to
help motivate the final result, which is somewhat surpris-
ing; although contributions to the error in the amplitude or
phase of the signal combine in quadrature, as one might
expect (see, for example, Sec. II.A of Ref. [126]), separate
mismatches should added according to Eq. (22) below.
To find how the ratio of two matches between waveforms

of differing expansion parameter depends on the expansion
parameter, we can examine how the match depends on the
amplitude and phase of the waveform.
We can consider the following form of the inner product,

Iðh1; h2Þ ¼ Re

�
1

N1N2

Z
h1ðfÞh�2ðfÞdf

�
; ð13Þ

where we have explicitly included the normalizations Ni

for each waveform, Ni ¼
R jhij2df. We take h1 to be the

waveform containing either the amplitude or phase error
and h2 to be the “true” waveform, i.e.,

h1ðfÞ ¼ h2ðfÞ þ ΔhðfÞ; ð14Þ

where h2ðfÞ ¼ AðfÞeiϕðfÞ, and AðfÞ is the real amplitude
and ϕðfÞ is the phase. We assume the true waveform to be
normalized, so

N2 ¼
�Z

jh2ðfÞj2df
�1

2 ¼
�Z

A2ðfÞdf
�1

2 ¼ 1: ð15Þ
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A waveform containing some amplitude error ΔA is
given by

h1ðfÞ ¼ ðAðfÞ þ ΔAðfÞÞeiϕðfÞ: ð16Þ

Substituting Eq. (16) into (13) we find

Iðh1; h2Þ ¼
�Z

ðAþ ΔAÞ2df
�
−1
2

Re
Z

AðAþ ΔAÞdf

¼ ð1þ 2bþ cÞ−1
2ð1þ bÞ

≃ 1þ 1

2
ðb2 − cÞ; ð17Þ

where b ¼ R
AΔAdf, c ¼ R ðΔAÞ2df and we have

assumed that ΔA is small in order to make the approxi-
mation in the final step. A mismatch based on this
expression, 1−Iðh1;h2Þ, would be proportional to c − b2

at leading order, and both of these scale as the amplitude
squared. In a true mismatch, following Eqs. (10) and (12),
we would also take into account the frequency-dependent
noise curve, and optimize over some parameters. The above
calculation can be generalized to include the noise power
spectrum by considering instead the whitened signals,
hðfÞ → hðfÞ= ffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

, and the main result is the same.
Optimizations will not in general change the dominant
(amplitude square) scaling of the result. We can conclude,
then, that the mismatch scales with the square of the
amplitude error.
Similarly for a normalized waveform that contains some

phase error Δϕ,

h1ðfÞ ¼ AðfÞeiðϕðfÞþΔϕðfÞÞ; ð18Þ

where ϕ is the “true” phase. Substituting this expression
into Eq. (13) we find

Iðh1; h2Þ ¼ Re

�Z
A2eiΔϕdf

�

≃ Re
Z

A2

�
1þ iΔϕ −

1

2
ðΔϕÞ2

�
df

¼
Z

A2

�
1 −

1

2
ðΔϕÞ2

�
df

¼ 1 −
1

2

Z
A2ðΔϕÞ2df; ð19Þ

where again we have assumed that the error in the phase is
small in order to perform the expansion in the middle step.
The mismatch is therefore dominated by the square of the
phase error.
The waveform quantities at finite resolution or extraction

radius can be expressed as a Richardson extrapolation of
the appropriate expansion parameter (see Appendix C 1).
The difference in the phase and amplitude between two

waveforms (labeled A and B) is therefore equal to the
difference between the leading-order error term (i.e.
Δq ∼ Δn

B − Δn
A, see Appendix C 2 for more detail). Since

the mismatch is proportional to the square of the error in
these waveform quantities, we find that the convergence
relation for the mismatch takes the form

MðΔA∶ ΔBÞ ¼ κðΔn
A − Δn

BÞ2; ð20Þ

where Δi is the value of the expansion parameter for the ith
waveform and κ is a co-efficient to be found. If one of the
waveforms being considered is the “true” waveform and
thus contains no numerical error, then the mismatch
between any reference waveform and this true waveform
will be given by MðΔref∶ Δtrue ¼ 0Þ ¼ κΔ2n

ref. A similar
derivation to the one discussed here is also presented in
Ref. [127]. From this we can see that the ratio of the
mismatch M between two pairs of waveforms is given by

MðA∶BÞ
MðB∶CÞ ¼

ðΔn
A − Δn

BÞ2
ðΔn

B − Δn
CÞ2

: ð21Þ

This result will be used in the following sections to study
the convergence properties of our numerical-relativity
waveforms via their mismatch error.
We can also see that the correct way to combine the

mismatches between two sets of waveforms MðA∶BÞ and
MðB∶CÞ in order to get the mismatch between the final
pair MðA∶CÞ is given by

MðA∶CÞ ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðA∶BÞ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðB∶CÞ

p 	
2
: ð22Þ

A more rigorous proof of this result is presented in
Appendix D; and we note that this result also follows
trivially from the triangle inequality, as shown in Ref. [128].
As stated above, our main use for this result is to

combine the mismatch due to different sources of error
in our numerical waveforms. We estimate the mismatch
between our waveforms at finite extraction radius and finite
resolution and the true waveform using

M ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mresolution

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mextraction radius

p 	
2
; ð23Þ

whereMresolution is the mismatch due to the finite resolution
of the numerical simulation and Mextraction radius is the
mismatch due to the finite distance from the source at
which the waveforms were extracted.

2. Convergence order

We performed matches between waveforms extracted at
Rext ¼ 90M for the high-resolution simulations against all
other resolutions available for a given configuration. These
results are shown in Fig. 8. We also performed matches
between waveforms extracted at Rext ¼ 90 M and all other
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available extraction radii for the medium resolution sim-
ulations for each configuration. These results are shown in
Fig. 9. In both of these comparisons, we have calculated the
match against a single resolution or extraction radius. We
therefore expect that the matches will improve for cases
where the values of the resolution or extraction radius are
closer to each other. From Fig. 9 we can see that the
matches generally follow this trend, implying that it is
reasonable to assume the waveform is being extracted
sufficiently far from the source that we may be in the
convergence regime. This is not true for the mismatches
with respect to resolution shown in Fig. 8. The matches
between (i) the low and high resolutions and (ii) the
medium and high resolutions clearly do not follow any
trend for most of the configurations. From this we can see
that it is not reasonable to treat the low and medium
resolutions as if they lie within the convergence regime.
That the medium resolution does not lie quite within the

convergence regime is demonstrated clearly in Fig. 10,
where we show the mismatch between the medium and
high and the high and very high resolutions using Eq. (21)
for varying convergence order. From this analysis it is clear
that the mismatch is closest to being fourth-order con-
vergent. This analysis could only be done for the case
(q ¼ 8, χ ¼ 0.8, θLS ¼ 150°) since this is the only case for
which we have the very high resolution run.

Conversely, since it seems reasonable to assume the
waveforms extracted at varying extraction radii mostly lie
within the convergence regime, we calculated the ratio of
the mismatch between each of the pairs of waveforms from
different extraction radii using Eq. (21) for varying con-
vergence order. For each of the four configurations we
investigated it was found that the results were most
consistent with first-order convergence. This is demon-
strated in Fig. 11, where the solid lines show the calculated
mismatch between two waveforms of different extraction
radii and the dotted red line shows the expected value of the
match for first-order convergence.
Not all the waveforms from the different extraction radii

show perfect convergence for every configuration. The
mismatch between Rext ¼ 80 and Rext ¼ 90 often does not
follow the trend–we expect this is because the mismatch
between these waveforms is so small [ð10−6Þ] that it is very
sensitive to any data processing performed in the course of
calculating the match. The mismatch between Rext ¼ 50
and Rext ¼ 90 also often does not follow the trend and we
do not expect it to hold for small extraction radii.
The convergence order calculated using this method

agrees with the estimate calculated in the previous section;
the code is approximately fourth-order convergent with
respect to resolution and first-order convergent with respect
to the extraction radius.

FIG. 8. Mismatch between waveforms at varying resolution against the high resolution (N ¼ 120) waveform as a function of
total mass.
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3. Extrapolation

Given the expected convergence order of the code, n (in
this case n ¼ 4), we can calculate the convergence relation
of the mismatches shown in Figs. 8 and 9. We first look at
the mismatch due to the finite resolution of the simulation.

Figure 8 supports our expectation that the ðq ¼ 8; χ ¼ 0.8;
θLS ¼ 150°Þ configuration (CF_80) has the largest numeri-
cal-resolution uncertainty in the sense that the mismatches
between the N ¼ 96 and N ¼ 120 simulations are larger
than for any other configuration. This includes the long
CF_47 simulation, which, even though it has longer to
accumulate phase error than any other simulation (the
merger time was at tM ∼ 2800M, compared to tM ∼ 2000M
for the main simulations in the catalog), shows better
agreement between the N ¼ 96 and N ¼ 120 runs than the
shorter CF_80 simulations. We focus on the CF_80
simulations in the following discussion.
We assume that the two highest-resolution simulations

we performed (N ¼ 120 and N ¼ 144) lie in the conver-
gence regime but we know the two lower resolution
simulations do not. Assuming fourth-order convergence,
we use Eq. (20) to calculate κres using

κres ¼
MðΔ144∶Δ120Þ
ð144−4 − 120−4Þ2 : ð24Þ

From Fig. 13, which shows the convergence relation for the
mismatches calculated for a system with total mass 100M⊙,
we can see that this appears to be a reasonable assumption.
From κres we can estimate the mismatch between the
high or very high resolution waveforms with an infinitely

FIG. 9. Mismatch between waveforms at varying extraction radii and the waveform extracted at Rext ¼ 90 M as a function of
total mass.

FIG. 10. Mismatches demonstrating fourth-order convergence
of the BAM code with respect to resolution. The solid lines show
the calculated mismatch while the dashed lines show the
predicted mismatch for varying convergence order. The mismatch
was calculated with respect to the N ¼ 120 resolution run. This is
for the q ¼ 8, χ ¼ 0.8, θLS ¼ 150° configuration.
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well-resolved waveform. However, we want to know the
mismatch for the medium resolution runs since this is the
resolution that was used to perform the simulations for
the catalog of waveforms presented in Tables I and II. Since
this resolution does not lie in the convergence regime (and
the phase error does not improve monotonically from the
medium resolution to the high and very high resolution
waveforms) we cannot simply use the calculated conver-
gence relation in order to estimate the mismatch between a
waveform at this resolution and the “true” waveform.
Instead we use the formula given in Eq. (22) to add the
mismatch between the medium resolution and the very high
resolution waveforms to the mismatch between the very
high resolution waveform and the “true” waveform,

MðΔ96∶ Δ∞Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðΔ96∶Δ144Þ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðΔ144∶Δ∞Þ

p 	
2

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðΔ96∶Δ144Þ
p

þ
ffiffiffiffiffiffiffiffiffiffi
κres
1448

r �
2

: ð25Þ

The result of this extrapolation procedure is shown in
Fig. 14. We could only perform this calculation for the
case (q ¼ 8, χ ¼ 0.8, θLS ¼ 150°) since this is the only
case for which we have the very high resolution run.
However, from Fig. 8 we can see that the mismatch

between the medium and high resolution runs is the worst
for this case, so this estimate should give an upper bound
for the mismatch between the medium resolution run and
the “true” waveform. Fig. 14 shows the projected mis-
match between a medium resolution waveform and one
that is infinitely well-resolved for a range of total masses.
Based on a maximum mismatch between the medium
and very high resolution waveforms MðΔ96∶ Δ144Þ ¼
2.45 × 10−4, the maximum mismatch between a medium
resolution waveform and an infinitely well-resolved one
is 6.0 × 10−4.1

We next examine the mismatch due to the finite distance
from the source at which the waveform is extracted. To
calculate the first-order convergence relation with respect to
the extraction radius, we performed a fit through each of the
mismatches which were found to follow the convergence
relation. This is demonstrated for mismatches between
waveforms of different extraction radii and the waveform at
Rext ¼ 90 M in Fig. 12, for a system with total mass
100M⊙. This fit gives the value of κext for every value of the

FIG. 11. Mismatches demonstrating first-order convergence of the BAM code with respect to extraction radius. The black lines
indicated in the legend show the calculated mismatch, while the dotted red line shows the predicted mismatch for the pair of waveforms
indicated by the solid line based on the mismatch indicated by the dashed line, assuming first-order convergence.

1This value increases slightly to 6.5 × 10−4 if we do not use
power-weighted mismatches, but this small change does not
change our final estimate for the total mismatch uncertainty.
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total mass of the system. From this we can calculate the
mismatch between the waveform at Rext ¼ 90 M and the
“true” waveform from MðΔ90∶ Δ∞Þ ¼ κext

902
.

The mismatch between the waveform extracted at Rext ¼
90 M and the “true” waveform is shown in Fig. 15 for our

three illustrative examples. The configuration that gives the
greatest mismatch is q ¼ 4, χ ¼ 0.4, θLS ¼ 60. From this
case we take the maximum mismatch between a waveform
at Rext ¼ 90 and at Rext → ∞ to be 1.4 × 10−3. We note that
we are able to identify clean 1=Rex falloff in the uncertainty
and perform clean extrapolation of the error estimate in
roughly half of the configurations, and these also give
results consistent with this value.
We estimate the mismatch between our medium reso-

lution waveform extracted at Rext ¼ 90 M and the true

FIG. 12. Variation of the mismatch with extraction radius for a system with a total mass of 100 M. The mismatches shown are with
respect to the waveform extracted at Rext ¼ 90 M. The line shows the fit based on Eq. (9) assuming first-order convergence. It is
consistent with all extraction radii except at Rext ¼ 50 M.

FIG. 13. Variation of the mismatch with resolution for a q ¼ 8,
χ ¼ 0.8, θLS ¼ 150° system with a total mass of 100M. The
mismatches shown are with respect to the medium resolution run
and so the mismatch is zero at N ¼ 120. The line shows the
relation in Eq. (20) with κres assuming fourth-order convergence
calculated using Eq. (24) and is consistent with all resolutions
except the lowest one at N ¼ 80.

FIG. 14. Projected mismatch between a waveform extracted at a
resolution of N ¼ 96 and one that is infinitely well-resolved.
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waveform using Eq. (23). A conservative estimate of the
mismatch between a waveform extracted at a finite distance
of 90 M from the source for a simulation performed with a
grid spacing d ¼ 0.0104 and the theoretical ‘analytical’
solution is therefore 3.83 × 10−3. This provides an estimate
of the overall mismatch error of the waveforms presented in
this catalog of 0.004 (or 0.4%).

V. CATALOG COMPARISON

A number of numerical relativity groups have started
building larger and more comprehensive catalogs that span
a growing region of the parameter space. At time of
publication, there are a total of 4,352 publicly available
BBH simulations in a combination of the Simulating
eXtreme Spacetimes (SXS) Collaboration [82,83] and
the Rochester Institute of Technology (RIT) [84–87] and
Maya catalogs [88].
The SXS Collaboration has produced the largest catalog

to date with 2,019 BBH simulations spanning 1 ≤ q ≤ 10
and 0 ≤ χ ≤ 1. The RIT catalog contains 1,881 BBH
simulations covering 1 ≤ q ≤ 128 and 0 ≤ χ ≤ 0.99 and
the Maya catalog contains 452 unique BBH waveforms
from more than 600 BBH simulations ranging between
1 ≤ q ≤ 15 and 0 ≤ χ ≤ 0.8. Unlike the simulations pre-
sented here, the SXS, RIT and Maya catalogs all contain
simulations where the individual black hole spins can be
zero or perfectly aligned/antialigned with the orbital
angular momentum. Considering only the precessing
parameter space, the SXS Collaboration has produced
1,429 simulations spanning 1 ≤ q ≤ 6 and 0 ≤ χ ≤ 0.99,

FIG. 15. Projected mismatch between a waveform extracted
at a radius of Rext ¼ 90 M and one extracted infinitely far
away.

FIG. 16. Comparison between the parameters of the new BBH simulations presented here (CF) and the existing BBH simulations in
the SXS, RIT and Maya catalogs. The Top left spin disk shows simulations with spin on the larger black hole 0 < χ < 0.25, Top right
0.25 ≤ χ < 0.5, Bottom left 0.5 ≤ χ < 0.75 and Bottom right χ ≥ 0.75. The radius of each disk shows the mass ratio of the binary and
the orientation shows the spin tilt angle of the larger black hole. Spin tilt angles of 90° means that the spin vector lies in the binary’s
orbital plane.
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the RIT catalog contains 561 simulations covering 1 ≤ q ≤
15 and 0 ≤ χ ≤ 0.99 and the Maya catalog contains 315
waveforms ranging between 1 ≤ q ≤ 8 and 0.1 ≤ χ ≤ 0.8.
Figure 16 compares the parameter space coverage of the

simulations presented here with the existing nonzero-spin
simulations included in the SXS, RIT, and Maya catalogs
over the mass ratio and larger black hole spin tilt angle and
spin-magnitude parameter space. We see that although the
existing catalogs provide good coverage for high black hole
spins χ ≥ 0.5 and near equal mass ratios, there is a dearth of
existing precessing simulations for low black hole spins
χ < 0.25 and unequal mass ratios q ≳ 4.
Recent gravitational wave observations [see e.g., [52,53]]

have shown a need for BBH simulations in this low black
hole spin and unequal mass-ratio region of the parameter
space in order to build reliable and accurate waveform
models for use in Bayesian inference. The uniform coverage
of the single-spin space up the q ¼ 8 has made it possible to
construct an accurate generic precessing-binary model for
future observations [20]. Most astrophysical models suggest
that BBH at larger mass ratios will be rare (e.g., Ref. [129]),
but given that there has been one observation to date at
q ∼ 10 [53] extension of this parameter-space coverage to
yet higher mass ratios will be necessary in the future.

VI. DISCUSSION

We have produced a catalog containing 80 waveforms
from single-spin precessing systems with mass ratios up to
q ¼ 8, dimensionless spin magnitudes up to χ ¼ 0.8 and a
range of spin inclination angles. In all cases the spin was
placed on the larger black hole. We estimate our uncertainty
in the masses of the initial black holes to be Oð0.05%Þ. We
estimate the uncertainty in the initial spin magnitude to be
Oð10−3Þ while the uncertainty in the initial spin inclination
is Oð1°Þ. Similarly, we obtain estimates of the uncertainty
of the remnant properties reported in this paper. We find the
final mass has an uncertainty of 5 × 10−4, while the final
spin magnitude is accurate to within 5 × 10−3.
The starting frequency of the simulations was chosen

such that the simulations were all around a similar length
(∼2000M) in order to limit the dephasing in the waveform
and thus ensure sufficient accuracy throughout the evolu-
tion of the binary. We performed a careful analysis of the
errors due to the finite resolution of the simulations and due
to the finite distance from the source at which the wave-
forms were extracted. From this we were able to provide a
conservative estimate of the mismatch uncertainty of our
waveforms of 0.4%.
The catalog presented here is sufficient to capture a wide

range of single-spin precession effects. Most notably, the
systems contained within it have a nonzero opening angle
of the precession cone ranging from ∼1° to ∼115° radians.
The cases with the largest opening angles display the most
dominant precession effects. In particular, for initial con-
figurations with mass ratios q ∼ 8, high spins and large spin

inclination angles, the final spin will be in the opposite
direction to the binary’s angular momentum prior to
merger, thus producing a “negative” final spin. The
majority of precessing simulations in other catalogs do
not extend beyond q ¼ 5 so consequently, this region of
parameter space is poorly covered by NR simulations.
Indeed, in this catalog, despite having 20 precessing
simulations at q ¼ 8 we see only two cases where we
have a negative final spin (CF_75 and CF_80). The
phenomenology of this region has therefore not yet been
thoroughly explored and a more detailed study is planned
for future work. Finally, we also see a wide range of recoil
velocities for the configurations included in this catalog,
with the highest values seen for equal mass systems. We
also see the greatest range of values for equal mass systems,
depending on the in-plane spin angle. For q ¼ 8 systems
we see much lower values in general across all cases.
While this catalog was sufficient to produce the first

inspiral-merger-ringdown (IMR) model of precessing sys-
tems tuned to NR, PhenomPNR, it will need to be greatly
expanded in order to meet modeling requirements of future
gravitational wave observations. Existing catalogs (such as
the SXS, Maya and RIT catalogs) provide a comprehensive
coverage of the two-spin precessing parameter space up
to q ¼ 4. This catalog provides a systematic coverage of
the single-spin precessing parameter space up to q ¼ 8.
However, while it uses a consistent in-plane spin direction
at the starting frequency (the initial configurations all have
the in-plane spin component along the binary’s separation
vector), these will translate into quite different spin direc-
tions at merger. Consequently, for any modeling that
includes effects due to the in-plane spin direction, this
catalog contains an incomplete and possibly random
sampling of points.
There are many directions in which this catalog can be

expanded to: include higher mass ratios, comprehensively
cover rotations of the in-plane spin component, include
two-spin systems, produce longer and more accurate wave-
forms and include binaries on eccentric orbits. Since the
production of these simulations are expensive (the catalog
presented here is estimated to have required around
25 million CPU hours in total) and generic modeling at
higher-mass ratios and for longer waveforms is not a
completely solved problem, it is an open question as to
which direction in parameter space is most urgent.
Assuming the mass ratio distribution reported in [129],

we estimate that only 1.3% of observed binaries will have
q > 8. This is supported by gravitational wave detections
so far since, out of the 90 binaries reported by the LVK
collaborations [44], only one has been found to have a
mass ratio clearly greater than 8 [53]. Similarly, from the
production of PhenomPNR, we know that we will require
longer waveforms for binaries with higher mass ratios and
spins, particularly those with a spin inclination angle of
θLS > 90°, since inaccuracies in post-Newtonian (PN)
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estimates of precession effects become more appreciable
towards lower frequencies in this region of the parameter
space. For the existing catalog, the cases CF_79 and
CF_80 (at q ¼ 8 and χ ¼ 0.8) are already sufficiently
short to limit model accuracy and we anticipate this will
continue for decreasing spin magnitude as we go to higher-
mass ratios [20]. This is therefore a smaller fraction of
binaries than the simple requirement to extend to high-mass
ratios. Similarly, we expect to see two-spin effects in
signals with SNRs greater than 100 [58,89]. Taking the
detection threshold to be SNR 10, then we expect to be able
to identify two-spin effects in 0.1% of detections.
We have not considered eccentricity here, but eccentric

modeling and NR simulations have been discussed in other
works [83,102,130–135].
From this, we conclude that the most urgent extension

is required to systems with higher mass ratios. This is
closely followed by a systematic sampling that will explore
the most dominant physical effects of two-spin systems
(such as those that will impact the opening angle of the
precession cone at merger) or the in-plane direction (such
as the recoil velocity).

The public dataset can be accessed online [136].

ACKNOWLEDGMENTS

We would like to thank Steve Fairhurst, Frank Ohme,
Vivien Raymond for many useful discussions, Kieran
Philips for extensive optimization of the BAM code that
resulted in a greater than 30% increase in speed and a much
lower memory footprint, and also for his work in testing the
code on the Oracle Cloud Infrastructure (OCI), Paul
Hopkins for wide-ranging cluster support and also assis-
tance in setting up OCI runs, Phil Bates at Oracle for
initiating the OCI work and to Phil and his team for
extensive technical support and guidance. The authors were
supported in part by Science and Technology Facilities
Council (STFC) Grant No. ST/V00154X/1 and European
Research Council (ERC) Consolidator Grant No. 647839.
E. Hamilton was supported in part by Swiss National
Science Foundation (SNSF) Grant No. IZCOZ0-189876.
L. London was supported at Massachusetts Institute of
Technology (MIT) by National Science Foundation Grant
No. PHY-1707549 as well as support from MIT’s School
of Science and Department of Physics. A. Vano-Vinuales
thanks FCT for financial support through Project
No. UIDB/00099/2020. This work used the DiRAC@
Durham facility managed by the Institute for
Computational Cosmology on behalf of the STFC
DiRAC HPC Facility [137]. The equipment was funded
by BEIS capital funding via STFC capital Grants No. ST/
P002293/1, No. ST/R002371/1 and No. ST/S002502/1,
Durham University and STFC operations Grant No. ST/
R000832/1. DiRAC is part of the National e-Infrastructure.
Additionally, this research was undertaken using the

supercomputing facilities at Cardiff University operated
by Advanced Research Computing at Cardiff (ARCCA) on
behalf of the Cardiff Supercomputing Facility and the HPC
Wales and Supercomputing Wales (SCW) projects. We
acknowledge the support of the latter, which is part-funded
by the European Regional Development Fund (ERDF) via
the Welsh Government. This work was also supported in
part by Oracle Cloud credits and related resources provided
by the Oracle for Research program.

APPENDIX A: ITERATIVE INITIAL DATA
CONSTRUCTION FOR SINGLE-SPIN

PRECESSING SYSTEMS

The initial data construction method of [15] for aligned-
spin systems is extended to precessing systems using the
follow iterative brute-force algorithm. A sequence of input
parameter sets

θi ≡ ðqDi ; SD1;i; SD2;iÞ ¼ ðq; 0; S2 t̂iÞ; ðA1Þ

will be iteratively refined, defined at a user-specified
separation of Dstart and used as initial conditions for the
EOB solver. The single-spin orienation unit vector t̂ can be
expressed in terms of angles θ and ϕ

bti ¼ ðcosðϕiÞ cosðθiÞ; sinðϕiÞ cosðθiÞ; cosðθiÞÞ: ðA2Þ

The EOB simulations are started with both component
black holes placed on the x-axis and the orbital angular
momentum parallel to the z-axis. For this work the black
holes are placed ∼40M apart. Each successive set of
parameters are chosen based on the EOB evolution of
previous parameter sets in the sequence. This is repeated
until the EOB evolution results in the required parameters
ðq; S1;S2Þ at MΩorb using the following algorithm:
(1) Initial candidate parameters at Dstart (n ¼ 0)

ϕ0 is chosen to be the target azimuthal spin angle ϕ.
The EOB solver is then run until MΩorb is reached
and the azimuthal spin angle at that time is recorded
as ϕω;0. The EOB spin dynamics are explored in
the region around MΩorb to find the closest time
when the spin angle is equal to ϕ. The difference in
frequency ΔMω0 between this time and MΩorb is
recorded. If jΔMω0j⩽Mωtol where Mωtol is a user
specified tolerance, then the algorithm stops. For the
initial data generated in this work the percentage
error tolerance of the orbital frequency is specified to
beMωtol ¼ 1%. If jΔMω0j > Mωtol then proceed to
the next step.

(2) Second candidate parameters at Dstart (n ¼ 1)
ϕ1 is chosen to be the difference between the target
azimuthal spin angle and the azimuthal spin angle of
the EOB spin dynamics at Mωorb, given
by ϕc ≡ ϕ − ϕω;0. The EOB spin dynamics are
explored again, recording ϕω;1 at Mωorb, and
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calculating jΔMω1j as in the sameway as jΔMω0j in
the previous step. If jΔMω1j ≤ Mωtol the algorithm
stops otherwise proceed to the next step.

(3) Third candidate parameters at Dstart (n ¼ 2)
Set Δϕ to be 10° if jjΔMω1j −Mωtolj > Mωtol=2
otherwise set Δϕ to be 5°. ϕ2 is chosen to be the
target azimuthal spin angle ϕc þ Δϕ. ϕω;2 and
jΔMω2j are calculated in the same way as previous
steps. If jΔMω2j ≤ Mωtol the algorithm stops oth-
erwise proceed to the next step.

(4) Further candidate parameters at Dstart (n > 2)
Set Δϕ to be 10° if jjΔMωn−1j −Mωtolj > Mωtol=2
otherwise set Δϕ to be 5°. If ϕω;2 > ϕω;1 this
indicates that the azimuthal spin angle is being
rotated in the wrong direction. As such, if ϕω;2 >
ϕω;1 then ϕn ¼ ϕc þ ð2 − nÞΔϕ, otherwise set ϕn ¼
ϕc þ ðn − 1ÞΔϕ. jΔMωnj is calculated in the same
way as previous steps. If jΔMωnj ≤ Mωtol the
algorithm stops otherwise repeat this step until this
inequality is satisfied.

Once the required tolerance is met and the algorithm
stops, the position, linear momentum and spin of each
black hole are taken from the EOB dynamics atMΩorb and
used as input for the Bowen-York initial data solver.

APPENDIX B: NR SIMULATIONS
WITH CLOUD COMPUTING

For this work we have run individual BAM simulations
on up to 512 processors, and these require fast inter-
processor connections to ensure that inter-processor
communication is not the dominant limitation on the
calculation speed. This is typical for NR codes, and as
such these are usually run on clusters that have been
constructed primarily for highly parallelized high-
performance computing (HPC), such as the DiRAC
Cosma clusters that were used for the majority of the
runs presented here. An increasingly popular source of
computing resources are cloud services. These have
historically been set up with large numbers of independent
(high-throughput computing) applications in mind.
However, recently some services have improved the speed
of interprocessor communication, with the goal of making
cloud computing services competitive for HPC.
As part of the NR work presented here, we investigated

the performance of BAM on the Oracle Cloud
Infrastructure (OCI). We performed a series of experi-
ments to determine the optimal performance we could
achieve with the hardware available at the time (2018).
These tests used a bespoke “bare metal” setup and ran at
about 60% of the speed on the DiRAC cosma5 cluster.
(Note that since these tests were done, both the cosma
clusters and the cores used at OCI have been superseded
by newer hardware.)
We also completed a set of production simulations; these

were the five NR simulations at mass-ratio q ¼ 2 and

black-hole spin S2=m2 ¼ 0.6 (CF_31–CF_35). Each run
was performed on 128 cores and required approximately
140,000 CPU hours.
The production simulations used the “cluster-in-the-

cloud” infrastructure [138] to create container-based cluster
instances using OCI Terraform on AMD64 128-core
BM.Standard.E2.64 nodes, and ran at an average 1.8M/hr.
Similar runs on cosma6 ran at about 3.7M/hr on double the
number of cores. These suggest that in terms of computa-
tional cost and efficiency, cloud-based resources have the
potential to be competitive to standard clusters.

APPENDIX C: CONVERGENCE ESTIMATES
AND RICHARDSON EXTRAPOLATION

1. Richardson extrapolation

A quantity q calculated at finite resolution or extraction
radius can be given by

q� ¼ qðΔÞ þ eiΔi; ðC1Þ

where Δ is the expansion parameter (1N for resolution or 1
Rext

for extraction radius), e is the finite-order error and i is the
order at which the error contributes. In this paper the
quantity q we are considering is the waveform extracted
from the numerical simulation. We therefore have that

q� ¼ qðΔÞ þ enΔn þOðΔn0 Þ; ðC2Þ

where enΔn is the leading-order error contribution, n is the
convergence order of the simulation and n0 > n.
Considering two waveforms computed using different

expansion parameters Δ1 and Δ2, we can solve the two
simultaneous equations that arise from Eq. (C2) to give

q� ¼ RðΔ1;Δ2Þ þO
��

Δ1

Δ2

�
n0
�
; ðC3Þ

where

RðΔ1;Δ2Þ ¼
�
Δ1

Δ2

	
n
qðΔ2Þ − qðΔ1Þ�
Δ1

Δ2

	
n
− 1

; ðC4Þ

is the Richardson extrapolation [116,139] of qðΔ1Þ.
RðΔ1;Δ2Þ has a higher-order error due to the truncation
of the expansion in Δ than qðΔ1Þ. RðΔ1;Δ2Þ − qðΔ1Þ gives
the truncation error of the quantity q.

2. Convergence

Considering now three waveforms computed with
expansion parameters Δ1 > Δ2 > Δ3 we can eliminate
q� in Eq. (C3). Neglecting higher-order error terms, the
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ratio of the difference between two sets of numerical
waveforms with expansion parameter Δ1 > Δ2 > Δ3 is
then given by

C ¼ qðΔ1Þ − qðΔ2Þ
qðΔ2Þ − qðΔ3Þ

¼ Δn
1 − Δn

2

Δn
2 − Δn

3

: ðC5Þ

This relation holds for features of a waveform, such as its
amplitude and phase, but not for derived quantities such as
the match.
To understand how the match between a set of wave-

forms in a convergence series varies, consider a detector
response derived from gravitational wave strain solutions
of a finite difference approximation numerical relativity
code. This can be represented by a Richardson expansion
[116,139] as a power series in an expansion parameter Δ.
Consider two detector responses, h1 and h2, at two

resolutions with expansion parameters Δ1 and Δ2, respec-
tively. As seen in Eq. (C2), for an ith-order accurate finite
difference method these can be represented by their
truncated Richardson expansions

h1ðfÞ ¼ hðfÞ þ enðfÞΔn
1; ðC6Þ

h2ðfÞ ¼ hðfÞ þ enðfÞΔn
2; ðC7Þ

¼ h1ðfÞ þ enðfÞðΔn
2 − Δn

1Þ; ðC8Þ

where hðfÞ is the detector response of the exact solution,
and eiðfÞ are the leading-order error functions.
The match between these two detector responses can be

expanded in the expansion parameter ðΔn
2 − Δn

1Þ. Utilizing
linearity in the inner product, we have

Mðh1; h2Þ ¼ max
Θ

� hh1jh2i
kh1kkh2k

�
;

¼ max
Θ

� kh1k2 þ ðΔn
2 − Δn

1Þhh1jeni
kh1kðkh1k2 þ 2ðΔn

2 − Δn
1Þhh1jeni þ ðΔn

2 − Δn
1Þ2kenk2Þ1=2

�
;

≈max
Θ

�
1 −

1

2

�kenk2
kh1k2

−
�hh1jeni

kh1k2
�

2
�
ðΔn

2 − Δn
1Þ2

�
;

≈ 1 − κðΔn
2 − Δn

1Þ2; ðC9Þ

where between the second and third lines we have
performed a binomial expansion of the denominator and
terms of higher order in the expansion parameter are
dropped between steps. The constant coefficient κ is
defined as

κ ≡min
Θ

�
1

2

�kenk2
khk2 −

hhjeni2
khk4

��
; ðC10Þ

where we have used Eq. (C6) to re-write h1 in terms of h
and again neglected terms of higher order in the expansion
parameter. κ can be seen to be bounded below by zero from
the Cauchy-Schwarz inequality. The mismatch may then be
approximated as

Mðh1; h2Þ ¼ κðΔn
2 − Δn

1Þ2: ðC11Þ

It is important to note that the leading-order expansion
parameter terms in the approximation Eq. (C11) are
quadratic in the expansion parameters. In addition, while
it is likely that the leading-order coefficient κ cannot be
calculated directly, it is independent of any resolution-
specific expressions. As such κ is constant within any
convergence series. This leads to the following two results,

describing ratios of mismatches in convergence series and
the combination of mismatches in convergence series,

Mðh1; h2Þ
Mðh2; h3Þ

¼ ðΔn
1 − Δn

2Þ2
ðΔn

2 − Δn
3Þ2

; ðC12Þ

Mðh1; h3Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðh1; h2Þ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðh2; h3Þ

p 	
2
: ðC13Þ

Equation (C13) holds generally, not just for the case of
mismatches between waveforms in a convergence series.
This is shown in Appendix D.

APPENDIX D: ADDITION OF MISMATCHES

Consider three waveforms, h1, h2, h3, which are all
normalized, jh1j ¼ jh2j ¼ jh3j ¼ 1 according to the inner
product of Eq. (10). The match additionally includes some
optimizations, as in Eq. (11). We assume that h1 and h3
already incorporate such optimizations, so that the inner
products hh1jh2i ¼ A and hh2jh3i ¼ B are equal to the
matches Mðh1; h2Þ and Mðh2; h3Þ. We would now like to
estimate an upper bound on C ¼ hh1jh3i, and on the
mismatch Mðh1; h3Þ.
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We write each waveform with reference to one of the
others. Choose h2, since that is our “middle” waveform.
We can write,

h1 ¼ Ah2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
h2⊥; ðD1Þ

h3 ¼ Bh2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
h02⊥: ðD2Þ

Both h2⊥ and h02⊥ are orthogonal to h2, but are not
necessarily the same waveform, and the weights are chosen
to ensure that all waveforms are normalized. We can also
write this as A ¼ cosðθ12Þ and B ¼ cosðθ23Þ, and we
therefore have

h1 ¼ cosðθ12Þh2 þ sinðθ12Þh2⊥; ðD3Þ

h3 ¼ cosðθ23Þh2 þ sinðθ23Þh02⊥; ðD4Þ

and so,

hh1jh3i ¼ cosðθ12Þ cosðθ23Þ þ sinðθ12Þ sinðθ23Þhh2⊥jh02⊥i:
ðD5Þ

If the two orthogonal contributions are the same, then the
combined inner product will be cosðθ12 − θ23Þ, which is the
best match we can have; if A ¼ B then C ¼ 1, i.e., h1 ¼ h3.
Alternatively, if hh2⊥jh02⊥i ¼ 0, then C ¼ AB. In general
we are interested in cases where all inner products are close
to unity, and so if A ¼ 1 −M12 and B ¼ 1 −M23, where
M12 and M23 are the mismatches, then we will have
C ≈ 1 −M12 −M23; the mismatches add linearly to
produce C.
The lowest value of C occurs when hh2⊥jh02⊥i ¼ −1 and

we have C ¼ cosðθ12 þ θ23Þ. This allows the extreme case
where h1 ¼ ðh2 þ h2⊥Þ=

ffiffiffi
2

p
and h3 ¼ ðh2 − h2⊥Þ=

ffiffiffi
2

p
, and

in this case we have A ¼ B ¼ 1=
ffiffiffi
2

p
, so the two waveforms

are “equally far apart”, but the combined inner product is
C ¼ 0, and so h1 and h3 are orthogonal to each other.
For the situations we are interested in, where the

mismatches are small, we recall that cosðθÞ ≈ 1 − θ2=2,
and so we can make the approximation,

M12 ≈
1

2
θ212; ðD6Þ

M23 ≈
1

2
θ223; ðD7Þ

M13 ¼ 1 − C ≈
1

2
ðθ12 þ θ23Þ2; ðD8Þ

and therefore

M13 ≈
� ffiffiffiffiffiffiffiffiffiffi

M12

p
þ

ffiffiffiffiffiffiffiffiffiffi
M23

p 	
2
: ðD9Þ

Note that, while M12 and M23 satisfy our definition of
mismatches,M13 does not until an additional optimization
is performed on the inner product C. However, the resulting
mismatch can only be lower (or equal) toM13, and soM13

is an upper bound of the combined mismatch, Mðh1; h3Þ,
up to higher-order corrections.

APPENDIX E: POWER-WEIGHTED
PRECESSING MISMATCH

The match between two real valued detector response
waveforms h1ðtÞ and h2ðtÞ is defined to be the standard
inner product weighted by the power spectral density of
the detector SnðfÞ maximized over various sets of
parameters Θ [107], as given by Eq. (11). The mismatch
may then by defined by Eq. (12). For precessing wave-
forms, the set of parameters Θ that are maximized over
are a relative time shift t0 between the waveforms, a
relative phase shift ϕ0, and the detector response polari-
zation angle ψ0 [101]. The precessing matches performed
in this work are calculated as described in Appendix B of
Ref. [101].
If the starting frequency fNR of the NR waveform is

lower than the minimum frequency fmin in the inner-
product calculation, then the mismatch can be used to
produce a reliable estimate of the NR uncertainty in a
waveform. If, however, fNR > fmin, then the NR waveform
does not represent the complete waveform that would be
observed in the detector. Any waveform that extends to this
lower frequency must include a contribution from some
other source (e.g., a PN or EOB inspiral approximant), the
uncertainty of which we do not know. For a given
configuration fmin scales with the total mass, and as we
consider lower masses, the NR contribution to the total
signal power will decrease; at sufficiently low mass that NR
waveform will contribute negligible power, and its uncer-
tainty will be irrelevant. One way to obtain a more realistic
estimate of the NR contribution to the overall error budget
is to weight the mismatch with the relative power of the NR
contribution to the total signal, following the procedure
described in Ref. [124].
To perform matches over a frequency range

f∈ ½fmin; fmax� that extends below the minimum frequency
fNR of one of the waveforms in this catalog scaled to a
specified total mass, the full integral from fmin to the
maximum NR frequency can be approximated using a
power-weighted mismatch using the method described in
Ref. [124]. This method takes into account the missing
inspiral part of the waveform between fmin and the start of
the NR waveform.
To perform a power-weighted mismatch the constituent

waveforms are first split up into contributions from NR
defined over the frequency range f∈ ½fNR; fmax� and the
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contributions from the inspiral below the lowest NR
frequency defined over the frequency range f∈ ½fmin; fNRÞ,

hðfÞ ¼


hins; f∈ ½fmin; fNRÞ;
hNR; f∈ ½fNR; fmax�:

ðE1Þ

The power-weighted mismatch is then the mismatch in
each region weighted by the fraction of power in each
region,

Mpow ≡ khk2ðfmin;fNRÞ
khk2 Mins þ

khk2ðfNR;fmaxÞ
khk2 MNR; ðE2Þ

Mins ≡Mðfmin;fNRÞðh1;ins; h2;insÞ; ðE3Þ

MNR ≡MðfNR;fmaxÞðh1;NR; h2;NRÞ; ðE4Þ

where the subscript ranges ðf1; f2Þ denote the frequency
ranges over which the inner product Eq. (12) is evaluated
for that expression.
The inspiral parts are assumed to perfectly agree which

means that Mins can be set to 0. This reduces the power-
weighted mismatch to

Mpow ¼
khk2ðfNR;fminÞ

khk2 MNR: ðE5Þ

The inspiral contribution khk2ðfmin;fNRÞ to khk can be
calculated using any appropriate inspiral waveform. For
this work the precessing waveform model PhenomPv3 [57]
was used as the inspiral waveform.
It is important to make clear as described in [124] that

Mpow will be a lower bound to the mismatch M⩾Mpow.
Although the inspiral parts are identical below fmin, the
optimization in the match calculation may introduce
relative time and phase shifts that cause the mismatch to
be nonzero over ½fmin; fNR�. This means that a naive
mismatch, that simply starts at fNR, is also not an upper
bound; without incorporating further information about the
inspiral contribution, neither the power-weighted mismatch
nor a naive mismatch can be taken as a conservative
estimate of the mismatch error. We can, however, consider
both estimates and determine which is more appropriate.
Figure 17 shows the relative contributions of PN and NR

parts to the total mismatch in Eq. (E2) for the CF_66
configuration. We see that at around 60M⊙ both contribute
roughly equally. Below around 10M⊙ the NR waveform

contributes less than 10% to the final result. When we
consider mismatches with respect to extraction radius, we
find that the maximum mismatch (without power weight-
ing) is at masses below 60M⊙, and so we do not consider
the naive mismatch (starting at fNR) to be a reliable
estimate of the error. For these cases we consider the
power-weighted mismatch (which peaks around 10M⊙) to
be more reliable.
In the case of the numerical-resolution mismatches, the

power-weighting and naive estimates peak at similar
masses. This is shown in Fig. 18 for the CF_80 configu-
ration. Given that the NR contribution to the power-
weighted mismatch is still above 75% at this mass, we
consider the naive mismatch to be more reliable, and we
find that it makes no appreciable difference to our estimate
of the total mismatch error.

FIG. 17. Relative contributions of the NR and inspiral (denoted
by PN) to the power-weighted mismatch.

FIG. 18. Power-weighted and naive (starting at fNR) mis-
matches for the CF_80 configuration. The figure shows an
estimate of the mismatch between the N ¼ 96 simulation and a
simulation with no numerical-resolution error; cf. Fig. 14.
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044007
(2016).

[17] G. Pratten, S. Husa, C. Garcia-Quiros, M. Colleoni, A.
Ramos-Buades, H. Estelles, and R. Jaume, Phys. Rev. D
102, 064001 (2020).

[18] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G.
Pratten, A. Ramos-Buades, M. Mateu-Lucena, and R.
Jaume, Phys. Rev. D 102, 064002 (2020).

[19] H. Estellés, S. Husa, M. Colleoni, D. Keitel, M. Mateu-
Lucena, C. García-Quirós, A. Ramos-Buades, and A.
Borchers, Phys. Rev. D 105, 084039 (2022).

[20] E. Hamilton, L. London, J. E. Thompson, E. Fauchon-
Jones, M. Hannam, C. Kalaghatgi, S. Khan, F. Pannarale,
and A. Vano-Vinuales, Phys. Rev. D 104, 124027 (2021).

[21] A. Buonanno, Y. Pan, H. P. Pfeiffer, M. A. Scheel, L. T.
Buchman, and L. E. Kidder, Phys. Rev. D 79, 124028
(2009).

[22] A. Taracchini et al., Phys. Rev. D 89, 061502 (2014).
[23] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
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