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In this work, we explore the effects of surrounding dark matter featuring different equations of state on
the axial gravitational quasinormal modes of supermassive black holes situated at the center of galaxies.
Our attention primarily rests on dark matter exhibiting a spike structure, originating from relativistic Bondi
accretion through an adiabatic process, which diminishes at a certain distance from the black hole. We
analyze how varying the equation of state of the dark matter influences the properties of the spacetime in
the black hole’s vicinity. Our findings reveal that different states of dark matter spikes correspondingly
affect the black hole’s quasinormal modes. In particular, we identify deviations in both the ringing
frequency and damping time, reaching magnitudes of up to 10−3 for certain parameter values. These
variations can potentially be detected by upcoming space-borne detectors. Our findings thus indicate the
feasibility of discerning and limiting the essential properties of dark matter surrounding supermassive black
holes using future gravitational wave detections, particularly in the case of extreme mass ratio inspiral
systems.
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I. INTRODUCTION

Black holes (BHs) stand as notable predictions of general
relativity (GR) [1]. Over the past century, their existence and
distinctive characteristics have been the focus of continuous

endeavors undertaken by the scientific community [2]. Since
the inaugural detection of a gravitationalwave (GW) event in
2015 [3], the field has made remarkable strides, recording
more than ninety BHs binary events [4–8]. Moreover, the
observations of the images of the supermassive black holes
(SMBHs) located at the center of M87 and our galaxy have
further furnished valuable information on the subject [9–16].
The event horizon is an intriguing feature of BH. As a

one-way causal boundary, it prevents us from detecting the
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inside of a BH [17]. In this regard, the quasinormal modes
(QNMs) of BHs [18–22], in the form of ringdown GWs,
constitute one of the potential means to scrutinize the
whereabouts and properties of these compact objects. In
practice, a BH is likely to emerge in an astronomical
environment, such as interstellar dust or halo comprised of
ordinary and dark matter (DM) [23–25]. It is understood
that 90% of the host galaxies of SMBHs are composed of
DM [26]. Furthermore, two pioneering works [27,28] first
investigated the environmental effects on GWs and found it
possible to explore the characteristics of the environment
around the BHs through GWs detection in some scenarios.
Therefore, it is interesting to ask how the DM around the
SMBHs influences the properties of the spacetime and the
GWs emanating from them.
The numerical results from N-body cosmological sim-

ulations suggest that the density distribution of DM is
peaked near the center of galaxies and decreases as a power
of 1=r with r the distance from the halo’s center. To be
specific [29],

ρðrÞ ¼ ρ̄ðr=r̄Þ−γ0 ½1þ ðr=r̄Þα0 �ðγ0−β0Þ=α0 ; ð1Þ
where r̄ and ρ̄ are the scale factors which are determined by
the numerical fitting as in [30]. The parameters, α0, β0,
and γ0, are tailored to specific models. For example, for
Hernquist profile [31], one has ðα0; β0; γ0Þ ¼ ð1; 4; 1Þ,
while ðα0; β0; γ0Þ ¼ ð1; 3; 1Þ are adopted for Navarro-
Frenk-White (NFW) profile [32].
With the presence of a BH, the density distribution of the

DM is modified. In the pioneering work [33], a Newtonian
method is employed to calculate the distribution of cold
DM near the center of galaxies. The BH accretion gives
rise to forming a cuspy structure, also referred to in the
literature as a “spike”. Subsequently, for a spherically
symmetric BH, the density peaks near r≳ 4Rs with Rs
the Schwarzschild radius. The profile is also featured by a
steep cutoff towards the inside at r ¼ 4Rs, below which the
density of DM vanishes due to annihilation or absorption
into the BH. When the relativistic modifications are taken
into account [34], the main features of the density dis-
tribution largely remain unchanged, while the cutoff radius
is found to assume a smaller value r ¼ 2Rs.
In [29], both Hernquist and NFW DM spikes from

relativistic Eddington accretion are considered to explore
the impacts of the DM spike on the extreme mass-ratio
inspirals (EMRIs) GW waveforms. The relativistic mod-
ifications are found to positively impact the DM detect-
ability for both models. On the other hand, the impacts of
the cold DM halo on the ringdown waveforms, namely,
the QNMs are explored in [35–40]. Besides, the impacts
of the DM spike on the QNMs of scalar perturbations and
axial gravitational perturbations can be found in [41,42].
Particularly, in [42], the DM spike profile from Eddington
accretion in [29] was considered, and the pressure of the
DM was neglected for simplicity.

The present study is motivated to explore further the
impact of DM’s equations of state (EOSs) on the resulting
QNMs of the underlying SMBHs. In particular, the DM is
modeled by an isentropic fluid, whose EOS is governed by
the Bondi’s form [43,44],

pðrÞ ¼ αργ0; ð2Þ

where α is a constant, γ ∈ ½1; 3� represents the adiabatic
indices of the EOS, and ρ0 denotes the rest-mass density
[45]. As a result, the DM possesses a finite pressure pðrÞ.
In particular, we will elaborate on soft and stiff EOSs
with, respectively, γ < 5

3
and γ > 5

3
[45]. Regarding the DM

profiles, the Bondi accretion effect [46] will be considered
instead of that due to the Eddington accretion. Our analysis
will also focus on the detectability of ringdown waveforms.
As discussed in [43,45], the value γ ¼ 5

3
can be roughly

viewed as a watershed, the dividing point between the
Newtonian and relativistic scenarios. Specifically, EOSs
with γ ≤ 5

3
are referred to as soft ones, for which the sound

speed is much less than the speed of light. As a result, the
Newtonian framework suffices for a reasonable description
of DM’s accretion process. On the other hand, for stiff
EOSs with γ > 5

3
, the Newtonian approach might lead to

nonphysical solutions and, therefore, the relativistic mod-
ifications become indispensable. Two other values of
interest are γ ¼ 2 and γ ¼ 3, which correspond to, respec-
tively, the two-body and three-body interacting superfluid
DM [47]. We will further elaborate on the behaviors of
QNMs near these particular values.
We argue that the obtained results indicate the feasibility

of probing the presence of DM spike structure and
extracting the information on the DM EOS through the
ringdown waveforms. In this regard, the detectability of
the modification to the QNMs owing to different EOSs
is discussed. Nonetheless, the signal-to-noise ratio (SNR)
of the ground-based GW detectors is not favorable for
successful observation of the ringdown signals [48]. Such
detection is likely feasible for the ongoing space-borne
detectors such as LISA, TianQin, Taiji, and DECIGO
[49–51]. In particular, a recent study [52] indicated that
a relative deviation of the order ∼10−3 falls within the
sensitivity range. This point will also be taken into account
in our analysis.
The remainder of the paper is organized as follows.

Based on the relativistic adiabatic process, we first intro-
duce Bondi’s EOSs and derive the corresponding density
profile of the DM spike. Subsequently, the metric is
obtained and presented in Sec. II. We then derive the
master equation of the QNMs for axial gravitational
perturbations in Sec. III. In Sec. IV, we solve the QNMs
equations numerically for the quasinormal frequencies. We
will focus on the impact of different EOSs on QNMs,
particularly for the specific values of γ mentioned above.
We discuss the detectability of consequential modifications
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to the QNMs through the waveforms. The last section is
devoted to further discussions and concluding remarks.
Throughout the paper, we use the geometric unit system so
that c ¼ G ¼ 1, where c is the speed of light and G is the
gravitational constant.

II. BLACK HOLES MERGED IN DARK MATTER
SPIKE FROM BONDI ACCRETION

This section examines the spherically symmetric BH
metric that are surrounded by the DM spike from Bondi
accretion. We set out to derive the density profile of the DM
spike and then obtain the corresponding modified black
hole metric.
Although the Schwarzschild BH is the most well-known

solution for the spherically symmetric static spacetime, it
only applies to the scenario of an isolated black hole in
vacuum. The latter is largely improbable in practice,
especially for SMBHs located at the center of galaxies.
These black holes are typically surrounded by a complex
distribution of matter, primarily the DM. In general, the
metric of a Schwarzschild BH merged in DM can be
described by the following form:

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð3Þ

and the contribution from the DM can be attributed to the
energy-momentum tensor,

Tμ
ν ¼ diagf−ρðrÞ; pðrÞ; pðrÞ; pðrÞg; ð4Þ

where ρðrÞ is the density distribution of DM and the
pressure pðrÞ depends on the EOS.
The Einstein or Tolman-Oppenheimer-Volkoff (TOV)

equations are found to be

κ2Tt
t ¼ −8πGρ ¼ rg0 þ g − 1

r2
; ð5Þ

κ2Tr
r ¼ 8πGp ¼ g − 1

r2
þ gf0

rf
; ð6Þ

and

∇νTν
r ¼ 0 ð7Þ

gives

dp
dr

¼ −ðρþ pÞΓ0
01 ¼ −

1

2
ðρþ pÞ∂r ln f: ð8Þ

We therefore obtain a system of three equations that
involve four unknown variables, namely ½fðrÞ; gðrÞ; ρðrÞ;
pðrÞ�. The remaining degree of freedom demands an
additional physical condition, which can be fixed by the

DM’s EOS. In [41,42], the particular choice of DM density
profile guarantees that there is no surplus freedom for the
EOS. Such an approach effectively neglects the pressure of
the DM pðrÞ. The present study will explicitly consider
such a physical ingredient and examine its impact on the
resultant black hole QNMs, focusing on any detectable
deviations. In particular, we will adopt the Bondi’s EOS
and derive the corresponding density profile below in
Sec. II A. The corresponding modifications to the metric
will be discussed in Sec. II B.

A. The DM distribution from Bondi accretion

Based on ideal relativistic hydrodynamics, the DM is
subject to an adiabatic process that yields the relation
between the total and rest-mass energy densities in the local
rest frame ρ and ρ0 [45,53],�

∂ρ

∂ρ0

�
ad
¼ ρþ p

ρ0
: ð9Þ

By explicitly considering the radial dependence of the
profile ρ0ðrÞ, we can rewritten the above relation as

dρ
dr

¼ dρ0
dr

ρþ p
ρ0

: ð10Þ

We now assume the Bondi’s EOS given by

p ¼ αργ0; ð11Þ

where α is a constant coefficient and γ is the adiabatic
indices with the range of [1, 3]. Therefore, five equations,
Eqs. (5)–(7) and (10)–(11), are accounted for by five
unknowns ½fðrÞ; gðrÞ; ρðrÞ; pðrÞ; ρ0ðrÞ�.
As a reasonable approximation, we proceed by solving

the above system of equations in an iterative fashion. We
first consider how the DM distributions are affected by a
Schwarzschild BH by taking into account Eqs. (7) and
(10)–(11). By substituting Eq. (11) into Eq. (10), we have

ρ ¼ αργ0
γ − 1

þ ρ0 ¼
�
p
α

�1
γ þ p

γ − 1
: ð12Þ

Then, considering the Schwarzschild case with fðrÞ ¼
gðrÞ ¼ 1 − 2M

r , Eq. (7) now becomes

dp
dr

¼ −
1

1 − 2M
r

M
r2

��
pðrÞ
α

�1
γ þ γpðrÞ

γ − 1

�
: ð13Þ

Integrating Eq. (13) we have

pðrÞ ¼
�
γ − 1

γ

� γ
γ−1
α−

1
γ−1

0
B@ C0α

1
γ

ðγ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

γ
γ−1

: ð14Þ
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By substituting above expression of pressure into Eqs. (11)
and (10), respectively, the density profiles ρ0ðrÞ and ρðrÞ
are derived which read

ρ0ðrÞ ¼
�
γ − 1

γ

� 1
γ−1
α−

1
γ−1

0
B@ C0α

1
γ

ðγ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

1
γ−1

; ð15Þ

ρðrÞ ¼
�
γ − 1

γ

� 1
γ−1
α−

1
γ−1

0
B@ C0α

1
γ

ðγ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

1
γ−1

þ
�
γ − 1

γ

� γ
γ−1 α−

1
γ−1

γ − 1

0
B@ C0α

1
γ

ðγ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

γ
γ−1

:

ð16Þ
To determine the constant of integration C0, we examine

the asymptotic behavior of the solution at spatial infinity.
For r ≫ M, the profile should be governed by a power law
form ρ0 ∼ rβ, not a constant. This fixes C0 to be

C0 ¼ ðγ − 1Þα−1
γ: ð17Þ

By defining an effective density parameter ρ̃0

ρ̃0 ¼
�
γ − 1

γ

� 1
γ−1
α−

1
γ−1; ð18Þ

the density profiles and pressure now read

ρ0ðrÞ ¼ ρ̃0

��
1 −

2M
r

�
−1
2

− 1

� 1
γ−1

; ð19Þ

pðrÞ ¼ ρ̃0
γ − 1

γ

��
1 −

2M
r

�
−1
2

− 1

� γ
γ−1

; ð20Þ

ρðrÞ ¼ ρ̃0

��
1−

2M
r

�
−1
2

− 1

� 1
γ−1 þ ρ̃0

γ

��
1−

2M
r

�
−1
2

− 1

� γ
γ−1
:

ð21Þ

Based on [29,34], the density of DM spike peaks near
r≳ 8M and vanishes below r ∼ 8M. The location of the
spike decreases approximately to r ∼ 4M for cases with
relativistic modification, attributed to DM particles anni-
hilation or falling into the BH. Given the above consid-
erations, we choose a cutoff radius r ¼ 4M in the density
profiles governed by Eq. (10). The resultant profiles for
different regions are listed in Table I. Generally speaking,
all three quantities ρ0ðrÞ, ρðrÞ, and pðrÞ become larger with
increasing γ, as shown in Figs. 1 and 2. As expected, the
total energy density is larger than the rest-mass energy
density for given γ, as can be inferred from Fig. 1. It is
noted that although the choice of the location of the cutoff
impacts spacetime and corresponding GWs, it does not
cause significant deviation for the low-lying QNMs [42].
Since our discussion focuses on the effects of various

FIG. 1. The rest-mass density profile ρ0ðrÞ and the total energy density profile ρðrÞ for different adiabatic indices γ. When r < 4M, the
density profiles of DM vanish, where RS ¼ 2M is the Schwarzschild radius. Here we use the units such that c ¼ G ¼ 2M ¼ 1.

TABLE I. A summary of the relevant physical quantities and
master equation for the QNMs in the two regions. ρ0ðrÞ, pðrÞ,
and ρðrÞ are the rest-mass density profile, pressure, and total
energy density profile of DM. fðrÞ and gðrÞ are the metric
functions defined in Eq. (3) and r� is the tortoise coordinate.

r∈ ð2M; 4MÞ r∈ ð4M;∞Þ
ρ0ðrÞ 0 Eq. (19)
pðrÞ 0 Eq. (20)
ρðrÞ 0 Eq. (21)
fðrÞ 1 − 2M

r
Eq. (26)

gðrÞ 1 − 2M
r

Eq. (22)
r� Eq. (35) Eq. (32)
Master equation Eq. (34) Eq. (31)
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EOSs, we have chosen a unique cutoff value among
different scenarios.

B. Modified black hole metric

Now we turn to discuss the corresponding modifications
to the black hole metric by making use of the three obtained
unknowns ½ρðrÞ; pðrÞ; ρ0ðrÞ�, which govern the behavior
of DM spike associated with Bondi accretion. The impact
on the spacetime metric is evaluated by employing two
remaining TOVequations, namely, Eqs. (5) and (6) in terms
of the metric functions ½fðrÞ; gðrÞ�.
We first consider Eq. (5). By substituting Eq. (21) into

Eq. (5) and integrating r over the range r∈ ð4M;∞Þ,
we have

gðrÞ ¼ 1 −
2M
r

−
8πG
r

Z
r

4M
R2ρðRÞdR

¼ 1 −
2M
r

−
8πGM3ρ̃0

γr
½g2ðrÞ − g1�

−
8πGM3ρ̃0

r
½g4ðrÞ − g3�; ð22Þ

where one has chosen the appropriate constant of integra-
tion so that gð4MÞ ¼ 1 − 2M

r . The two radial functions g2ðrÞ
and g4ðrÞ come from the integration of the two terms of
ρðrÞ in Eq. (21). They are defined as

g2ðrÞ ¼
1

M3

Z
r2
��

1 −
2M
r

�
−1
2

− 1

� γ
γ−1

dr; ð23Þ

and

g4ðrÞ ¼
1

M3

Z
r2
��

1 −
2M
r

�
−1
2

− 1

� 1
γ−1

dr; ð24Þ

whose specific forms can be found in Appendix A. Also,
g1 ≡ g2ð4MÞ and g3 ≡ g4ð4MÞ.
To derive the form of fðrÞ, we consider Eq. (6). We note

that the effective density M2ρ̃0 ≪ 1, and therefore we
neglect the second and higher order terms of ρ̃0 and obtain,

d
dr

ln f ¼ f0ðrÞ
fðrÞ ¼ 8πGrpðrÞ

gðrÞ þ 1

rgðrÞ −
1

r

∼
2M

rðr − 2MÞ þ
8πGρ̃0r2

r − 2M
γ − 1

γ

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q − 1

1
CA

γ
γ−1

−
8πGM3ρ̃0
ðr − 2MÞ2

�
g1
γ
þ g3

�

þ 8πGM3ρ̃0
ðr − 2MÞ2

�
g2ðrÞ
γ

þ g4ðrÞ
�
: ð25Þ

After integrating over r∈ ð4M;∞Þ and again neglecting
the second and higher order terms of ρ̃0 as well as the

terms of a higher order than
	
1 − 1ffiffiffiffiffiffiffiffi

1−2M
r

p


kmax , we find the

following result:

fðrÞ ¼ 1 −
2M
r

þ 8πGM2ρ̃0

�
1 −

2M
r

�

×
X6
i¼1

½fiðrÞ − fið4MÞ�; ð26Þ

where f1ðrÞ and f2ðrÞ come from the integration of the
first two terms in Eq. (25), f3ðrÞ, and f5ðrÞ come from
the integration of the nonhypergeometric-function terms of
g2ðrÞ and g4ðrÞ, while f4ðrÞ and f6ðrÞ come from the
integration of the hypergeometric-function terms of g2ðrÞ
and g4ðrÞ. The specific forms of these terms are also
relegated to Appendix B.
The formalism in Appendixes A and B seem to indicate

divergent terms in some special cases characterized by
specific values of γ, such as γ ¼ 1.5, 2. Fortunately, as
discussed in Appendix C, such divergence always cancels
out in pairs and the resulting expression remains well-
defined analytically. However, numerically, the presence
of divergent terms does bring certain challenges. Given
the discussion presented in Appendix C, it is proposed that
the values of γ ¼ 1.5 and γ ¼ 2 be replaced with γ ¼
1.5þ 10−10 and γ ¼ 2þ 10−10 respectively, throughout the
numerical process in Secs. III B and IV.
It is noted that the above results are only associated with

the region r∈ ð4M;∞Þ. For r∈ ð2M; 4MÞ and r → ∞, we
have ρ̃0 ¼ 0, and the DM densities vanish with ρðrÞ ¼ 0 as
shown in Fig. 1. Subsequently, the spacetime falls back to
the Schwarzschild case with fðrÞ ¼ gðrÞ ¼ 1 − 2M

r . Table I
enumerates different scenarios for both regions.

FIG. 2. The pressure for different adiabatic indices γ, where
RS ¼ 2M is the Schwarzschild radius. Here we use the units such
that c ¼ G ¼ 2M ¼ 1.
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III. AXIAL PERTURBATIONS OF
SCHWARZSCHILD-LIKE BLACK HOLES

This section examines the gravitational perturbations
in the modified Schwarzschild-like background metric
given by Eq. (3). We shall focus on the axial perturbation
in Sec. III A. The master equations in different regions are
derived and given in Table I. Notably, the presence of a
discontinuity in the density profile results in different
master equations for the QNMs, as shown in Figs. 1 and 3.
The numerical method tailored for such a scenario will be
discussed in Sec. III B.
Typically, the perturbations can arise from the injection

of gravitational waves or the infalling of a particle into the
BHs [54,55], in addition to more extreme events such as
the remnants of a binary BH merger. Such a perturbed
metric can be described by

gμν ¼ ̊gμν þ hμν; ð27Þ

where ̊gμν is the metric of background spacetime given by
Eq. (3) and Table I. On the other hand, hμν represents the
linear perturbation term. In deriving the master equation,
the contributions owing to higher-order perturbations will
be neglected.
The background spacetime M4ðt; r; θ;ϕÞ possesses

static spherical symmetry. This implies that it can be
expressed as the direct product of a two-dimension
Lorentzian manifold M2ðt; rÞ and a 2-dimension unit
sphere surface manifold S2ðθ;ϕÞ. Under the above sym-
metries, the metric perturbation hμν can be decomposed
into various multipoles that will evolve independently in
time according to the little group representation. In par-
ticular, they can be classified into axial (odd) and polar
(even) parity ones, described by [56,57]

hμν ¼
X∞
l¼0

Xm¼l

m¼−l
½ðhlmμν ÞðaxialÞ þ ðhlmμν ÞðpolarÞ�; ð28Þ

where, l andm are the integers from the separation of θ and
ϕ respectively. Regarding the Regge-Wheeler (RW) gauge,
the axial perturbations can be parametrized as [21,58]

ðhlmμν ÞðaxialÞ ¼
�
sin θ

∂Yl0ðθÞ
∂θ

�
eiωtϵ·

×

0
BBB@

0 0 0 h0ðrÞ
0 0 0 h1ðrÞ
0 0 0 0

h0ðrÞ h1ðrÞ 0 0

1
CCCA: ð29Þ

Furthermore, that of the polar perturbations is

ðhlmμν ÞðpolarÞ ¼ Yl0ðθÞeiωtϵ·

×

0
BBBBB@

H0ðrÞð1 − 2M
r Þ H1ðrÞ 0 0

H1ðrÞ H2ðrÞ
1−2M

r
0 0

0 0 r2KðrÞ 0

0 0 0 r2KðrÞsin2θ

1
CCCCCA;

ð30Þ

where jϵj ≪ 1 is a real number to quantify the magnitude
of perturbations proposed by [37]. The eigenfrequency ω
comes from separating the variable t, corresponding to the
quasinormal modes (QNMs) of the BHs. The angular sector
of thewaveform is governed by the spherical harmonics Ylm
with m ¼ 0 owing to the spherical symmetry.
It is significant to note that the axial gravitational pertur-

bation is intrinsically decoupled from any scalar field.
Therefore, the perturbations of dark matter can be largely
neglected, leading to mathematical simplification. The
resulting perturbation equation for the axial perturbations
can then be derived, which will be given shortly in Sec. III A.
Nevertheless, such a treatment is not valid for polar pertur-
bations since they are likely to be coupledwith scalar degrees
of freedom, particularly DM. As a result, deriving the
perturbation equations for the polar case and computation
of QNMs present a rather challenging problem [59]. In light
of the above consideration, the primary objective of this
paper is to concentrate solely on the axial perturbations.

A. The master equation for axial gravitational
perturbations

As discussed above, per Refs. [37,59,60], the axial
perturbations are decoupled from those in the DM.
Therefore, in what follows, we will concentrate on the
axial perturbations of the metric. To this end, we substitute
Eq. (29) into the Einstein equations Gμν ¼ 8πTμν to derive
the master equation. For the spacetime region merged in the
DM spike, the axial gravitational perturbations are gov-
erned by the following equation:�

∂
2

∂r2�
þ ω2 − VaxialðrÞ

�
ΨðrÞ ¼ 0; ð31Þ

where r� is the tortoise coordinate defined by

dr� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞp ; ð32Þ

and the effective potential reads

VaxialðrÞ¼
rf0ðrÞg0ðrÞþgðrÞ½f0ðrÞþ2rf00ðrÞ�

2r
−
gðrÞf0ðrÞ2
2fðrÞ

þfðrÞ½rg0ðrÞþ4gðrÞþ2ðl2þl−2Þ�
2r2

; ð33Þ
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where gðrÞ and fðrÞ are the metric functions given by
Eqs. (22) and (26). When r ≤ 4M or ρ̃0 ¼ 0, it falls back to
the Schwarzschild case (see Table I) and the corresponding
master equation is simplified to read

�
∂
2

∂r2�
þ ω2 −

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

��
Ψ ¼ 0; ð34Þ

with r� given by

dr� ¼
�
1 −

2M
r

�
−1
dr; ð35Þ

which is nothing but the well-known Regge-Wheeler-
Zerilli equation [61].

B. Matrix method for quasinormal modes
in potential with discontinuity

The master equations obtained above are also presented
in Table I. It is evident that a discontinuity occurs at
r ¼ 4M when ρ̃0 ≠ 0, as shown in Fig. 3. As known in
the literature [62–66] that such a discontinuity entails
nontrivial implications to the BH perturbation theory.
Meanwhile, several traditional methods for the BH
QNMs, such as the Wentzel-Kramers-Brillouin approxima-
tion [67–69], cannot be directly applied to the problem.
In this regard, we employ the modified matrix method to
address the problem [70–74].
We proceed to discuss the boundary conditions for the

master equation. The bound of the relevant region consists
of the horizon r ¼ 2M and spatial infinity r → ∞, identical
to the Schwarzschild case. At these points, the asymptotical
forms of the wave functions satisfy e−iωr� and eiωr� ,
corresponding to the ingoing waves near the horizon and

outgoing waves at spatial infinity, respectively [21,75].
In the asymptotical regions, the tortoise coordinates r�
defined by Eq. (35) can be expressed explicitly as
r� ¼ rþ 2M lnðr − 2MÞ. Therefore, near the boundaries,
the waveforms are governed by the following forms:

Ψ →

�
e−iωrðr − 2MÞ−2iMω r → 2M

eiωrðr − 2MÞ2iMω r → ∞
; ð36Þ

which is asymptotically accurate up to an irrelevant
constant.
We then introduce the transform of the wave function by

the substitution

ΨðrÞ≡ e−iωrðr − 2MÞ−2iMωLðrÞ; ð37Þ

and

y ¼ r − 2M
2M

; ð38Þ

for the region r∈ ð2M; 4MÞ, and

ΨðrÞ≡ eiωrðr − 2MÞ2iMωRðrÞ; ð39Þ

and

z ¼ 1 −
4M
r

; ð40Þ

for r∈ ð4M;∞Þ. The transform introduced in Eqs. (37)
and (39) effectively factors out the known asymptotical
behavior of the wave functions at the boundaries. In the
meanwhile, Eqs. (38) and (40) map r∈ ð2M; 4MÞ and
r∈ ð4M;∞Þ to [0, 1] respectively.
The master equations given in Table I can be reformu-

lated to read

A2ðyÞL00ðyÞ þ A1ðyÞL0ðyÞ þ A0ðyÞLðyÞ ¼ 0; ð41Þ

B2ðzÞR00ðzÞ þ B1ðzÞR0ðzÞ þ B0ðzÞRðzÞ ¼ 0; ð42Þ

where the coefficients A2, A1, A0, B2, B1, and B0 are
functions of the variables ω, y (or z), and the DM
parameters ρ̃0 and γ. Their specific forms are governed
by the underlying master equation.
The boundary conditions given in Eq. (36) can be

rewritten as

Lðy ¼ 0Þ ¼ const; Rðz ¼ 1Þ ¼ const: ð43Þ
For convenience, one further introduces

L̃ðyÞ≡ yLðyÞ; ð44Þ

R̃ðzÞ≡ ð1 − zÞRðzÞ; ð45Þ

FIG. 3. A comparison of the effective potentials for axial
gravitational perturbations with and without DM. In order to
illustrate the difference, we assume ρ̃0 ¼ 10−3. When r < 4M,
the DM vanishes, and the spacetime metric restores the form of
the Schwarzschild BH, causing a discontinuity at r ¼ 4M where
RS ¼ 2M is the Schwarzschild radius. Here we adopt the units
such that c ¼ G ¼ 2M ¼ 1.
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and the boundary conditions can be transformed into the
form

L̃ðz ¼ 0Þ ¼ R̃ðz ¼ 1Þ ¼ 0: ð46Þ
The corresponding master equations now become

Ã2ðyÞL̃00ðyÞ þ Ã1ðyÞL̃0ðyÞ þ Ã0ðyÞL̃ðyÞ ¼ 0; ð47Þ

B̃2ðzÞR̃00ðzÞ þ B̃1ðzÞR̃0ðzÞ þ B̃0ðzÞR̃ðzÞ ¼ 0; ð48Þ

with

Ã0ðyÞ ¼ y2A0ðyÞ − yA1ðyÞ þ 2A2ðyÞ;
Ã1ðyÞ ¼ y½yA1ðyÞ − 2A2ðyÞ�;
Ã2ðyÞ ¼ y2A2ðyÞ;
B̃0ðzÞ ¼ ðz − 1Þ2B0ðzÞ − ðz − 1ÞB1ðzÞ þ 2B2ðzÞ;
B̃1ðzÞ ¼ ðz − 1Þ½ðz − 1ÞB1ðzÞ − 2B2ðzÞ�;
B̃2ðzÞ ¼ ðz − 1Þ2B2ðzÞ: ð49Þ

We proceed to address the discontinuity occurring at
r ¼ rc ≡ 4M. Such discontinuity in the metric must be in
accordance with Israel’s junction condition [76]. The wave
functions, on the other hand, are connected through the
requirement of vanishing Wronskian [72,73,77],

Ψ0ðr ¼ r−c ÞΨðr ¼ rþc Þ −Ψðr ¼ r−c ÞΨ0ðr ¼ rþc Þ ¼ 0; ð50Þ

where r ¼ r−c and r ¼ rþc approach the discontinuity from
the left and right sides, respectively. The ratio coefficient κ
is subsequently defined as

κ ¼ Ψ0ðr ¼ r−c Þ
Ψðr ¼ r−c Þ

¼ Ψ0ðr ¼ rþc Þ
Ψðr ¼ rþc Þ

: ð51Þ

By substituting Eqs. (37)–(40), the above expression can be
reformulated as

yL̃0ðyÞ þ ½−2κMy − 2iMðyþ 1Þω − 1�L̃ðyÞ ¼ 0; ð52Þ

ðzþ 1Þðz − 1Þ2R̃0ðzÞ þ ½−ðzþ 1Þð4κM þ z − 1Þ þ 8iMω�
× R̃ðzÞ ¼ 0: ð53Þ

Equations (52) and (53) furnish the connection conditions
for the waveforms.
The matrix method algorithm for our specific case is

outlined as follows:
(1) According to [70], it is possible to discretize any

coordinate x∈ ½0; 1� into a set of N points denoted as
x1; x2;…; xN . The use of Taylor expansion allows
for the representation of a function, along with its
first-order derivatives up to its Nth-order deriva-
tives, in the form of N × N matrices at each point.

We relegate further details to Ref. [70], where a
public version of the code is published in the arXiv
website.1

(2) By substituting the matrices of the functions, first-
order derivatives, and second-order derivatives ob-
tained above, Eqs. (47) and (48) can be reformulated
as two matrix equations, namelyMLL¼MRR¼0.
Here, ML and MR represent matrics of dimensions
NL × NL and NR × NR respectively, which are
solely associated to the variableω. In the meanwhile,
L ¼ ðLðx1Þ;…; LðxNL

ÞÞT and R ¼ ðRðx1Þ;…;
RðxNR

ÞÞT are the values of functions at each point.
(3) We apply Eq. (46) to replace the first line ofML and

Nth line of MR, respectively. Additionally, we
employ Eqs. (52) and (53) to replace the Nth line
of ML and first line of MR, respectively. The
equations MLL ¼ MRR ¼ 0 are derived, where
ML and MR represent the modified matrices with
respect to ω and κ.

(4) By solving the equations detðMLÞ ¼ detðMRÞ ¼ 0,
the QNMs ω can be obtained together with the
corresponding ratio κ.

IV. NUMERICAL RESULTS

This section will examine the numerical results of
fundamental QNMs and their properties influenced by
the DM spike. Moreover, the focus of our discussion is
the impacts of different EOSs. In order to speed up the
calculation process, we choose NL ¼ 24, NR ¼ 12, and
kmax ¼ 20 as in [42], which has been shown to provide
reliable results up to six significant digits and eight for
fundamental QNMs.
There are two parameters in our model, namely the

adiabatic index γ and the effective density parameter ρ̃0.
The parameter γ identifies different EOSs and falls in the
relevant range γ ∈ ½1; 3�, according to the studies performed
in [45]. In the present work, a few values of γ will be
explored, namely, γ ¼ 5

3
, γ ¼ 2, and γ ¼ 3, whose impact

on QNMs is also the focus of our exploration.
Regarding ρ̃0, it is fixed by the requirement to match

asymptotically the resulting spacetime with other DM
profiles at a large scale. Specifically, the DM density
and pressure profiles describe the distribution very close
to the BH, substantially impacting the spacetime around the
BH and the corresponding GWs. On the other hand, the
distribution far away from the BH is often neglected
[24,42]. In practice, however, in order to associate our
model parameters ρ̃0 and γ with realistic scenarios, we
match the asymptotical spacetime to those of other models
at a large scale r ≫ Rsp. For example, one can compare the
present approach to the well-known NFW profile [32],

1A public version of the code can be found via the link https://
arxiv.org/abs/1610.08135.
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ρðrÞ ¼ ρNFW
rNFW

rð1þ r
rNFW

Þ2 ; ð54Þ

where ρNFW and rNFW are parameters depending on differ-
ent BHs or galaxies, which can be obtained from numerical
fitting as in [30].
To proceed, in Sec. IVA, we then examine the QNMs

using parameters for realistic gravitational systems, namely,
the supermassive BHs at the center of Milky Way and M87.
In practice, the parameters close to the BHs might differ
significantly from those for the bulk of the galaxy, or they
vary substantially for different BHs and galaxies. Therefore,
a wide range of parameters will be considered in Sec. IV B
to assess the underlying impact. Moreover, Sec. IV C will
address the detectability regarding the deviations of the
quasinormal frequencies owing to the presence of DM.

A. The QNMs of the supermassive BHs
in Milky Way and M87

We first explore a few potential observational sources
using realistic parameters and analyze the resulting BH
QNMs. Due to the limitation of the existing ground-based
GW detectors [48], we primarily focus on the future
space-based GW detectors. As mentioned in Sec. II A,
the numerical fitting from observational data provides the
parametrizations of some well-known profiles, such as the
NFW profile. For our present approach, the model param-
eters are extracted by matching the resultant DM profile to
the existing ones at a large scale, r ≫ Rsp.
In [24], the DM spike structure for Sgr A� BH at the

center of the Milky Way galaxy was explored. The initial
DM density profile is characterized as ρ0 ∼ r−γ0 , while that
in the spike region is given by [78]

ρspDMðrÞ ¼ ρsp

�
Rsp

r

�
γsp
: ð55Þ

This profile is then matched to observable data at large
scales for γsp ¼ 7

3
(γ0 ¼ 1), where we can obtain the values

of parameters. Therefore, we choose γ ¼ 2 to have a similar
power law form for ρ0, and then match the density profiles
at a large scale, approximately r ∼ Rsp.
The mass of Sgr A� BH is M ¼ 4.1 × 106M⊙, while the

best-fit values for the parameters are Rsp ¼ 0.235 kpc and
ρsp ¼ 8.00 × 10−23 g cm−3. Using the cutoff at r ∼ 4M, the
parameters of Sgr A� BH are limited to Rsp ¼ 0.235 kpc
and ρsp < 2.37 × 10−18 g cm−3 [24,41]. By matching the
profiles at r ∼ Rsp and choosing the unit c ¼ G ¼ 2M ¼ 1,
we obtain the effective density parameter ρ̃0 ≈ 1.04 × 10−17

for the best-fit value and ρ̃0 ≈ 3.09 × 10−13 as its upper
limit. We then proceed to calculate the corresponding
fundamental modes for the two values of ρ̃0, which, up
to the numerical precision, turn out to be identical,
0.7473433640 − 0.1779242954i. In other words, the differ-
ence is not distinguishable. One note that the fundamental

mode of the Schwarzschild BH is 0.7473433526−
0.1779242884i, and the deviation is still too small to be
observationally relevant in the near future.
We therefore conclude that in order to detect the DM

spike with γ ¼ 2, one needs to look for a more massive
source. A well-known example is the central BH in M87,
which possesses a mass ofM ¼ 6.4 × 109M⊙. In this case,
the best-fit parameters for M87* are Rsp ¼ 4.26 kpc and
ρsp ¼ 2.12 × 10−23 g cm−3 [41,79]. We note the same order
of magnitude is obtained for ρsp in the best-fit case, and we
thus adopt the same upper limit for M87*, ρsp < 2.37×
10−18 g cm−3. Subsequently, one finds the effective
density parameters to be, respectively, ρ̃0 ≈ 7.81 × 10−14

and ρ̃0 ≈ 8.74 × 10−9. The corresponding fundamental
modes are found to be 0.7473433640 − 0.1779242954i
and 0.7473432167 − 0.1779244060i. For the upper limit,
the deviation in the quasinormal frequency is of the order
10−7, which gives ∼10−12 Hz and ∼0.01s. Unfortunately,
the feasibility of capturing such insignificant deviation is
not optimistic as it largely resides outside the scope of
future space-borne GW programs.
Nonetheless, it is noticed that the above analysis indi-

cates that the mass of the BH indeed has a substantial
impact on the DM distribution in terms of the effective
density parameter ρ̃0. The latter modifies the quasinormal
frequency, which is potentially relevant for more significant
gravitational systems. BHs with larger masses are prone to
be detected. Besides, as elaborated below, if one considers
the scenarios by varying γ, the resulting impact on QNMs
can be more favorable.

B. The fundamental modes with varying parameters

In this subsection, we consider a broader range of para-
meters and investigate the modifications to the QNMs. In
particular, we explore the effects of two parameters, γ and
ρ̃0. The parameter γ characterizes the properties of the DM,
particularly the EOS. As discussed above, we will focus on
the range γ ∈ ½1; 3�. By definition, the effective density
parameter ρ̃0 is associated with the initial distribution of
DM and the characteristics of the underlying BH, particu-
larly the mass. Although we have already considered a few
realistic cases by adopting specifically optimized param-
eters in the preceding subsection, exploring the parameter
space is important for three main reasons [36,37]:
(1) Typically, The DM parameters primarily reflect the

bulk distribution of DM in the galaxy. This is
because they are obtained through a fit to the
corresponding density profiles, which in turn is
inferred from the data of rotation curves in various
galaxies [30]. However, in the vicinity of the BH,
these parameters are largely free owing to the
significant impact of the latter.

(2) The baryonic component plays a substantial role in
the DM parameters close to the BH.
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(3) The DM parameters γ and ρ̃0 and the mass of the
central BH vary for different gravitational systems.
A suitable BH merged in some particular DM spike
might be easier for detection.

To this end, we will first evaluate the QNMs as functions
of different γ and ρ̃0. As shown in Figs. 4 and 5, for γ ≲ 2.2,
it is observed that both the real and the imaginary parts of
QNMs decrease as ρ̃0 increase, while they increase for
γ ≳ 2.2. In particular, as shown in Fig. 6, there is a turning
point near γ ∼ 2. For given ρ̃0, as γ increases, the real and
imaginary parts of QNMs decrease and then increase when
the turning point is passed.
Secondly, we focus on the impacts of a few values of γ

with specific physical interest. γ ¼ 5
3
is roughly the water-

shed between the Newtonian and relativistic approaches, as
elaborated in detail by Ref. [43,45]. The EOSs with γ ≤ 5

3

correspond to soft ones, where the sound speeds are much
less than the speed of light, and therefore, the Newtonian
approach is expected to describe the DM accretion process
well. On the other hand, for stiff EOSs with γ > 5

3
, the

Newtonian approach might cause the nonphysical solu-
tions, and the relativistic modification must be introduced.
However, as shown in Fig. 6, it might be somewhat of a

surprise not to observe any unusual behavior of QNMs
around the value γ ¼ 5

3
. This can be understood since the

relativistic modification has already been incorporated into
our approach.
Additionally, the cases with γ ¼ 2 usually describe the

interior of neutron stars, including the ultra-relativistic
EOSs [45]. For the DM case, the case with γ ¼ 2 also
describes the two-body interacting superfluid DM while
that of γ ¼ 3 describes the three-body interacting super-
fluid DM [47]. Based on our result, γ ∼ 2 produces the
extreme values of QNMs for given ρ̃0, while γ ∼ 3 results
in the most significant deviation on QNMs, as shown
in Fig. 6.

C. Detectability on space-based detectors

We now turn to consider the detectability of the impacts
on QMNs of DM spike, which is the so-called BH
spectroscopy [80]. The GWwaveform during the ringdown
process can be written as

hþ þ ih× ¼ Mz

DL

X
lmn

AlmneiðflmntþϕlmnÞe−t=τlmnSlmn; ð56Þ

FIG. 4. The real parts of the QNMs as functions of ρ̃0 for different values of γ. We adopt the units so that c ¼ G ¼ 2M ¼ 1.

FIG. 5. The imaginary parts of the QNMs as functions of ρ̃0 for different values of γ. We adopt the units so that c ¼ G ¼ 2M ¼ 1.
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where Mz, DL, Almn, and ϕlmn represent the red-shifted
BH mass, the luminosity distance to the source, the
amplitude of the corresponding QNM, the phase coeffi-
cient, respectively, and Slmn denotes the 2-spin-weighted
spheroidal harmonics depending on the polar and azimuthal
angles. The actual ringdown waveform is the superposition
of the axial and polar parity components. The two para-
meters associated with QNMs are the GW frequency flmn
and the damping time τlmn. These parameters are defined
as follows:

2πflmn ¼ ReðωlmnÞ; ð57Þ

τlmn ¼ −
1

ImðωlmnÞ
; ð58Þ

where ωlmn is the QNMs for given ðl; m; nÞ. Here we
consider only the fundamental mode with ðl; m; nÞ ¼
ð2; 0; 0Þ because it decays the slowest. Following [36],
the frequency and the damping time can be expanded as

flmn ¼ fSchlmnð1þ δflmnÞ; ð59Þ

τlmn ¼ τSchlmnð1þ δτlmnÞ; ð60Þ

where fSchlmn and τ
Sch
lmn are the QNM frequency and damping

time for Schwarzschild case, while δflmn and δτlmn are the
corresponding relative deviations.
Given that the detection of ringdown signals by the

ground-based GW detectors has not been successful [48],
we turn to the future space-borne GW detectors, which
possess a more promising sensitivity. According to [52],
the relative deviation of fundamental modes δω and δτ can
be constrained within 0.0004–0.002 and 0.0005–0.003,
with the ideal case of LISA-TianQin Joint detectors. Thus,
we assert that the relative deviation larger than 10−3 might
be detected on space-based detectors. When transformed

into the deviations in quasinormal frequencies, we have the
following conditions:

Reðω200Þ > 0.748091; or Reðω200Þ < 0.746596; ð61Þ

−Imðω200Þ > 0.178102; or − Imðω200Þ < 0.177747:

ð62Þ

The horizontal lines satisfying the conditions are indicated
in Figs. 4–6. As shown in Figs. 4 and 5, for sufficiently
large values of ρ̃0, the majority values of γ give rise to
detectable deviations in QNMs, except for γ ¼ 1.1, 1.2, 1.3,
1.4, 2.2. Also, it is observed that various EOSs charac-
terized by different values of γ result in distinct behaviors of
QNMs. These results are rather inspiring and might be
utilized in future GW detection and determination of the
EOSs of DM, particularly in the context of EMRI systems.
The latter is largely attributed to their extensive observa-
tional period so that the relevant signals can be effectively
accumulated over time.

V. FURTHER DISCUSSIONS
AND CONCLUDING REMARKS

This paper explores the quasinormal frequencies of the
GWs emitted by the perturbed Schwarzschild-like BHs
merged in the DM spikes. Particular attention is paid to the
DM’s EOS. By adopting Bondi’s form, we consider the
nonvanishing pressure of DM and explore its impact on
the resulting QNMs. To this end, the density profile of the
DM spike is derived regarding the adiabatic process in
relativistic hydrodynamics. The obtained profile is then
furnished to the TOV equations in order to derive the
modified BH metric. Subsequently, we obtain the master
equation for the axial gravitational perturbations of the
underlying metric, and the QNMs are evaluated using the
modified matrix method. We elaborate on the influence of

FIG. 6. The real and imaginary parts of axial QNMs as functions of γ for different values of ρ̃0. The marked points are
γ ¼ 1.1; 1.2;…; 3. We adopt the units so that c ¼ G ¼ 2M ¼ 1.
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the DM’s EOS and discuss the detectability of the resulting
modifications to the QNMs.
The key ingredients of the present study are as follows:
(1) For arbitrary adiabatic processes, Bondi’s EOS is

considered, which gives rise to nonvanishing pres-
sure pðrÞ in the DM.

(2) In the vicinity of a BH, the DM peaks near r≳ 4M
for cases with relativistic modification, while the
distribution vanishes towards the inside due to
annihilation or dropping into BH. Thus, we assume
that the DM profile vanishes for r ≤ 4M featuring a
spike, and the highly nonlinear system of equations
can be solved approximately in an iterative fashion.
The density profiles ρ0ðrÞ and ρðrÞ are derived and
given in Eqs. (19) and (21). These results are
also shown in Figs. 1 and 2. The metric is given
in Eqs. (22) and (26).

(3) The spike in the DM profile divides the entire spatial
domain into two different regions, as shown in Fig. 1.
The resulting master equation, therefore, possesses a
discontinuity as shown in Table I and Fig. 3. The latter
is solved by adopting the modified matrix method,
recently developed and tailored for such a scenario.

(4) Analysis for realistic scenarios such as the central
BHs in Milky Way and M87 are considered in
Sec. IVA. The resulting deviations in the funda-
mental modes are too insignificant to be relevant for
detection by the ongoing space-borne programs.

(5) For a given EOS or γ, when γ ≲ 2.2, both the real
and the imaginary parts of QNMs decrease as ρ̃0
increases, while they both increase with ρ̃0 for
γ ≳ 2.2. The results are presented in Figs. 4 and 5.

(6) For given ρ̃0 there is a turning point near γ ∼ 2. On
the one side, both real and imaginary parts of QNMs
decrease as γ increases, while on the other side, they
both increase with increasing γ, as shown in Fig. 6.

(7) The detectability of the deviations in QNMs is
analyzed. Based on Eq. (56), it is feasible for the
ringdown waveforms to be detected by the future
space-borne GW detectors in terms of relative devia-
tions in the quasinormal frequency δflmn and δτlmn.
By considering the detectable QNMs to satisfy the
conditions given by Eqs. (61) and (62), the threshold
sensibility is indicated by the horizontal lines in
Figs. 4–6, in comparison with the obtained QNMs
frequencies. It is shown that different EOSs result in
different detectability, and such featuresmight be used
to discriminate between DM models.

To summarize, the presence of the DM spike owing to
different EOSs essentially leaves detectable signatures on
the resultant BH quasinormal ringing in the GWwaveform.
Moreover, different DM EOSs give rise to different impli-
cations for the resulting GWs for a given DM density.

In particular, nonvanishing pressure plays a role and should
be properly considered in pertinent studies.
DM accretion process often leads to a spike and, there-

fore, discontinuity in the matter distribution and effective
potential, as shown in Table I. Such a discontinuity is
understood to give birth to nontrivial effects. Specifically, it
was shown to have an intricate connection to the structural
instability [81]. In specific, even a minor “ultraviolate”
perturbation, often expressed as a discontinuity in the
effective potential [82], significantly modifies high over-
tone QNMs leading to observational implications [83].
Furthermore, recent results [84] also indicate that it might
destabilize the fundamental mode. In this regard, further
studies in the context of DM are also worthy topics.
Although the present paper only addresses spinless BHs,

one may argue that the effect might be more substantial in
rotating ones. This is because the spin of a BH is likely to
enhance the DM spike structure near BHs and the DM
density near BHs [23]. Therefore, more pronounced mod-
ifications to the QNMs and corresponding ringdown GWs
are expected, which is favorable from an experimental
perspective.
Last but not least, another intriguing topic involves the

polar QNMs. As mentioned in Sec. III, such perturbations
are likely to be coupled to the matter fields. Moreover, this
scenario was found to have a significant effect on EMRI
GWs [59]. As a result, a more significant impact on
ringdown GWs is expected, potentially facilitating detec-
tion. We plan to address these topics in future exploration.
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APPENDIX A: FORMS OF THE METRIC
FUNCTIONS gðrÞ

Here we give the specific form of the metric functions
used in Eq. (22). The function g2ðrÞ comes from the
integration of the second terms of ρðrÞ in Eq. (21), which
reads
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g2ðrÞ ¼
1
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Moreover, g1 ≡ g2ð4MÞ is given by
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Similarly, g4ðrÞ comes from the integration of the first terms of ρðrÞ in Eq. (21), which reads
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Moreover, g3 ≡ g4ð4MÞ is given by

g3 ¼ g4ð4MÞ ¼ 1

96ðγ − 1Þ
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where 2F1ða; b; c; zÞ is the hyper geometric function defined as

2F1ða; b; c; zÞ ¼
X∞
k¼0

ðaÞkðbÞk
ðcÞk

zk

k!
; ðaÞk ¼ aðaþ 1Þ � � � ðaþ k − 1Þ: ðA5Þ
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APPENDIX B: FORMS OF THE METRIC FUNCTIONS f ðrÞ
Here we give the specific form of the metric functions used in Eq. (26). The functions f1ðrÞ and f2ðrÞ come from the

integrations of the first two terms in Eq. (25), namely,

f1ðrÞ ¼
1
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0
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f2ðrÞ ¼ −M
�
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γ
þ g3

�Z
1

ðr − 2MÞ2 dr; ðB2Þ

The functions f3ðrÞ and f5ðrÞ come from the integrations of the nonhypergeometric terms g2ðrÞ and g4ðrÞ in Eqs. (A1) and
(A3), which read
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On the other hand, f4ðrÞ and f6ðrÞ come from the integrations of the hyper-geometric terms of g2ðrÞ and g4ðrÞ in Eqs. (A1)
and (A3), which read
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Specifically, the function f1ðrÞ and f2ðrÞ are

f1ðrÞ ¼ −
1

16γ2

8>><
>>:4ðγ − 1Þγ

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q − 1

1
CA

1
γ−1

2
66414ðγ − 1Þ − 4ðγ − 1Þ

ðγ − 2Þ
	

1ffiffiffiffiffiffiffiffi
1−2M

r

p − 1

þ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
− 1


2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
þ 1


2

3
775

þ 64ðγ − 1Þ2
0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q − 1

1
CA

γ
γ−1

2F1

0
B@1;

γ

γ − 1
; 2þ 1

γ − 1
; 1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA

þ 32ðγ − 1ÞγΓ
�
2þ 1

γ − 1

�0B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

1
γ−1þ2

2F̃1

2
6641; 2þ 1

γ − 1
; 3þ 1

γ − 1
;
1

2

0
B@1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA
3
775

þ 64ðγ − 1ÞγΓ
�
2þ 1

γ − 1

�0B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

1
γ−1þ2

2F̃1

0
B@1; 2þ 1

γ − 1
; 3þ 1

γ − 1
; 1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA

− γð14γ − 13ÞΓ
�
2þ 1

γ − 1

�0B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q − 1

1
CA

1
γ−1þ2

2F̃1

2
6642; 2þ 1

γ − 1
; 3þ 1

γ − 1
;
1

2

0
B@1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA
3
775
9>>=
>>;; ðB7Þ

and

f2ðrÞ ¼
M
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�
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γ
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�
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where Γ represents the Gamma function and 2F̃1ða; b; c; dÞ≡ 2F1ða; b; c; dÞ=ΓðcÞ is the regularized hypergeometric
function.
By performing the integration, f3ðrÞ and f5ðrÞ are given by
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and
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The functions f4ðrÞ and f6ðrÞ require the integration of the hyper-geometric terms of g2ðrÞ and g4ðrÞ in Eqs. (A1) and
(A3). Using Eq. (A5), the hypergeometric function can be expanded into series, and one may carry out the integration order

by order. Note that the integration interval is r∈ ð4M;∞Þ, and
	
1 − 1ffiffiffiffiffiffiffiffi
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is a small quantity compared with 1. Therefore,

any term of the order higher than
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kmax can be neglected. Following this strategy, the specific forms of f4ðrÞ and

f6ðrÞ are found to be
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and

f6ðrÞ ¼ −
γð44γ − 73Þ þ 30

96ðγ − 1Þγ
Xkmax

k¼0

ð−2Þ−k
k!

ð2Þkð γ
γ−1Þk

ð2þ 1
γ−1Þk

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − 2M
r

s
− 1

! 1
γ−1þkþ2

1
1

γ−1 þ kþ 2
þ

ffiffiffiffiffiffiffiffi
1

1−2M
r

q
− 1

1
γ−1 þ kþ 3

; ðB12Þ

where ðaÞk represents the Pochhammer symbol defined by

ðaÞk ¼ aðaþ 1Þ � � � ðaþ k − 1Þ: ðB13Þ

APPENDIX C: THE CONTINUITY OF THE METRIC FUNCTIONS NEAR SPECIAL VALUES OF γ

It has been observed that certain exceptional scenarios, which entail specific values of γ, seem impossible within our
formalism of the modified metric as given in Eqs. (22), (26), and Appendixes A, B. For instance, when selecting γ ¼ 2,
certain terms in Eqs. (A1) and (A2) become divergent, which reads,
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and

2g1 ¼ 2g2ð4MÞ ¼ 3ð ffiffiffi
2

p
− 1Þ 1

γ−1−1ðγ − 1Þ
γ − 2

; ðC2Þ

where we use the left subscript to denote the value γ ¼ 2. However, given that these divergent terms consistently appear in
the form of differences as given in Eqs. (22) and (26), we apply the Taylor expansion of such terms and find,

2g2ðrÞ − 2g1 ¼
3ð ffiffiffi

2
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It is evident that the divergent terms, which are solely present in terms of the 0-order expansion, may be eliminated through
the form of differences. Meanwhile, the higher-order terms do not exhibit divergence. Thus, analytically, there is no
problem with our formalism of metric as given in Eqs. (22), (26) and Appendixes A, B.
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