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We investigate the thermodynamic properties of the Hayward regular black hole using both Euclidean
path integral and Hamiltonian methods, in asymptotically anti–de Sitter, Minkowski, and de Sitter
spacetimes. With the inclusion of matter fields which act as a source for the regular black hole geometry, an
effective temperature emerges that differs from the conventional definition related to the Killing surface
gravity. We posit that this temperature is the appropriate choice for studying thermodynamic phenomena,
by demonstrating consistency between the Euclidean and Hamiltonian formulations in the appropriate
limits. We examine the thermodynamic properties and phase structure of the Hayward black hole in the
canonical ensemble and show that, counter to some earlier indications, standard mean-field theory critical
behavior is observed when the cosmological constant is treated as a thermodynamic pressure. We note the
absence of a Hawking-Page transition, and conjecture that quantum gravity corrections which are suitably
strong to regulate the Schwarzschild singularity generically prevent the transition from occurring. We also
show that the Smarr relation remains linear in all cases, despite the absence of a linearity proof for nonlinear
electrodynamic theories with nonsymmetry inheriting fields.
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I. INTRODUCTION

The singular nature of classical black hole solutions in
general relativity remains one of the most important yet
obtrusive features of prototypical black hole models.
Signaling a breakdown of the effective field theory
description of quantum gravity near the Planck scale, such
singularities are believed to be largely provisional. Yet, how
exactly a tentative quantum theory of gravity regulates the
singularity, whether such a smoothing procedure propa-
gates its effects beyond the Planck scale, and whether
indeed the singularity can be tamed without invoking sub-
Planckian or quantum degrees of freedom, remain impor-
tant open questions.
The smoothing of the central singularity is inextricably

tied to energy conditions. The original Hawking-Penrose
singularity theorems achieve the required geodesic focus-
ing via the strong energy condition (SEC), so naturally
early regular black hole models such as the Bardeen black
hole precisely drop this assumption on the classical
collapsing matter. Since it is known that both classical
and quantum field theory can violate the strong energy
condition, the singularity theorems have since been revis-
ited in a number of forms using the averaged null energy
condition, weak energy condition, and various quantum
energy inequalities in place of the SEC. A host of regular

black hole models that generally involve violation of one or
more of these energy conditions have come about since
the introduction of the Bardeen black hole [1], including
phantom black holes [2], noncommutative black holes [3]
and the Hayward model [4].
Among the available singularity-free black hole models,

certain candidates distinguish themselves by being gen-
erated by classical matter distributions coupled minimally
to Einstein-Hilbert gravity. In particular, the Bardeen and
Hayward metrics (as well as various extensions) can be
sourced by electric and/or magnetic charges in general
relativity coupled to nonlinear electrodynamics [5,6]. The
nonlinear electrodynamic (NED) Lagrangians involved
remain important sources in the context of string theory
and the study of various condensed matter systems (see
Ref. [7] for a recent review).
The nature of how regular black holes (RBHs) are

sourced at the classical level has led to widespread
disagreement on how to properly formulate the laws of
thermodynamics for RBHs. Whenever new parameters
enter into the Lagrangian, extra terms ostensibly appear
in the mechanical first law which do not always lend
themselves to an obvious thermodynamic interpretation.
Additionally, some approaches maintain that the entropy is
the Bekenstein-Hawking result of S ¼ A=4, while others
argue that corrections to the entropy arise [8]. The issue
becomes even more subtle in the case of the Hayward
model, since properly incorporating matter fields (which
are required to generate the geometry) in the first law is
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highly nontrivial. Understanding the thermodynamic prop-
erties of regular black hole solutions is also important for
studying how regularization of the central singularity
propagates into the classical sector, since these solutions
can be viewed as classical approximations to a regularized
geometry arising from quantum gravity theory. Especially
in the asymptotically anti–de Sitter case, we expect
important modifications to the dual gauge theory descrip-
tion in the context of the anti–de Sitter/conformal field
theory correspondence (AdS=CFT) [9].
There are a variety of methods available for studying

black hole thermodynamics which have been developed
since the pioneering work of Bekenstein, Hawking, and
collaborators [10]. Simply computing the entropy of a black
hole may be done using the covariant phase space approach
of Iyer and Wald [11], the Euclidean path integral of
Gibbons and Hawking [12], the conical deficit formula of
Susskind [13], various entanglement entropy computations
[14], CFT techniques [15], andmore.While all of these seem
to reproduce the famous S ¼ A=4 result for black holes in
Einstein-Hilbert gravity, not all of these techniques and their
associated first law constructions are equivalent, and not
all can be applied in the same contexts. For the Hayward
regular black hole, which is sourced by a gauge field with
nonlinear Lagrangian, it is especially unclear which method
should be preferred. Over the years, a number of inves-
tigations have been carried out using different methods. The
Hayward-AdSmodel was studied previously in [5,16] using
variables defined through a Hamiltonian variation of the
Komar mass, though in the former case we believe an
unsuitable choice of thermodynamic variables has led to an
unexpected departure from the expected behavior of AdS
black holes in the extended phase space. The asymptotically
flat case was considered in [17], taking S ¼ A=4 as a given
and assuming a Gibbsian thermodynamic interpretation
from the onset, though no mechanism was given for
establishing thermodynamic equilibrium, so it is not clear
what ensemble is being defined there. The case of generalΛ
was considered in [18] using a Euclidean approach, but only
the action was computed and no further thermodynamic
analysis was done.
In this paper we aim to shed light on this state of affairs

and resolve some of the disagreement between various
implementations of the thermodynamical laws for regular
black holes. We consider the Hayward black hole model in
asymptotically flat, anti–de Sitter, and de Sitter spacetimes,
and attempt to demonstrate consistency between the
Hamiltonian and Euclidean path integral formulations
where direct comparisons between the methods are pos-
sible. Properly accounting for the variation of Λ, the correct
definition of mass for the Hayward black hole, and
accounting for the mechanisms required to establish equi-
librium for different asymptotic behavior, we examine the
phase structure and thermodynamic stability of the various
solutions. In the AdS case, our work differs from that

of [5,16] in the choice of thermodynamic parameters,
which in the former we believe have been incorrectly
identified. As a result, we are able to show that the
Hayward-AdS black hole does indeed possess the expected
mean-field theory critical exponents.
This paper is organized as follows: in Sec. II we describe

the general structure of NED theories, and demonstrate how
the Hayward model arises, including its properties, source,
and de Sitter embedding. In Sec. III, we discuss how the
first law of black hole thermodynamics and Smarr relation
apply to regular black holes and demonstrate consistency
between Hamiltonian and Euclidean path integral frame-
works. In Sec. IV we analyze the phase structure of the
Hayward model. Specifically, in Sec. IVA we study the
Hayward-AdS black hole, examining its thermodynamic
stability, phase structure, and behavior near the critical
point and in Secs. IV B and IV C we consider the
asymptotically Minkowski and de Sitter cases, respectively.
We conclude in Sec. V with a discussion of the main results
and implications for future investigations. Throughout, we
work in d ¼ 4 and units where ℏ ¼ c ¼ G ¼ 1 are used
unless otherwise noted.

II. NON-LINEAR ELECTRODYNAMICS

Regular black hole geometries generically require addi-
tional matter fields to source their nonsingular metrics, with
the first example of an exact solution being given by [19]
using a nonlinear electrodynamic (NED) source. That NED
can generate other well-known regular geometries was later
demonstrated for the Bardeen black hole in [6] and further
generalized to a variety of two-parameter families of
spherically symmetric RBHs solutions in [20]. The geom-
etry and dynamics are determined by the action of the given
NED theory, which in the presence of a cosmological
constant Λ has the general form

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ 4LðF ;GÞ�; ð1Þ

where g ¼ det gμν, R is the Ricci scalar, and LðF ;GÞ is the
Lagrangian density of the NED theory under consideration.
L is a function of two electromagnetic invariants F ≡
FμνFμν and G≡ Fμν ⋆ Fμν, which are functions of the field
strength tensor Fμν ¼ ∂μAν − ∂νAμ. It may also be a
function of a finite number of additional real parameters
fβig. An auxiliary two-form can be defined as

Zμν ≡ −4
�
∂L
∂F

Fμν þ
∂L
∂G

⋆ Fμν

�
; ð2Þ

so that the equations of motion of the theory are the
generalized source-free Einstein-Maxwell equations

Gμν ¼ 8πTμν; dF ¼ 0; d ⋆ Z ¼ 0: ð3Þ
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The Maxwell case corresponds to LðF ;GÞ¼LðF Þ¼−F=4.
In general, the NED theory defined by (1) can possess both
electric and magnetic charges, with the existence of an
electromagnetic duality F → ⋆F being tied to the existence
of a Maxwell limit. The electric and magnetic charges are
defined, respectively, as Komar integrals over a smooth
closed 2-surface S as

Qe ≡ 1

4π

Z
S
⋆ Z; Qm ≡ 1

4π

Z
S
F; ð4Þ

although many models can be generated by either elec-
tric or magnetic charge alone. For Lagrangians which
have a Maxwellian weak-field limit, solutions must be
sourced entirely by magnetic charge, with electrically
sourced solutions generically requiring a different form
of Lagrangian in the near and far regions [21]. A subclass of
NED theories defined by (1) possess invariance under an
electromagnetic duality transformation by

F → F cos αþ ⋆Z sin α;

Z → Z cos αþ ⋆F sin α; ð5Þ

examples of which are Born-Infeld [22], ModMax [23],
and power-Maxwell theories [24] along with standard
Maxwell electrodynamics. The existence of such a duality
is important for establishing linearity of the Smarr relation
for such theories [25], while theories without the duality
may exhibit nonlinear Smarr relations instead. These NED
theories remain of broad theoretical interest for many
reasons, having been introduced to regularize the classical
divergences associated with point charges, and also arising
as high-energy corrections to standard electrodynamics
from more fundamental theories.

A. The Hayward model

One particularly important example of a geometry
generated by NED theory is the Hayward regular black
hole [4]. Regular black holes are of themselves of signifi-
cant theoretical interest, representing classical black hole
geometries with no central singularity. This is a highly
nontrivial condition that entails finiteness of all algebraic
curvature invariants at the center as well as flatness. A
necessary requirement for regularity at the center is the
existence of a de Sitter or anti–de Sitter core. The usual
r ¼ 0 singularity common to textbook black hole solutions
to general relativity signals a breakdown of the effective
field theory description of general relativity and is expected
to be resolved by an appropriate quantum theory of gravity.
Classical regular black hole solutions therefore represent a
first-order approximation to the geometry that results from
whatever regularization procedure inevitably smooths the
central singularity. It is therefore of significant theoretical
interest to study the properties of regular black hole
solutions. The Hayward model represents one such

solution, and can be generated from the following
Lagrangian density

LðF Þ ¼ 12

α

ðαF Þ3=2
ð1þ ðαF Þ3=4Þ2 ; ð6Þ

where α is one of the free parameters of the theory [20].
This theory is independent of G and possesses only
magnetic charge. The vector potential is given explicitly by

Aμ ¼ ð0; 0; 0; Qm cos θÞ; ð7Þ

and the variation of the action (1) leads to

Gμν ¼ 8πTμν and ∇μ

�
∂L
∂F

Fμν

�
¼ 0; ð8Þ

where Gμν is the Einstein tensor in the presence of a
cosmological constant and the source term Tμν is given by

Tμν ¼
1

4π

�
∂L
∂F

FμλFλ
ν −

1

4
gμνL

�
: ð9Þ

The equations of motion admit a spherically symmetric
geometry

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð10Þ

where dΩ2 is the metric on S2 and the metric function fðrÞ
is given by

fðrÞ ¼ 1 −
2α−1q3r2

r3 þ q3
−
Λ
3
r2; ð11Þ

where Λ is the cosmological constant, and q is an
integration constant related to the magnetic charge Qm
and coupling α of the theory through

Qm ¼ q2ffiffiffiffiffiffi
2α

p : ð12Þ

In the notation of [4], the metric function of the regular
spherically symmetric geometry is given by

fðrÞ ¼ 1 −
2mr2

r3 þ 2ml2
−
Λ
3
r2; ð13Þ

where m is the mass parameter and l is a minimal length
scale characterizing the size of the regular center. When
l → 0 this reduces to the Schwarzschild-anti-de Sitter
(or -de Sitter) metric. Direct comparison to (11) allows
one to identify q and α appearing in the NED metric
as [26,27]

α ¼ 2l2 and q3 ¼ 2ml2: ð14Þ
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Therefore the regularization of the central singularity,
which is characterized by a minimal length scale l, can
be given an effective description in terms of a nonlinear
electromagnetic field sourced by magnetic charge.
A few comments are warranted concerning the Hayward

model (13). First, the solution is sourced entirely by
magnetic charge, which to date has not been observed in
the Universe despite a number of significant observational
efforts [28,29]. Nonetheless, heavy magnetic monopoles
which form in the early Universe remain a generic
prediction of grand unified theories [30–32], where they
arise from spontaneous symmetry breaking at the GUT
scale ∼1016 GeV, and have important implications for
structure formation and early Universe cosmology (see
Ref. [33] for a review). Second, one may readily observe
that in the weak-field limit the Lagrangian (6) does not
approach the Maxwell limit but rather L ∼

ffiffiffi
α

p
F 3=2 which

is stronger than the Maxwell field. While this feature is
somewhat unattractive, the Hayward model nonetheless
represents one of the very few available classical regular
black hole geometries that one can use to model quantum
gravity effects on the central singularity, since there are
strict no-go theorems which forbid regular geometries in
ordinary Einstein-Maxwell theory. Furthermore, nonlinear
theories with pure electric source that have a Maxwell
weak-field limit are also known to not admit solutions with
regular center [34]. The magnetically sourced Hayward
model therefore serves as an extremely useful and minimal
prototype model of a regular black hole.
In what follows we use the metric in the form of (13),

considering the minimal length l as a more fundamental
parameter than q and α, which arise in just one of a distinct
number of ways to generate the same geometry. This is in
contrast to earlier work on the Hayward-AdS black hole
[5], whose results we regard with caution. Their work has
treated Qm and α (σ in their notation) as two independent
parameters, when there is in fact only one (which we recast
in terms of l) since Qm depends only on α and the ADM
mass m. The previous work does not identify m as the
ADM mass, though it must be the case as pointed out
initially by [35].

III. FIRST LAW AND SMARR FORMULA

A. Hamiltonian methods

The first law of black hole mechanics occupies a
significant portion of the theoretical physics landscape.
First derived in [10] as a relation between variations of the
physical parameters describing a black hole in Einstein
gravity, an analogous relation has since been shown to hold
in any theory of gravity arising from a diffeomorphism-
invariant Lagrangian [11,36]. The generalization of the first
law to nonlinear electrodynamics was first studied in [37],
although the Smarr formula [38] was not found to be
satisfied. This was later addressed in [39] by appropriately

accounting for the extra parameters appearing in the NED
theory. The result is a relation resembling the ordinary first
law with additional terms:

dM ¼ TdSþΦdQe þ ΨHdQm þ
X
i

Kidβi: ð15Þ

In the above, M is the Komar mass [40] which coincides
with the ADM mass [41] in asymptotically flat spacetimes,
T is the Hawking temperature (as determined the surface
gravity κ through T ¼ κ=2π), S ¼ A=4 is the entropy, and
fΦ;ΨHg are the electric and magnetic potentials associated
with the electric and magnetic charges fQe;Qmg. The
terms Ki represent the potentials conjugate to the param-
eters βi of the theory. In [39], these quantities are explicitly
computed for the Bardeen black hole and black hole
solutions in Born-Infeld theory. The Smarr relation was
also shown to hold for both cases.
Using the definitions of [39], we explicitly compute the

thermodynamic quantities entering the first law for the
Hayward black hole, both in the presence and absence of a
cosmological constant Λ. The cosmological constant, when
treated as an independently varying parameter, naturally
enters into the first law as a work term VdP with the
identification P ¼ −Λ=8π. In this extended phase space,
the thermodynamic volume V appears naturally conjugate
to variations in P [42] and the mass M is identified as a
thermodynamic enthalpy [43]. The variation of P, and
therefore Λ, arises naturally in a consistent variational
principle [44], and can acquire a dynamical status through a
3-form gauge potential as in the Brown-Teitelboim mecha-
nism [45]. The minimal length l is also treated as a variable
parameter, on the basis that it emerges in more fundamental
theories from vacuum expectation values of the elementary
fields [46,47], and when back-reaction of the evaporation
process is accounted for [48–50]. The variation of these
additional parameters is also required to establish the
correct Smarr relation [42,51], which is widely believed
to be universal and arises from quite general scaling
arguments.
We proceed with the explicit calculation of the quantities

of the first law in the case of Hayward black hole embedded
in a spacetime with a cosmological constant. In our case
there is only a single additional parameter fβig ¼ α
appearing in (15), along with its conjugate potential Kα.
The first law therefore becomes

dM ¼ TdSþΨHdQm þ Kαdαþ VdP: ð16Þ

The mass parameter can be written in terms of the event
horizon radius rh as

m ¼ 3r3h − Λr5h
6r2h − 2l2ð3 − Λr2hÞ

; ð17Þ
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so that (13) can be expressed as

fðrÞ ¼ 1 −
r2r3hð3 − Λr2hÞ

3r3r2h − l2ð3 − Λr2hÞðr3 − r3hÞ
; ð18Þ

where rh is the outermost real root of fðrÞ ¼ 0 (unless
Λ > 0). The Hawking temperature T is determined by the
Killing surface gravity κ as

T¼ κ

2π
¼ f0ðrÞ

8π

����
r¼rh

¼ 3r2hð1− r2hΛÞ− l2ð3− r2hΛÞ2
12πr3h

; ð19Þ

and the entropy is simply S ¼ A=4 ¼ πr2h [52–54]. Since
the spacetime is static, it admits a Killing vector ξμ ¼ ∂t
through which the magnetic field Hμ is defined

Hμ ¼ − ⋆ Bμνξ
ν; ð20Þ

where

⋆Bμν ¼
1

2
ϵμνρσBρσ and Bμν ¼ L0ðF ÞFμν; ð21Þ

with ϵμνρσ being the volume form. The magnetic potentialΦ
is related to the magnetic field through

Hμ ¼ ∇μΨ; ð22Þ

whose integration along with the boundary condition
limr→∞ΨH ¼ 0 gives

ΨðrÞ ¼ 3q4ð2r3 þ q3Þffiffiffiffiffiffi
2α

p ðr3 þ q3Þ2 : ð23Þ

The quantity ΨH appearing in the first law is then simply
ΨðrÞ evaluated on the horizon r ¼ rh. Finally, the con-
jugate potential Kα associated with the parameter α is given
by [37,39]

Kα ¼
1

4

Z
∞

rh

r2
∂L
∂α

; ð24Þ

which upon integration gives

Kα ¼
6q6ð−2q3 þ r3hÞ
4α2ðr3h þ q3Þ2 : ð25Þ

Finally, the geometric volume is V ¼ 4πr3h=3. It can be
shown [55] that these quantities satisfy a linear Smarr
relation

M ¼ 2TSþ ΨHQm þ 2Kαα − 2PV; ð26Þ

whereM is again the Komar mass. We will now rewrite the
first law and Smarr relation solely in terms of the physically

relevant parameters i.e. the horizon area A, the minimal
length l and the cosmological constant Λ, instead of the
parameters ðQm; α; PÞ that appear in (16). We have that

Qm ¼ Al1=3

8π

�
12π þ 8πAP

3A − 12πl2 − 8πAl2P

�
; ð27Þ

and

α ¼ 2l2; ð28Þ

with their differentials being given by

dQm ¼ ∂Qm

∂A
dAþ ∂Qm

∂l
dlþ ∂Qm

∂P
dP; ð29Þ

dα ¼ ∂α

∂A
dAþ ∂α

∂l
dlþ ∂α

∂P
dP: ð30Þ

This gives the following form of modified first law

dM ¼ T̃dSþ Φ̃dlþ ṼdP; ð31Þ

where an effective temperature T̃ given by

T̃ ¼ T þ 4ΨH
∂Qm

∂A
; ð32Þ

naturally emerges, along with an effective potential Φ̃
associated with the minimal length

Φ̃ ¼ ΨH
∂Qm

∂l
þ Kα

∂α

∂l
; ð33Þ

and an effective thermodynamic volume Ṽ

Ṽ ¼ V þΨH
∂Qm

∂P
; ð34Þ

where V ¼ 4πr3h=3. These effective quantities also define a
proper Smarr relation

M ¼ 2T̃Sþ Φ̃l − 2ṼP; ð35Þ

with the appropriate scaling invariance [42] under

M→ cM; l→ cl; rh → crh; P→ c−2P;

S→ cS2; T̃ → c−1T̃; Φ̃→ Φ̃; Ṽ → c3Ṽ: ð36Þ

Linearity of the Smarr relation is intimately tied to the
symmetry inheritance properties of the gauge fields present
in the theory. It is often assumed that if the underlying
metric g possesses a symmetry Lξgab ¼ 0 generated by a
Killing field ξ, the electromagnetic field will inherit the
same symmetry, i.e. LξFab ¼ 0. In d ¼ 4 Einstein-
Maxwell theory there are known counterexamples to this

EUCLIDEAN AND HAMILTONIAN THERMODYNAMICS FOR … PHYS. REV. D 109, 044029 (2024)

044029-5



assumption, as seen in certain classes of Bianchi type-V
metrics [56] and pp-wave metrics [57], a phenomenon
which extends to other symmetries such as the conformal
group in multifluid spacetimes [58]. The symmetry inher-
itance property of the field is important for establishing
constancy of the electromagnetic potential on the Killing
horizon, and is also required for establishing linearity of the
Smarr relation, as was done in [59]. In our case the gauge
field does not inherit the symmetry of the spacetime, with
Lξθg ¼ 0 but LξθA

μ ≠ 0, yet the Smarr relation remains
linear. This suggests the condition presented in [59] may be
sufficient but not necessary for linearity of the Smarr
relation.
The explicit form of the quantities appearing in (31) are

given below. The effective temperature is

T̃ ¼ 3rhð3r2h − 3r4hΛ − l2ð−3þ r2hΛÞ2Þ
4πð3r2h þ l2ð−3þ r2hΛÞÞ2

; ð37Þ

which is evidently different from the temperature (19)
defined through the surface gravity, though they are simply
related through

T̃ ¼ T�
1 − l2

r2h

�
1 − Λ

3
r2h
��

2
: ð38Þ

Thedifference between the two arises fromhowone treats the
contribution to the total energy variation of the first law aris-
ing from the matter, which may or may not be thermalized
with respect to the Killing time. When matter is present, the
entropy variation conjugate to the surface gravity κ does not
necessarily refer only to the geometric entropy of the black
hole, and requiring it to do so is accompanied by a
modification of the conjugate temperature. The root cause
arises from an ambiguity in the splitting of the Lagrangian
into a geometric andmatter contribution,which ismanifest in
the covariant formalism [60]. A similar modification can
occur, for example, when scalar fields are present which do
not minimally couple to gravity, as recently observed in
d ¼ 4 Gauss-Bonnet gravity [61]. When the minimal length
vanishes however, the effective temperature and the surface
gravity temperature coincide, as expected since in this limit
the matter contribution to the total Lagrangian vanishes. The
two remaining potentials are given by

Φ̃ ¼ lr3hð−3þ Λr2hÞ2
ð3r2h þ l2ð−3þ Λr2hÞÞ2

; ð39Þ

Ṽ ¼ 12r7h
ð3r2h þ l2ð−3þ Λr2hÞÞ2

: ð40Þ

Note that the same version of the first law (31) is obtained if
one uses the fact thatQm ¼ Qmðm; lÞ and α ¼ αðlÞ through
(12) and (14), giving

dM ¼ TdSþ VdPþ ΨHdQm þ Kαdα

¼ TdSþ VdPþ
�
ΨH

∂Qm

∂m

�
dm

þ
�
∂Qm

∂l
þ Kα

∂α

∂l

�
dl: ð41Þ

Now observing that for the Hayward metric, m is in fact
equal to the ADM/Komar mass M appearing on the left-
hand side of (16), one has that the variation of the mass
satisfies

dM ¼
�

T

1 −ΨH
∂Qm
∂m

�
dSþ

�
V

1 −ΨH
∂Qm
∂m

�
dP

þ
�∂Qm

∂l þ Kα
∂α
∂l

1 −ΨH
∂Qm
∂m

�
dl: ð42Þ

where the quantities in brackets will be the same as the
effective quantities appearing in (31).

B. Euclidean path integral methods

We will now elaborate on the relationship between the
thermodynamic variables obtained from the Hamiltonian
versionof the first lawaboveandanother commonlyemployed
method for understanding black hole thermodynamic—the
Euclidean path integral. Developed by Gibbons and
Hawking [12] and extended by York [62,63], this method
has a basis in the fundamental relationship between the
partition function Z of general quantum systems and the
Euclidean path integral. The partition function for a
continuous quantum system defined by canonical variables
fqig with Hamiltonian H at finite temperature T ¼ β−1 is

Z ¼
Z

dqihqije−βHjqii;

from which thermodynamic quantities for the statistical
ensemble can be readily determined as

F¼−T lnZ; E¼−
∂ lnZ
∂β

; S¼−β
∂ lnZ
∂β

þ lnZ: ð43Þ

In the context of gravity, Z is formally given by an
intractable path integral over an ill-defined measure D½g�
which includes contributions from both matter and gravi-
tational degrees of freedom. The partition function can
however be computed in a semiclassical saddle-point
approximation where

Z ¼
Z

gðτÞ

gð0Þ
D½g�e−IE½g� ≈

X
gcl

e−IE½gcl�;

where IE½g� is the Euclidean action of the metric g, and
IE½gcl� is the saddle-point contribution from the Euclidean
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metrics gcl which solve the classical equations of motion
and obey the prescribed boundary conditions.1 The perio-
dicity in τ implements the trace from (43) and encodes the
Kubo-Martin-Schwinger (KMS) condition for finite-
temperature fields [65,66]. We work in an on-shell spheri-
cal reduction, where the periodicity is naturally fixed to
remove a would-be conical singularity at the origin of the
Euclidean section (the black hole event horizon):

β−1 ¼ κ

2π
: ð44Þ

This method of computing thermodynamic quantities is
particularly advantageous for black holes in de Sitter space,
because one can fix boundary-value data (in our case the
temperature) on a surface at some finite radius rc between
the black hole and cosmological horizons, and compute Z
by performing the direct (now finite) integration. This
physically corresponds to placing the black hole in an
isothermal cavity, where the temperature at the cavity is
fixed to be

β−1c ¼ κ

2π
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ; ð45Þ

which is just the locally observed KMS temperature at rc.
This method has been applied to a wide variety of black
hole spacetimes where a thermodynamic landscape com-
parably rich to that of AdS has been revealed [67–70]. In
the case of the Hayward black hole model considered in
this work we require the total reduced Euclidean action Ir
for the Einstein-Hilbert-NED theory, given by

Ir ¼ IEH þ IGHY þ IM þ IEMB − I0; ð46Þ

where IEH is the Einstein-Hilbert action, IGHY the Gibbons-
Hawking-York boundary term, IM is the Euclidean action
for any matter fields present, IEMB is an electromagnetic
boundary term required to fix the charge, and I0 is a
subtraction term which serves to regularize the infinite
volume integral for a spacetime without boundary. Explicit
calculation of each term can be found in the Appendix B.
The individual terms are defined as

IEH ¼ −
1

16π

Z
M

d4x
ffiffiffi
g

p ðR − 2ΛÞ; ð47Þ

IGHY ¼ 1

8π

Z
∂M

d3x
ffiffiffi
k

p
K; ð48Þ

where K is the trace of the extrinsic curvature of the
spherical boundary ∂M at rc and k is the determinant of the
boundary metric,

IM ¼ 1

16π

Z
M

d4x
ffiffiffi
g

p
LðF Þ; ð49Þ

is the matter action,

IEMB ¼ −
1

16π

Z
∂M

d3x
ffiffiffi
k

p �
∂L
∂F

�
FμνnνAμ; ð50Þ

is an electromagnetic boundary termwhich fixes the charge in
the canonical ensemble, and the subtraction term I0 is simply
the total reduced action evaluated for the empty spacetime
(Minkowski, AdS, or dS space, depending on which asymp-
totics are assumed). In asymptotically flat or AdS space this
term removes the divergent part of the volume integral. In the
case where the integration is cut at a finite boundary no such
divergence appears, and instead I0 simply normalizes the
action such that Ir ¼ 0 for the empty spacetime. After
combining the terms and performing the required integra-
tions, we find that total reduced action is given by

Ir ¼ −πr2h þ
βrc
3

�
3 − r2cΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − Λr2c

q
X
�
; ð51Þ

where

X≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3−Λr2cÞY−9r2cr2h

�
rc−rh−Λ

3
ðr3cþ r3hÞ

�
Y−3r3cr2h

vuut
; ð52Þ

and

Y ≡ l2ðr3c − r3hÞðr2hΛ − 3Þ: ð53Þ
The β-independent term ensures that the correct entropy is
obtained from Eq. (43) which reduces to,

S ¼ β
∂Ir
∂β

− Ir ¼ πr2h: ð54Þ

The equilibrium temperature can be obtained by extrem-
izing the action with respect to rh and solving for β,

∂Ir
∂rh

¼ 0; ð55Þ

which gives a temperature T ¼ β−1 of

T ¼ 3r6c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− r2cΛ

p
ð3r3hð1−r2hΛÞ− l2rhðr2hΛ−3Þ2Þ
4πð3r3cr2hþYÞÞ2X : ð56Þ

If there is no cosmological horizon then one can take the
limit rc → ∞ and the above relation for T reduces to the
effective temperature T̃ defined in Eq. (37). The mean
thermal energy is

E ¼ ∂Ir
∂β

¼ rc
3

�
3 − r2cΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − Λr2c

q
X
�
; ð57Þ1As discussed in [64], there are subtleties involved in this

approximation which should be treated carefully.
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and the potentials conjugate to l and Λ can be obtained by
the variations

φ ¼ 1

β

∂Ir
∂l

; V ¼ −
8π

β

∂Ir
∂Λ

; ð58Þ

which give

φ ¼ lr3cr3hðr3c − r3hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
ð−3þ r2hΛÞ2

ð3r3cr2h þ l2ðr3c − r3hÞð−3þ r2hΛÞÞ2X
; ð59Þ

and

V ¼ 8πr3c
3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − Λr2c

p
X 0

r2c
−

X

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − Λr2c

p �
; ð60Þ

where a prime denotes a derivative with respect to Λ. For
asymptotically flat (Λ ¼ 0) or anti–de Sitter ðΛ < 0)
spacetimes, one can take the limit rc → ∞ and find that
φ and V coincide with Φ̃ and Ṽ, which are respectively
given by Eqs. (39) and (40), demonstrating that the
Euclidean formulation is consistent with the Hamiltonian
one used in the AdS case, in the regime where the two
methods are comparable. The Euclidean formulation is
however more broadly applicable since it can be imple-
mented for any standard choice of asymptotics, while the
Hamiltonian formulation requires a Killing vector field
which is timelike in the asymptotic region to associate the
conserved energy with.
In the presence of a cavity, and additional work term

λdAc enters into the first law relating the cavity tension λ
and variations of its area Ac [63]. The tension λ is
determined through

λ ¼ 1

β

∂Ir
∂Ac

; ð61Þ

and is given in Appendix C. With the quantities above, the
following form of the Smarr relation is satisfied

E ¼ 2T Sþ φlþ 2λAc − 2PV: ð62Þ

Note that the thermal energy E and the mass M are not
equal except in the limit when rc → ∞. We now argue that
the correct choice of thermodynamic variables entering the
first law for the Hayward solution are the ones given above,
based on their agreement with the quantities computed
from the Hamiltonian construction (when appropriate
limits can be taken to sensibly relate the two). As there
are a number of different frameworks available for comput-
ing thermodynamic quantities associated with black hole
spacetimes, a natural question is whether one should expect
the Euclidean path integral method of Gibbons and
Hawking to agree with a Hamiltonian formulation in the
first place. This has been discussed previously by Iyer and

Wald [71], who showed that the covariant phase space
construction of the first law (under which the Hamiltonian
form originally given by [10] is subsumed) is equivalent to
a Euclidean path integral formulation based on the semi-
classical approximation to the partition function, provided
that the Lagrangian is at most linear in the curvature.

IV. HAYWARD PHASE STRUCTURE

A. Anti–de Sitter Λ < 0

Asymptotically anti–de Sitter black holes readily admit a
thermodynamic interpretation owing to the confining
effective potential of anti–de Sitter space. Free particles
(both massive and massless) follow periodic closed orbits
in an AdS background, so Hawking radiation from a black
hole is naturally confined provided reflecting boundary
conditions are imposed at the timelike boundary. Therefore,
subtleties in determining when/if thermodynamic equilib-
rium is achieved by a large black hole are avoided since one
can simply assume that sufficient time has passed for the
outgoing radiation to equilibrate with the black hole
(provided it is sufficiently large compared to the AdS
length scale). It has long been known that the unique
boundary conditions of anti–de Sitter space allow for a
gauge-gravity duality relating quantum gravity theory in
the bulk of AdS to a conformal field theory on the boundary
of AdS. This is the basis of the anti–de Sitter/conformal
field theory correspondence, which has proven to be both
extremely useful in practical computations and of great
theoretical importance. The prototypical example is the
exact correspondence between type IIB string theory in the
bulk and N ¼ 4 super-Yang Mills theory on the boundary
[9]. The study of bulk gravitational physics in asymptoti-
cally AdS spacetimes is therefore of direct relevance for the
study of strongly coupled gauge theories [72].
It is in this asymptotically anti–de Sitter context that the

well-known Hawking-Page [73] transition occurs: at low
temperature a would-be small black hole will simply
evaporate, and the AdS space is eventually filled with free
radiation. A sufficiently large black hole however will
persist long enough to come into equilibrium with its
own Hawking radiation, which returns from the boundary
in finite time. There is a critical temperature Tc separating
these two regimes at which the Hawking-Page transition
occurs. Note that unlike asymptotically flat black holes, the
temperature of asymptotically AdS black holes does not
monotonically decrease with the size of the black hole.
This Hawking-Page transition corresponds to a deconfine-
ment transition in the boundary CFT, and has long been
studied to understand nonperturbative features of strongly
coupled CFT systems and the black hole information
problem [74,75].
We would like to examine whether this transition persists

when the central singularity is absent in the classical metric,
and whether new types of transitions appear. The phase
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structure of the Hayward-AdS black hole can be deter-
mined through the Gibbs free energy G ¼ M − T̃S, which
is globally minimized by the equilibrium state of the
system. Using (17) and (37), the free energy is

G ¼ l2r3hðΛr2h − 3Þ2 þ 3r5hðΛr2h þ 3Þ
4ðl2ðΛr2h − 3Þ þ 3r2hÞ2

; ð63Þ

which can be plotted parametrically as a function of the
equilibrium temperature T̃ using rh as a parameter. The
result is shown in Fig. 1.
Two characteristically distinct behaviors are revealed in

Fig. 1 depending on the value of the cosmological constant
Λ and the regularization length scale l. For fixed
Λ ¼ −0.04, there is a critical length scale lc ≈ 0.35 below

which a first-order phase transition from a small to large
black hole occurs. Likewise when l is fixed, there is a
critical Λc below which a similar transition is present.
Above both critical values there is no phase transition,
while at the critical point the transition becomes second-
order (the precise location of the critical points for variable
l and Λ is determined below). This is reminiscent of the
small-large transition observed previously in Reissner-
Nordstrom-AdS black holes [70]. Although the small black
hole phase has greater free energy than the radiation phase
at G ¼ 0, the would-be Hawking-Page transition does not
occur since the system is in a fixed-charge (canonical)
ensemble. Unlike the Reissner-Nordstrom case however,
the presence of charge here is tied directly to the existence
of a minimal length scale. The radiation phase is inacces-
sible as long as Qm > 0 which through (14) corresponds
to l > 0. Therefore, the presence of a quantum gravity
regulator of the Schwarzschild singularity appears to
prevent the Hawking-Page transition from occurring.
This has important implications for AdS-CFT, because it

is usually assumed that the bulk gravity theory is some
suitable low-energy limit of a full quantum gravity theory.
The standard Hawking-Page transition is between a
classical Schwarzschild black hole and the empty AdS
geometry, corresponding to a deconfinement transition in
the dual CFT. What we demonstrate is that a first-order
approximation to a regularized Schwarzschild geometry,
where there is no backreaction and the action does not yet
include higher curvature terms in an effective field theory
description of the full gravitational sector, eliminates the
Hawking-Page transition altogether, at least when the
regulator can be understood through the effective action
of a Uð1Þ gauge field. At the same time it is known that the
Hawking-Page transition persists when higher curvature
corrections like R2 − 4RabRab þ RabcdRabcd are explicitly
included in the bulk gravitational action, though such
corrections do not regularize the Schwarzschild singularity.
Since the Hayward metric is a rather generic approximation
to a smoothed geometry which can in principle arise from
any quantum theory of gravity, we propose that quantum
gravity corrections to Einstein-Hilbert gravity which are in
some sense “strong enough” to regularize the central
singularity may generically prevent the Hawking-Page
transition from occurring, and likewise will have important
implications for the critical behavior of the dual CFT
theory.
In the extended phase space, the Hayward-AdS black

hole exhibits critical behavior analogous to the mean-field
theory critical behavior of ordinary fluid systems (see
Ref. [43] for a review). In Fig. 2 we demonstrate the
standard “swallowtail” behavior that generically occurs for
asymptotically AdS black holes in the extended phase
space, with the corresponding coexistence line shown in
Fig. 3. Above the critical pressure (critical Λ) is a “super-
fluid” phase where the system smoothly transitions from a

FIG. 1. Gibbs free energy G as a function of temperature T for
the Hayward-AdS black hole. The horizon size rh increases in the
direction of the arrows. Top: fixed Λ ¼ −0.04 for various l. The
onset of a first-order phase transition from a small to large black
hole is marked by a red dot at the critical temperature Tc ∼ 0.1.
Bottom: fixed l ¼ 0.5 for various Λ. The critical temperature
occurs at Tc ∼ 0.68.

EUCLIDEAN AND HAMILTONIAN THERMODYNAMICS FOR … PHYS. REV. D 109, 044029 (2024)

044029-9



small to a large black hole as the temperature is increased.
This transition is exactly analogous to the liquid-gas
transition occurring in a traditional van der Waals fluid
system. The transition can be examined further by con-
structing the equation of state PðV; TÞ for the system. With
Λ ¼ −8πP one obtains from (37) that

P¼ 3ð3r5h−2l2r3hð3−4πrhTÞ−8πl4r2hT−
ffiffiffiffiffiffiffiffi
r7hX

p Þ
16πl2r4hð4πl2Tþ3rhÞ

; ð64Þ

where X ≡ 9r3h − 24l2rh − 32πl4T. Here and in what fol-
lows, we omit the tilde on thermodynamic variables with

the understanding that they refer to the quantities in (31).
The thermodynamic volume is a 7th degree polynomial
in rh,

V ¼ 12πr7h
ð3r2h þ l2ðΛr2h − 3ÞÞ2 ; ð65Þ

preventing one from writing the equation of state in analytic
form as PðV; TÞ. However since the volume Vðrh; lÞ is a
monotonic function of the horizon size rh for fixed length
scale l, one can freely use rh as a parameter. In Fig. 4 the
equation of state is given as a function of horizon size rh (it
is qualitatively identical when given parametrically as a
function of V). The red dashed line marks the onset of

FIG. 2. Gibbs free energy G as a function of temperature T and
pressure P for the Hayward-AdS black hole, demonstrating the
formation of a swallowtail below the critical point. For l ¼ 0.5
this occurs as fPc; Tcg ¼ f0.0083; 0.072g.

FIG. 3. Coexistence line for the Hayward-AdS black hole
for l ¼ 0.5. A series of first-order phase transitions occur
along the red line, terminating at a critical point fPc; Tcg ¼
f0.0083; 0.072g where the transition becomes second-order.

FIG. 4. Isotherms of the equation of state Pðrh; TÞ for the
Hayward-AdS black hole. Top: fixed l ¼ 0.5 for various T. The
onset of the Van der Waals transition is marked by an inflection
point at the critical temperature Tc ∼ 0.072. Bottom: fixed
T ¼ 0.072 with varying l. The critical pressure is marked by
the red dashed line, while the coexistence line is marked by the
blue dashed line.
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the small-large transition at the critical point, which
simultaneously satisfies

∂P
∂V

¼ 0;
∂
2P
∂V2

¼ 0: ð66Þ

Below the critical temperature/length scale there is an
unphysical region where ∂P=∂V > 0, and two more unsta-
ble regions. One may also observe that if the temperature T
or critical length scale l are small enough, the system
appears to enter a region where P < 0 corresponding to a
transition to asymptotically de Sitter space. Both pathol-
ogies are avoided because the system instead evolves along
the dashed line of Fig. 4, which is determined by the
condition that the small and large black hole phases have
the same free energy. This coexistence line always lies
above P ¼ 0. Figure 1 indicates a minimal horizon size at
T ¼ 0, which corresponds to the extremal limit and implies
the constraint that

rh >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 6l2Λ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8l2Λ

p

6Λþ 2l2Λ2

s
: ð67Þ

On the other hand, at fixed T > 0 the equation of state
instead implies a lower bound of

rh >

ffiffiffiffiffi
163

p ½ðl3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π2l2T2 − 2

p
þ 3πl4TÞ2=3 þ ffiffiffi

23
p

l2�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π2l2T2 − 2

p
þ 3πl4T

3
p ; ð68Þ

below which the pressure becomes imaginary. Surprisingly,
the critical condition (66) can be solved analytically to find

Pc ¼
5

ffiffiffiffiffi
10

p
− 13

432πl2
; Vc ¼

8π
ffiffi
2
5

q
ð5 ffiffiffiffiffi

10
p þ 13Þ7=2l3

375ð ffiffiffiffiffi
10

p þ 2Þ2 ;

Tc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13

ffiffi
5
2

q
− 31

2

r
20πl

: ð69Þ

In terms of the reduced volume v ¼ 2rhl2p the “universal”
ratio Pcvc=Tc is

Pcvc
Tc

≈ 0.393 ≠ 3=8; ð70Þ

which represents a rare counterexample of the usual 3=8
result for a four-dimensional black hole spacetime, signal-
ing a potential departure from mean field theory critical
behavior. This same ratio was computed in [5] using α and
Qm as the fundamental variable parameters of the theory.
However we believe their analysis contained some inac-
curacies which inevitably lead to different critical expo-
nents, as detailed below.

In previous work [43], the reduced volume v was
identified with the horizon radius by comparing the
linear–T coefficient of the black hole equation of state
to that of the van der Waals fluid. One can proceed the same
way here by expanding Eq. (64) in powers of T to obtain

P ¼ P0 þ
T
ṽ
þOðT2Þ; ð71Þ

where

P0 ¼
3r2h − 6l2 − rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2h − 24l2

p
16πl2r2h

; ð72Þ

and the new reduced volume ṽ is identified to be

ṽ ¼ 12r2hð3r2h − 8l2Þ
ð3r2h − 4l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2h − 24l2

p
− 24l2rh þ 9r3h

: ð73Þ

In the limit l → 0 the reduced volume ṽ reduces to
ṽ ¼ 2rh þOðl2Þ. Evaluating the critical ratio Pcṽc=Tc in
terms of this new reduced volume, we find that

Pcṽc
Tc

≈ 0.391 ≠
3

8
; ð74Þ

which is a small deviation from the value (70) obtained
using the conventional reduced volume v ¼ 2rh. In both
cases the ratio differs from 3=8.
Thermodynamic stability can further be assessed using

the heat capacity, which is readily determined to be

CV¼T

�
∂S
∂T

�����
V

¼ 2πr2hðl2ðΛr2h−3Þþ3r2hÞðl2ðΛr2h−3Þ2þ3Λr4h−3r2hÞ
l4ðΛr2h−3Þ3þ6l2r2hðΛr2hðΛr2h−4Þ−9Þþ9ðΛr6hþr4hÞ

;

ð75Þ

and is plotted in Fig. 5 for varying l. Positivity of the heat
capacity indicates thermodynamic stability, while a diver-
gence in the heat capacity generically indicates a phase
transition. A sign change in CV can occur either through a
discontinuity or zero-crossing, with the divergences indi-
cated by a vertical dashed line in the figure. Note that some
of the unstable regions are excluded from the parameter
space since they do not satisfy the constraint (68). The heat
capacity diverges when

r6hðl4Λ3 þ 6l2Λ2 þ 9ΛÞ þ r4hð−9l4Λ2 − 24l2Λþ 9Þ
þ r2hð27l4Λ − 54l2Þ − 27l4 ¼ 0; ð76Þ

representing a cubic polynomial in r2h. The discriminant
condition then determines that above a critical length scale
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lc (for fixed Λ) or above a critical pressure Pc (for fixed l)
given by

lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13
Λ − 5

ffiffiffiffi
10

p
Λ

q
3

ffiffiffi
6

p ; Pc ¼
5

ffiffiffiffiffi
10

p
− 13

432πl2
; ð77Þ

there will be no divergence in the heat capacity, and
furthermore all black hole phases become thermodynami-
cally stable. The latter value of Pc can be seen to coincide
with the critical pressure (69) determined from the equation
of state. Note that, contrary to what is claimed in [5], the
coexistence pressure P ¼ Pcoex on the P − V diagram
constructed from the equal area lawZ

vl

vs

ðPðvÞ − PcoexÞdv ¼ 0; ð78Þ

is exactly in correspondence with the pressure at which the
small and large black hole phases coexist on the G − T
diagram. Therefore, one obtains the same phase diagram
from either the P − V curve or the G − T curve, and no
redefinition of thermodynamic variables is required. That
this is the case is not surprising since the equal area law
condition is equivalent to the statement that the two phases
have the same free energy, and no new information is
contained in the P − V diagram (it is just obtained by a
rescaling Λ → −8πP). We suspect that the earlier obser-
vation that the two coexistence lines differ is due to a
numerical error, since in our case demonstrating that (78)
holds requires computing the integration bounds ðvs; vlÞ to
a precision of at least 10−8, otherwise the integral does not
vanish at the same pressure as the G − T diagram would
suggest.

1. Critical exponents

Critical exponents govern the behavior of various ther-
modynamical parameters near a critical point, and separate
physical systems into universality classes under which
the scaling behavior of these parameters is identical, even
if the underlying microscopic structure of the systems are
vastly different. In terms of the reduced temperature
t≡ T=Tc − 1, they are defined through the scaling behav-
ior of the following quantities:

CV ∝ jtj−α; g ¼ vl − vs ∝ jtjβ;

κT ¼ −
1

V
∂V
∂P

����
T
∝ jtj−γ; jP − Pcj ∝ jV − Vcjδ: ð79Þ

CV is the heat capacity at constant volume defined by (75),
g is the order parameter (here the difference in volume of
the large and small black hole phase), κT is the isothermal
compressibility, and jP − Pcj is the behavior of the pressure
near the critical point. Since the entropy S ¼ πr2h is
independent of temperature, one automatically finds that
the critical exponent governing the behavior of the heat
capacity near the critical point is α ¼ 0.
The exponent β is computed by examining the difference

in size of the small and large black hole phases near the
critical point. This cannot be done analytically since the
horizon size rh alone is given by a solution to a 5th degree
polynomial, and the functions G ¼ Gðrh;Λ; lÞ and T ¼
Tðrh;Λ; lÞ cannot be solved analytically to find the location
of the phase transition. Instead, we proceed numerically
and compute the behavior of the order parameter vl − vs
near the critical point t ¼ 0. This is done directly from the
free energy G and temperature T, so that the result is
independent of any particular identification of Λ and does
not require using Maxwell’s equal area law to find the
coexistence line on the PðVÞ diagram. The result is shown
in Fig. 6 which clearly indicates that β ¼ 1=2.

FIG. 5. Heat capacity CV as a function of horizon size rh for the
Hayward-AdS black hole, for Λ ¼ −0.1 and various l. Dashed
lines correspond to a discontinuity in CV . Top: small-rh behavior.
Bottom: large-rh behavior.
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The isothermal compressibility is determined by plotting
κT vs t, which can also be done analytically since

κT ∼ −
1

V

�
∂V
∂rh

��
∂P
∂rh

�
−1
����
T
: ð80Þ

It is straightforward to check that κT ∝ jtj−1 and there-
fore γ ¼ 1.
Finally, the exponent δ can be determined by evaluating

jP − Pcj using (64) and (69) and plotting against jV − Vcj.
We omit the resulting expression as it is lengthy and
insightful. This can be done analytically by straightforward
substitution, and a parametric plot of jP − Pcj vs jV − Vcj
clearly shows that δ ¼ 3.
We have therefore determined that while the critical

ratio Pcvc=Tc does indeed deviate slightly from the usual
value of 3=8 for the Hayward-AdS black hole (using either
the thermodynamic volume V or reduced volume v),
the critical exponents maintain their mean-field theory
values of

α ¼ 0; β ¼ 1

2
; γ ¼ 1; δ ¼ 3: ð81Þ

As in other asymptotically AdS examples, this is quite
surprising since in this case the equation of state clearly
differs from that of the van der Waals fluid, yet the behavior
near the critical point exhibits a universal behavior gov-
erned by (81).

B. Minkowski Λ= 0

Asymptotically flat (Λ ¼ 0) black hole spacetimes admit
a straightforward definition of both geometric and thermo-
dynamic variables which enter into the first law, obtained

through a Hamilton variation or equivalent covariant phase
space formulation. However, the notion of thermodynamic
equilibrium is more subtle compared to the asymptotically
AdS case. There is no longer an effective potential which
naturally confines radiation, and a black hole of any size is
generically thermodynamically unstable with a negative
specific heat capacity. Since physically reasonable sizes of
black holes, which span masses from 101 to 1010M⊙, have
corresponding evaporation timescales on the order of 1074

to 10104 seconds, one way to approach the issue is to simply
consider the system as being in a state of approximate
thermal equilibrium over observationally relevant time-
scales. This assumption is certainly valid for physical-
process interpretations of the first law as applied to
physically realistic scenarios where the back-reaction from
both Hawking radiation and infalling matter can reasonably
be ignored. However, for holographic applications one can
no longer make this approximation since the relevant state
space is populated by distinct global configurations
labelled by different values of the asymptotic mass, and
the physically relevant timescale in the boundary theory
may correspond to a bulk timescale for which evaporation
cannot be ignored. Therefore, it is useful to introduce
another mechanism to define the equilibrium ensemble in
asymptotically flat spacetimes.
This is most straightforwardly accomplished by the

introduction of a “cavity” representing fixed thermody-
namic data on a compact codimension-2 surface outside of
the black hole. As described in the previous section, this
amounts to introducing a boundary in the Euclidean section
where thermodynamic data is specified. Taking the Λ → 0
limit of (56) we recover the equilibrium temperature for
the Hayward-Minkowski black hole embedded in an
isothermal cavity

T ¼ r6cðr3h − 3l2rhÞ
4πðr3cr2h þ l2ðr3c − r3hÞ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cr2hðrc−rhÞ−l2ðr3c−r3hÞ

r3cr2h−l
2ðr3c−r3hÞ

r ; ð82Þ

and the mean thermal energy of the ensemble, by taking the
same limit of Eq. (57),

E ¼ rc − rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðr3h − r3cÞ þ r2cr2hðrc − rhÞ

l2ðr3h − r3cÞ þ r3cr2h

s
: ð83Þ

The free energy can then be computed as F ¼ T̃IE ¼
E − T̃S. We find

FIG. 6. Scaling behavior of the order parameter vl − vs as a
function of the reduced temperature t near the critical point. Dots
represent numerical data while solid lines represent possible
values of the critical exponent β.
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F ¼ −
r6cr3hðr2h − 3l2Þ

4
�
l2ðr3h − r3cÞ þ r3cr2h

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cr3h

l2ðr3c−r3hÞ−r3cr2h
þ 1

r

þ rc − rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cr3h

l2ðr3c − r3hÞ − r3cr2h
þ 1

s
; ð84Þ

which can be plotted parametrically as a function of rh as
before, shown in Fig. 7. As expected, the behavior is
qualitatively similar to the anti–de Sitter case, with a small-
large black hole phase transition occurring below a critical
value of l. Again the F ¼ 0 phase corresponding to empty
Minkowski space is inaccessible due to the finite fixed
value of the magnetic charge Qm required to have l > 0.
Unlike the AdS case there is no notion of thermodynamic

pressure for the system, so there is no analogy between the
phase structure observed here and mean-field theory
systems. The onset of the small-large transition is also
controlled now by the cavity radius rc, which when all
other parameters are held fixed determines the relative scale
between the black hole, cavity, and cosmological horizon.

C. de Sitter Λ > 0

We finally turn to the asymptotically de Sitter (Λ > 0)
case, which is at the same time the most technically
challenging and astrophysically relevant, as there is incon-
trovertible evidence for both the existence of black hole-
like objects [76] and for the accelerated expansion of the
Universe [77–79]. The latter implies an asymptotically de
Sitter geometry as being the relevant background for
astrophysical black holes. Therefore, understanding black
hole thermodynamics in asymptotically de Sitter space-
times is important not only due to their observational
relevance, but also for applications in the emerging field of
de Sitter space holography [80–82].
Though the first law can be readily generalized to cases

where Λ ≠ 0, dS space presents a host of unique issues
which are absent in AdS. The most salient is the presence of
a cosmological horizon, which radiates at a much larger
temperature than all but the smallest black holes, neces-
sarily placing the system out of equilibrium due to the heat
flux between the two horizons. Another issue with de Sitter
spaces is a lack of globally timelike Killing vector field
with which to associate the mass, making the construction
of conserved charges difficult [83–85]. The masses which
enter into the usual forms of the first law are defined for
spacetimes which are asymptotically flat (ADM) or sta-
tionary (Komar). In de Sitter, one can recover stationarity
by working in the static patch, but then the Killing vector ξa

that would be used to define the mass becomes spacelike
outside the cosmological horizon, rendering the mass
conserved in space rather than time [86]. The variation
of the would-be ADMmass is given by a boundary integral
over an S2 at infinity

δM ¼ −
1

16π

Z
∞
dSncBc½∂=∂t� þ � � � ;

but for the region outside the cosmological horizon the
Killing vector ∂=∂t is spacelike, and M cannot support its
usual Noether charge interpretation as being the conserved
quantity associated with time-translation invariance.
Therefore while a variation resembling the first law exists,
one cannot straightforwardly interpret the variables enter-
ing it as the usual thermodynamical ones. The notion of a
vacuum state is also problematic in de Sitter, since the
global spacetime is nonstationary [87–89] and the vacuum
state is not even known to be stable [90–92].
Various approaches aside from the Euclidean path integral

adopted here have been developed to circumvent these

FIG. 7. Helmholtz free energy F as a function of temperature T
for the asymptotically flat Hayward black hole. Top: fixed rc ¼ 2
for various l. The onset of a first-order phase transition from a
small to large black hole is marked by a red dot at the critical
temperature Tc ∼ 0.095. Bottom: fixed l ¼ 0.1 for various rc.
The critical temperature occurs at Tc ∼ 0.322.
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difficulties. One is the effective temperature approach, where
a single temperature Teff (which depends on both the
cosmological and event horizon) is assigned to the entire
spacetime [93]. This enables one to establish a “first law”
which accounts for the presence of both horizons, but suffers
from the fact that Teff lacks a clear physical interpretation
and the system still appears out of equilibrium to a local
observer. Another approach is to consider only subsets of the
parameter space where the two horizon temperatures are
equal [94], in which case equilibrium is trivially established
at the price of being limited to a measure-zero subset of
possible configurations. One also requires sufficiently many
“charges” to make the temperatures equal, which is not
possible for ordinary Schwarzschild-de Sitter black holes.
As in the asymptotically flat case, the Euclidean path

integral with finite boundary furnishes an equilibrium
ensemble which can be used to study some features of
static-patch thermodynamics in de Sitter space. The
thermodynamic quantities obtained in Sec. III B remain
valid when Λ > 0, provided that the boundary at rc is
placed between the event and cosmological horizons, such
that rh < rc < rcosmo where rcosmo is the largest real root of
the metric function fðrÞ. Without the boundary, there is no
choice of periodicity β which can eliminate the conical
singularity at the event and cosmological horizons simul-
taneously, except in the degenerate Nariai limit where
rh ¼ rcosmo. Since Λ > 0 implies that P < 0, the quantity
conjugate toΛ should be interpreted as a tension rather than
a pressure. Despite the region of the static patch containing
the cosmological horizon being effectively excised from the
Euclidean section in this way, the effect of Λ still manifests
in the required cavity temperature, which observes a
significant blueshift when the cavity approaches the cos-
mological horizon.
The free energy is obtained from the on-shell Euclidean

action as

F ¼ l2ðΛr2h − 3Þ2 þ 3Λr4h − 3r2h
12rh

−
4rcðY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − Λr2c

p
þ Λr2c − 3Þ

12
; ð85Þ

which is displayed in Fig. 8 as a function of the equilibrium
temperature. The presence of a cosmological horizon
significantly alters the observed phase structure of the
Hayward black hole. As in the AdS case, one can observe a
critical point at a maximal pressure (Λc ∼ 0.07) below
which a line of first-order small-large black hole transitions
occurs. As before, above this pressure the system smoothly
transitions in size as the temperature increases. However, in
the dS case there emerges a second critical point at a lower
critical value of Λ ∼ 0.02, below which there is again no
phase transition. This is a significant departure from the
behavior observed in the asymptotically AdS case, where
the small-large transition persists to arbitrarily small Λ.

Figure 9 illustrates this more clearly by showing a number
of constant-pressure slices. The corresponding coexistence
line is shown in Fig. 10.
Unlike AdS black holes in the extended phase space,

whose phase structure typically resembles (and is some-
times exactly in correspondence with) the van der Waals
fluid, the phase diagram in Fig. 10 more closely resembles
that of something akin to the FCC transition of pure solid
iron, or quantum critical points in e.g. the transverse field
Ising model or a non-Fermi metal [95]. However, the phase
diagram of Hayward-dS (and other asymptotically dS
examples) cannot be in exact correspondence with such
materials, because there is no critical point at the cusp of the
P − T curve, which is usually at T ¼ 0 for quantum critical
fluids or represents a triple point. Instead, the cusp marks a

FIG. 8. Helmholtz free energy F as a function of temperature T
for the Hayward-dS black hole. Top: fixed l ¼ 0.1 and rc ¼ 4 for
various Λ. Two critical points emerge, at Tc1 ∼ 0.042 and
Tc2 ∼ 0.043. Bottom: fixed Λ ¼ l ¼ 0.1 for various rc. The
onset of a first-order phase transition from a small to large black
hole is marked by a red dot at the critical temperature
Tc ∼ 0.0315.

EUCLIDEAN AND HAMILTONIAN THERMODYNAMICS FOR … PHYS. REV. D 109, 044029 (2024)

044029-15



smooth transition between a region where the cavity size is
on the scale of the black hole horizon and where it is instead
on the scale of the cosmological horizon. Furthermore,
the coexistence line here terminates at two second-order
critical points. It remains to be seen whether such a phase
diagram can be understood in a holographic context or
whether its novel features are the result of what is
effectively a coupling of the black hole system to an
external heat bath. We expect that such phase diagrams,
like their AdS counterparts, will become increasingly
important as a tool for understanding the phase structure
of strongly coupled systems as holographic methods in
de Sitter space become more refined.

V. CONCLUSIONS

The study of regular black hole solutions in general
relativity is an important step toward understanding generic
features of quantum gravity, both from a holographic and
effective field theory point of view. Regular black hole
solutions which can be sourced by matter coupled to
Einstein-Hilbert gravity and manage to evade various no-
go theorems are few and far between, with the Bardeen and
Hayward model being prototypical examples sourced by
nonlinear electrodynamics. While previous work which
studied the thermodynamic properties of the Hayward
solutions focussed on a specific choice of asymptotic
metric and thermodynamic formulation/variables, we con-
sidered all three types of Hayward black hole (AdS, flat,
and dS), discussed which thermodynamic formulation is
most appropriate for each, and studied the resulting phase
structure of the solutions.
In the first part of this work, we examined Hayward-AdS

black holes with variable cosmological constant. We treated
the minimal length scale l as a fundamental thermodynamic
parameter, which may arise more generally from the
regularization of the Schwarzschild singularity. We dem-
onstrated a consistent version of the first law of black hole
mechanics and Smarr relation based on this choice of
variable, and studied the extended phase space thermody-
namics that results. We found a second-order critical point
which marks the formation of a swallowtail in G − T − P
space, and a series of first-order small-large black hole
phase transitions below the critical temperature/pressure.
The critical ratio Pcvc=Tc was found to deviate from the
“universal” mean-field theory prediction of 3=8 seen in
most other four-dimensional AdS black holes, both when
the ordinary reduced volume is used and the volume
obtained from an expansion of the equation of state which
allows a direct identification with the van der Waals fluid.
Contrary to previous investigations into the extended
phase structure of Hayward-AdS black holes, we computed
the critical exponents and found that they agree with the
predicted mean-field theory values.
We next studied asymptotically flat and de Sitter Hayward

black holes. To define an equilibrium thermodynamic
(canonical) ensemble, we fixed boundary-value data at a
finite radius cavity outside of the black hole horizon (and
inside the static-patch cosmological horizon, if it exists). The
equilibrium temperature of the ensemble is determined by
the choice that leaves the action stationary with respect to
variations of the horizon size. Thermodynamic quantities
were computed using a semiclassical Euclidean path integral
with appropriate boundary terms, and shown to be consistent
with the Hamiltonian formulation where the two methods
were equally valid. The phase structure in the asymptotically
flat case is similar to that ofAdS,with a small-large transition
occurring which is controlled by the regularization length
scale. In asymptotically de Sitter space, two second-
order critical points appear which bound a line of first-order

FIG. 9. Helmholtz free energy F as a function of temperature T
and pressure P for the Hayward-dS black hole, demonstrating the
formation of a swallowtube—a compact region in the parameter
space where a small-large transition occurs.

FIG. 10. Coexistence line for the Hayward-dS black hole,
terminating at two second-order critical points. The system
becomes supercritical outside of the region bounded by the
dashed black lines.
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small-large transitions. The equation of state deviates sig-
nificantly from standard van der Waals behavior, and the
swallowtail closes at a finite nonzero value of the pressure (in
contrast to AdS). The phase diagram contains two super-
critical regions, andweconjecture that novel critical behavior
may emerge where the two critical points meet.
A number of generalizations of our work naturally arise.

First, it remains to be understood exactly which classes of
black hole solutions (and theories) admit a consistent
thermodynamic formulation from both the Hamiltonian
and Euclidean framework when matter fields are present.
While it is known that perfect fluids can be incorporated
into the covariant formalism [60], this result has not
been generalized past symmetry-inheriting matter fields.
Furthermore, the linearity of the Smarr relation for non-
linear electrodynamic theories has only been proven for
theories that admit a Maxwell weak-field limit, which
nonetheless appears to also hold for the NED Lagrangian
which generates the Hayward geometry. Another natural
extension of our work would be to consider Kerr-Hayward-
de Sitter black holes, representing the next logical step in
studying thermodynamic features of models which hope to
describe astrophysical black holes.
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APPENDIX A: ELECTROMAGNETIC
POTENTIALS

In this appendix we collect various computations of
thermodynamical quantities. We begin with the magnetic
potential ΨðrÞ. The only nonvanishing components of the
electromagnetic field tensor are F23 ¼ −F32. In order to
compute the magnetic potential one needs to first determine
the magnetic field Hμ. From Eq. (21)

⋆Bμν ¼
1

2
ðϵμν23 þ ϵμν32ÞF23 ¼ ϵμν23B23: ðA1Þ

Using the definition of the invariant 4-volume along with
Eq. (21) we have that

⋆Bμν ¼
ffiffiffiffiffiffi
−g

p ½μν23�L0ðF Þg22g33F23: ðA2Þ

The only nonvanishing components are

⋆B01 ¼ −⋆B10 ¼ −
L0ðF ÞQm

r2
; ðA3Þ

and using (20) then gives

H1 ¼ −⋆B10ξ
0 ⇒

∂Ψ
∂r

¼ −
L0ðF ÞQm

r2
: ðA4Þ

Next one computes (6) using

F ¼ FμνFμν ¼ 2Q2
m

r4
; ðA5Þ

since

Fμν ¼ −Qmðδθμδϕν − δθνδ
ϕ
μ Þ sin θ: ðA6Þ

Therefore

L0ðF Þ ¼ 18
ffiffiffiffiffiffiffi
αF

p

ð1þ ðαF Þ3=4Þ3 ; ðA7Þ

and upon substituting Eq. (A5) we have

L0ðF Þ ¼ 18q2r7

ðr3 þ q3Þ3 : ðA8Þ

Using now Eq. (A4) along with the relation (12) for the
magnetic charge and Eq. (A8) we have after integrating
with respect to r that

ΨðrÞ ¼ 3q4ð2r3 þ q3Þffiffiffiffiffiffi
2α

p ðr3 þ q3Þ3 þ Ψ0; ðA9Þ

where Ψ0 is an integration constant which obeys Ψ0 ¼ 0 if
the magnetic potential vanishes at large distances r → ∞.
We now turn to the potential Kα conjugate to the

parameter α. Starting from Eq. (24), the derivative of
LðF Þ with respect to α is given by

∂L
∂α

¼ 6F 2ð−2αF þ ðαF Þ1=4Þ
ðαF þ ðαF Þ1=4Þ3 ; ðA10Þ

and then using Eq. (A5) we obtain

∂L
∂α

¼ 6q6ð−2q3 þ r3Þ
a2ðr3 þ q3Þ3 : ðA11Þ

The integration of Eq. (24) can then be performed using the
above relation (A11) and the potential Kα given by Eq. (25)
is obtained.

APPENDIX B: EUCLIDEAN ACTION

In this appendix, we compute the on-shell Euclidean
action for the Einstein-Hilbert-NED theory in the semi-
classical approximation. The total action will be

ITotal ¼ IEH þ INED þ IB − I0; ðB1Þ

where IEH is the Einstein-Hilbert action with cosmological
constant, INED is the action of the NED theory, IB are
appropriate boundary terms for a well-posed variational
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principle, and I0 is a background subtraction that serves to
normalize the action such that ITotal ¼ 0 for the empty
(anti-)de Sitter spacetime.
The Einstein-Hilbert action with cosmological constant

in four dimensions is

IEH ¼ −
1

16π

Z
d4x

ffiffiffi
g

p ðR − 2ΛÞ: ðB2Þ

We adopt a spherically symmetric ansatz for all dominant
saddles contributing to the path integral, with Euclidean
metrics of the form

ds2 ¼ fðrÞdτ2 þ fðrÞ−1dr2 þ r2dΩ2; ðB3Þ

so that the Ricci scalar is given by

R ¼ 2 − f00ðrÞr2 − 4rfðrÞ − 2fðrÞ
r2

: ðB4Þ

The reduced action is obtained by explicit integration of the
action, which can be written as a sum of two terms:

IEH ¼ IR þ IΛ ¼ −
1

16π

Z
d4x

ffiffiffi
g

p
R;

IΛ ¼ 1

8π

Z
d4x

ffiffiffi
g

p
Λ: ðB5Þ

The Ricci part of the Einstein-Hilbert action gives

IR ¼ −
1

16π

Z
βh

0

dτ
Z

π

0

dθ
Z

2π

0

dϕ
Z

rc

rh

r2 sin θRðrÞdr;

ðB6Þ

where the Euclidean section extends from the horizon at rh
to the cavity at rc, and it is assumed in the de Sitter case that
rc is appropriately chosen to lie between the black hole and
cosmological horizon, rh < rc < rcosmo. The integration
over Euclidean time τ is over one period βh, which is
chosen to eliminate the conical singularity in the τ-r plane
at the horizon. After integrating over τ,θ and ϕ, one obtains

IR ¼ −
βh
4

Z
rc

rh

r2RðrÞdr: ðB7Þ

Inserting (B4) into the above then gives

Z
rc

rh

r2RðrÞdr ¼
Z

rc

rh

½2 − f00ðrÞr2 − 4rf0ðrÞ − 2fðrÞ�dr;

ðB8Þ

We define

G0 ¼
Z

rc

rh

fðrÞdr; G1 ¼
Z

rc

rh

rf0ðrÞdr;

G2 ¼
Z

rc

rh

r2f00ðrÞdr ðB9Þ

Computing G1 and G2 using the fact that fðrhÞ ¼ 0 and
integrating by parts reveals that

G2 ¼ r2cf0ðrcÞ − r2hf
0ðrhÞ − 2G1; ðB10Þ

G1 ¼ rcfðrcÞ −G0: ðB11Þ

Inserting (B11) and (B10) into (B7) then gives

IR ¼ −
βh
4
ð2ðrc − rhÞ − 2rcfðrcÞ − r2cf0ðrcÞÞ

−
βh
4
r2hf

0ðrhÞ; ðB12Þ

and upon identifying the periodicity in τ with the Killing
surface gravity

β−1h ¼ κ

2π
¼ f0ðrhÞ

4π
; ðB13Þ

we finally obtain

IR¼−
βh
4
½2ðrc− rhÞ−2rcfðrcÞ− r2cf0ðrcÞ�−πr2h: ðB14Þ

Next, the cosmological term IΛ is straightforwardly evalu-
ated giving

IΛ ¼ 1

8π

Z
βh

0

dτ
Z

2π

0

dϕ
Z

rc

rh

Z
π

0

r2 sin θΛdrdθ

¼ βh
6
Λðr3c − r3hÞ: ðB15Þ

We next compute the Gibbons-Hawking-York boundary
term (48), evaluated at r ¼ rc:

IGHY ¼ 1

8π

Z
∂M

ffiffiffi
k

p
K

¼ 1

8π

Z
βh

0

dτ
Z

2π

0

dϕ
Z

π

0

dθ
ffiffiffi
k

p
Kjrc : ðB16Þ

The induced metric kab on the boundary hypersurface is

ds2 ¼ fðrcÞdτ þ r2cdΩ; ðB17Þ

and the square root of the determinant of the induced metric
is given by

ffiffiffi
k

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
r2c sin θ: ðB18Þ
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The trace K of the extrinsic curvature Kab evaluated at the
boundary is

K ¼ −
2

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
rc

−
f0ðrcÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p : ðB19Þ

Combining (B16), (B18), and (B19) we find

IGHY ¼ βh
2
r2cKðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
: ðB20Þ

Next, we compute the NED action given by (49) with
Lagrangian density (6). Using (A5) we can write LðF Þ in
terms of α and QM as

LðF Þ ¼ 24
ffiffiffiffiffiffi
2α

p
Q3

m�
1þ

�
2αQ2

m
r4

�
3=4

�
2
r6
: ðB21Þ

Angular integration then reduces the action to

INED ¼ βh
4

Z
rc

rh

r2LðF Þdr; ðB22Þ

and the radial integration gives

INED ¼ 2
ffiffiffiffiffiffi
2α

p
Q3

mβh

�
1

ð2αQ2
mÞ3=4 þ r3h

−
1

ð2αQ2
mÞ3=4 þ r3c

	
:

ðB23Þ

The final term we require is the electromagnetic boundary
term, given by [96,97]

IEMB ¼ −
1

16π

Z
∂M

ffiffiffi
k

p �
∂L
∂F

�
FμνnνAμ; ðB24Þ

where nν is the unit normal vector to the boundary ∂M. This
term will vanish since we are integrating over a time slice of
the spacetime and the only nonvanishing components of the
Fμν are F23 ¼ −F32. Finally, the term I0 represents the
action of the empty metric (in the absence of the black
hole), which serves to normalize the action so that it
vanishes when rh ¼ 0 i.e. when no black hole is present.
Evaluating the total action for the empty metric
(Minkowski, de Sitter, or anti–de Sitter), the subtraction
term is given by

I0 ¼
βrc
3

ð−3þ r2cΛÞ: ðB25Þ

APPENDIX C: CAVITY TENSION TERM

In this section we displayed the tension λ conjugate to the
cavity area Ac, which appears in both the Smarr formula
and the first law in the presence of a cavity. We first replace
the areal radius rc in the total reduced action (51) with the
area of the cavity, given by Ac ¼ 4πr2c. The conjugate
potential is then given by

λ ¼ 1

β

∂Ir
∂Ac

: ðC1Þ

Explicit calculation yields the following, rather long,
expression

λ ¼ 1

48πrc

�
6ð1 − r2cΛÞ þ

2r2cΛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p X − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q
X þ r2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
ð2l4ðr3c − r3hÞ2Λð−3þ r2hΛÞ2Þ
ð3r2cr2h þ YÞ2X

þ 9r3cr4hð−3rh þ 2r3cΛþ r3hΛÞ þ 3l2r2hð4r6cΛð−3þ r2hΛÞ þ 2r4hð−3þ r2hΛÞ2Þ þ r3cð9rh þ r3hΛ − 3r5hΛ2Þ
ð3r2cr2h þ YÞ2X

�
: ðC2Þ
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