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Geodesy in a Newtonian framework is based on the Newtonian gravitational potential. The general-
relativistic gravitational field, however, is not fully determined by a single potential. The vacuum field around
a stationary source can be decomposed into two scalar potentials and a tensorial spatial metric, which together
serve as the basis for general-relativistic geodesy. One of the scalar potentials is a generalization of the
Newtonian potential while the second one describes the influence of the rotation of the source on the
gravitational field for which no nonrelativistic counterpart exists. In this paper the operational realizations of
these two potentials, and also of the spatial metric, are discussed. For some analytically given spacetimes the
two potentials are exemplified and their relevance for practical geodesy on Earth is outlined.
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I. INTRODUCTION

Beside astronomy, geodesy is one of the oldest sciences.
It is about the shape of the Earth, its orientation, and its
gravitational field. While its shape, the topography,
can be observed directly e.g. from space with satellites
equipped with Lidar systems, its orientation is inferred e.g.
from Very Long Baseline Interferometry (VLBI) observa-
tions and from direct measurements of the rotation of the
Earth, e.g. [1], and today provided by the International
Earth Rotation Service (IERS) [2]. The gravitational field
can be determined from the measurements of gravimeters
such as falling corner cubes [3], superconducting gravim-
eters with a resolution better than 1 nm=s2 [4] and
gradiometers. These devices measure the vector of the
gravitational acceleration g which is the gradient of the
gravity potentialW ¼ U þ Ω2r2 whereU is the Newtonian
gravitational potential and Ω2r2 is the centrifugal potential.
Equipotential surfaces, and in particular the geoid, are
constructed from g-measurements and a procedure called
geodetic leveling [5] which possesses an inconsistency
within Europe of approximately 1 m.
New developments on the experimental side open up

new possibilities and improved precision to measure the
gravity field of the Earth: (i) atom interferometers serve as a
new class of gravi- and gradiometers [6], and they are
sensitive to differences of the gravity potential; (ii) clocks
through the general-relativistic redshift are also sensitive to
differences of the gravity potential [7]; and (iii) the new
laser ranging interferometer (LRI) on board of the GRACE
Follow-On satellites, which were launched in 2018, yields
improved data for determining the gravity field of the Earth

on a global scale. The precision of the LRI of 1 nm [8] and
in particular the use of the gravitational redshift of clocks
now make it mandatory to describe these measurements
within the formalism of general relativity.
The main task of geodesy is to determine and to

characterize the gravitational field of a compact gravitat-
ing body such as the Earth. On the Newtonian level a
characteristic quantity is the geoid which is a certain
surface of a constant Newtonian gravity potential pos-
sessing the topology of a sphere. Also in general relativity
it was possible to define a fully general-relativistic geoid
which can be determined through clocks or through
gravimetric measurements [9]. However, since the gravi-
tational field within general relativity possesses more
degrees of freedom than in Newtonian gravity (we have
ten metrical components compared with one Newtonian
gravitational potential), one may wonder whether there
might also be more than one kind of geoid within the
framework of general relativity.
In fact, in this paper we define with the help of a second

potential a second geoid which is related to the gravitational
field of a stationary rigid body. While the first geoid is
mainly related to the mass density of the gravitating source,
the second geoid is related to the mass current density of
the source, in particular its rotation, i.e., to the gravito-
magnetic part of the general-relativistic gravitational field.
Both geoids are related to the stationarity of the gravita-
tional field and the second one requires, in addition, that
Einstein’s vacuum field equation is satisfied; i.e., it is
defined only outside of the source. The other degrees of
freedom of the gravitational field are included in the
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remaining metrical components in a three-dimensional
rest frame.
In developing the notions we first state the model of the

Earth which we assume to rotate rigidly and to be isolated
from all other gravitating bodies. As a consequence, the
four-dimensional general-relativistic spacetime around
the Earth possesses a timelike Killing vector field. The
(pseudo)norm of this vector field is related to the first geoid
which describes the gravitational redshift and, at the same
time, the acceleration of falling corner cubes. The curl of
this vector field gives a twist covector field. Outside of the
Earth, where Einstein’s vacuum field equation is assumed
to hold, this covector field admits a potential which is
known as the twist potential, so we have a second potential
related to the gravitational field of the Earth. The first
potential is analogous to an electrostatic potential while the
second one is analogous to a magnetostatic potential.
Accordingly, our two gravitational potentials can be
regarded as a gravitoelectric and a gravitomagnetic poten-
tial, respectively.

II. THE MODEL OF THE EARTH

The Earth is an extended gravitating body. Therefore, it
is most efficiently modeled in terms of a congruence of
nonintersecting timelike worldlines [10] describing the
constituents of the Earth. As a first approximation, it is
reasonable to assume that the Earth is rigidly rotating with a
constant angular velocity. In this section we want to
recollect the well-known fact that then the (appropriately
parametrized) worldlines of the constituents are the integral
curves of a timelike Killing vector field. As most of the
gravimetric measurements are taking place in the vacuum
region outside of the Earth, what is important for us is the
fact that the timelike Killing vector field that describes the
motion of the constituents of the Earth can be extended, as a
timelike Killing vector field, to the exterior region. The
integral curves of this extended Killing vector field may be
interpreted as the worldlines of geostationary satellites (or,
if on the surface of the Earth, as the worldlines of observers
that are at rest there with respect to the rotating Earth).
For a congruence of timelike curves with four-velocity

uμ one defines acceleration aμ, rotation ωμν, expansion θ,
and shear σμν by the equations [10]

aμ ¼ uνDνuμ; ωμν ¼ D½μuν� − a½μuν�;

θ ¼ Dνuν; σμν ¼ DðμuνÞ −
θ

3
hμν − aðμuνÞ; ð1Þ

where hμν ¼ δμν − uμuν is the projection onto the local rest
space and Dμ is the covariant derivative defined by the
Levi-Civita connection of the metric. Round brackets
and square brackets denote symmetrization and antisym-
metrization, respectively. In the following we discuss the
operational meaning of these quantities for the special

congruence associated with the rigidly rotating Earth. To
that end we need the notion of a standard clock and of the
radar distance between neighboring observers.
Within general relativity it is possible to uniquely

characterize a particular parameter along the worldline of
an observer which is called proper time. An (idealized)
clock that shows proper time is called a standard clock.
To give an operational characterization of this notion, we
first define the radar distance Δx of an event p from the
worldline of a fixed observer. In our units with c ¼ 1, we
simply have Δx ¼ Δt where Δt is half the time span,
measured with a clock of the observer, that a light ray needs
to propagate from the observer’s worldline to p and
back to the observer. The observer’s clock is a standard
clock, i.e., the parameter t is proper time, if and only if
ð1 − ðdx=dtÞ2Þ−1d2x=dt2 takes the same value for all freely
falling particles emitted in the same spatial direction;
see [11]. It has been shown that the energy levels of atoms
are influenced by the spacetime curvature according to
δE ∼ Ra2B where R is a typical component of the curvature
tensor and aB is the Bohr radius [12]. On Earth, this
will amount to a relative frequency change of the order
δν=ν ∼ 10−42 which is more than 20 orders of magnitude
beyond the present uncertainty of atomic clocks.
Accordingly, with very high precision atomic clocks on
Earth are standard clocks. With standard clocks it is also
possible to uniquely define a standard distance.
Furthermore, using light rays it is also possible to

operationally define whether a congruence of timelike
curves is rotating. This is Pirani’s bouncing photon con-
struction [13]. Fix any two infinitesimally neighboring
curves A and B in the congruence and send a light ray from
A to B. Reflect the light ray at B in such a way that the
tangent vectors to the incoming light ray, to the reflected
light ray, and to the worldline of B are linearly dependent.
We say that the congruence is irrotational if, in any such
situation, the reflected light ray arrives back at A, i.e., if the
light rays bouncing back and forth between A and B form a
two-dimensional timelike world sheet. It is well-known that
a congruence is irrotational if and only if it is hypersurface-
orthogonal. In this case for any pair of infinitesimally
neighboring worldlines A and B in the congruence the
following is true: The normalized connecting vector rσ

from A to B, which is assumed to be orthogonal to the
four-velocity vector uμ tangent to the wordline of A,
satisfies the Fermi(-Walker)-transport law hμνuσDσrν ¼ 0.
Any deviation from that describes a rotation. This notion of
rotation is often discussed in the relativistic theory of
continua (see e.g. [10]), but it is well-defined also for
congruences of worldlines in vacuum.
As already mentioned, we want to assume, as a reason-

able first approximation, that the Earth is rigid. In relativity
a congruence is called (Born-)rigid if the (radar) distance
between any two infinitesimally close worldlines of the
congruence is time-independent. As a consequence, also
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angles between directions to neighboring worldlines
remain constant in time. This is possible only if the
congruence has vanishing shear and expansion [10].
The rigidity condition still allows the Earth to rotate with
ωμν ≠ 0 and accelerate with aμ ≠ 0. We assume now in
addition that an observer comoving with a constituent of
the Earth always experiences the same situation. This
means, in particular, that the acceleration of this comoving
observer is corotating, hμνuρDρaν ¼ ωμ

νaν. Furthermore, if
we assume that the angular velocity of the rigidly rotating
Earth is time-independent, the rotation of the rigid Earth is
assumed to be Fermi constant, that is, hκρhσλu

μDμω
ρ
σ ¼ 0.

These three conditions which are fulfilled by the Earth to
high precision then imply that the congruence describing
the Earth is a Killing congruence, that is, u ∼ ξ with ξ being
a timelike Killing vector field [10].
In reality, the Earth experiences small deformations,

tides, winds, ocean whirls, snow falls and ice melting, and
further time-dependent processes. All this happens with
very low velocities and small masses so that the time-
dependency of the gravitational field can be treated
adiabatically to very high precision.
To sum up, with high precision the Earth is described

adiabatically by means of a Killing congruence. This Killing
congruence can then be extended to the exterior of the Earth.
In this approximation, the analysis of the relativistic gravi-
tational field of the Earth is thus tantamount to the analysis
of a Killing congruence. In spherical polar coordinates
ðt; r;ϑ;φÞ the Killing vector field is represented as ξ ¼
∂t þ Ω∂φ with a constantΩ that gives the angular velocity of
the rotating Earth. Note that neither ∂t nor ∂φ are Killing
vector fields, unless we assume that the Earth is axisym-
metric. (The axisymmetric case, where we have an entire
family of Killing vector fields parametrized by Ω, will be
treated in Sec. VI below.) Strictly speaking, such an
irregularly shaped rotating body would emit gravitational
waves which would cause the angular velocity to decrease.
However, for the Earth and all other planets and moons this
energy loss by gravitational waves is totally negligible.

III. THE GEOMETRY OF KILLING
CONGRUENCES

A Killing congruence is given by a timelike Killing
vector field ξ proportional to the four-velocity of a family
of observers, ξ ∼ u. A Killing vector field possesses a
(pseudo)norm, e2ϕ ≔ gμνξμξν as well as a curl ∂½μξν� which
is equivalent to the twist vector field ϖμ ¼ ϵμνρσξν∂ρξσ.
Here ϵμνρσ denotes the totally antisymmetric Levi-Civita
tensor field (or volume form) associated with the spacetime
metric where we choose the orientation such that in the
spherical polar coordinates used below ϵtrϑφ > 0. The twist
vector is Fermi(-Walker) propagated, hμνuσDσϖ

ν ¼ 0.
Using the Killing property of ξ, it can be shown that the

(negative) gradient of the scalar function ϕ is equal to the

acceleration of the Killing congruence, aμ ¼ −∂μϕ [10],
which fulfills the comoving condition hμνuσDσaν ¼ ωμ

νaν.
If the metric satisfies Einstein’s vacuum field equation, it
can be shown that the twist covector field ϖμ ¼ gμνϖν

possesses a potential, ϖμ ¼ ∂μϖ [14]. Therefore, in vac-
uum, outside the Earth, we have two gravitational poten-
tials, ϕ and ϖ. Owing to their properties (see also below),
these two potentials may be called gravitoelectric and
gravitomagnetic potentials. It was already mentioned that
they are the gravitational analogs of the electrostatic and
magnetostatic potentials which are well-known in standard
electromagnetism [15].
Up to an additive constant, each of the two gravitational

potentials is directly related to measurements, either
through a measurement of potential differences or through
a measurement of the gradient. This will be outlined in the
following.
In our case of a stationary spacetime the line element can

be 3þ 1 decomposed according to

ds2 ¼ e2ϕðdtþ σidxiÞ2 − e−2ϕγijdxidxj; ð2Þ

with

ϖi ¼ e4ϕεijk∂jσk; ð3Þ

where i, j ¼ 1, 2, 3 and ϵijk is the volume form associated
with the spatial metric γij [16]. It is the g00-component
and the g0i-component which can be expressed through the
gravitoelectric and -magnetic potentials.

IV. THE PHYSICS OF THE GENERAL-
RELATIVISTIC “GRAVITOELECTRIC”

POTENTIAL OF THE EARTH

The gravitoelectric potential ϕ is obtained from the
equation e2ϕ ¼ gμνξμξν, where ξ is assumed to be a timelike
Killing vector field. As outlined above, we model the Earth
as a rigid body that rotates with constant angular velocity;
this allows us to choose spherical polar coordinates
ðt; r;ϑ;φÞ in the vacuum region outside of the Earth such
that ξ ¼ ∂t þΩ∂φ, with a constant Ω that is to be identified
with the angular velocity of the Earth. The gravitoelectric
potential foliates the spacetime into three-dimensional
hypersurfaces ϕ ¼ const. Because of the Killing property
of ξ, these hypersurfaces project onto two-dimensional
surfaces in the three-dimensional space of integral curves
of ξ which are known as isochronometric surfaces. The
general-relativistic geoid can be defined as one of these
surfaces (see Philipp et al. [9]). In the case of the Earth it is
natural to choose the isochronometric surface that is closest
to the mean sea level. This surface is also used as a height
reference; i.e., it has by definition zero height. Note that this
definition of the geoid in terms of isochronometric surfaces
makes sense not only for the Earth but also for all other
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planets and moons and even for neutron stars and black
holes. In the latter cases the choice of a particular
isochronometric surface is purely conventional. The appli-
cation to compact and ultracompact objects is made
possible by the fact that exact relativistic equations are
used, rather than post-Newtonian approximations. The idea
of defining the geoid in terms of isochronometric surfaces
was brought forward already in 1985 by Bjerhammar [17]
who, however, did not work out any mathematical details.
Also inspired by Bjerhammar, Kopeikin et al. [18] dis-
cussed a relativistic geoid based on a particular fluid model
of the Earth. For an alternative fully relativistic definition of
a geoid, not in general related to an operational realization
with clocks, we refer to Oltean et al. [19].
The gravitoelectric potential can be most easily mea-

sured and, thus, operationally defined through the redshift
in clock-comparison experiments [9]: For any two sta-
tionary clocks (i.e., clocks whose worldlines are integral
curves of the Killing vector field ξ) the redshift z is given by
the equation lnð1þ zÞ ¼ ϕ2 − ϕ1 where ϕ1 and ϕ2 are the
values of ϕ at the positions of the two clocks. (Note that ϕ is
constant along each worldline of ξ.) As outlined in [9], for
clocks on the surface of the Earth the comparison may be
done with the help of optical fibers. Such fiber links
already exist, and they may have a length of more than a
thousand kilometers [20]. As an alternative to redshift
measurements, the same potential difference ϕ2 − ϕ1 can
also be obtained with atom interferometry [21–23]. From
measurements of the acceleration aμ ¼ −∂μϕ of a falling
corner cube one can also calculate the equipotential
surfaces. Therefore, within full general relativity, all three
types of measurements yield the same potential ϕðxÞ
which makes data fusion and improved geoid determi-
nation possible [24].

V. THE PHYSICS OF THE GENERAL-
RELATIVISTIC “GRAVITOMAGNETIC”

POTENTIAL OF THE EARTH

There are many ways to determine the gravitomagnetic
potential through measurements of the twist potential.
(i) The Sagnac effect for light is sensitive to the twist.

The Sagnac experiment runs with a ring laser interferom-
eter with counterpropagating laser beams. The two inter-
fering beams give a proper time difference given by [25]

Δt ¼ 2eϕ0

I
e−ϕξidxi; ð4Þ

where dxi is the spatial differential within the interferom-
eter’s rest frame. Using Stokes’s theorem and the twist
vector this can be rewritten as

Δt ¼ eϕ0

Z
Σ
e−3ϕϵijkϖkdΣij ≈ e−2ϕ0ϖ⃗ · Σ⃗; ð5Þ

for a small interferometer with area Σ⃗ and ϕ0 as a
gravitoelectric potential at the position of the beam splitter.
If the Einstein vacuum field equations are fulfilled, then we
introduce ΦJ ¼ e−2ϕϖ which is the angular momentum
potential and obtain

Δt ¼ ∇ΦJ · Σ⃗: ð6Þ

Similar characterizations of the gravitomagnetic potential
result from atom interferometry [22].
(ii) Also the propagation of classical objects with spin Sμ

couple to the gravitomagnetic field. This is known as the
Schiff effect first derived in [26]. The relation to the twist
has been shown in [27]

hμνuσDσSν ¼ e−2ϕϵμνρσuρϖνSσ; ð7Þ

see also [28]. This effect has experimentally been con-
firmed by the space mission Gravity Probe B [29].
(iii) Finally, atomic spectroscopy is also sensitive to the

Sagnac effect [30].
All these methods measure the same twist and, thus, the

same gravitomagnetic potential.

VI. STATIONARY AND AXISYMMETRIC
SPACETIMES

In order to get a better physical and intuitive under-
standing of these potentials we are now calculating and
visualizing the gravitoelectric and the gravitomagnetic
potential for certain examples of spacetimes. For doing
so, we now specialize to the case that the spacetime is
stationary and axisymmetric. In this case we can use
spherical polar coordinates ðt; r; ϑ;φÞ such that ∂t and
∂φ are Killing vector fields. We can then consider the
gravitoelectric and gravitomagnetic potentials with respect
to the Killing vector field ∂t þ Ω∂φ, with any constant Ω.
The potentials are well-defined on the domain where
∂t þ Ω∂φ is timelike. Because of the symmetry they are
functions of r and ϑ only.
For modeling the gravitational field around the Earth the

assumption of axisymmetry is of course a strong idealiza-
tion. The realistic Earth can be modeled using a relativistic
multipole expansion.
If the stationary and axisymmetric spacetime is asymp-

totically flat [i.e., if gtt → 1 and gφφ=ðr2 sin2 ϑÞ → −1 for
r → ∞], the Killing vector field ∂t is distinguished among
the Killing vector fields ∂t þΩ∂φ by the property that it is
timelike near infinity. The integral curves of ∂t can then be
interpreted as the worldlines of observers who corotate with
the source. The gravitoelectric and gravitomagnetic poten-
tials related to this Killing vector field are commonly
combined to give the complex Ernst potential

E ¼ e2ϕ þ iϖ: ð8Þ
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Einstein’s vacuum field equation then reduces to a partial
differential equation for E known as the Ernst equation; see
e.g. Griffiths and Podolský [31] for details. The Ernst
potential determines all components of the metric. In other
words, a stationary axisymmetric vacuum spacetime is
completely determined by the two real potentials ϕ and ϖ
which depend only on the two coordinates r and ϑ. This
should be contrasted with an arbitrary spacetime, where the
metric has ten independent components which depend on
all four coordinates, and with a stationary vacuum space-
time, where the metric is determined by eight scalar-valued
functions that depend on the three spatial coordinates.
The idea of using the real and the imaginary parts of the

Ernst potential as coordinates was brought forward already
in the 1980s by Perjés [32]. These two real potentials
coordinatize the planes ðt;φÞ ¼ const; i.e., together with t
and φ they can be used as coordinates on the spacetime. Of
course, this is true only where dϕ and dϖ are linearly
independent. Whereas the potentials corresponding to
∂t þ Ω∂φ with Ω ¼ 0 are the ones most naturally related
to the spacetime geometry, these potentials can be defined
with respect to any Ω. This is of particular relevance in the
case that the source is nonrotating, i.e., that ∂t is hyper-
surface-orthogonal. Then the gravitomagnetic potential
associated with Ω ¼ 0 is constant and cannot be used as
a coordinate.
If the metric is given as

ds2¼gttdt2þgrrdr2þgϑϑdϑ2þgφφdφ2þ2gtφdtdφ; ð9Þ

with the gμν depending only on r and ϑ, the gravitoelectric
potential associated with the Killing vector field ∂t þ Ω∂φ
is given by the equation

e2ϕ ¼ gtt þ 2Ωgtφ þΩ2gφφ: ð10Þ

The twist covector field reads

ϖμdxμ ¼
grrg2ttffiffiffiffiffiffi−gp

�
∂ϑ

gtφ
gtt

þΩ∂ϑ
gφφ
gtt

− Ω2
g2φφ
g2tt

∂ϑ
gtφ
gφφ

�
dr

−
gϑϑg2ttffiffiffiffiffiffi−gp

�
∂r
gtφ
gtt

þ Ω∂r
gφφ
gtt

−Ω2
g2φφ
g2tt

∂r
gtφ
gφφ

�
dϑ

ð11Þ

with g ¼ ðgttgφφ − g2tφÞgrrgϑϑ. If the metric satisfies
Einstein’s vacuum field equation, it is guaranteed that
the twist covector field admits a potential, ϖμ ¼ ∂μϖ.
We now discuss the gravitoelectric and gravitomagnetic
potentials for a few specific stationary and axisymmetric
vacuum solutions to Einstein’s field equation, thereby
illustrating that they can be applied also to the spacetime
around a black hole or another (ultra)compact object. In all
cases, we consider the metric in spherical polar coordinates
ðt; r;φ; ϑÞ, where ∂t and ∂φ are Killing vector fields.

We determine the gravitoelectric and gravitomagnetic
potentials with respect to the Killing vector field
∂t þ Ω∂φ, and we plot the potentials ϕðr; ϑÞ and ϖðr; ϑÞ
in diagrams with r sinϑ on the horizontal axis and r cosϑ
on the vertical axis. The examples demonstrate how the two
families of equipotential lines give a coordinatization of the
r − ϑ-plane. For sufficiently small jΩj the gravitoelectric
equipotential lines close to the central body are circles; i.e.,
the gravitoelectric geoid in three-space has the topology of
a sphere, as usually associated with the term “geoid.” By
contrast, the gravitomagnetic equipotential lines are not
usually closed; i.e., the gravitomagnetic geoid in three-
space has the topology of R2. To put this another way, the
gravitoelectric potential may be interpreted as a height
coordinate, whereas the gravitomagnetic potential may be
viewed as a latitude coordinate.

A. Schwarzschild, Kottler, and
Reissner-Nordström metrics

For a spherically symmetric and static metric of the form

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdϑ2 þ sin2ϑdφ2Þ; ð12Þ

Equation (10) gives us the gravitoelectric potential as

e2ϕ ¼ fðrÞ −Ω2r2 sin2 ϑ ð13Þ

and Eq. (11) gives us the twist covector field as

ϖμdxμ ¼ Ωð2 cos ϑdr − r sinϑð2fðrÞ − rf0ðrÞÞdϑÞ: ð14Þ

For the Scharzschild spacetime,

fðrÞ ¼ 1 −
2M
r

; ð15Þ

this specifies to

e2ϕ ¼ 1 −
2M
r

−Ω2r2 sin2 ϑ ð16Þ

and

ϖμdxμ ¼ 2Ωðcosϑdr − ðr − 3MÞ sin ϑdϑÞ: ð17Þ

Integration of the latter equation gives us the gravitomag-
netic potential

ϖ ¼ 2Ωðr − 3MÞ cosϑ: ð18Þ

More generally, we can consider the Kottler spacetime, also
known as the Schwarzschild–(anti-)de Sitter spacetime,

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
: ð19Þ
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In this case the cosmological constant gives a contribution
to the gravitoelectric potential,

e2ϕ ¼ 1 −
2M
r

−
Λr2

3
−Ω2r2 sin2 ϑ; ð20Þ

whereas it drops out from the equation for the twist
covector field, which is still given by (17). So also in this
case we have a gravitomagnetic potential given by (18).
However, in the case of the Reissner-Nordström

spacetime

fðrÞ ¼ 1 −
2M
r

þQ2

r2
ð21Þ

the twist covector field

ϖμdxμ¼2Ω
�
cosϑdr−

�
r−3Mþ2

Q2

r

�
sinϑdϑ

�
ð22Þ

is not integrable (unless Ω ¼ 0 or Q ¼ 0); i.e., in this case
the gravitomagnetic potential does not exist. This is in line
with the theorem in [14].
The equipotential surfaces for Schwarzschild are shown in

Figs. 1(a) and 1(b) for two different values of the angular
velocity Ω of the observer field. (For Ω ¼ 0 we have of
course ϖ ¼ 0, so in this case the potentials cannot be used
as coordinates.) There is a forbidden region, shown in
gray shading, where the potentials are not defined because
the Killing vector field ∂t þ Ω∂φ is spacelike. Outside of this
region, the differentials dϕ and dϖ are linearly independent,
for all nonzero values of Ω, with the exception of the axis. If
jΩj is smaller than the critical value Ωcrit ¼ ð ffiffiffiffiffi

27
p

MÞ−1≈
0.19245 M−1, the forbidden region consists of two

connected components: One is adjacent to the horizon,
the other one is the region outside of the so-called light-
cylinder. The inner equipotential surfaces of the gravito-
electric potential are topological spheres in three-space, the
outer ones are topological cylinders; the borderline case is an
equipotential surface with a self-crossing along a circle in the
equatorial plane. The equipotential surfaces of the gravito-
magnetic potential all have the topology of R2, with the
exception of one which consists of the sphere r ¼ 3M and
part of the equatorial plane. If jΩj ¼ Ωcrit, the two connected
components of the forbidden region touch at the photon
circle r ¼ 3M in the equatorial plane. If jΩj > Ωcrit, the
forbidden region is connected. Now all the equipotential
surfaces have the topology of R2 in three-space.
For the Earth the critical angular velocity is ΩEarth;crit ∼

800 GHz which is 16 orders of magnitude larger than the
actual value. The outer part of the forbidden region begins
at approximately 5 × 109 km which is 10 times the distance
to Pluto. And the inner part of the forbidden region does not
exist for the real Earth.

B. Kerr metric

We now consider the Kerr metric

ds2 ¼
�
1 −

2Mr
r2 þ a2cos2ϑ

�
dt2 −

r2 þ a2cos2ϑ
r2 − 2Mrþ a2

dr2

− ðr2 þ a2cos2ϑÞdϑ2

− sin2ϑ

�
r2 þ a2 þ 2Mra2sin2ϑ

r2 þ a2cos2ϑ

�
dφ2

þ 4Mrasin2ϑ
r2 þ a2cos2ϑ

dtdφ; ð23Þ

FIG. 1. The gravitoelectric (blue dotted lines) and gravitomagnetic (red lines) potentials for Schwarzschild spacetimes. The cross-
hatched area is the region inside the black-hole horizon, and the gray shaded area is the region where the potentials are not defined
because the Killing vector field is spacelike. (a) Schwarzschild with Ω ¼ 0.18M−1. (b) Schwarzschild with Ω ¼ 0:20M−1.
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where, for a Kerr black hole, a2 ≤ M2. By (10) the
gravitoelectric potential reads

e2ϕ ¼ 1 −
2Mr

r2 þ a2cos2ϑ
þ Ω

4Marsin2ϑ
r2 þ a2cos2ϑ

− Ω2

�
r2 þ a2 þ 2Ma2rsin2ϑ

r2 þ a2cos2ϑ

�
sin2ϑ: ð24Þ

From (11) we find the twist covector field

ϖμdxμ ¼
ðϖð0Þ

μ þΩϖð1Þ
μ þ Ω2ϖð2Þ

μ Þdxμ
ðr2 þ a2 cos2 ϑÞ2 ð25Þ

with

ϖð0Þ
μ dxμ ¼ −2aMð2r cos ϑdrþ ðr2 − a2 cos2 ϑÞ sinϑdϑÞ;

ð26Þ

ϖð1Þ
μ dxμ ¼ 2 cos ϑððr2 þ a2Þ2 − 2a2ðr2 þ a2 − 2MrÞ sin2 ϑþ a4 sin4 ϑÞdr

− 2 sinϑððr2 þ a2Þðr2ðr − 3MÞ þ a2ðM þ rÞ − 2a2r sin2 ϑÞ − a4ðM − rÞ sin4 ϑÞdϑ; ð27Þ

ϖð2Þ
μ dxμ ¼ −2aMsin3ϑð2a2r cos ϑ sinϑdr − ða4cos2ϑ − a2r2sin2ϑ − 3r4ÞdϑÞ: ð28Þ

This gives us the gravitomagnetic potential

ϖ ¼ ð1þ Ω2ð2ðr2 þ a2Þ þ ðr2 − a2Þsin2ϑÞÞ 2aM cosϑ
r2 þ a2cos2ϑ

þ 2Ω cos ϑ
ðr2 þ a2Þðr − 3MÞ − a2ðr −MÞsin2ϑ

r2 þ a2cos2ϑ
: ð29Þ

In Fig. 2(a) we show the equipotential surfaces for
nonrotating observers, Ω ¼ 0, where the potentials sim-
plify to [33]

e2ϕ ¼ 1 −
2Mr

r2 þ a2 cos2 ϑ
; ð30Þ

ϖ ¼ 2aM cosϑ
r2 þ a2 cos2 ϑ

: ð31Þ

The surfaces ϕ ¼ const are topological spheres in three-
space; the innermost one is the boundary of the ergoregion.
The surfaces ϖ ¼ const all have the topology of R2. For
rotating observers we have to distinguish the case aΩ > 0
[Figs. 2(b) and 2(c)] and the case aΩ < 0 [Figs. 2(d)
and 2(e)]. If jΩj is sufficiently small, the region where the
potentials are not defined (gray shaded in the figure) is

connected; beyond a critical value this region decomposes
into two connected components which are separated from
the equatorial plane.

C. The NUT metric

The Newman-Unti-Tamburino (NUT) metric [34] is a
solution to Einstein’s vacuum field equation that reads

ds2¼ r2−2Mr−n2

n2þr2
ðdt−2ncosϑdφÞ2

−
ðr2þn2Þdr2
r2−2Mr−n2

−ðr2þn2Þðdϑ2þsin2ϑdφ2Þ; ð32Þ

where M is the mass parameter and n is the so-called
NUT parameter, also known as a gravitomagnetic charge.
From (10) we find the gravitoelectric potential

e2ϕ ¼ r2 − 2Mr − n2

r2 þ n2
ð1 − 2nΩ cosϑÞ2 − Ω2ðr2 þ n2Þ sin2 ϑ; ð33Þ

and from (11) we find the twist covector field

ϖμdxμ ¼ −
�
ð1 − 2nΩ cosϑÞ2 2nðr

2 − 2Mr − n2Þ
ðr2 þ n2Þ2 − 2Ωðcosϑð1 − nΩ cosϑÞ − nΩÞ

�
dr

− 2Ω sinϑð1 − 2nΩ cosϑÞ r
3 − 3Mr2 − 3n2rþMn2

r2 þ n2
dϑ: ð34Þ

The twist potential reads

ϖ ¼ 2nðr −MÞ
r2 þ n2

þ 2Ω cosϑð1 − nΩ cosϑÞ r
3 − 3Mr2 − 3n2rþMn2

r2 þ n2
− nð2rþ 3MÞΩ2: ð35Þ
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Figures 3(a) and 3(b) show the potentials for the NUT metric
with two different values of Ω. Qualitatively, the equipo-
tential surfaces are similar to the Schwarzschild case. In
particular there is a critical value for Ω beyond which the
region where the potentials are not defined decomposes into
two connected components. Note, however, that in contrast
to the Schwarzschild spacetime the potentials are no more
symmetric with respect to the equatorial plane.

D. The Kerr-NUT metric

The Kerr-NUT metric is a solution to Einstein’s
vacuum field equation that depends on a mass parameter
M, a NUT parameter (gravitomagnetic charge) n and a spin
parameter a; see e.g. Griffiths and Podolský [31], p. 312.
The metric reads

ds2 ¼ ðr2 þ a2 − n2 − 2MrÞ
r2 þ ðn − a cosϑÞ2 ðdt − ðasin2ϑþ 2n cos ϑÞdφÞ2 − r2 þ ðn − a cos ϑÞ2

ðr2 þ a2 − n2 − 2MrÞ dr
2

−
sin2ϑ

r2 þ ðn − a cos ϑÞ2 ðadt − ðr2 þ a2 þ n2ÞdφÞ2 − ðr2 þ ðn − a cosϑÞ2Þdϑ2: ð36Þ

For simplicity, we restrict here to Ω ¼ 0. Then the gravitoelectric potential is

FIG. 2. The gravitoelectric (blue dotted lines) and gravitomagnetic (red lines) potentials for Kerr spacetimes. The cross-hatched
area is the region inside the outer horizon, and the gray shaded area is the region where the potentials are not defined because the Killing
vector field is spacelike. (a) Kerr with a ¼ 0.90M; Ω ¼ 0; (b) Kerr with a ¼ 0.90M; Ω ¼ 0.20M−1; (c) Kerr with
a¼ 0.90M; Ω ¼ 0.362M−1; (d) Kerr with a ¼ 0.90M; Ω ¼ −0.143M−1; and (e) Kerr with a ¼ 0.90M; Ω ¼ −0.147M−1.
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FIG. 3. The gravitoelectric (blue dotted lines) and gravitomagnetic (red lines) potentials for the (Kerr-)NUT spacetime and for the
q-metric. The cross-hatched area is the region inside a black-hole horizon, the black area is the part bounded by a naked singularity, and
the gray shaded area is the region where the potentials are not defined because the Killing vector field is spacelike. (a) NUT with
n ¼ 0.50M; Ω ¼ 0.175M−1; (b) NUT with n ¼ 0.50M; Ω ¼ 0.185M−1; (c) Kerr-NUT with a ¼ 0.90M; n ¼ 0.50M; Ω ¼ 0;
(d) Kerr-NUT with a ¼ 0.90M; n ¼ −0.50M; Ω ¼ 0; (e) q-metric with q ¼ 0.60M; a ¼ 0; Ω ¼ 0.116M−1; (f) q-metric with
q ¼ 0.60M; a ¼ 0; Ω ¼ 0.118M−1; (g) q-metric with q ¼ 1.00M; a ¼ 0.90M; Ω ¼ 0; and (h) q-metric with q ¼ −0.90M;
a ¼ 0.90M; Ω¼ 0.
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e2ϕ ¼ 1 −
2ðMrþ n2 − an cos ϑÞ
r2 þ ðn − a cos ϑÞ2 ; ð37Þ

and the twist covector field is

ϖμ¼
4Mrðn−acosϑÞ−2nðr2−ðn−acosϑÞ2Þ

ðr2þðn−acosϑÞ2Þ2 dr

−
2aðMðr2−ðn−acosϑÞ2Þþ2rnðn−acosϑÞÞsinϑ

ðr2þðn−acosϑÞ2Þ2 dϑ;

ð38Þ

so the gravitomagnetic potential equals

ϖ ¼ 2
nr −Mðn − a cosϑÞ
r2 þ ðn − a cosϑÞ2 : ð39Þ

The potentials for the Kerr-NUT metric with Ω ¼ 0 are
shown in Fig. 3(c) for the case an > 0 and in Fig. 3(d)
for the case an < 0. In either case, the surfaces ϕ ¼ const
are topological spheres in three-space, and the surfaces
ϖ ¼ const are diffeomorphic toR2. Again, it is clearly seen
that the NUT parameter breaks the symmetry with respect
to the equatorial plane.

E. The rotating q-metric

The rotating q-metric is a solution to Einstein’s
vacuum field equation that was found by Toktarbay and
Quevedo [35]; also see [36]. It depends on three param-
eters: a mass parameterM, a quadrupole parameter q, and a
spin parameter a. It features a naked singularity which is
considered as unphysical by most authors. Therefore, when
working with this metric one usually assumes that this
vacuum solution is valid only outside of a certain sphere
which covers the naked singularity and that inside this
sphere the metric has to be matched to a regular interior
solution. If interpreted in this sense the rotating q-metric
describes the spacetime around a spinning body with a
nonzero quadrupole moment that is very compact but not
compact enough to have undergone gravitational collapse.
As the surface where the matching is done can be chosen
arbitrarily close to the naked singularity, in the following
we consider the metric down to the naked singularity.
As the q-metric has a nonzero quadrupole moment, it is

of geodetic relevance since it might be used to relativis-
tically model the flattened Earth. Higher-order multipole
moments can be introduced via a series expansion of the
metric; see e.g. [16].
The Ernst potential E for the rotating q metric can be

found in [35]. From that we can find for nonrotating
observers, Ω ¼ 0, the gravitoelectric and gravitomagnetic
potentials via (8). In prolate spheroidal coordinates
ðt; x; y;φÞ, the Ernst potential reads

E ¼
�
x − 1

xþ 1

��
x − 1þ ðx2 − 1Þ−qdþ
xþ 1þ ðx2 − 1Þ−qd−

�
; ð40Þ

where

d� ¼ −α2ðx� 1Þhþh−ðx2 − 1Þ−q
þ iαðyðhþ þ h−Þ � ðhþ − h−ÞÞ; ð41Þ

h� ¼ ðx� yÞ2q; ð42Þ

αa ¼ σ −m: ð43Þ

The prolate spheroidal coordinates are related to spherical
polar coordinates ðt; r; ϑ;φÞ by the transformation

x ¼ r −M
σ

; y ¼ cosϑ: ð44Þ

Here σ is a constant parameter. For rotating observers
(Ω ≠ 0) the potentials are given by very involved equations
which will not be written out here but can easily be
evaluated numerically.
Figures 3(e) and 3(f) show the potentials for the non-

spinning q-metric (a ¼ 0) for two different values of Ω.
Roughly speaking, the pictures look like squashed versions
of the Schwarzschild case, which is of course an effect of
the nonzero quadrupole moment. Figures 3(g) and 3(h)
show the potentials for the spinning q-metric (a ≠ 0) where
the observers are nonrotating (Ω ¼ 0).

VII. DISCUSSION

This paper is based on the observation that for a
stationary solution to Einstein’s vacuum field equation
there are two scalar gravitational potentials. While the
gravitoelectric potential is a general-relativistic generaliza-
tion of the Newtonian potential the gravitomagnetic one has
no nonrelativistic analog. There are many classical and
quantum methods to operationally realize these potentials.
The gravitoelectric potential can be interpreted as a height
and the gravitomagnetic potential as a measure of the
latitude. This means that these two potentials might be used
as a physically given reference system in the vicinity of the
rotating Earth. More precisely, if some degenerate cases are
excluded, they can be used as two of the three coordinates
one needs for parametrizing three-dimensional space. As
the general-relativistic geoid is a particular level surface of
the gravitoelectric potential, the intersection lines of the
gravitomagnetic equipotential surfaces with the geoid give
a latitudinal coordinatization of the geoid.
Unfortunately, the gravitomagnetic effects on Earth are

very small though they have been measured by LAGEOS
and by Gravity Probe B via the Lense-Thirring and the
Schiff effects. As we have seen, the Kerr parameter of
the Earth also influences the gravitoelectric potential.
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However, its influence is just one order below the current
accuracy of gravimeters. So, the next generation of instru-
ments measuring the gravitoelectric and gravitomagnetic
effects will be sensitive to the influence of the Earth’s
rotation on its gravitational field. The latter may also
become observable with the help of the gravitomagnetic
clock effect [37,38].
The full gravitational field of the Earth can be given by a

multipole expansion of the two potentials and the spatial
metric γij; see (2). These components of the full metric can
be measured with stationary and moving clocks, interfer-
ometers, and gyroscopes. Within this framework, any
adiabatic change of the gravitational field can be described
through time-dependent multipole parameters.
It has to be worked out how the potentials as well as the

spatial metric can be measured from space, that is, with
moving clocks or with GRACE-like constellations. A

particular question is the following: Whereas for the
gravitoelectric potential it is possible to measure potential
differences, in particular in terms of the redshift of clocks,
for the gravitomagnetic potential the measurement methods
discussed above only yield the gradient. It would be
interesting to find out if there is a method to measure
differences of the gravitomagnetic potential.
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