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We often encounter a situation where linear wave equations around a black hole solution can be regarded
as continuous deformations of simpler ones, or modifications from the general relativity case by continuous
parameters. We develop a general framework to compute high-order perturbative corrections to quasinormal
mode frequencies in such deformed problems. Our method has many applications, and it allows us to
compute numerical values of the high-order corrections very accurately. For several examples, we perform
this computation explicitly and discuss analytic properties of the quasinormal mode frequencies for

deformation parameters.

DOI: 10.1103/PhysRevD.109.044026

I. INTRODUCTION

Perturbation theory is one of the most powerful tools in
physics. We have a typical situation in which a system
cannot be solved analytically, but its special limit can be.
Perturbation around the special limit provides a good
approximation method and, more importantly, a clue to
get global information on the total system by combining
with the analytic continuation in complex analysis or
asymptotic analysis. The application range of perturbation
theory is extremely wide. It is important to clarify what we
can learn from perturbation theory.

In this work, we propose a systematic way to compute
high-order perturbative corrections to quasinormal mode
(QNM) frequencies of black holes. QNMs are solutions to
linearized field equations, which satisfy purely ingoing
(outgoing) boundary conditions at the horizon (infinity),
around a background black hole spacetime. It is known that
QNMs are related to the late time behavior of the field
dynamics around black holes [1-11]. In many cases, one
can regard some parameters of black hole solutions as
smooth deformation parameters of simpler black holes. We
apply perturbation theory for such deformation parameters.
Similar situations also happen if one considers the possibil-
ities of effective field theories or modified gravity theories
beyond general relativity. Since such modification param-
eters are expected to be small, it is natural to expand
physical quantities perturbatively. It is desirable to develop a
general framework widely applicable for such cases.

There are two obstacles to achieve this goal. One is that
we cannot solve the QNM spectral problem analytically
even in spherically symmetric black holes. Therefore, we
have only numerical or semianalytic eigenvalues and eigen-
functions in this simplest case. The other point is more
serious. In the QNM problem, a set of eigenfunctions is not
complete in the usual sense. This means that we cannot
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apply the well-known formula in quantum mechanics to the
computation of perturbative corrections to the QNM spec-
trum. There is already an extended formula to compute
perturbative corrections to QNM frequencies [12-14].
However, it is not clear for us how to use this formulation
systematically and practically for the examples we are
interested in. For this reason, we revisit a similar problem
in this work and propose another way to get high-order
perturbative corrections to QNM frequencies.

A possible resolution for this problem is simply to use
numerical fittings.' However, it is hard to predict high-order
corrections accurately in this way. Recently, a smart way to
compute perturbative quadratic-order corrections to the
QNM frequencies was proposed in [15,16]. Motivated by
these works, we extend the results to more general setups.
Our approach is based on the first principle of perturbation
theory. We do not use any numerical fittings to determine
the perturbative coefficients, though we need numerical
solutions at each order in perturbation. Our method is quite
general and applicable to various situations with smoothly
continuous deformations. In fact, we give, for the first time,
the high-precision perturbative expansion of the QNM
frequencies around the extremal Reissner-Nordstrom black
holes. Combining a recently proposed method [17], our
approach allows us to compute numerical values of high-
order corrections very accurately. Once we get the high-
order perturbative data, we can discuss analytic properties
(convergence, singularity, analytic continuation, nonpertur-
bative effects, etc.) of the QNM frequencies, in principle.

The organization of this paper is as follows. In Sec. II, we
start by explaining a general framework of our formulation.

'There is another resolution. One can analytically continue
eigenvalue problems from the real line to the complex domain.
This is well known as the complex scaling method for resonance
problems in quantum mechanics.

© 2024 American Physical Society
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We illustrate our basic idea to compute high-order perturbative
corrections systematically. In Sec. III, we present a technical
way to perform the idea in Sec. II explicitly. In Sec. IV, we
show various examples in which our method works well. We
particularly use the method proposed in [17], but this is not the
only possibility. For instance, we present another way in
Sec. IV G. In Sec. V, we consider possible future directions. In
Appendix, we give some remarks on the so-called para-
metrized black hole quasinormal mode approach, which are
useful when combined with the results in the main text.

II. GENERAL FRAMEWORK

We first illustrate our idea. In this section, we set up a
problem and explain a conceptual way to obtain a perturba-
tive series of QNM frequencies systematically. We will show
a technical method to achieve the result in the next section.
We expect that the problem proposed in this section can be
solved in many other ways developed in numerical compu-
tations of QNMs, such as Leaver’s continued fraction
method [5,18], the direct integration method [5,19], or
the pseudospectral method [20]. In the following discussion,
we do not need to assume that the effective potential in the
master equation is given by an analytic function. However, if
we apply our formalism to the Bender-Wu approach or
Leaver’s method as discussed in Secs. III and IV, the
effective potential needs to be an analytic function.

We consider a perturbative deformation of a black hole in
a certain theory. We would like to find perturbative
corrections to quasinormal mode frequencies for a small
deformation parameter. Our starting point is the following
(radial) master equati0n2:

e (2.1)

d?
<— + @ = V(x) |®(x) =0,
where x is the tortoise coordinate whose range is —oco <
x < oo and the potential V is defined in the same domain.
We assume that V is zero at |x| —» .’ The tortoise
coordinate x is related to the radial variable r as

dx 1

— = , 22

dr  f(r) (22)
where f(r) is a function that has a zero at the event horizon
r = ry and takes positive values outside the event horizon."

2Although our idea is not restricted to this form, to make the
explanation simpler, we assume it in this paper.

3If the field has a mass term u?, V is constant at x — oo. In that
case, @ in Eq. (2.3) should be changed to \/@? — u* at x — 0.
Then, we can still apply the same method. See Sec. IV B.

*When f has another zero at r = r¢ in r > ry, e.g., the case of
the Schwarzschild—de Sitter black hole, we focus on the region
ry <r<r, C-

Explicit forms of f(r), of course, depend on situations, e.g.,
f(r) =1=2M/r — Ar*/3 for the Schwarzschild-de Sitter
black hole and f(r) = 1 —2M/r + Q?/r? for the Reissner-
Nordstrom black hole. The QNM boundary condition is
then given by the purely outgoing in x — oo and purely
ingoing in x - —oo conditions’
®(x) ~ eF*  (x > Fo0). (2.3)
We assume that all the quantities in the master equation
have smooth perturbative expansions in a parameter a:

V(x) = Zaka(x), w? = Zakgk,
k=0 =0

D(x) = §°°: ak®;(x). (2.4)
k=0

Typically, the parameter « appears as a deformation
parameter of a black hole or of a modified theory. At this
stage, we do not ask its physical origin, for generality. In
general, the function f(r) may also depend on a. This
dependence causes a subtlety in our perturbative treatment.
We will discuss this issue later.

Expanding @ as a series of a,

o0
w = E ad*wy,
=0

the QNM boundary condition in Eq. (2.3) can be written as

(2.5)

D~ eii(uoxej:i(uw]+112w2+~-)x

= e*% (1 + aPf + ?Pf + -+ ), (2.6)
where P, P5,- - - are polynomials of x. This implies that
the QNM boundary condition for @, is

Q) ~ " (x > +00). (2.7)

We solve the master equation perturbatively in a. We
start with zeroth order, at which the eigenequation is°

Because the wave function ® with the QNM boundary
condition is divergent at |x| — oo for Im(@) < 0, one may think
that the asymptotic form ®(x) ~ =¥ is not sufficient to specify
the boundary condition. In fact, the QNM boundary condition is
first defined in the domain Im(w) > 0; then it corresponds to the
decaying modes at |x| — oo, which are the fine-tuned modes. By
the analytic extension to the complex @ plane, we can define the
QNM boundary condition for Im(w) < 0.

®In our setup, by adding the factor g introduced in Sec. III and
taking the analytic continuation, the problem reduces to the
eigenvalue problem for one-dimensional bound states whose
eigenvalues are not degenerate. Thus, the zeroth-order spectra are
not degenerate.
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(d_xz +Ey— Vo(x)>d>0(x) —0. & —ab (28)

Note that £, denotes the zeroth-order eigenvalue in the
perturbation of a, not the fundamental mode eigenvalue.
Typically, the zeroth-order equation is the master equation
for spherically symmetric black holes, but our formalism is
not restricted to this specific situation. At each order, we
solve the differential equation by requiring proper boun-
dary conditions and then find the perturbative corrections to
the eigenvalues.

We first solve the zeroth-order equation (2.8) by impos-
ing the ordinary QNM boundary condition:

@y (x) ~ erir  (x - +oo). (2.9)

There are many techniques to solve Eq. (2.8) numerically.
To go to the next order, we need the zeroth-order eigen-
function @, (x) with the eigenvalue &,." Though, in this
work, we will use a method recently proposed in [17], we
stress that our idea should work for many other techniques.

Once we obtain the eigenvalue and the eigenfunction at
zeroth order, we can proceed to the first-order equation.
The equation we should solve is

d2
( +so—vo<x>)c1>1<x>=<v1<x>—51>¢o<x>. (2.10)

dx?

We regard this equation as the inhomogeneous differential
equation for ®(x) with the unknown constant £;, while
®)(x) and &, are known. For the function ®;(x), we
impose the same QNM boundary condition for ®(x):
q)l (x) ~ eiiwﬂx

(x = +o0), (2.11)

as explained in Eq. (2.7). As shown in the next section, this
inhomogeneous equation is also solved by the same method
as the zeroth-order equation. Therefore, we get £, and
@, (x), at least numerically. We note that &£, is uniquely
determined for a given zeroth order £l

The computations at higher orders are similar. We regard
the kth-order equation

"This point is quite different from the textbooklike method in
quantum mechanics, in which one needs to use all the eigenvalues
and the eigenfunctions at zeroth order as a basis of Hilbert space.

8Assuming that Eq. (2.10) has two solutions with the appro-
priate QNM boundary conditions d>(1i> and @Eii) whose eigenvalues
are 5?) and 8@, respectively, the deviation AD := <1>(1i) - <I>2ii)
satisfies an equation (d?/dx* + £y — Vo) A®, = —AE,®,, where
A&y = E(Ii) - 5(1“). This equation is the same as Eq. (2.10) with a
vanishing correction term V; = 0. Thus, the only possible
solution is A®D; « @, with AE; = 0. This implies S(Ii) = ng.

(G4 €0 Vo) ) 4(a) = S-(Ve0) = £
(2.12)

as the inhomogeneous equation for &, and ®,(x) with
known &; and ®;(x) (0 < j < k — 1). We solve it under the
boundary condition in Eq. (2.7). We repeat this computa-
tion as many times as possible.

If the function f(r) depends on the perturbative param-
eter a, there is a subtle point. In this case, we also expand
f(r) in a. This gives a perturbative relation between r and x
via the relation in Eq. (2.2). Schematically, we have

x=x(r,a) = iakxk(r), (2.13)

where x;(r) is a function of r. On the other hand, we can
inverse this relation by

r=r(x,a) = iakrk(x). (2.14)
k=0

There is an ambiguity as to which variable, r or x, is
fundamental in the perturbative expansion. In this paper, we
regard x as a fundamental variable and use Eq. (2.14) to
eliminate » to expand the potential perturbatively. This is
because boundary conditions in terms of x seem to be more
natural.

There is a caveat when we apply our framework to a
specific system and calculate the QNM frequencies by
numerical calculations. Our framework is introduced based
on the form of the master equation in Eq. (2.1), which is
written with the tortoise coordinate x. However, in many
cases, it is difficult to explicitly write the tortoise coordinate
x as a function of r and also the master equation as a
function of x. This implies that imposing the boundary
condition at each order @, ~ e*®* is not a trivial task in a
concrete example. In that case, the technique to rewrite the
master equation used in [15] might be useful. When the
function f has a zero at r = ry, and it is close to 1 — ry /7,
we can write [ as

f= (1 —r—H>Z(r; a), (2.15)

r

where Z(r; ) is a function of r which contains the small
parameter a. Choosing ry and a as the fundamental
parameters, we can write the master equation (2.1) in
the form

(1 —%”)%((1 —FTH) %) (@ -V)p=0, (2.16)
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where ¢p = /Z®, @ is a rescaled frequency and V is the
effective potential which depends on « [1 5)° Regarding this
equation as the basic master equation, we can easily apply
our framework to this system because the tortoise coordinate
in this system is explicitly written as r + ry In(1 — ry/r).
Note that we do not need to be concerned with this point as
long as we use the Bender-Wu approach introduced in the
next section because the calculation is carried out around the
potential peak region.

Finally, note that our formulation is easily extended to
multiparameter perturbations. If one considers a two-
parameter perturbation,

[Se]

Vo(x) + (@ Vi) + Vi),

k=1

V(x;a,p) = (2.17)

then the square of the frequency should receive the
following perturbative corrections [15,16]:

o = & +af"” + peVV + 230 + apel!
+ ey
o k
=&+ .Y aprelt. (2.18)
k=1 £=0

. tk—t .
To fix the coefficients 5,({ ), we can choose various
combinations of (a, f3). For instance, to fix the second-order

corrections 5&2’0), 59'1), and 5&0’2), itis sufficient to consider
three particular slices: (a, ) = (a,0), (a, a), (0, ), in
which the problem is reduced to the one-parameter problem.

We will return to this issue in Sec. IV.

III. TECHNICAL REMARK:
THE BENDER-WU APPROACH

In the previous section, we proposed a general idea to
compute the perturbative corrections &£, systematically. The
main problem is, of course, how we solve the differential
equation (2.12) for our QNM problems. In this section, we
see that this is done using the so-called Bender-Wu
approach [21] that was recently extended to the QNM
computation in [17,22], based on [23-25]. The main
advantage of this approach is that it is widely applicable
to many models, as in the WKB approach [26,27]. The
Bender-Wu approach itself also strongly depends on
perturbation theory. Since we need eigenfunctions as
well as eigenvalues, we review the Bender-Wu approach
for our problem. We follow the notation in [28] as much as
possible.

The explicit forms of @ and V can be seen in Appendix B
n [15].

A. Leading-order solution

Let us solve the zeroth-order equation (2.8). We first
introduce a formal parameter g,

d2
(<t €0

It is clear to see that ¢* plays the role of a Planck parameter.
Setting g = ¢”/*, the original equation (2.8) is repro-
duced.'® The basic idea is the following. We first consider
the eigenvalue problem for g € R. In this case, we have the
Schrodinger-type equation with the inverted potential
—Vo(x), which admits bound states, and we can apply
the standard perturbative method in quantum mechanics
near the minimum of —V(x). The important observation
in [17] is that the boundary conditions for bound states and
QNMs are simply related by the analytic continuation of g.
This implies that if we know the bound state energy for
g€ R, we can obtain the QNM eigenvalue by the analytic
continuation g = e"/*.

Let X be the value of x at which —V(x) takes the
minimal value. We expand the inverted potential —V(x)
around x = X:

Vol ))cbom:o, Eo=af (1)

—Vo(x) = Voo + Z Vi, (x (3.2)

We introduce a new variable x — X = gq. This change
means that as g decreases, we zoom in on the neighborhood
of the minimum at x = X. Then, Eq. (3.1) leads to

1 & 1
(32590 + v@) -0 () = 0. G

VV02, €9 = =(Ey + Vio)/(2¢%) and

where Q :=

l0 j+
E +2 . 12
g/ruo q/ UOj' _

(3.4)

vola) =5 22\/0] 99)’

We denote y(g) = y(X + gg) to avoid confusion. In this
picture, the Planck constant is unity, and g now plays the
role of a coupling constant in the potential.

We solve Eq. (3.3) perturbatively in g order by order. At
leading order, we can regard it as the harmonic oscillator
with frequency €. To eliminate the exponential factor of the

eigenfunction, we rescale wo(g) = e/ 2uy(q):

""Note that there is another possibility: g = e~*/4. This
ambiguity reflects the fact that the QNM frequencies have two
branches for the real part [17].

044026-4
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1 Q
- yua)+ Qaua)+ (5 + ()= )l 0. (39
We have the following expansions:
= ZQ"MOn(CI) € = ZQ"GOn- (3.6)
n=0 n=0
Plugging these expansions into Eq. (3.3), we get
1 Q " .
- E l/tgn + Qqu{m + E Upyy + ; ’l)ojq]JFZM()Yn_j
= egjitgn-; =0 (3.7)
=0

Let us focus on the ground state for simplicity. The
ground state corresponds to the lowest (or fundamental)
overtone mode in the QNM problem. For n = 0, we have
the trivial solution uyy(g) = 1 and gy = Q/2. Using this
solution, we get

1 & )
—Eugn + Qquy, + Z(vojq/+2 —€pj)ugn—j =0, n>1
=1

(3.8)

The very important fact is that u, is a polynomial of ¢
whose degree is at most 3n [21,28]:

ZAan )

As shown in [21], the differential equation (3.8) determines
all the coefficients A, and ¢, recursively, which is what
the Mathematica program is used for in [28]. One has to
keep in mind that the above result is valid only for the
ground state. For the excited states, we need to modify it
slightly. See [28] for these cases.

We finally set g = e™/* in the perturbative series.
However, in general, the formal power series in Eq. (3.6)
are not convergent for any g # 0. The substitution of g =
e™/* merely gives a meaningless answer. To avoid it, one
needs to truncate all the high-order corrections beyond a
certain optimal order or to use summation methods. Note
that the former turns out to be equivalent to the WKB series
in the literature [26,27]. We use the latter, called the Borel
summation method, to decode a meaningful result for finite
¢ from the formal divergent series.'’ The conclusion in [17]
is that the Borel summation of Eq. (3.6) correctly repro-
duces the QNM frequencies. We emphasize that the above
method allows us to construct not only the eigenvalue & but

n>l. (3.9)

"An alternative way is to use Padé approximants [29-31].

also the eigenfunction w((g). In summary, for the ground
state, we have

Eo =~Voo = 2¢° Zgn€0nv

wolq) = ™7/ Z 9" 10, (q). Uon(q

ZA()nq ’

(3.10)

where o) = Q/2 and ugy(g) = 1.

B. First-order correction

Let us proceed to the first-order correction. We need to
solve

— &1)@(x).

(3.11)

( 522 +& — Vo(x)>d>1(x) = (V,(x)

Note that we already know the zeroth-order eigenfunction
@, (x) and eigenvalue &, in the previous subsection. As in
the computation above, we can rewrite this as

1 & 1
(=3 390 + wle) =0 (o)
-&
IRy (3.12)
We also expand —V(x) around x = X as
=Vi(x) = ZVU 9q) (3.13)

Note that x =X does not extremize V,(x) in general.
As mentioned in the previous subsection, we have to
impose the same boundary conditions for w((g) and

—Qq%/2

w1(q). Therefore, we set w,(q) =e ui(q) as well

as wo(q) = e 2u(q), and get
1 Q
—5”/1/4'961”/1 + <§+ Uo—€o>ul

\%
—|—<2—lglq—|—vl—€]>u0—0, (314)

where

044026-5
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- 81 + V10
1°*— 292 5
n(q) =5 2ZV1, 99)’ Zg’v VA
V..
v :%. (3.15)

We use the zeroth-order perturbative solution in Eq. (3.6).

From the consistency at orders 1/¢*> and 1/g, we should
take

V o0
ui(q :——Hf]‘f'zg uin(q €1:ZQH€1n-

n=0

(3.16)

We see that for the ground state, u;,(g) is a polynomial of
at most degree 3n + 4. After putting an ansatz in the
polynomial u,,(g), we can determine all the coefficients
of u;,(q) and €, from the perturbative equations. The
remaining computation is the same as the zeroth-order one.
By performing the Borel summation of €¢;, we obtain the
first correction &;.

C. Higher-order corrections

The computations for higher orders are straightforward.
At kth order, we find

k

D (Ve(x) =€) Dip().

=1

< jz+50 ())Cbk(x):
(3.17)

This leads to
1 Q
_EMZ =+ qu/l;{ —+ (E—i_ (2 —€0>Mk

+z<

—|— Ug—€f> l/tk_f :0, (318)

where @ (x) = ¢=24"/2y;(¢) and
gf + Vf() 1 & .
= betVa =5 Volga). (319
€y 292 Velq 292 — KJ(QQ) ( )

We observe that the ground state solution, in general,
behaves as

uxlg) = ”’“—’;f") Fo= S Pune)

Y n=—k
€ = Z 9" € ams (3.20)
n=-—1

where u;,(q) is a polynomial of at most degree 3n + 4k.
Under this assumption, we can easily compute ¢; pertur-
batively in g.

IV. EXAMPLES

In this section, we apply our formalism to various
examples.

A. Toy model: The Rosen-Morse potential

We demonstrate that the idea in Sec. II actually works in
the QNM problem for a simple, exactly solvable toy model.
What we consider is the so-called Rosen-Morse potential,
which is regarded as an integrable deformation of the
Poschl-Teller potential. The Rosen-Morse potential was
studied in the context of the quasinormal modes in massive
scalar perturbations [32]. We revisit the same model to
validate our framework. This model is given by

(gw - Vi) ) 09 =0

1 , 1 + tanhx

4.1
2coshZx tH 2 (4.1)

Vrm(x) =

where p is a deformation parameter. If 4 = 0, the potential
reduces to the well-known Poschl-Teller potential. The
Rosen-Morse potential in Eq. (4.1) for u # 0 is very similar
to the potential for the spherically symmetric black hole in
the massive scalar perturbation [32]. We will see this in the
next subsection. We treat this system as a perturbation in
the parameter .

We first show that this system is in fact exactly solvable.
To do so, we perform a change of variables and a trans-
formation of the wave function by

—ia)/2<1 _ Z)—i\/wz—ﬂ2/2y(z)‘

(4.2)

:%(1 +tanhx), ¢(x)=z

Then, the new function y(z) satisfies the standard hyper-
geometric equation:

Z(1=2z)y"

where

(2)+[c—(a+b+1)z]y'(z) —aby(z) =0, (4.3)

% é(w—l—\/wZ—ﬂz—Fl),
1 T

b=5-5(0+yer 1),
1

(4.4)

For a given pu, we impose the QNM-like boundary
condition:

044026-6
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lim ¢p(x) ~ etV -y,

lim ¢(x) ~ e™'®*, Jim

X—>—00

(4.5)

where we have to choose a branch of the square root so that

V2% = z for z € C in order to match the boundary condition
for 4 = 0. In terms of y(z), this boundary condition is
translated into the regularity condition at both z =0, 1
simultaneously. The regular solution at z = 0 is given by
the Gauss hypergeometric function

y(z) = F(a,b;c;z). (4.6)

Using the well-known analytic connection formula of the
hypergeometric function,

I'(c)I'(c—a-Db)
['(c—a)l(c—b)
xF(a,b,a+b—c+1;1-2)

F(oMa+b—c)

F(a,b,c;z) =

1= c—a—b
Fare) Y
xF(c—a,c—b,c—a—b+1;1-z2), (4.7)
the regularity condition at z = 1 requires
_ L 0 (4.8)
L(a)l(b) '
Therefore, we obtaina = —norb = —nforn =0,1,2,....

This condition leads to the following exact spectrum:

1 1
(nE) — (= e —
@ <2+” 421> + 2n + 1)>

1 5 2n +1
] (PR B — R Y
’("+2 ”4(2n2+2n+1)> (49)

We have two symmetric branches of the spectra. The exact
eigenfunction is also given by

+ 1 4 tanhx\ —@"* /1 —tanhx —in/@" 22 )2
W=7 ) 7

1+ tanh
x F(—n, nTil- iw<"~i>;¥>.

(4.10)

Note that for a non-negative integer n, the hypergeometric
function in this equation is a polynomial of degree n. For
simplicity, we consider the case of b = —n and abbreviate
the upper index in these expressions. For the lowest
overtone number n = 0, we have

=i ol
w = 2 /,l 4 El
1 + tanhx\ =@/2 (1 —tanh x| V@' ~#*/2
plx)=— _ . (411)
2 2
In the small g limit, we have
. 2 . 4
2 _ 2 4 L A
a)—50—|—/151+//t52— 2+2+8,
P(x) = do(x) + 21 (x) + u'ha(x) + O(°), (4.12)
where
1 —iwg
Folx) = <2 coshx) '
1—i 1\ =i
1) = 4 x(2c0shx> '
i 5 1 —iwg
=—— , 4.13
$2(0) = =75 (2coshx> (4.13)

and @y = (1 —1i)/2. These functions satisfy the same
boundary condition:

lim ¢y (x) ~ eti@ox,

lim ¢y (x) ~ e~i@o¥,
X——00 X—>—+00

k=0,1,2,.... (4.14)

Note that this boundary condition is slightly different from
the true QNM boundary condition in Eq. (4.5), but after
resumming the perturbative series, it is reproduced
correctly.

Now we confirm this result from perturbation theory. We
consider the perturbation in p?:

Vrm(x) = Vo(x) + 2V (x),
1 1 + tanh x
\% = %4 =———  (4.15
W) =5 Vi) = (415)
At the lowest order, we of course obtain the Poschl-Teller
potential:

2
<% +&) - Vo(x)>¢0(x) =0. (4.16)

Its eigenvalue and the eigenfunction for the fundamental
QNM are exactly given by zeroth order in Egs. (4.12) and
(4.13). We can confirm them by using the Bender-Wu
approach in the previous section. We perturbatively solve
Eq. (3.5) or (3.8) for
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R U O A 1_(99)
= 0<q>_292( 2coshi(gq) 2 2 )
(4.17)

By putting the ansatz in Egs. (3.6) and (3.9), we find the
following perturbative expansions:

L_i g4 _ 98 N 912 B 5916
"T2v2 4T 8V2 64v2  256V2  4096v2
. 742 B 2144 . 3342
163842 1310722 5242882
42947 7154% 243144
16777216V2 | 67108864v2  536870912y/2
+ O(g™), (4.18)

and

2 4 6 8
+g4 <_q__q__ q + 4q )
8v/2 96 7202 576

41 1348
+g6<_ ¢' _11¢" 13
96v2 5760 ' 403204/2

17q10 q12 >
- + + O(g*).
34560 2073612 (9°)

(4.19)

It is relatively easy to push high-order computations. We do
this up to O(g**). Note that the perturbative series of ¢ is
precisely reproduced by the exact result in [4],

+ (4.20)

| —
N =
INpR

€0:—gz+

We also observe that the perturbative series of u(g) is
generated by the following analytic function'?:

29

Wl 1 2

] p—— 421
MO(q) e <COSh(gq)> ( )

Now we substitute g = e”/* into Egs. (4.20) and (4.21).
Then we find

2
"2Note that this analytic function behaves as ¢33 in the large |q|
regime. This behavior is needed to reproduce the correct
boundary condition of the original function ¢,(x), as seen in
Eq. (4.22).

1
5025—29260:——
5 L™ um
= 2V2
i) = o) o (505 ) " @22)

These coincide with the exact results in Eqgs. (4.12)
and (4.13). Of course, the Borel summation or the Padé
approximant of the perturbative series in Eq. (4.18) also
gives a good approximate eigenvalue.

At the first and second orders, we have

(;2 + & = Volx )>¢1(X) + (& = Vi(x)po(x) =

Vi(x))g:(x)
(4.23)

(5 + 0= Vo) )t + 61 -
+ Exgpo(x) =0

We would like to solve these inhomogeneous equations
under the boundary condition in Eq. (4.14). Instead, it
is sufficient to confirm that the functions in Egs. (4.12)
and (4.13) satisfy these differential equations. One can
immediately check that this is the case.

These corrections are also reproduced by the Bender-Wu
approach. At first order, we solve Eq. (3.14). After some
computations, we find

€1 =0,
3 5
q q 7
3 5 7 9
q q q q q
+ +3 4 +
g (g\/_ 32 64v/2 2830 1152\/§>
+O(). (4.24)

In this case, it is very likely that the first-order correction €,
does not receive any perturbative corrections. We con-
firmed this up to O(¢?**°). Therefore, we have

1
51 = _VIO - 29261 = E (425)
Similarly, at second order, we find
1 1 92 g4 + 98 g12
€ = — - - -
2TU1687 8V2 16 3202 256v2 102442
N 5916 7920 N 21924 33g28
163842 655362 5242882 20971522
42942 7154%
- O(g*)  (4.26)
671088642 268435456+/2
and
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2 2 4 6
q q q q

y(q) = ——+ =+ +

(9) = T (sﬂ 64 192@)

2 3 4 7 6 8 10
gz<q_ L AL S A )
16 1282 1536 1152012 9216
+ O(g*). (4.27)

We observe that the second-order correction ¢, is related to
the zeroth-order correction ¢, by

- T % 4.8
2T 62 8 4 (4.28)
Using this estimate and setting g = ¢”/*, we finally get
Lhgt =&
£, =25, = % - é (4.29)

Our perturbative computation in the Bender-Wu approach
implies &£53 =0 for any g All of these results are
consistent with the exact result.

For higher overtone modes, since the hypergeometric
function in Eq. (4.10) does not change the asymptotic
behavior of the solution, the same structure holds.

B. Massive scalar perturbations

The simplest example in black hole problems is a
massive scalar perturbation of the Schwarzschild geometry.
The functions in the master equation are given by

f(r)zl_zﬂ, V(x):f(r)<f(frjl)+2j‘34+ﬂ2)‘

r

(4.30)

As in the Rosen-Morse potential, we regard the scalar mass
square u” as a deformation parameter: & = u°. Note that the
function f(r) does not receive any correction. The explicit
relation between r and x is given by

x =r+2Mlog <ﬁ—1>. (4.31)

We regard r as a function of x. The unperturbed system is
just the massless scalar case:

Z+1) 2M
Vo(x) = f(r) <(r2) + r3> L (432)
The correction in the potential is
Vix) = f(r),  Visa(x) =0. (4.33)

The QNM frequency receives the perturbative corrections
in y2. To keep the generality of M, we write the perturbative
series as the dimensionless form

Mo = Z(Mﬂ)Zka, (4.34)
k=0

where the correction coefficient w; does not depend on M.
Our task is to compute w; order by order. We can apply the
method in Sec. III.

Let us briefly review the boundary condition. In the case
of Eq. (4.30), the total boundary condition for the QNM is

lim ®(r) ~ "1V #x,

lim @(r) ~ e~ix,
X—>+00

X—>—00

(4.35)
If u is small, the boundary condition at infinity is
expanded as

ix , (itox)x , p
— - @) :
5 g M TOW)

(4.36)

. ) .
e+z\/w Hox e+zwx <1 _

This is indeed consistent with our requirement in Eq. (2.7).

To show an explicit result, we focus on the cases of
¢ =2,3." It s sufficient for us to compute the coefficients
in Eq. (4.34) for the case of M = 1. The zeroth-order
frequency for the lowest overtone number'* is well known:

w§=2 = 0.4836438722 — 0.0967587760i,

wh =3 = 0.6753662325 — 0.0964996277i. (4.37)
We have computed the numerical values of the perturbative
coefficients w; up to k = 40. The first six values are shown
in Table I. In this table, we show stable digits in our
numerical computations. The leading and next-to-leading
corrections are consistent with the early results in [15,16].

What do we learn from these perturbative data? The most
basic question would be whether the perturbative series in
Eq. (4.34) is convergent or not. To see this, we show the
behavior of the ratio wy_; /w; up to k = 40 in Fig. 1. The
ratio seems to converge to a finite value, but the convergence
is slow. Using basic knowledge of complex analysis, we can
estimate the radius of convergence in a different way. The
radius of convergence is determined by the nearest singular
point from the origin. In our framework, we only have a
finite number of w;,. We would like to decode the singularity
structure from these data. The best tool to do so is probably
by using Padé approximants.

Padé approximants tell us the analytic structure of a given
power series. In particular, they give us information on

BAs explained in [17], the Bender-Wu approach works well
for larger #. This is why we consider £ = 2, 3 rather than £ = 0,
1. It is desirable to solve Eq. (2.12) in other approaches.

"“The reader should not confuse the subscript index here with
the overtone number.
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TABLE 1.  First six perturbative corrections to the fundamental QNM frequency in Eq. (4.34) with £ = 2, 3 in the
massive scalar perturbation.
k wfzz 4"wf:3
0 0.4836438722 — 0.0967587760i 0.6753662325 — 0.0964996277i
1 0.3156326579 + 0.1081551348i 0.9437297621 + 0.2278771948i
2 0.03541170393 + 0.02620890155: 0.2263735226 + 0.1075217988i
3 0.01199156679 + 0.02204684913i 0.2085153094 + 0.1986390780i
4 0.00092115819 + 0.02209374509i 0.2333370885 + 0.4509679860i
5 —0.01001596605 + 0.02211024342i 0.1500437709 + 1.0963976002i
6 —0.02390151862 + 0.01898789685i —0.580414699 + 2.681826119i
singularity ~structure in the original function. See  approximants. These singular points disappear if orders of

Appendix C in [33], for instance. Since we have the
perturbative data of Eq. (4.34) up to (Mu)*, we can
construct its diagonal Padé approximant Mw!*0/40) We
read off the zeros and the poles of this approximant. The
results are illustrated in Fig. 2. This figure implies that the
perturbative series in Eq. (4.34) is likely a convergent series.
One can estimate its radius of convergence by computing
the distance to the nearest singular point. In this compu-
tation, one has to watch for “false” singular points of Padé

[Wi—1 Wil
2.0}
15Fe
1.0} . =3
05 feees ®®%000c0c0000000 e00cecccccoe
1=2
: : ‘ =k
10 20 30 40
FIG. 1. To see whether the perturbative series (4.34) is con-

vergent or not, we plot the ratio |wy_|/|w| for 1 <k <40. It
seems to converge to a finite value.

Padé approximants are changed. These are artifacts in the
approximant, while the “true” singular points are stable for
Padé orders. In Fig. 2, we observe that the black dashed
circle is expected to be the convergence circle. The
estimation of the radius of convergence R for Eq. (4.34)
in the complex Mu plane is approximately given by
Ri=2 ~0.643, R{=3 ~0.900. (4.38)

We do not have a clear physical meaning of this radius so
far. It would be interesting to understand it.

By using the Padé approximants, we finally extrapolate
our perturbative results to the finite parameter region, as
shown in Fig. 3.

C. Slowly rotating black holes

Another simple application is Kerr geometry. We regard
the angular momentum as a deformation parameter. Here
we consider the slow rotation limit. We briefly explain how
to get the slow rotation expansion of the QNM frequency
reported in [34].

The perturbation of the rotating black holes is governed
by the Teukolsky equation [35]. In [34], an isospectral
equation to the Teukolsky equation was proposed. This
isospectral equation is much more useful for our purpose in
this paper. We start with the radial master equation

Im[Mg]
1.0
/’—’ \‘~\
/ ~
[ o
// 06 \“
© oo G \
oo ',
| Re[My]
-2 -1 oo
\ ) %0 9 o
\ 7
\ -850 S
. /
N, /
~ 'd
\‘~__ -

-1.0"

FIG. 2. Singularity structure of the [40/40] Padé approximant of Eq. (4.34) for ¢ = 2 (left) and # = 3 (right) in the complex My plane.
We show its zeros with the blue points and poles with the orange points. The dashed curve is a conjectural convergence circle of the
perturbative series in Eq. (4.34). Note that the zeros and the poles inside the circle disappear when the degrees of the Padé approximant

are varied. These are artifacts of the [40/40] Padé approximant.
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FIG. 3.

ImMa]

0.05

-0.05

-0.10

Mass dependence of the # = 2 fundamental QNM frequency for the massive scalar perturbation. The (red) points represent the

numerical values. The (orange) dashed line and the (blue) solid line are the perturbative series in Eq. (4.34) up to k = 40 and its diagonal
Padé approximant, respectively. The Padé approximant is extrapolated beyond the radius of convergence.

d2

<_ + (M) - V(x)> O(x) =0, (439)

dx?
where

4e(m —c)
z

V(x) = f(z) {4(;2 +

Apm(c)+s(s+1)—c2m—c) s*-1
+ ZZ - Z3 )

x=z+log(z—1) (4.40)

and ¢ = aw is related to the rotation parameter a. For the
notational details, see [34]. Of course, the slow rotation
limit corresponds to the small ¢ limit. The separation
constant (A,,,(c) is determined by the regularity condition
of the angular master equation at £ = +1:

d d
dE (1- 52)675 + (c&)? = 2¢5& + (A (c)
2
+s- (ml - g) Sem(&) = 0. (4.41)

To compute the small ¢ expansion of the potential, we need
the perturbative series of (A, (c). This can be found as
follows. In ¢ — 0, the angular master equation can be
solved exactly. The regular solution at £ = 41 exists only
for the discrete eigenvalue

An(0) =26+ 1) —s(s+ 1), (4.42)
and the exact eigenfunction is given by
Sin (O = (1= FU+ TP ). (443)

where P\*/ )(z) is the Jacobi polynomial. We have

assumed £ > |s| and |m| < £. As in a very similar treat-
ment in the Bender-Wu approach, the eigenvalue (A, (c)
and the eigenfunction S,,,(£) admit the perturbative
series in c:

sAfm(C) :chsA;IZ? sSfm(é) :chss(flin(é)
k=0 k=0

The crucial step is to find the following general structure

of the regular function SS(KIZ (é):

Si(&) = (1= F(U+F,000(@), (449
where ;0% (&) is a polynomial of degree £ + s + k in €.
From the differential equation (4.41), we can fix all the
coefficients in the polynomial, Q;];)l (&) and SA;’Z, order by
order. This method allows us to compute the exact value of

SA(ZIZ up to very high orders for given s, £, and m. We have
confirmed that the first few coefficients indeed agree with
the results in [36,37].

Once we know the small ¢ expansion of (A, (c), we
obtain the perturbative expansion of the potential V(x).
Then we can apply the method in Sec. II. The result is given
by the following small ¢ expansion:

M,wz,, = chsv%. (4.46)
=0

However, we are interested in the perturbative expansion in
terms of the rotation parameter a rather than ¢ = aw. This
expansion is easily obtained by plugging Eq. (4.46) into
¢ = aw and by inversely expanding ¢ in a/M. We finally
obtain the following perturbative series:

I EANND
Msa)fm = Z <M> sWemo

k=0

(4.47)
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where the explicit values of Sw% for (s,Z,m) =
(=2,2,0),(=2,2,1),(=2,2,2) up to k = 12 are found in
Table 1 in [34].

D. Almost asymptotically flat black holes

We can also apply our formalism to asymptotically
nonflat geometries. We focus on the Schwarzschild—de
Sitter black holes. In this case, the functions in the
minimally coupled massless scalar, vector, and odd-parity
gravitational perturbations are all given by

flr) =1 —@—AT#,
V() = f(r) (W—?”+ (1-+7) (2—M‘¥A>)

(4.48)

where s = 0, 1, 2 denotes the spin weight of the perturba-
tion fields and A is the cosmological constant. We regard A
as a deformation parameter. In contrast to the previous
examples, the function f(r) depends on A. The explicit
relation between r and x is now quite complicated. As
discussed in Sec. II, we have to use the relation in Eq. (2.14)
to eliminate 7. This can be done, at least perturbatively, with
respect to A. After this prescription, the potential in terms of
x receives an infinite number of perturbative corrections. We
apply the Bender-Wu approach for such a perturbative series
of the potential. In the Bender-Wu approach, we need the
Taylor series of the perturbative corrections to the potential
|

£9M3 +322Mr? + 22(1 + )} + 9M?Ar — 3M?Ar?

TABLE 1I. First eight perturbative corrections to the funda-
mental QNM frequency in Eq. (4.49) with £ = 2 in the odd-parity
gravitational perturbation for the asymptotically de Sitter (dS)
black holes. It turns out that the same values are also obtained by
the even-parity perturbation.

k Wi

0 0.3736716844 — 0.0889623157i

1 —0.1864855559 + 0.0372042528i

2 —0.04819480629 + 0.01428258071i

3 —0.02302643485 + 0.00713463072i

4 —0.01415049627 + 0.00398414719i

5 —0.010032759238 + 0.002550521089:
6 —0.007668666891 + 0.001893042626i
7 —0.006085692144 + 0.001548612387:
8 —0.004939500648 + 0.001314426006i

around the extremal point x = X of the zeroth potential. This
can be done systematically.
We expand the frequency as

Mo = Z(9M2A)kwk.
k=0

(4.49)

The numerical values of w; for the fundamental mode with
¢ = 2 in the gravitational perturbation (s =2) up to k = 8
are given in Table II.

A nontrivial test of our result is to check the isospec-
trality between the odd-parity and even-parity gravitational
perturbations. The potential in the even-parity gravitational
perturbation is

V() = ()

r

where 1 = (£ —1)(£+2)/2. Tt is well known that the
QNM spectra in the odd- and even-parity perturbations are
exactly the same. The reason behind this remarkable fact is
the supersymmetric structure. See Appendix in [4]. Our
formalism is also applicable to this potential, and we have
checked that the isospectrality indeed holds at the pertur-
bative level at least up to k = 8:
Wzdd — Wiven.

(4.51)

This is evidence of the validity of our method.

Let us discuss the extrapolation of Eq. (4.49) to finite A.
We first observe that the perturbative series is likely
convergent, but it is hard to guess the radius of convergence
from the coefficient w,. We consider the [4/4] Padé
approximant by using the values in Table II. The Padé
approximant w!*/# for (s,#) = (2,2) has four poles at

, 4.50
(3M + ar)? ( )
|
MZA = 0.101 — 0.01344, 0.142 + 0.00389i,

0.323 + 0.0678i, 2.45 4+ 0.687i, (4.52)

where the first pole is relatively close to M?A = 1/9, at
which the event horizon and the de Sitter horizon coincide.
It is expected that higher-order Padé approximants capture
this observation more precisely, but it is technically
difficult to check this at the moment. This observation
implies that the radius of convergence of Eq. (4.49) is
just [M2A| = 1/9.

The extrapolation of Eq. (4.49) by its Padé approximant
is compared to the numerical value of the QNM frequency
directly computed from Eq. (4.48) (see Fig. 4). For
M2A = 0.06, we have

Mo}, (M2A = 0.06) ~ 0.2533 — 0.06304i,  (4.53)
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FIG. 4. Cosmological constant dependence of the fundamental QNM frequency for the asymptotically Schwarzschild—de Sitter black
holes. The (red) points represent the numerical values, while the (blue) solid line represents the [4/4] Padé approximant.

which agrees with the WKB result in [38] and also a recent
high-precision computation in [39].

We should note that the QNM spectral problem becomes
quite different for A > 0 (dS) and A < 0 (anti—de Sitter, or
AdS). The boundary condition in the AdS case is much
more involved than the dS case [4,40]. In this paper, we
restrict ourselves to the dS case for simplicity. It would be
interesting to clarify the physical meaning of a naive
continuation of our result to A < 0. Another perturbative
treatment for the (A)dS spectral problem can be found
in [41].

E. Reissner-Nordstrom black holes

The spectra for the Reissner-Nordstrom black holes are
more involved. The master equation in the odd-parity
gravitational perturbation consists of

2
fry=1 —%—I— % ,
2
v =) (I 44290 sy

where

G =3M +\/OM> +4QNF—1)(£ +2).  (459)

TABLE III.

We have two characteristic regimes: Q =0 and Q = M.
We discuss the perturbative series around these two points.

1. Almost chargeless limit

First, we discuss the small charge expansion. In this case,
Q? is a natural deformation parameter. We write the
perturbative QNM frequency as

o= 5 (2) .

k=0

(4.56)

The potential receives an infinite number of corrections.
The strategy is the same as that in the previous subsection.
We show the numerical values of the perturbative coef-
ficients wy for the fundamental QNM frequency with £ = 2
up to k=4 in Table III. The quadratic correction w;
matches well with [15].

2. Almost extremal limit

We can also consider another limit Q — M. In this case,
1 —Q/M is a good parameter. Therefore, we write the
frequency as

Now we have

Low-order corrections to the fundamental QNM frequency for £ = 2 in the Reissner-Nordstrom

gravitational perturbation. We consider the two distinct perturbative series (4.56) and (4.57).

Wi

ext
Wi

0.3736716844 — 0.0889623157i

AW =O | =

0.02581767285 — 0.00282403214i
0.02518778870 + 0.00020532453i
—0.004748170246 + 0.002508402108:
0.01557265014 + 0.00041287974i

0.4313408007 — 0.0834603151i
—0.2070138464 — 0.0853606869i

0.2543444995 + 0.4939946909i

0.758606111 — 1.429576400i
—6.158687644 + 0.575432188i
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0<Lk<3) in
no

TABLE IV. Nine coefficients in the rational approximation M*/4 for the # = 2 fundamental mode.

n a, b,

0 0.3736716844 — 0.0889623157i

1 —0.349769907 + 0.062882011i —0.92374126 — 0.051639318i

2 —0.342112665 — 0.038824176i —0.91011322 — 0.313017895i

3 0.492170748 — 0.023942699i 1.32244473 + 0.24735505i

4 —0.169504965 + 0.033347865i —0.454637541 — 0.004795289i
M\?2  2M? M? (0<k<2) in Eq. (4.56) and w$

(A o =k= nc Wy
f(r) = (1 r) ) Ta P2 (4.58) Eq. (4.57). Recall the expansion in Eq. (4.56) has

We also expand the potential perturbatively with respect to
a. The QNM frequencies in the strictly extremal case
(¢ = 0) can be computed using the Bender-Wu approach
[17]. We use the same computation for high-order correc-
tions. The numerical values of w{* for the fundamental
QNM frequency with # =2 up to kK =4 are shown in
Table III. The zeroth-order coefficient w§* agrees with the
early result [42]. We did not find any references on the

perturbative corrections near the extremal limit.

3. An interpolating function

We have two perturbative expansions of the same
spectrum in the different regimes. In each regime, we
determine the Padé approximant and can extrapolate it to
the other regime. However, to know the global behavior,
there is a better approximation, called multipoint Padé
approximants [43,44]. Let us consider a rational function

ay+a Q/M+ - +a,(Q/M)?
1+b,0/M+ -+ b, (/M)

MaolP/d = (4.59)

We fix the coefficients @, and b, so that the rational
function reproduces both perturbative expansions around
Q/M =0 and Q/M = 1. For instance, to get the rational

function Mw!*/4, we need nine coefficients in Eq. (4.56)
and in Eq. (4.57). A balanced choice is to take wy

Re[Mw]
0.44

0.43
0.42
0.41
0.40
0.39

0.38
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FIG. 5.

odd-order terms. We can use this information to fix a,
and b,. The explicit values of a, and b, in this case are
shown in Table I'V. The interpolating function remarkably
reproduces the numerical values in the whole regime
0 < Q/M <1, as shown in Fig. 5.

Interpolating functions will be improved if one considers
further perturbative expansions around other points in the
middle region. For instance, a perturbative expansion
around Q/M ~ 0.8 will provide us with important infor-
mation on the global structure of the imaginary part of the
QNM frequency for £ = 2. We do not compute it in this
work, but we expect that our method is still applicable in
such situations.

F. Parametrized black hole QNMs

Recently, a simple and effective way to compute pertur-
bative corrections was proposed in [15,16,45]. We refer to it
as the parametrized QNM approach. As one can see in the
previous examples, most deformation terms in the potential
take the form of linear combinations of 1/r/ with the
integral j. At first order in the perturbation, corrections to
the QNM frequencies are the same linear combinations
of the potential. See Egs. (2.17) and (2.18). The main idea of
the parametrized QNM approach is the following. We make
a list of corrections generated by only the 1/r/ deformations
beforehand, and we use it for a more complicated potential
to which corrections are linear combinations of the 1/7/

Im[Mw]

-0.084

-0.085

-0.086

-0.087

-0.088

-0.0891

-0.090 -

Red points represent the numerical values of the QNM frequency of the RN black holes. The (blue) solid curve is the graph of

the rational function (4.59) for p = g = 4 with the coefficients in Table IV. The (orange) dashed and (black) dotted lines represent the

perturbative expansions (4.56) and (4.57) up to k = 4, respectively.
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TABLE V. One-parameter corrections up to second order for
¢ =2 in the parametrized QNM approach.

TABLE VI.  Off-diagonal quadratic corrections for £ = 2 in the
two-parameter perturbation.

k j rHeﬁ-k) i Jj rHeE}'l)
1 0 0.2472519654 + 0.0926430738i 0 1 —0.02588238896 — 0.02792966573i
1 0.1598547870 + 0.0182084818i 2 —0.03870432587 — 0.02320896618i
2 0.09663224013 — 0.00241549645i 3 —0.03739171923 — 0.01523959074i
3 0.05849078501 — 0.00371786129i 4 —0.03119143980 — 0.01062473399i
4 0.03667943678 — 0.00043869695i 5 —0.02473633363 — 0.00886735210i
5 0.02403794775 + 0.00273079314i 6 —0.01939362275 — 0.00853499059i
6 0.01634281096 + 0.00484267168i 7 —0.01523819641 — 0.00870770164i
D omemmOmOmS o omiia
’ ’ 3 —0.01688392216 — 0.001020257641
2 0 0.002868401222 — 0.001011345890i 4 —0.01249473743 — 0.0009507495878i
1 —0.01439027937 — 0.00572350838i 5 —0.009533459569 — 0.001537281111i
2 —0.005756554781 + 0.000336740545i 6 —0.007497937650 — 0.002167588509i
3 —0.0006273259154 — 0.0004693348600i 7 —0.006026376454 — 0.002674270477i
4 0.0007234493450 — 0.001 15959419.661 2 3 —0.005785247726 + 0.0002460429730i
5 0.000987182421 — 0.001122519006 4 —0.003236295992 — 0.0006934041512i
6 0.0010046849768 — 0.0008403243677i 5 _0'002075023229 _ 0'0012962330041'
7 0.0009526541187 — 0.0005456646402i ’ ’ .
3 0.0008715569057 — 0.00030179374151 6 —0.001466727846 — 0.001581112859i
. : 7 —0.001083345654 — 0.001682173863i
3 4 0.000315183631 — 0.001771852361i
deformations. The extension to high-order corrections is 5 0.000806605055 — 0.002028059473i
straightforward [16]. Physical applications of the parame- 6 0.000954987015 — 0'001956886197’,
trized QNM approach have been shown in [46-55]. (See 7 0.001002044048 — 0.001756226616
also Appendix for a complementary discussion.) 4 5 0.001737194187 — 0.0023388060361
At the technical level, it is not so easy to compute the 6 0.001773835947 — 0.002098671851i
precise values of the quadratic corrections. In [15,16], the 7 0.001741580709 — 0001777161054{
authors used numerical fittings. Since our formalism is > 6 0.001993021672 — 0.00195 8873499’,
ily applied to the setup of the parametrized QNM ! 0.001947091748 — 0.0016204531 16’.
castly app P P 6 7 0.001959730533 — 0.001367519282i

approach, we reevaluate the corrections up to quadratic
order. This reevaluation plays an important role in the
computation of perturbative corrections for slowly rotating
black holes [47]. We keep at least ten-digit precision for all
the corrections listed in this section. We focus on defor-
mation of the odd-parity gravitational perturbation of the
Schwarzschild black holes. The computations for the other
cases are straightforward. The potential is

Vo) =) (2. v LS (Y

r r Iy r

Visa(x) =0, (4.60)
where ry is the location of the event horizon and
j=0,1,2,.... For this deformation, the spectrum receives
the corrections

(4.61)

For # =2, we show the numerical values of eﬁ-k)

(0<j<8, k=1, 2)in Table V.

To make a list at quadratic order, we also have to
consider two-parameter perturbations in Eq. (2.17) with

i) (r_H

2

V¢ (x) =
1 (x) 2 .

) ’ VZzz(”) =0,

Vit =2 (Y. v =0

ry r

(4.62)

For this perturbation, the frequency receives the correc-
tions:

(4.63)

k=1 =0

(k0) _ (k)

where we have ¢;;"" =¢; and ¢;; by construc-

tion. Therefore, at second order, the only unknown coef-
(D) This can be evaluated by using the trick

explained in Eq (2.18). The numerical values are shown in
Table VI. We compare these results with [15,16] and find
that there are significant differences.

00 _ 0
J

ficient is €
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For the error estimation of the coefficients in Tables V
and VI, we use the recursion relations among the coef-
ficients in Eqs. (A51) and (A52). We check that Eq. (AS51) is
satisfied at O(10~"%) for linear coefficients and Eq. (A52) is
satisfied at O(10~'") for quadratic coefficients, while those
equations are satisfied at O(107%) and O(1072), respec-
tively, in the previous works [15,16]. This also shows that
the perturbative approach developed in the present paper
works well.

G. Series expansion method

As an application of our perturbative framework based
on a method other than the Bender-Wu approach, we study
the series expansion method known as Leaver’s method
[5,18]. We consider the system with the parametrized QNM
potential in Eqs (A3) and (A4) with a single correction term

J
5V:ai2 (r—H> ,
g\ T

where f is given by f = 1 — ry/r. We assume the following
series expansion of the wave function:

(4.64)

D = ey " afhn, (4.65)
k=0
where the characteristic exponent n is given by
n==2iryo, (4.66)

so that the QNM boundary condition at r = ry is satisfied.
After some calculations, we obtain recursion relations
for ay,

Jj=2
Akak_l + Bkak + Ckak+1 + aZDmak_m =0,

m=0

(4.67)

where coefficients Ay, By, Cy, and D,, are given by
Ay = (k=2 =2irgw)(k+2 = 2irgw), (4.68)

B, =3-2k(1+k)—£(£+1)+4irgo(l +2k) + 81},

(4.69)
Cr=0+k(+k=-2irgw), (4.70)
p, = -2 (471)

m!(j—2-m)!’

The coefficients a; with large k take exponentially small
values only for the wave function with the appropriate QNM
boundary condition at r — co. Thus, we can calculate the
approximate QNM frequency by setting

~0, (4.72)

Kmax
with a large integer k.. However, directly solving
Eq. (4.72) numerically is very difficult, and we usually
use Leaver’s continued fraction method [5,18] whose basic
equation is mathematically the same as Eq. (4.72). In this
section, we study this problem based on our perturbative
approach.

Expanding the coefficients @; and the QNM frequency
® as

2)

ay = a;(o) + aa,(cl) +a2a? + -, (4.73)
o = wy + aw, + Pw, + -, (4.74)
the coefficients A;, By, C, become
A, = A,(CO) + ()561)114,<(1> + azw%A,(f’O) + ocza)zA,g)’1> 4+
(4.75)
B, = B + aw,B\" + @??B?" + 2w, BV + - .-,
(4.76)
Ce =AY + aw, O\ + 2} CPY + 2w, -
(4.77)

where the coefficients on the right-hand side depend only
on wy. The recursion relations in Eq. (4.67) at each order
become

O(a®): A,io)aio_)l + Bio)aio) + C,io)a,(gzl =0, (4.78)
O): Ala + Bl + ¢}l
+ [A,((l)a,(coj1 + B,({l)ag)) + C,((l)a,@l}
Jj=2
+3 D,a, =0. (4.79)
m=0

O@): A" aly + B a? + 0l + o4 0,

1 1 1 1 2,0) (0 2,0) (0
B!+l + AL, + B

+CP0al )+ walal?al, + BV e

Jj—2
L+ S Dm0 @0
m=0

We note that these equations correspond to the perturbative
equations (2.10) and (2.12).

First, at O(a"), we obtain w, using Leaver’s continued
fraction method by setting a large integer k,,. Next, at
O(a'), we solve the equation
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(4.81)

directly with respect to w;. For this purpose, we rewrite

a,((in)ax as a function of wg, w, aéo), a(()l) by using Eqgs. (4.78)

)

kmax

This implies that we obtain a unique ), if we fix the value
of wy. In a similar way, we can solve the equation

and (4.79) recursively; then a; ° depends on w; linearly.

@ _

max

(4.82)

directly with respect to @,. In the calculation, we can set

a(()o) = a(()l) = aff) = 1 without loss of generality. We have

confirmed that this method can reproduce a consistent
result in Table V. We finally note that we do not need to
perform the Gaussian elimination to obtain the three-term
recursion relations at O(a') and higher-order analyses
unlike the usual Leaver’s continued fraction method
[5,18], and this is also one of the advantages of our
perturbative approach.

V. OUTLOOK

In this paper, we proposed a systematic way to compute
high-order perturbative corrections to black hole quasinor-
mal mode frequencies with continuous deformation param-
eters. Our method is widely applicable to many situations,
and it allows us to compute the high-order corrections very
accurately. We gave various explicit examples. In particu-
lar, for the Reissner-Nordstrom black holes, we can expand
the quasinormal mode frequency not only around the
chargeless limit but also around the extremal limit.

There are several future directions. It is interesting to
consider the near extremal expansion of the Kerr black
holes. It was argued in [56] that the QNM frequencies in the
extremal Kerr geometry have an interesting behavior. It is
also interesting to develop the perturbative expansion of
rotating black holes in modified gravity theories [57-65].
In this case, the full analytic solution with the general
rotating parameter is not yet known. We inevitably have to
restrict ourselves to the perturbative treatment in terms of
the rotating parameter. We would like to extend our
framework to coupled master equations. Typically, the
master equations in general relativity are decoupled, but
in modified gravity theories, they are sometimes coupled
[65—71]. Therefore, if we consider perturbative expansions
of modified parameters, it is desirable to generalize our
formalism to such a situation.
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APPENDIX: RECURSION RELATIONS
AMONG COEFFICIENTS IN PARAMETRIZED
QNM APPROACH

When the master equation is given in a series expansion
of a small parameter, there is an ambiguity of the effective
potential due to the choice of master variable. In this
appendix, we first give a general discussion of the ambi-
guity of the effective potential by extending the result in
[45]. This ambiguity leads to recursion relations among
coefficients in the parametrized QNM approach.

1. Parametrized QNM approach

We consider the case with f = f, = 1 — ry/r, and the
master equation is given by

d dd 5 B
fE <fﬁ> +(a) —V)(I)—O, (Al)
with
V=V,+0V, (A2)
v =13 (r—H>j, (A3)
"n =S r

where V) is the effective potential for the nonperturbative
case and a; denotes the small parameters which can be
written as a series of a single parameter a,

a; = Z aiA§i>.

i=1

(A4)

We note that many systems can be written in this form of
the master equation [15,16,47]. The QNM frequency
behaves as

a):a)o—i-Zajej—i-Zajakej.k—&—--g (AS)
j=0 Jjk=0

where ¢;, e, - - - are model independent coefficients in the
parametrized QNM approach.

When V,, is the Regge-Wheeler potential for the odd-
parity gravitational perturbation, the coefficients are related
to the coefficients appearing in Sec. IV F as

1 2
ej:eﬁ), ej,j:eﬁ»), (A06)
(1,1)
€k .
€jk = €rj = ) (J <k), (A7)
where numerical values of eﬁ-l), 652), e}},;l) can be seen in

Tables V and VI.
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2. Ambiguity of effective potential

In this subsection, we use the coordinate x defined by
dx/dr = 1/f. The master equation (A1) in this coordinate
becomes

d*®

PR (w? = V)® = 0. (A8)
We introduce a new variable ¥ as'
dd
‘I’:(1+X)<I>+YE, (A9)

where X and Y are O(a) functions of x. If X and Y satisfy
the relation

dv

- YZE + Y<2(w2 -V) dr dQX)

dx  dx®
dxX d*y
)

(A10)

1+X)(20—+—=
1+ )< dx+dx2

then W satisfies the equation

>y

W+(a)2—V—5W)lP:0, (A11)

where 6W is given by16

1
ow (de

B dy d*Xx
14X\ dx

2((1)2 — V) a + dxz

), (A12)

and this denotes the ambiguity of the effective potential. We
note that the effective potential changes,

Vo V+ W, (A13)

due to the change of the master variable; then the small
parameters a; in Eq. (A3) also change. Equation (A10) can
be integrated as

dx\ dy dy
204+Y( (V=P )Y +— )| ——=2X-X[X+—) =0,
* <( @) +dx> dx < +dx>

(A14)

where C is the constant of integration. If we expand

X = iaiXi,
i=1

(A15)

Note that the signatures of X and Y are opposite from those
in [45].

"“Note that W can also be written in the form SW =
(2dX/dx + d*Y/dx*)]Y.

Y=Y dv, (A16)
i=1
V=Vo+V=> aV, (A17)
i=0
o’ =) dé, (A18)
i=0
C=) aC, (A19)
i=1
Eq. (A14) can be solved order by order as
1 | =l ikl
!
Xi=C; _EYi _EZ Z (E=VIYiYia
=1 j=0
=
3 (YioeXy = Xica Yy — XikXa). (A20)
k=1
If we also expand w = Y, d'w;, &; is given by
=0

Substituting the result (A20) into Eq. (A12), we can
calculate the deformation of the effective potential 6W
as a series of «,

SW =) W, (A22)
i=1
From Eq (A12), we can write W; as
X dv; dy,_;
W, = ! Y. —L_2(&.—V. =
' dx2+jzo<'jdx (&) ) dx>
i-1
=) WX, (A23)
j=1
For lower i, the explicit forms are
1dY,
X =C —z—, A24
=0 -5 (A24)
1 1 /dY \2
X, =Cy—= (& = Vo) V2 + - (=2
=G 2(0 0)'+8<dx>
1 dy 1 d*Y
—— (2 +=2) —-v,—, A25
2<'+dx) 471 ax? (A25)

and
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W, = Y1%—2(5O— Vo)tg—;cij;l (A26)

Wy = (1= 1) D0 (g, vy W2 = CT) %d3(y2d;3clyl) (A27)

+5 <2%+ d;:") —(Ey=Vy) [2 (%)Zﬂn d;ﬂ (A28)

L vy Sl L) _ha, 2

We note that W, contains arbitrary functions Y, Y,, - - -. If we set V; = 0 for i > 1, the system is just a nonperturbative case

whose effective potential is V. Nevertheless, there is an ambiguity of the effective potential due to the change of the master
variable. In this case, the ambiguity of the effective potential does not change the QNM spectrum, and we can obtain
recursion relations among coefficients in the parametrized QNM approach by setting the functions Y; appropriately, as
shown in the next subsection.

3. Recursion relations for odd-parity case
a. Recursion relations from the Regge-Wheeler potential

As an example, we consider the odd-parity case

Vv, = f0< ) ﬁ) (A30)

=

In this case, £, = 0 because there is no correction term in the effective potential V, i.e., V; =0 for i > 1. Set‘ting]7

ry\/ r\ X
Y, Zy]‘<7H> +)’k<7H> ; (A31)
Y, =0, (A32)

C, =0, (A33)

where j, k > —1 are integers and y;, y; are constants, Egs. (A22)-(A29) lead to

2] i+ 1)(j=20)(j+26+2
5V+5W=06)7jf0(r7H)1[180+(]+ W =20)(j +20 +2)

r 23
2j +3)ru(j(j+3)=2(2+¢+3 Ji=2)G+2)(j+6)r .

( )ra(( 2”)4 ( ))+( )( 2r5)( )iy + (o
Ly (r_H j[_](3]‘21)50+](31+3)rH50_3(J+1) G=20)+20+2)
r r r 4r
N (Bj+M)ryB + 1252 —j8(£+1)+1)=2(5¢(¢ + 1) +9))
453

B+ ryBF H1572 = j@(+ 1) +T) = 6(2 + £ +T))
450

L30=20 Z?Z(j +6)ry,

[ +Gen

"From the degrees of freedom of Y5, we can obtain the same relation as the first-order relation among e ;- Also, C; does not affect the
result. Thus, we can set Y, =0 and C; = 0.
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Eory(j? + j(4k +2) + k(k +2))

2

ra 7R Eo(jP +4jk+j+ K +k
+0‘y,)’kfo<H> [— ol ; )+

+414( (=6k + 4£(£ + 1) — 11)

+2j(4(2k + 3)¢% + 4(2k + 3)¢ — k(k(k +3) + 4)

3

=273k +3)—j*+4(k(k+6)+6)¢ —k(k+1)(k+2)(k + 3)
—3) + 4(k(k +6) + 6)£?)

+—H5( (24k —8£(£ + 1) +47) + 6,7 (k + 4) + 3j* + k*(47 — 84(¢ + 1)) + 3k* + 24K°

—2k(31£(¢ + 1) +29) = 16(5£(£ + 1) +9) + j(6k> + 24k>

2
+%(jz(4(f2 + ¢ —17) = 30k) — 63 (k +5)

+ k(38(£ + 1) +161) + 60(£2 + € + ) + j(—6K3

=3+ AKX (2 + ¢ - 17) - 3k

—30Kk> +4k(4£(¢ + 1) +7) + 384(¢ +
—8) + Kk (k+4)(k+38)

—4k(82(£ + 1)+ 1) — 62£(£ + 1) — 58))
— 30K°

1)+ 161))
—96(k + 3))

N 3 (273 (k + 6) + 423k + 8) + j* + 2j(k + 6)(k*
457

+0(a%),

where we used the relation d/dx = fd/dr. From this
result, we can read «@; for 6V + 6W. We decompose the

coefficients a; = AV a + AP a? + O(a®) in Eq. (A4) as

(A34)

hold from the expression of Eq. (A34). The explicit forms

of B and B become

1 .
0 0 (1 BY), = 2jrio. (A40)
Ai = yjay.,Ai + }’kay,(A, s (A35) |
. 3523—5(]+ 1)(j—26)(j +2¢ +2). (A41)
AP =R AP+ yzk R AP 4y, 0,A% . (A36)
1
B = =3 Qi+ 3G +3) =22+ +3), (a9)
Introducing 0, A" = ' B, 9, 0, A" = r?B/”), one
\, ]
can see that the relations B§1+) =3 (Gi=2)(+2)(j+6), (A43)
1 _ 1
9, A = 1BV Ly, (A37)  and
B A = r;’ Bl ). (a38) Bk = —(P+4jk+ i+ R+ )&, (A44)
2 B s = (2 + 4k +2) + k(k +2))rkEo. (A45)
AA7 =B (A39)
|
1
2 . . .
B, = 3 P60k +42(2 4 1) = 11) = 2 (k + 3) = j* + 4(k(k +6) + 6)¢
— k(k + 1)(k +2)(k +3) + 2j(4(2k + 3)22 + 4(2k + 3)¢ — k(k(k +3) +4) = 3)
+ 4(k(k + 6) + 6)£7), (A46)
1
2 p . .
B 5= Zt(J2(24k_ BE(£+1)+47) +63(k+4) +3j* + k*(47=84(£ + 1)) + 3k* + 24K°
—2k(312(€ + 1) +29) = 16(56(¢ + 1) +9) + j(6k> +24k> — 4k(82(¢ + 1)+ 1) —62£(£ + 1) = 58)), (A47)
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2
Bjiiie

+60(¢% + £ +7) + j(—6k°

1
BY

— 30k2 + 4k(42(€ + 1) +7) + 382(¢ + 1) + 161)),

jokrr = 7 (2P (k+6) + 472 (3k +8) + j* +2j(k + 6)(k* = 8) + k*(k + 4) (k +8)

1
= Z(1'2(4(%‘ + £ —17) =30k) — 6,3 (k +5) = 3j* + 4k*(£> + ¢ — 17) — 3k* = 30k> + k(384(¢ + 1) + 161)

(A48)

—96(k + 3)). (A49)

Because £, = 0 and then w = w,, from Eq. (AS5), we obtain a relation

o o0
E aje; + g ajoyej =0
Jj=0

k=0

From the O(a) and O(a?

(1)

and

5
E B;+u k+h€j+a k+b T 5 § Bj+k+a jk+a
a,b=1 a72

B (1)

(1)

(1)
1€+t B]+3e/+3 +Bj+4e]+4 + Bj+sej+5

(A50)

) terms in Eq. (A50), we obtain independent recursion relations among e; and e; ,

M (A51)

(1)

B e + BB e ks + B Bes s + B B e ks

(1)

+ B_§'+>3Bz(<+)1 €j3 ksl T BA5'+)3BI(<+)361+3J<+3 + BA(iJr)3Bl(<JZ4ej+3,k+4 + B,/'+3Bl(<+)sej+3,k+5

(1)

(1)

1 1 1 1 1
+ BB e + BB e anis + BB e ks + BB sesaies

(1)

1 1 1 1 1 1
+B)sBlejision + BB s s+ BYsBLLejis ks + BB se s

2 2 2 2 2 2
T3 [Bﬁ'+)k+2€j+k+2 + B§'+)k+3 Cjk+3 T B;—&-)k+4ej+k+4 T B5'+)k+5 Cjrkts B§'+>k+6ej+k+6 + Bﬁ'+)k+7€j+k+7]-

We note again that e; = e(1> e; (2> sande;; = ej(lkl)/2

i
for j # k, where numerical values of e( ) 52), <1k1> can be

seen in Tables V and VI. Using the ﬁrst order recursion
relation in Eq. (A51), e; with higher j can be written only
from those with a few lower j, i.e., ¢y, e, and e; [45].
However, this is not the case for the second-order recursion
relation in Eq. (A52). In fact, to calculate e;; with higher
J» k using Eq. (A52), we need the values of ¢, ¢;,,¢;7,
€10+ €2 €x.7. To improve this point, we study the case with
the potential which contains first-order correction terms in
the next subsection.

b. Improved recursion relation for ¢;;

We consider the Regge-Wheeler potential with first-
order correction terms

(A52)

(D _2)

,
a o\ S PR
ri r r

where j, k > —1 are integers and v, v; are constants. We

also assume that j # 2 and k # 2. In this case, the QNM
frequency behaves as

(A53)

0 = vy + aw, + *w,, (A54)
with

W) = Vj€jis + Vkepys, (A55)
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Wy = v?ej+5,j+5 + 2001845045 + Vieiisies.  (AS6) C, =0, (A60)
Note that £ = 2wyw; becomes with
5] = 2vjej+5a)0 + 2Uk€k+5w0. (A57) 201
Yy =— L (A61)
For the potential V = V, + 5V, we set / (J=2)(+2)(j+6)
Y, =y; r_H j_|_y r_H ¢ (A58) - 21}er A62
AR T Tk )k 1 6) (462)
Y, =0, (A59) " Then, Egs. (A22)~(A29) lead to

ru )/ [2€ G+ DG =20)( +2¢+2
5V+5W:ay,f0(7H>[Jro+(J )( 2r>3(1 )

(27 +3)ru(U +3) =2(# +£+3)) ITORIEYS {y,fo (r_H)jg N (rH)

254 r

TR <rH 2 [_1(31 - Dé , JBj+2Dru€y 30+ 1)2(=20)(j +2£+2)

k2_kj|

r

r r P 454
N (Bj+ M) ry(3 + 1252 —j8(£ + 1)+ 1) =2(5¢(¢ + 1) +9))
4r°
. }"2 3 ) . _ _ 2) _ . . 2/ 7'3
_ @i+ +35"+ 1 4;f(f+1)) 6(Z+¢-1)) 3G=-2)( Zr27) (j +96) H:| Lok

R Eg (P4 4jk+j+ K24 k) Egru(* + j(4k +2) + k(k +2
+a2yjykf0<m> [_ ol +Ajk A+ KA K) | Eorn( + (4K +2) + k(k +2))

r 7'2 r3

+$(j2(—6k+4f(f+ 1) = 11) =252k +3) — j* + 4(k(k + 6) + 6)¢ — k(k + 1)(k +2)(k + 3)
+2j(4(2k +3)2 + 42k +3)¢ — k(k(k+3) +4) = 3) + 4(k(k + 6) + 6)£?)

+ % (2(24k = 8C(€ + 1) +47) + 63 (k+4) + 3j* + k*(47 = 8¢(¢ + 1)) + 3k* + 24k3

—2k(31£(£ + 1) +29) = 16(54(£ 4 1) 4 9) + j(6k> + 24k> — 4k(82(£ + 1) + 1) — 62£(¢ + 1) — 58))
- % (272Bk =2(2+ ¢ —4) + 253 (k +4) + j* + j(2k3 + 6k* — 16k£ (£ + 1) + 4k — 382(£ + 1) + 23)
— (P4 —4) + K 8K + k(23 =382(¢ + 1)) —60(£2 +¢ - 1))

(277 (k+6) + 4773k +8) + j* +2j(k + 6)(k* = 8) + k*(k +4)(k +8) —96(k +3))
47

+ O(a?).
(A63)

We note that the above potential at O(a) does not have terms with (r/r)’™ and (ry/r)*™, unlike Eq. (A34). Similar to the
discussion in the previous subsection, we can read the coefficients BEI) and BEZ) as

B, = 2jr}&,. (A64)

n _
Bj/y=

G+ D=2 +2¢+2), (A65)

[NSRR
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1

1

Bl ==3Qi+3)((+3) =22 +£+3).  (A6)  BR — _2k(j=2)(j+2)(j + 6)hness

and BY s = —( +4jk + j + B+ K)ryEo,
BY) = —2j(k = 2)(k +2)(k + 6)rwperys.  (AGT) B s = (2 + j(dk +2) + k(k +2))r%Eo.

1
BY,, = 7 (P(=6k+46(6+1) = 11) = 2 (k+3) = j* + 4(k(k +6) + 6)/
—k(k+ 1) (k+2)(k+ 3) +2j(4(2k + 3)£% +4(2k + 3)7
— k(k(k+3) +4) = 3) + 4(k(k + 6) + 6)¢?),
1
B 5= 5 P24k = 82(Z + 1) +47) + 6/ (k +4) + 3/*
K247 = 8L(£ + 1)) + 3k* + 24K3 = 2k(31£(£ + 1) +29) — 16(5£(£ + 1) + 9)
+ j(6k3 + 24K — 4k(82(£ + 1) 4+ 1) — 62£(£ + 1) — 58)),
1
B = =3 PGk =2+ 6 = 4) + 27 (k+4) +
+ j(2k3 + 6k> — 16k£(£ + 1) + 4k — 384(¢ + 1) + 23)
—ARR(P2 4+ £ —4) + K+ 8K + k(23 —384(£ + 1)) — 60(£2 + £ — 1)),

BY,, = —%((2j3(k +6) + 423k +8) + j* + 2j(k + 6)(k2 = 8) + K2(k + 4) (k + 8) — 96(k + 3))).

(A68)
(A69)

(A70)

(A71)

(A72)

(A73)

(A74)

Then, the QNM frequency can be calculated from Eq. (A4), and it should be the same as Eq. (A54) with Egs. (A55)

and (A56). From this condition, we obtain independent recursion relations at O(a?) as

L. . .
F =20 +2)(j+6)(k=2)(k +2)(k +6)eji5415
4
Z ]+a k+be/+a k+b + Z B]+k+a Jjtk+a + Bﬁ-q-)l €it1 + B/(c.zlek+l' (A75)
a,b=1 a=2
We note again that j,k > —1 and j # 2, k # 2 in the above equation.
|
In fact, we can obtain further independent recursion  with
relations for e; ;. We consider the potential in Eq. (A53)
with j > —1,j # 2, and k > —5. Setting
2v;r
. iTH
j Vi= =13 . . : (A79)
Y=y <r”> , (A76) T (=2 +2)(+6)
r
Y, =0, (A77) " we can calculate 8V + 6W from Egs. (A22)—(A29) and

derive the recursion relations similar to the above discus-

¢ =0, (A78) sion. Here, we only show the following result:
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0=(=2)(j+2)(J+6)eji565— (27 +3)((J +3) =2(£% + £ +3))ej 45
+(+ D =28)( + 26+ 2)eji3015 +4jri€oejiires

+ajrpmoejiierss = (2 + k+5)ejpre+ (2 +k+6)ej .

Using Eqgs. (A75) and (A80), the second-order coefficients
e, with higher j, k can be written by those with j, k <7
and the first-order coefficients e j.18 We note that we can
derive recursion relations for higher order a from a
straightforward extension of the above discussion.

4. Reduction of the effective potential

Using the ambiguity of the effective potential, we can
reduce the effective potential so that 6V only has lower-

18 . S .

Some of the coefficients e;; with j, k <7 are not indepen-
dent. For example, we can choose egg, e, €)1,
€20:€21,€22, €30, €31, €32,€33,€70,€7,1,€72,€73, and e77 as
independent ¢; ;; then, the other e;; can be written using these.

(A80)

|
order coefficients «;. In [45], the first-order case is
discussed, but in fact, the discussion holds even for
the higher-order case. For the linear-order case, we can
reduce the effective potential by using the O(a) ambi-
guity according to [45]. For the quadratic-order case,
setting Y, =0 and Y, = y,;(ry/r)/ for the odd-parity
perturbation, the form of the ambiguity of the effective
potential at O(a?) becomes the same as the linear-order
case. Then, from the same discussion as the linear case in
[45], we can reduce the effective potential at O(a?) so
that oV only has «ay, a;, a,, and a; terms. Repeating this
process to higher order, we can reduce the O(a")
effective potential.

[1] T. Nakamura, K. Oohara, and Y. Kojima, General relativistic
collapse to black holes and gravitational waves from black
holes, Prog. Theor. Phys. Suppl. 90, 1 (1987).

[2] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of
stars and black holes, Living Rev. Relativity 2, 2 (1999).

[3] H.-P. Nollert, Topical review: Quasinormal modes: The
characteristic ‘sound’ of black holes and neutron stars,
Classical Quantum Gravity 16, R159 (1999).

[4] E. Berti, V. Cardoso, and A.O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[5] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[6] V. Ferrari and L. Gualtieri, Quasi-normal modes and
gravitational wave astronomy, Gen. Relativ. Gravit. 40,
945 (2008).

[7] E. W. Leaver, Spectral decomposition of the perturbation
response of the Schwarzschild geometry, Phys. Rev. D 34,
384 (1986).

[8] N. Andersson, Evolving test fields in a black hole geometry,
Phys. Rev. D 55, 468 (1997).

[9] N. Andersson, Excitation of Schwarzschild black hole
quasinormal modes, Phys. Rev. D 51, 353 (1995).

[10] H.-P. Nollert and B.G. Schmidt, Quasinormal modes of
Schwarzschild black holes: Defined and calculated via
Laplace transformation, Phys. Rev. D 45, 2617 (1992).

[11] E. Berti and V. Cardoso, Quasinormal ringing of Kerr black
holes. I. The excitation factors, Phys. Rev. D 74, 104020
(2006).

[12] P.T. Leung, Y.T. Liu, W.-M. Suen, C.Y. Tam, and K.
Young, Quasinormal modes of dirty black holes, Phys. Rev.
Lett. 78, 2894 (1997).

[13] P.T. Leung, Y.T. Liu, W.M. Suen, C.Y. Tam, and K.
Young, Logarithmic perturbation theory for quasinormal
modes, J. Phys. A 31, 3271 (1998).

[14] P.T. Leung, Y.T. Liu, W.M. Suen, C.Y. Tam, and
K. Young, Perturbative approach to the quasinormal
modes of dirty black holes, Phys. Rev. D 59, 044034
(1999).

[15] V. Cardoso, M. Kimura, A. Maselli, E. Berti, C.F.B.
Macedo, and R. McManus, Parametrized black hole qua-
sinormal ringdown: Decoupled equations for nonrotating
black holes, Phys. Rev. D 99, 104077 (2019).

[16] R. McManus, E. Berti, C.F. B. Macedo, M. Kimura, A.
Maselli, and V. Cardoso, Parametrized black hole quasi-
normal ringdown. II. Coupled equations and quadratic
corrections for nonrotating black holes, Phys. Rev. D
100, 044061 (2019).

[17] Y. Hatsuda, Quasinormal modes of black holes and Borel
summation, Phys. Rev. D 101, 024008 (2020).

[18] E. W. Leaver, An analytic representation for the quasi-
normal modes of Kerr black holes, Proc. R. Soc. A 402,
285 (1985).

044026-24


https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1007/s10714-007-0585-1
https://doi.org/10.1007/s10714-007-0585-1
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.55.468
https://doi.org/10.1103/PhysRevD.51.353
https://doi.org/10.1103/PhysRevD.45.2617
https://doi.org/10.1103/PhysRevD.74.104020
https://doi.org/10.1103/PhysRevD.74.104020
https://doi.org/10.1103/PhysRevLett.78.2894
https://doi.org/10.1103/PhysRevLett.78.2894
https://doi.org/10.1088/0305-4470/31/14/013
https://doi.org/10.1103/PhysRevD.59.044034
https://doi.org/10.1103/PhysRevD.59.044034
https://doi.org/10.1103/PhysRevD.99.104077
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.101.024008
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119

PERTURBATIVE QUASINORMAL MODE FREQUENCIES

PHYS. REV. D 109, 044026 (2024)

[19] S. Chandrasekhar and S.L. Detweiler, The quasi-normal
modes of the Schwarzschild black hole, Proc. R. Soc. A
344, 441 (1975).

[20] A. Jansen, Overdamped modes in Schwarzschild-de Sitter
and a Mathematica package for the numerical computation
of quasinormal modes, Eur. Phys. J. Plus 132, 546 (2017).

[21] C.M. Bender and T. T. Wu, Anharmonic oscillator, Phys.
Rev. 184, 1231 (1969).

[22] D.S. Eniceicu and M. Reece, Quasinormal modes of
charged fields in Reissner-Nordstrom backgrounds by
Borel-Pade summation of Bender-Wu series, Phys. Rev.
D 102, 044015 (2020).

[23] H.-J. Blome and B. Mashhoon, Quasi-normal oscillations of
a Schwarzschild black hole, Phys. Lett. 100A, 231 (1984).

[24] V. Ferrari and B. Mashhoon, Oscillations of a black hole,
Phys. Rev. Lett. 52, 1361 (1984).

[25] V. Ferrari and B. Mashhoon, New approach to the
quasinormal modes of a black hole, Phys. Rev. D 30,
295 (1984).

[26] B. Mashhoon, Quasi-normal modes of a black hole, Pro-
ceeding of the Third Marcel Grossmann Meeting on
General Relativity (1983), Vol. 18, pp. 599-608.

[27] B.F. Schutz and C. M. Will, Black hole normal modes—A
semianalytic approach, Astrophys. J. 291, L33 (1985).

[28] T. Sulejmanpasic and M. Unsal, Aspects of perturbation
theory in quantum mechanics: The BenderWu Mathematica
package, Comput. Phys. Commun. 228, 273 (2018).

[29] J. Matyjasek and M. Opala, Quasinormal modes of black
holes: The improved semianalytic approach, Phys. Rev. D
96, 024011 (2017).

[30] R. A. Konoplya, A. Zhidenko, and A.F. Zinhailo, Higher
order WKB formula for quasinormal modes and grey-body
factors: Recipes for quick and accurate calculations,
Classical Quantum Gravity 36, 155002 (2019).

[31] J. Matyjasek and M. Telecka, Quasinormal modes of black
holes. II. Padé summation of the higher-order WKB terms,
Phys. Rev. D 100, 124006 (2019).

[32] A. Ohashi and M.-a. Sakagami, Massive quasi-normal
mode, Classical Quantum Gravity 21, 3973 (2004).

[33] Y. Hatsuda and M. Kimura, Spectral problems for quasi-
normal modes of black holes, Universe 7, 476 (2021).

[34] Y. Hatsuda, An alternative to the Teukolsky equation, Gen.
Relativ. Gravit. 53, 93 (2021).

[35] S. A. Teukolsky, Rotating black holes: Separable wave
equations for gravitational and electromagnetic perturba-
tions, Phys. Rev. Lett. 29, 1114 (1972).

[36] E. Berti, V. Cardoso, and M. Casals, Eigenvalues and
eigenfunctions of spin-weighted spheroidal harmonics in
four and higher dimensions, Phys. Rev. D 73, 024013
(2006).

[37] E. Berti, V. Cardoso, and M. Casals, Eigenvalues and
eigenfunctions of spin-weighted spheroidal harmonics in
four and higher dimensions, Phys. Rev. D 73, 024013(E)
(2006); 73, 109902 (2006).

[38] A. Zhidenko, Quasi-normal modes of Schwarzschild—de
Sitter black holes, Classical Quantum Gravity 21, 273
(2003).

[39] Y. Hatsuda, Quasinormal modes of Kerr-de Sitter black
holes via the Heun function, Classical Quantum Gravity 38,
025015 (2020).

[40] V. Cardoso and J.P.S. Lemos, Quasinormal modes of
Schwarzschild—anti-de Sitter black holes: Electromagnetic
and gravitational perturbations, Phys. Rev. D 64, 084017
(2001).

[41] G. Aminov, P. Arnaudo, G. Bonelli, A. Grassi, and A.
Tanzini, Black hole perturbation theory and multiple poly-
logarithms, J. High Energy Phys. 11 (2023) 059.

[42] H. Onozawa, T. Mishima, T. Okamura, and H. Ishihara,
Quasinormal modes of maximally charged black holes,
Phys. Rev. D 53, 7033 (1996).

[43] C.M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New
York, 1978).

[44] G. A. Baker, Jr. and P. Graves-Morris, Pade Approximants:
Encyclopedia of Mathematics and Its Applications, Vol. 59
(Cambridge University Press, Cambridge, England, 1996).

[45] M. Kimura, Note on the parametrized black hole quasi-
normal ringdown formalism, Phys. Rev. D 101, 064031
(2020).

[46] O.]. Tattersall, Quasi-normal modes of hairy scalar tensor
black holes: Odd parity, Classical Quantum Gravity 37,
115007 (2020).

[47] Y. Hatsuda and M. Kimura, Semi-analytic expressions for
quasinormal modes of slowly rotating Kerr black holes,
Phys. Rev. D 102, 044032 (2020).

[48] C. de Rham, J. Francfort, and J. Zhang, Black hole
gravitational waves in the effective field theory of gravity,
Phys. Rev. D 102, 024079 (2020).

[49] S.H. Volkel, N. Franchini, and E. Barausse, Theory-
agnostic reconstruction of potential and couplings from
quasinormal modes, Phys. Rev. D 105, 084046 (2022).

[50] S.H. Volkel, N. Franchini, E. Barausse, and E. Berti,
Constraining modifications of black hole perturbation po-
tentials near the light ring with quasinormal modes, Phys.
Rev. D 106, 124036 (2022).

[51] N. Franchini and S. H. Voélkel, A parametrized quasi-normal
mode framework for non-Schwarzschild metrics, Phys. Rev.
D 107, 124063 (2023).

[52] S.S. Lahoz and J. Noller, Testing the speed of gravity with
black hole ringdown, Phys. Rev. D 107, 124054 (2023).

[53] R. Ghosh, N. Franchini, S.H. Volkel, and E. Barausse,
Quasi-normal modes of non-separable perturbation equa-
tions: The scalar non-Kerr case, Phys. Rev. D 108, 024038
(2023).

[54] S. Mukohyama, K. Takahashi, K. Tomikawa, and V.
Yingcharoenrat, Quasinormal modes from EFT of black
hole perturbations with timelike scalar profile, J. Cosmol.
Astropart. Phys. 07 (2023) 050.

[55] N. Franchini and S.H. Volkel, Testing general relativity
with black hole quasi-normal modes, arXiv:2305.01696.

[56] M. Sasaki and T. Nakamura, Gravitational radiation from
extreme Kerr black hole, Gen. Relativ. Gravit. 22, 1351
(1990).

[57] M. Srivastava, Y. Chen, and S. Shankaranarayanan, Ana-
lytical computation of quasinormal modes of slowly rotating
black holes in dynamical Chern-Simons gravity, Phys. Rev.
D 104, 064034 (2021).

[58] L. Pierini and L. Gualtieri, Quasi-normal modes of rotating
black holes in Einstein-dilaton Gauss-Bonnet gravity: The
first order in rotation, Phys. Rev. D 103, 124017 (2021).

044026-25


https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1140/epjp/i2017-11825-9
https://doi.org/10.1103/PhysRev.184.1231
https://doi.org/10.1103/PhysRev.184.1231
https://doi.org/10.1103/PhysRevD.102.044015
https://doi.org/10.1103/PhysRevD.102.044015
https://doi.org/10.1016/0375-9601(84)90769-2
https://doi.org/10.1103/PhysRevLett.52.1361
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1086/184453
https://doi.org/10.1016/j.cpc.2017.11.018
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1088/1361-6382/ab2e25
https://doi.org/10.1103/PhysRevD.100.124006
https://doi.org/10.1088/0264-9381/21/16/010
https://doi.org/10.3390/universe7120476
https://doi.org/10.1007/s10714-021-02866-4
https://doi.org/10.1007/s10714-021-02866-4
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.109902
https://doi.org/10.1088/0264-9381/21/1/019
https://doi.org/10.1088/0264-9381/21/1/019
https://doi.org/10.1088/1361-6382/abc82e
https://doi.org/10.1088/1361-6382/abc82e
https://doi.org/10.1103/PhysRevD.64.084017
https://doi.org/10.1103/PhysRevD.64.084017
https://doi.org/10.1007/JHEP11(2023)059
https://doi.org/10.1103/PhysRevD.53.7033
https://doi.org/10.1103/PhysRevD.101.064031
https://doi.org/10.1103/PhysRevD.101.064031
https://doi.org/10.1088/1361-6382/ab839b
https://doi.org/10.1088/1361-6382/ab839b
https://doi.org/10.1103/PhysRevD.102.044032
https://doi.org/10.1103/PhysRevD.102.024079
https://doi.org/10.1103/PhysRevD.105.084046
https://doi.org/10.1103/PhysRevD.106.124036
https://doi.org/10.1103/PhysRevD.106.124036
https://doi.org/10.1103/PhysRevD.107.124063
https://doi.org/10.1103/PhysRevD.107.124063
https://doi.org/10.1103/PhysRevD.107.124054
https://doi.org/10.1103/PhysRevD.108.024038
https://doi.org/10.1103/PhysRevD.108.024038
https://doi.org/10.1088/1475-7516/2023/07/050
https://doi.org/10.1088/1475-7516/2023/07/050
https://arXiv.org/abs/2305.01696
https://doi.org/10.1007/BF00756835
https://doi.org/10.1007/BF00756835
https://doi.org/10.1103/PhysRevD.104.064034
https://doi.org/10.1103/PhysRevD.104.064034
https://doi.org/10.1103/PhysRevD.103.124017

YASUYUKI HATSUDA and MASASHI KIMURA

PHYS. REV. D 109, 044026 (2024)

[59] L. Pierini and L. Gualtieri, Quasinormal modes of rotating
black holes in Einstein-dilaton Gauss-Bonnet gravity: The
second order in rotation, Phys. Rev. D 106, 104009 (2022).

[60] P. Wagle, N. Yunes, and H. O. Silva, Quasinormal modes of
slowly-rotating black holes in dynamical Chern-Simons
gravity, Phys. Rev. D 105, 124003 (2022).

[61] D. Li, P. Wagle, Y. Chen, and N. Yunes, Perturbations of
spinning black holes beyond general relativity: Modified
Teukolsky equation, Phys. Rev. X 13, 021029 (2023).

[62] P. A. Cano, K. Fransen, T. Hertog, and S. Maenaut, Universal
Teukolsky equations and black hole perturbations in higher-
derivative gravity, Phys. Rev. D 108, 024040 (2023).

[63] P. A. Cano, K. Fransen, and T. Hertog, Ringing of rotating
black holes in higher-derivative gravity, Phys. Rev. D 102,
044047 (2020).

[64] P.A. Cano, K. Fransen, T. Hertog, and S. Maenaut,
Quasinormal modes of rotating black holes in higher-
derivative gravity, Phys. Rev. D 108, 124032 (2023).

[65] P.A. Cano, K. Fransen, T. Hertog, and S. Maenaut,
Gravitational ringing of rotating black holes in higher-
derivative gravity, Phys. Rev. D 105, 024064 (2022).

[66] C. Molina, P. Pani, V. Cardoso, and L. Gualtieri, Gravita-
tional signature of Schwarzschild black holes in dynamical
Chern-Simons gravity, Phys. Rev. D 81, 124021 (2010).

[67] O. Sarbach and E. Winstanley, On the linear stability of
solitons and hairy black holes with a negative cosmological
constant: The odd parity sector, Classical Quantum Gravity
18, 2125 (2001).

[68] V. Cardoso, M. Kimura, A. Maselli, and L. Senatore, Black
holes in an effective field theory extension of general
relativity, Phys. Rev. Lett. 121, 251105 (2018).

[69] R. McManus, E. Berti, C.F. B. Macedo, M. Kimura, A.
Maselli, and V. Cardoso, Parametrized black hole quasi-
normal ringdown. II. Coupled equations and quadratic
corrections for nonrotating black holes, Phys. Rev. D
100, 044061 (2019).

[70] K. Nomura and D. Yoshida, Quasinormal modes of charged
black holes with corrections from nonlinear electrodynam-
ics, Phys. Rev. D 105, 044006 (2022).

[71] L. Hui, A. Podo, L. Santoni, and E. Trincherini, An analytic
approach to quasinormal modes for coupled linear systems,
J. High Energy Phys. 03 (2023) 060.

044026-26


https://doi.org/10.1103/PhysRevD.106.104009
https://doi.org/10.1103/PhysRevD.105.124003
https://doi.org/10.1103/PhysRevX.13.021029
https://doi.org/10.1103/PhysRevD.108.024040
https://doi.org/10.1103/PhysRevD.102.044047
https://doi.org/10.1103/PhysRevD.102.044047
https://doi.org/10.1103/PhysRevD.108.124032
https://doi.org/10.1103/PhysRevD.105.024064
https://doi.org/10.1103/PhysRevD.81.124021
https://doi.org/10.1088/0264-9381/18/11/310
https://doi.org/10.1088/0264-9381/18/11/310
https://doi.org/10.1103/PhysRevLett.121.251105
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.105.044006
https://doi.org/10.1007/JHEP03(2023)060

