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This work analyzes the asymptotic behaviors of the asymptotically flat solutions of Einstein-æther
theory in the linear case. The vacuum solutions for the tensor, vector, and scalar modes are first obtained,
written as sums of various multipolar moments. The suitable coordinate transformations are then
determined, and the so-called pseudo-Newman-Unti coordinate systems are constructed for all radiative
modes. In these coordinates, it is easy to identify the asymptotic symmetries. It turns out that all three kinds
of modes possess the familiar Bondi-Metzner-Sachs symmetries or the extensions as in general relativity.
Moreover, there also exist the subleading asymptotic symmetries parametrized by a time-independent
vector field on a unit two-sphere. The memory effects are also identified. The tensor gravitational wave also
excites similar displacement, spin, and center-of-mass memories to those in general relativity. New memory
effects due to the vector and scalar modes exist. The subleading asymptotic symmetry is related to the
(leading) vector displacement memory effect, which can be viewed as a linear combination of the electric-
type and magnetic-type memory effects. However, the scalar memory effect seems to have nothing to do
with the asymptotic symmetries at least in the linearized theory.
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I. INTRODUCTION

The gravitational wave (GW) not only causes the relative
distance of two adjacent test particles to oscillate, but it also
leaves a trace of its ever existence after it disappears. This
trace is nothing but the memory effect, the permanent
change in the relative distance between test particles. It was
first discussed theoretically as early as 1970s [1,2]. It was
found that the permanent change is proportional to the total
variation in the quadrupole moment of the source of gravity
before and after the GW emission [3]. So, this effect is
also named the linear memory. In 1990s, the nonlinear
memory effect was uncovered, which is sourced by the GW
itself or any null radiation [4–7]. In the literature, the linear
memory is also said to be ordinary, while the nonlinear one
is null [8].
Symmetries have played important roles in modern

theoretical physics [9–12]. Although in a generic gravitating
system, there are no spacetime symmetries, the asymptoti-
cally flat spacetime possesses the so-called Bondi-Metzner-
Sachs (BMS) symmetry [13]. It is a kind of diffeomorphism
that preserves the boundary conditions of the spacetime at
the null infinity in the Bondi-Sachs coordinates [14,15].

So, under this coordinate transformation, the asymptotic
behavior of the metric is unchanged. The corresponding
symmetry group, namedBMSgroup, is a semidirect product
of the Lorentz group by the supertranslation group. The
supertranslation generalizes the familiar spacetime trans-
lation, and it can be viewed as the angle-dependent trans-
lation. It is related to the memory effect. That is, the
gravitational vacuum is actually degenerate, and the tran-
sition between vacuum states is parametrized by the super-
translation [16–18]. Moreover, the memory effect can be
viewed as the change in the radiative modes between two
vacuum states. The vacuum transition is caused by the
energy flux penetrating the null infinity, which is conjugate
to the supertranslation in the Hamiltonian formalism [19]. In
fact, the amount of the null memory effect is proportional to
the total energy radiated [16,19]. The memory effect,
supertranslation, and (leading) soft graviton theorem [20]
are three corners of the so-called infrared triangle, a
triangular equivalence relation in the infrared regime [18].
Recently, the spin and center-of-mass (CM) memory

effects were discovered [21,22]. The effect discussed
previously is thus specifically called the (leading) displace-
ment memory effect. The spin memory effect refers to the
accumulated time delay between two photons propagating
in the same orbit but in the opposite directions [23]. Both of
these novel effects could also be detected as the subleading
displacement memory effect by interferometers [24,25].
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At the same time, the BMS group could be enlarged. One
may replace the Lorentz group by the Virasoro group to
obtain the extended BMS group [26–28]. Or, the Lorentz
group could be generalized to the diffeomorphism group of
the two-sphere, and the asymptotic symmetry group is
named generalized BMS group [29–31]. Let us call the new
elements in the enlarged algebra the super-Lorentz gen-
erators. So, the super-Lorentz generator refers to the vector
in the Virasoro algebra in the case of the extended BMS
group or the vector generating the generic diffeomorphism
on a two-sphere in the case of the generalized BMS group.
We would like also to define super-rotation generator as the
magnetic-parity component of the super-Lorentz generator,
while the electric-parity component is named super-boost
[32]. In either case, the ordinary spatial rotation is extended
to the so-called super-rotation, which is related to the spin
memory effect [21,29,33–35], and the ordinary Lorentz
boost is replaced by the super-boost, which is associated
with the CM memory effect [22]. The triangular equiv-
alence between the spin memory effect, the super-rotation
and the subleading soft graviton theorem has also been
established [18,21,29,33,35,36]. In the following, we will
denote the enlarged BMS symmetry by BMS, and as
disclosed below, we follow the method of Ref. [37] to
perform the asymptotic analysis, so we use BMS to refer to
the generalized BMS group.
In addition to the memory effects mentioned above, there

could exist infinite towers of memories that are associated
with infinite towers of residual gauge transformations in the
harmonic gauge [38,39]. Apart from the leading and some
overleading gauge transformations, these residual gauge
generators start at higher powers in a suitably defined
radial coordinate, becoming trivial at the null infinity. The
equivalences among the memories, gauge symmetries, and
infinite towers of soft theorems were also uncovered [38].
Asymptotic analyses have been done for higher dimen-
sional spacetimes [40–47]. Studies showed that with
appropriate boundary conditions on the metric and Ricci
tensor components, there also exists a nontrivial asymptotic
symmetry group other than the asymptotic Poincaré
group [43,45,46,48,49]. However, these symmetry oper-
ations act on overleading terms in the metric expansion,
while memory effects are described by relatively sublead-
ing terms. In this work, we consider the case of four
dimensions and focus on the displacement, spin and CM
memories.
In the modified theories of gravity, there might also exist

the memory effect, as any alternatives to GR shall predict the
existence of the tensor GWs by the most recent observations
[50–55]. Indeed, there have been several works on the
memories in some modified theories of gravity, such as
Brans-Dicke (BD) theory [24,56–61] and the dynamical
Chern-Smions (dCS) theory [25,62–64]. These works
revealed similar memory effects discussed so far. The
asymptotic symmetry of these theories is also the BMS

symmetry, and the memories are related to the symmetry
similarly as in GR [24,25,57]. There are new memories
associated with the extra degrees of freedom provided by the
modified theories, called the scalar memory effects, as they
are excited by the extra scalar degrees of freedom in these
theories. It is also interesting to note that although there are
displacement, spin, and CM effects in these modified
gravities, their magnitudes are actually different from those
in GR, as the extra scalar degrees of freedom contribute to
these memories. This allows one to use the memory effect to
probe the nature of gravity. There aremoreworks onmemory
effects in modified gravities, such as [65–71]. In particular,
Ref. [72] studied the tensor null memory effect in the
dynamical metric theories using the “high-frequency
approximation” developed by Isaacson [73,74]. It was found
out, quite generally, that the tensor null memory effect is
sourced by the null radiation of all the degrees of freedom in
the theory.
One should note that both BD and dCS respect the local

Lorentz invariance. Although dCS is said to violate the
parity [75], it occurs at the higher orders in the inverse of
the radial coordinate, so it does not affect the memory effect
[25]. In this work, we would like to consider yet another
modified theory of gravity, Einstein-æther theory [76]. It is
known as a local Lorentz-violating theory, as it possesses a
nowhere vanishing, timelike vector field uμ, called the
æther field. This field thus defines a preferred reference of
frame at each spacetime event, in which uμ is at rest. The
local Lorentz invariance is thus spontaneously broken once
one chooses a suitable “vacuum” configuration for the
æther field. Both the metric field gμν and the æther field uμ

mediate the gravitational interaction in this theory. The GW
solutions have been sought for in the flat spacetime
background [77–82]. These linearized analyses showed
that there are five radiative degrees of freedom, including
the tensor, vector, and scalar modes. These modes are
allowed to propagate at the superluminal speeds due to the
breaking of the local Lorentz invariance. Therefore, one
expects this theory would predict new phenomena regard-
ing memory effects. That is, there are new vector and scalar
memories in addition to the familiar tensor memories.
These memories might be related to the asymptotic
symmetry in a novel way.
The main task of this work is to perform the asymptotic

analysis for Einstein-æther theory and determine the
asymptotic symmetries of the asymptotically flat space-
time. Memory effects will be identified and associated with
the asymptotic symmetries. For these purposes, it would be
better to find a suitable coordinate system, like Bondi-
Sachs coordinates [14,15] or Newman-Unti coordinates
[83] used for analyzing asymptotically spacetime in the null
direction in GR. Suitable boundary conditions shall also be
imposed on the dynamical fields, such that general sol-
utions to the equations of motion can be solved for in these
coordinates. These boundary conditions shall not be too
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restrictive; otherwise, interesting solutions might be
excluded. The conditions may not be too weak, either,
as too many solutions are permitted, and some of them
might not seem to be flat in the large enough distances. It is
a delicate task to choose suitable boundary conditions,
which has not yet been done systematically for Einstein-æ
ther theory. Since this theory is greatly complicated, one
may start with the linearized version.
In fact, even in the linearized theory, there are still some

obstacles. As mentioned above, there are five propagating
degrees of freedom, satisfying d’Alembertian equations
with different speeds. This would require us to analyze
the behavior of eachmode separately, as theywill eventually
arrive at different spacetime regions in the infinite future.
Moreover, due to the absence of the gravitational Cherenkov
radiation [84], these speeds shall be no less than 1. So it
seems that one shall employ drastically different methods
used in GR to perform the asymptotic analysis for Einstein-
æther theory. For example, naively, one would expect these
GWs eventually arrive at the spatial infinity, so one would
like to analyze the asymptotic behaviors of these waves
using either the Ashtekar-Hansen formalism [85] or Beig-
Schmidt formalism [86,87]. However, these formalisms
were presumably designed to investigate the nonradiative
modes at the spatial infinity, while, here, the radiative modes
of Einstein-æther theory are to be studied. So, neither of
these formalisms might be suitable. Luckily, there actually
exists an interesting field redefinition ðgμν;uμÞ → ðg0μν;u0μÞ
[88], such that there is at least one mode traveling at the
speed 1, measured by a properly redefined metric field g0μν.
Therefore, one may adapt the methods presented in
Refs. [37,89] for GR to analyze the asymptotic behavior
of this specific mode. Perform a different field redefinition;
then, another mode would propagate at the speed 1, and its
asymptotic behavior can be studied similarly. In this way,
one can determine the asymptotic behaviors of all radiative
modes, and the associated asymptotic symmetries.
In Ref. [37], the authors sought for the coordinate trans-

formation that transforms the metric in the harmonic gauge
ðt; xjÞ to the Newman-Unti gauge ðũ; r̃; θ̃aÞ [83]. The
leading order part (in 1=r̃) of the transformation can be
freely specified and thus defines the infinitesimal BMS
transformation. In this work, similar method will be adapted
to Einstein-æther theory. As discussed above, we would
study the asymptotic behaviors of the radiative modes
separately. For eachmode, the redefinedmetric perturbation
will be written in a certain gauge and then, transformed to a
suitable coordinate system, named pseudo-Newman-Unti
coordinates. This is because, in general, the radiative modes
cannot be expressed in the standard Newman-Unti gauge in
Einstein-æther theory. If one insisted on using the standard
Newman-Unti coordinates, the redefined metric excited by
the vector or scalar modes would acquire terms proportional
to ln r̃ or even r̃ ln r̃, relative to the respective leading parts.
Aswe areworking in the linearized regime, these blowingup

terms would exceed the leading Minkowski metric at the
large enough distance, but this is inconsistent with the
linearization. Although there are polyhomogeneous solu-
tions in GR, the metric components contain terms propor-
tional to r−nlnkrwith n, k > 0 [90,91]. So, in this work, one
seeks for a coordinate system, in which the coordinate r̃ is
nearly a null direction, ũ nearly a retarded time, and at the
same time, there are no logarithmically diverging terms in
the metric components. In these coordinates, the redefined
metric and the æther field have no logarithmically diverging
components and behave well at the large r̃. We call such a
kind of coordinate system the pseudo-Newman-Unti coor-
dinate system. Once the suitable boundary conditions are
imposed on the redefine metric components, the asymptotic
symmetries can be identified. As analyzed in the main text,
the asymptotic symmetry group in Einstein-æther theory
includes the familiar BMS group as its subgroup.Moreover,
the boundary conditions allow the existence of a new
symmetry, generated by a vector field Zaðθ̃bÞ tangent to
the two-sphere. Za is subleading relatively to the super-
Lorentz generator, so the symmetry generated by it will be
called the subleading BMS symmetry. Therefore, the
asymptotic symmetry of Einstein-æther theory includes
the BMS symmetry and the subleading BMS symmetry.
The memory effects excited by the radiative modes will

also be determined by integrating the geodesic deviation
equations at r̃ → ∞. The relation between the memory
effect and the asymptotic symmetry will be discussed. It
turns out that for the tensor, vector, and scalar degrees of
freedom, one can identify their respective displacement and
the subleading displacement memory effects, given by
relevant terms in the integrated geodesic deviation equa-
tions. It is also possible to split the subleading displacement
memory effect into the spin and CM memory parts in the
tensor sector. The tensor displacement memory effect
shares many characteristics with the one in GR [17,18],
BD [57,59], and dCS [25]. For example, it can be viewed as
the vacuum transition in the tensor sector, parametrized by
a supertranslation, and of the electric-parity type. The
vector displacement memory is intimately related to the
subleading BMS symmetry, and unlike the tensor displace-
ment memory or the velocity kick memory effect in
electromagnetism [18], it has both the electric-parity and
magnetic-parity components. The scalar memories may
have no explicit relation with the spacetime asymptotic
symmetries, which also happens in other modified theories
of gravity [24,25,57,61]. Since only the linearized theory is
considered in this work, one cannot obtain the constraint
equations for the various memory effects that are useful for
calculating the magnitudes of the memories. These con-
straint equations shall be derived once the nonlinear
analysis is performed in the future work.
This work is organized as follows. Section I A collects

notation and conventions. In Sec. II, the basics of Einstein-
æther theory is reviewed, and the linearized equations of
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motion are obtained using the gauge-invariant formalism
[92]. Section III discusses the general scheme to construct
the pseudo-Newman-Unti coordinates and to identify the
memory effects for each radiative mode. Then, one starts
with the construction of the pseudo-Newman-Unti coor-
dinates for the tensor modes in Sec. IV. There, one first
determines the multipolar solution to the linearized equa-
tion of motion for the tensor mode in Sec. IVA and then,
fixes a suitable gauge condition for the redefined metric
perturbation in Sec. IV B. With these, one can find the
pseudo-Newman-Unti coordinates, and the asymptotic
symmetry will be discussed in Sec. IV C. The memory
effects are discussed in Sec. IV D. This procedure will be
repeated for the vector and scalar modes in Secs. V and VI,
respectively. Finally, we will discuss the results and
conclude in Sec. VII.

A. Notation and conventions

There are several coordinate systems used in this work.
The pseudo-global Lorentz coordinates are denoted as xμ ¼
ðt; xjÞ and the associated spherical ones as ðt; r; θaÞ with
θa ¼ ðθ;φÞ, and r ¼ jx⃗j. As one can see, letters j; k;…; z are
the space indices in the Cartesian coordinate system and will
be raised or lowered using δij or its inverse, respectively.
a; b;…; h are the indices on the two-dimensional sphere, and
one uses γab, themetric on the unit two-sphere, and its inverse
to lower and raise these indices. On the unit two-sphere, one
has the natural basis ea ¼ ∂=∂θa, whose components in the
Cartesian coordinates are eja ¼ ∂nj=∂θa with nj ¼ xj=r. It is
easy to check that nje

j
a ¼ 0. Also, one has γab ¼ δjke

j
aekb,

∂jθ
a ¼ r−1γabejb, and γabejaekb ≡⊥jk ¼ δjk − njnk. Let Da

be the covariant derivative compatible with γab with the
properties Dae

j
b ¼ Dbe

j
a ¼ DaDbnj ¼ −γabnj [37]. The

pseudo-Newman-Unti coordinates are x̃μ ¼ ðũ; r̃; θ̃aÞ, and
the related “Lorentz coordinates” are ðt̃; x̃jÞ, which are
associated with x̃μ in the usual manner when the spacetime is
flat. The components of any tensor expressed in the pseudo-
Newman-Unti coordinates are tilded, while those in the
pseudo-global Lorentz coordinates are not. The multi-index

notation will be used. So L, as a subscript, means j1j2 � � � jl.
In particular, ∂L ¼ ∂j1∂j2 � � � ∂jl , and nL ¼ nj1nj2 � � � njl .
Note that these are written in the pseudo-global Lorentz
coordinates, and in the pseudo-Newman-Unti coordinates,
they are ∂̃L ¼ ∂̃j1 ∂̃j2 � � � ∂̃jl , and ñL ¼ ñj1 ñj2 � � � ñjl . We will
use the units such that c ¼ 1.

II. EINSTEIN-ÆTHER THEORY

The action of Einstein-æther theory is given by [77]

SEH-æ ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − c1ð∇μuνÞ∇μuν

− c2ð∇μuμÞ2 − c3ð∇μuνÞ∇νuμ

þ c4ðuρ∇ρuμÞuσ∇σuμ þ λðuμuμ þ 1Þ�; ð1Þ
where λ is a Lagrange multiplier, and G is the gravitational
constant, and the coupling constants ci (i ¼ 1, 2, 3, 4) are
expected to be of the order unity. This theory is diffeo-
morphism invariant. In general, uμ possesses no internal
symmetries, in contrast to the four-potential in Maxwell’s
electrodynamics [93]. However, since uμ couples with gμν
nonminimally, one may study the symmetry properties of
the metric to define the symmetry of uμ, as shown in the
later sections. The Lagrange multiplier λ forces uμ a
normalized timelike vector field. So, uμ defines a preferred
reference frame at each spacetime point, and the local
Lorentz invariance is thus spontaneously broken.
Ignoring the matter sector of the action, one can calculate

the equations of motion, given by [79],

Rμν −
1

2
gμνR ¼ Tæ

μν; ð2aÞ
c1∇μ∇μuν þ c2∇ν∇μuμ þ c3∇μ∇νuμ

− c4∇μðuμaνÞ þ c4aμ∇νuμ þ λuν ¼ 0; ð2bÞ
uμuμ þ 1 ¼ 0; ð2cÞ

where aμ ¼ uν∇νuμ is the four-acceleration of uμ, and the
æther stress-energy tensor Tæ

μν is

Tæ
μν ¼ λ

�
uμuν −

1

2
gμνðuρuρ þ 1Þ

�
þ c1½ð∇μuρÞ∇νuρ − ð∇ρuμÞ∇ρuν þ∇ρðuðμ∇ρuνÞ

− uðμ∇νÞuρ þ uρ∇ðμuνÞÞ� þ c2gμν∇ρðuρ∇σuσÞ þ c3∇ρðuðμ∇νÞuρ − uðμ∇ρuνÞ
þ uρ∇ðμuνÞÞ þ c4½aμaν −∇ρð2uρuðμaνÞ − aρuμuνÞ�

þ 1

2
gμν½−c1ð∇ρuσÞ∇ρuσ − c2ð∇ρuρÞ2 − c3ð∇ρuσÞ∇σuρ þ c4aρaρ�: ð2dÞ

Here, Eq. (2c) is a constraint equation.
In the following, the GW solution will be sought for

around the flat spacetime background, following Ref. [79].
The zeroth order solution is given by

gμν ¼ ημν; uμ ¼uμ ¼ð1;0;0;0Þ; λ¼ λ¼ 0: ð3Þ

Analog to the treatment of the spontaneous symmetry
breaking in quantum field theory [12], one may now
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perform an infinitesimal coordinate transformation xμ →
xμ þ ζμ, which transforms the background metric and æther
fields in the following way:

ημν → ημν − ∂μζν − ∂νζμ; ð4Þ

uμ → uμ þ ∂tζ
μ; ð5Þ

where, as usual, one uses ημν and ημν to lower and raise the
greek indices from now on. Therefore, as long as ζμ

depends on t, the vacuum expectation value (VEV) uμ is
changed. Such kind of ζμ includes the Lorentz boosts
(ζμ ¼ ϖμ

tt with ϖμ
t constant and ϖt

t ¼ 0) as the special
cases, and thus, the Lorentz symmetry is spontaneously
broken by uμ. Of course, ζμ can be more general than the
Lorentz symmetry generators, so the “generalized Lorentz
boost symmetry,” or “super-boost symmetry” generated by
a time-dependent vector field ζμ is broken by uμ.
Now, perturb the metric and the æther field in the

following way:

gμν ¼ ημν þ hμν; ð6aÞ

uμ ¼ uμ þ vμ: ð6bÞ

And, of course, λ shall be treated to be of the same order as
hμν and vμ. Comparing Eqs. (5) and (6b), one basically
promotes the gauge transformation parameters ζμ to
dynamical fields vμ, similarly to the treatment of the
Higgs mechanism [11,12]. In fact, the æther field plays
a role of the Higgs field in this theory. Substituting Eq. (6)
into the equations of motion (2) and keeping the linear
terms in the field perturbations, one obtains the linearized
equations of motion, which are too complicated to be
explicitly written down. To simplify the linearized equa-
tions, one makes use of the gauge-invariant formalism
[79,92]. To this end, one first decomposes the metric
perturbation hμν and the perturbed æther field vμ as

htt ¼ 2ϕ; ð7aÞ

htj ¼ βj þ ∂jγ; ð7bÞ

hjk ¼ hTTjk þH
3
δjk þ ∂ðjεkÞ þ

�
∂j∂k −

δjk
3
∇2

�
ρ; ð7cÞ

vt ¼ 1

2
htt ¼ ϕ; ð7dÞ

vj ¼ μj þ ∂
jω: ð7eÞ

In the above expressions, hTTjk is the transverse-traceless part
of hjk, satisfying ∂

khTTjk ¼ 0 and δjkhTTjk ¼ 0. βj, εj, and μj

are transverse vectors. Equation (7d) is due to uμuμ ¼ −1.
Several gauge-invariant variables can be defined, which are

hTTjk ; ð8aÞ

Φ¼ γ̇−ϕ−
ρ̈

2
; Ψ¼ 1

3
ðH−∇2ρÞ; Ω¼ωþ ρ̇

2
; ð8bÞ

Ξj ¼ βj −
1

2
ε̇j; Σj ¼ βj þ μj: ð8cÞ

Using these gauge-invariant variables, one can rewrite the
linearized equations of motion. It turns out that some gauge-
invariant variables satisfy the following d’Alembertian
equations:

−
1

s2g
ḧTTjk þ∇2hTTjk ¼ 0; ð9aÞ

−
1

s2v
Σ̈j þ∇2Σj ¼ 0; ð9bÞ

−
1

s2s
Ω̈þ∇2Ω ¼ 0: ð9cÞ

The squared speeds of these modes are

s2g ¼ 1

1 − cþ
; ð10aÞ

s2v ¼
2c1 − cþc−
2c14ð1 − cþÞ

; ð10bÞ

s2s ¼
c123ð2 − c14Þ

c14ð1 − cþÞð2þ 2c2 þ c123Þ
; ð10cÞ

where c�¼c1�c3, c14¼c1þc4, and c123 ¼ c1 þ c2 þ c3.
The remaining gauge-invariant variables are given by

Φ ¼ c14 − 2cþ
2 − c14

Ω̇; ð11aÞ

Ψ ¼ 2c14ðcþ − 1Þ
2 − c14

Ω̇; ð11bÞ

Ξj ¼
cþ

cþ − 1
Σj: ð11cÞ

These are dependent variables. For the details of deriving
the above results, please refer to Ref. [79]. So, there are
only five propagating physical degrees of freedom. Two of
them are tensor modes (g), encoded in hTTjk , another two are
vector modes (v), given by Σj, and the remaining one is a
scalar (s) degree of freedom represented by Ψ. These
modes, collectively denoted by mð¼ g; v; sÞ, generally
propagate at different speeds sm, which can be greater
than, equal to, or less than the speed of light. When
cþ ¼ c4 ¼ 0 and 2c1c2 ¼ c2 − c1, these speeds are all one.
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These radiative modes can be related to the GW polar-
izations using the geodesic deviation equation [9],

d2Sj

dτ2
≈ −RtjtkSk; ð12Þ

for two test particles with the affine parameter τ, separated
by a small deviation vector Sj. In this equation, Rtjtk is
called the electric part of the Riemann tensor, expressed in
terms of the gauge-invariant variables as [79,92]

Rtjtk ¼ −
1

2
ḧTTjk þ ∂ðjΞ̇kÞ þ ∂jkΦ −

1

2
Ψ̈δjk: ð13Þ

To identify the GW polarizations, one simple method is to
solve for the plane wave solutions to Eq. (9), assuming the
GWs propagate in the positive z direction. Then, after
substituting these solutions to Eq. (13), one finds out that
−Rtxtx þ Rtyty ¼ ḧTTxx and Rtxty ¼ −ḧTTxy . So, the tensor
modes excite the plus and cross polarizations. In addition,
Rtxtz ∝ ∂zΣ̇x and Rtytz ∝ ∂zΣ̇y with the same proportionality
factor, which means that the vector modes excite the vector-

x and vector-y polarizations. And finally, Rtxtx þ Rtyty ∝ Ω
:::

and Rtztz ∝ Ω
:::

with different proportionality factors, and
thus, the scalar mode excites the longitudinal and the
breathing polarizations. For more gauge-invariant ways of
identifying the polarizations, please refer to Ref. [94].
As shown above, the propagating speeds of the radiative

modes are generally different. They will propagate to
different spacetime regions eventually. This requires us
to study their asymptotic behaviors separately. In addition,
their speeds are not necessarily equal to one, which makes
the asymptotic analysis even more complicated. Thanks to
Ref. [88], one can rewrite the action (1) with newly defined
quantities given by

g0μν ¼ gμν þ ð1 − σÞuμuν; u0μ ¼ uμffiffiffi
σ

p ; ð14Þ

where σ is a real constant and can be chosen for conven-
ience, and then the action would take the same form with
the coupling constants ci’s transforming in the way given
by Eqs. (15)—(18) in Ref. [88]. This observation will be
very useful for the following discussion. It implies that if
gμν possesses a Killing vector field Kμ, so does g0μν. In fact,
one can show that for any vector field vμ,

L vg0μν ¼ 2∇ðμvνÞ þ 2ð1 − σÞuðμL vuνÞ ¼ 2∇0
ðμv

0
νÞ; ð15Þ

where ∇0
μ is the covariant derivative associated with g0μν,

and v0μ ¼ g0μνvν. Suppose vμ ¼ Kμ, and let ψι be the
diffeomorphism generated by Kμ ¼ ðd=dιÞμ with ι a
parameter for the integral curves of Kμ. Then, in order
that ψ�

ι gμνð¼gμνÞ, ψ�
ι uμ, and ψ�

ι λ still satisfy the equations
of motion (2), there should be ψ�

ι uμ ¼ uμ and ψ�
ι λ ¼ λ.

Therefore, L Kuμ ¼ 0; that is, L Kuμ ¼ L KðgμνuνÞ ¼ 0

[9]. Then, by Eq. (15), L Kg0μν ¼ 0, which means that gμν
and g0μν share the same symmetry. For the current work, if
gμν possesses the asymptotic symmetry, so does g0μν. One
can work in the theory defined either by ðgμν;uμÞ or by
ðg0μν;u0μ; σÞ to determine the asymptotic symmetry. We say
ðgμν;uμÞ defines the “physical” frame, while ðg0μν;u0μ; σÞ
defines the “unphysical” frame.
An even more interesting implication of the redefinition

(14) is that the speeds of the radiative modes in the
unphysical frame are given by [88]

s0m ¼ smffiffiffi
σ

p : ð16Þ

So, if one sets σ ¼ s2m0 , then the speed of m0 is 1 in the
unphysical frame. For example, if we consider the asymp-
totic behaviors of the tensor mode (m0 ¼ g), one can set
σ ¼ s2g, and then in the unphysical frame, the tensor mode
propagates at the speed s0g ¼ 1. This may allow us to
borrow the idea of Ref. [37] for GR to analyze the
asymptotic behaviors of the radiative modes in Einstein-
æther theory. The basic strategy is to first solve the
linearized equations of motion for multipolar solutions
in a convenient coordinate system, which can be easily
done, and then find the coordinate transformation such that
in a new coordinate system ðũ; r̃; θ̃aÞ, the components of
the metric and æther fields are expressed as series expan-
sions in 1=r̃ with the expansion coefficients depending on
ðũ; θ̃aÞ. As long as this coordinate system is determined,
one can analyze the asymptotic behaviors of the metric and
æther fields, asymptotic symmetries, and memory effects.
This will be done explicitly in the following sections. Since
Einstein-æther theory is quite different from GR, one may
not reproduce the results in Ref. [37] as shown below.
Before preceding further, let us review some experimen-

tal constraints on Einstein-æther theory very briefly. For
more complete discussions, please refer to more recent
works [79,95–97]. Ever since its birth, this theory has been
constrained by several experimental observations. There
are bounds on the post-Newtonian parameters α1 and α2
parametrizing the local Lorentz violation [98], the require-
ment that the GW carry positive energy [99], and there
should be no gravitational Cherenkov radiation [84], etc.
Most recently, the observations of GW170817 and GRB
170817A set a strong constraint on the speed of the
tensor mode, −3×10−15≤sg−1≤7×10−16 [51,100–102].
Combining all these observations together, one can deter-
mine the constraints on Einstein-æther theory, as discussed
in Refs. [79,95–97,103,104]. However, in the following
discussion, we would formally keep the coupling constants
ci’s free so that the results thus obtained are general
enough. As soon as one fixes the values of ci ’s based
on the experimental observations, one can substitute these
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values into expressions presented below to obtain the
asymptotic behaviors of the metric and æther fields.

III. GENERAL SCHEME TO CONSTRUCT
PSEUDO-NEWMAN-UNTI COORDINATES

As discussed above, different modes generally travel at
different speeds, so they will arrive at different spacetime
regions in the infinite future. This means that one may want
to analyze the asymptotic behaviors of the radiative modes,
separately. That is, one needs to obtain the desired
coordinate system for each radiative mode m, individually.
Since the procedures for determining the coordinate sys-
tems are similar among the radiative modes, in this section,
let us discuss the general scheme to construct the pseudo-
Newman-Unti coordinates.
So, let us now consider a specific mode mð¼ g; v or sÞ.

The first step is to solve the linearized equation of motion
(9) for the modem. As in Ref. [37], one would like to look
for the most general multipolar solutions, which can be
written as series expansions in 1=r. Since Eqs. (9) are
written in terms of gauge-invariant variables, one should
now fix the gauge. For example, one can set εj ¼ 0 and
ω ¼ γ ¼ 0 [105]. Then, one should transform to the
unphysical frame with σ ¼ s2m so that the particular mode
m being considered has a unit speed. Let the unphysical

metric and æther fields be written as g0ðmÞ
μν and u0μ

ðmÞ,
respectively. One can check that they have the following
components:

g0ðmÞ
tt ¼ −s2m þ � � � ; u0t

ðmÞ ¼
1

sm
þ � � � ; ð17Þ

at the leading orders in 1=r, with � � � representing higher
order corrections. It would be better to perform the
following coordinate transformation:

t → t̄ ¼ smt; xj → xj; ð18Þ

such that in the new coordinates, ðt̄; xjÞ, g0ðmÞ
t̄ t̄ ¼ −1þ � � �,

and u0t̄
ðmÞ ¼ 1þ � � �. This means that, in these new coor-

dinates, the leading term of g0ðmÞ
μν takes the usual form,

namely, g0ðmÞ
μν ¼ η0μν þ � � � with η0μν ¼ diagð−1; 1; 1; 1Þ. In

fact, all symbols in this section and the following are for the
mode m, and it would be clearer if one appended the
subscript m to them. However, this would be very cumber-
some. So, wewill not append any subscript or superscript to

any of these symbols, except g0ðmÞ
μν , u0μ

ðmÞ, and χ
μ
ðmÞ defined in

Eq. (33). It should be easy to understand which mode these
symbols are associated with based on the context.
Generally speaking, in these coordinates ðt̄; xjÞ, the

metric perturbation h0μν ≡ g0ðmÞ
μν − η0μν, or rather its trace-

reversed version h̄0μν ¼ h0μν − η0μνη0ρσh0ρσ=2, takes a form

that would make the construction of the pseudo-Newman-
Unti coordinates very complicated. So, it is better to
perform a further gauge transformation, parametrized by

ξt̄ ¼
X
l¼0

∂L
W L

r
; ð19aÞ

ξj¼
X
l¼0

∂jL
VL

r
þ
X
l¼1

∂L−1

�
T jL−1

r
þϵjpq∂p

RqL−1

r

�
: ð19bÞ

Here, the components of ξμ are expressed in terms of the
transverse-trace-free tensors W L, VL, T L, and RL, which
are functions of t̄ − r. Therefore, h̄0μν and v0μ transform
according to [79,106]

h̄0μν → h̄00μν ¼ h̄0μν − ∂μξν − ∂νξμ þ η0μν∂ρξρ; ð20aÞ

v0μ → v00μ ¼ v0μ þ ∂t̄ξ
μ: ð20bÞ

One can choose suitable W L, VL, T L, and RL for the
mode m such that h̄00μν takes a somewhat simple form. One
may call such a choice the good gauge. In GR, the good
gauge is the transverse gauge ∂νh̄μν ¼ 0 [37].
Now, one is ready to construct the pseudo-Newman-Unti

coordinate system for the mode m, by determining the
appropriate coordinate transformation that transforms
the metric perturbation h̄00μν. Up to the linear order in the
perturbations, one writes the coordinate transformation for
the radiative mode m in the following way:

ũ ¼ uþ U; r̃ ¼ rþ R; θ̃a ¼ θa þ Θa; ð21Þ

where u ¼ t̄ − r. U, R, and Θa are all linear in the field
perturbations. Before presenting the scheme to construct
the pseudo-Newman-Unti coordinates, let us take a detour
to review what the Newman-Unti gauge is and how it may
be achieved by the coordinate transformations.
In the unphysical frame, the Newman-Unti coordinate

system ðũ; r̃; θ̃aÞ is defined to be the one in which the

metric g̃0ðmÞ
μν has the following components [107]:

g̃0ðmÞ
rr ¼ g̃0ðmÞ

ra ¼ 0; g̃0ðmÞ
ur ¼ −1: ð22aÞ

Or equivalently,

g̃0uuðmÞ ¼ g̃0uaðmÞ ¼ 0; g̃0urðmÞ ¼ −1: ð22bÞ

Thus, r̃ is the null coordinate. By Eq. (22b), one finds the
conditions,
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g0μνðmÞ
∂ũ
∂xμ

∂ũ
∂xν

¼ 0;

g0μνðmÞ
∂ũ
∂xμ

∂θ̃a

∂xν
¼ 0;

g0μνðmÞ
∂ũ
∂xμ

∂r̃
∂xν

¼ −1:

Substituting Eq. (21) into the above expressions, one
obtains the following results [37]:

kμ∂μU ¼ −
1

2
kμkνh̄00μν; ð23aÞ

kμ∂μR ¼ 1

2
njkh̄00jk −

1

2
h̄00jj − ∂t̄U; ð23bÞ

kμ∂μΘa ¼ eaj
r
ð∂jUþ kμh̄00μjÞ; ð23cÞ

where kμ ¼ ð1; njÞ is the leading order piece of r̃μ ≡
ð∂=∂r̃Þμ. The left-hand sides of above equations can be
viewed as the total derivative with respect to r, i.e.,
kμ∂μ ≡ d=dr, and the right-hand sides are series expansions
in 1=r. Once these set of equations are integrated, one can
determine the remaining metric components using

g̃0rrðmÞ ¼ g0μνðmÞ
∂r̃
∂xμ

∂r̃
∂xν

;

g̃0raðmÞ ¼ g0μνðmÞ
∂r̃
∂xμ

∂θ̃a

∂xν
;

g̃0abðmÞ ¼ g0μνðmÞ
∂θ̃a

∂xμ
∂θ̃b

∂xν
:

Thus, g̃0ðmÞ
ab ¼ ½g̃0abðmÞ�−1, g̃0ðmÞ

ua ¼ g̃0rbðmÞg̃
0ðmÞ
ab , and g̃0ðmÞ

uu ¼
−g̃0rrðmÞ þ g̃0raðmÞg̃

0ðmÞ
ua . Actually, this scheme can be applied

to the tensor mode in Einstein-æther theory, as in the
unphysical frame defined by σ ¼ s2g, the tensor mode
propagates at the speed of unity, and the metric perturbation
h̄00μν takes exactly the same form as in GR. However, if one
directly applies this scheme to the vector and scalar modes,
one obtains terms proportional to ln r̃ or even r̃ ln r̃, relative
to the respective leading order terms. These terms would

make the leading order part of the metric field g0ðmÞ
μν , i.e., the

Minkowski metric η0μν, shadowed by the higher term part
h0μν, as r̃ → þ∞, which is inconsistent with the lineariza-
tion. Since one has performed the transformation (20a) to
take the good gauge to simplify the calculation, one may
argue that it is probable to impose the Newman-Unti gauge
condition without introducing any diverging logarithmic
terms as one can execute a different gauge transformation.
As a matter of fact, this is impossible as one can do the
same calculation after performing a further gauge trans-
formation. The diverging logarithmic terms always survive

the gauge transformation (20a). Therefore, the Newman-
Unti coordinate system may not be suitable for studying the
vector and scalar modes.
The appearance of ln r̃ and r̃ ln r̃ terms comes from the

rather strong requirements (22a) or (22b). These equations
imply that r̃ is a null direction from some finite place in the
bulk all the way to the infinity r̃ → þ∞. Since in this work,
one is interested in the fields at the infinity, one may relax

these requirements and demand g̃0ðmÞ
rr ∼ g̃0ðmÞ

ur þ 1 ∼Oð1=r̃Þ
and g̃0ðmÞ

ra ∼Oðr̃0Þ. In this way, although r̃ is not null
everywhere, it is null at the infinity. So, based on this
argument, let us determine the desired coordinate trans-
formation. After some tedious calculation, one knows that
in the pseudo-Newman-Unti coordinates, the unphysical
metric is given by

g̃0ðmÞ
uu ¼ −1þ 2ðU½1� þ R½1�Þ þ 1

2
ðh̄00̄t t̄ þ h̄00jjÞ; ð24aÞ

g̃0ðmÞ
ur ¼ −1þ kμ∂μðUþ RÞ þ U½1�

þ 1

2
ðh̄00tt þ 2njh̄00̄tj þ h̄00jjÞ; ð24bÞ

g̃0ðmÞ
ua ¼ −r2Θ½1�

a þDaðUþ RÞ þ rejah̄00̄tj; ð24cÞ

g̃0ðmÞ
rr ¼ 2kμ∂μUþ h̄00̄t t̄ þ 2njh̄00̄tj þ njkh̄00jk; ð24dÞ

g̃0ðmÞ
ra ¼ −r2kμ∂μΘa þDaUþ rejaðh̄00̄tj þ h̄00jknkÞ; ð24eÞ

g̃0ðmÞ
ab ¼ r̃2γ̃ab − r̃2

�
2D ðaΘbÞ þ

2

r̃
Rγ̃ab

þ 1

2
γ̃abh̄00 − ejaekbh̄

00
jk

�
: ð24fÞ

As Eq. (3.4c) in Ref. [37], Eq. (24f) is explicitly written in
terms of r̃. In the other equations, r is used, instead of r̃.
This is all right as they are different from each other by R,
which is of the first order in the field perturbations.
Obviously, all terms in the above equations involving
h̄00μν are series expansions in 1=r, without any logarithmic

terms. So, in order for g̃0ðmÞ
μν approaching the Minkowski

metric at r → þ∞, one has to impose certain conditions on
U;R and Θa.
Since h̄00μν are series expansions in 1=r, it is natural to

assume that

U ¼
X
l¼0

Uflg
rl

þ
X
l¼1

rlUf−lg; ð25Þ

where the positive powers of r are included for generality.
R and Θa are also expanded in the similar manner. This
form of expansion is inspired by the usual Lorentz boost
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generator whose radial component actually contains a
positive power term [15,37,108]. It is also inspired by
the form of the gauge transformation generator in the dual
formalism of the scalar fields in some modified theories of
gravity [61,64]. Whether the coefficients of the positive
power terms exist or not depends on the boundary con-
ditions imposed on the metric components. These boundary
conditions can be chosen as

g̃0ðmÞ
rr ∼O

�
1

r

�
; ð26aÞ

g̃0ðmÞ
ur þ 1 ∼O

�
1

r

�
; ð26bÞ

g̃0ðmÞ
ra ∼Oðr0Þ; ð26cÞ

g̃0ðmÞ
uu ∼Oðr0Þ; g̃0ðmÞ

ua ∼Oðr0Þ; ð26dÞ

detðg̃0ðmÞ
ab Þ ¼ r̃4 detðγ̃abÞ þOðr̃2Þ: ð26eÞ

Let us look into these conditions and their implications.
Firstly, Eq. (26a) guarantees r̃ being null at the infinity and
results in Uf−lg ¼ 0 for l ≥ 1. So, there are no positive
powers in U, in fact. Secondly, Eq. (26b) implies Rf−lg ¼ 0

for l ≥ 2, so

R ¼ rRf−1g þ Rf0g þ R0; ð27Þ

with R0 standing for the higher order terms in 1=r, and

∂t̄Uf0g þ Rf−1g ¼ 0: ð28Þ

So, the only surviving positive power term in R is rRf−1g,

which also exists in GR [37]. Thirdly, for g̃0ðmÞ
ra , there is no

problem to require it to be Oðr0Þ as in Eq. (26c), and this
implies that Θa

f−lg ¼ 0 for l ≥ 1. Then, demand Eq. (26d),

leading to

∂t̄Rf−1g ¼ 0; ð29Þ

∂t̄Θa
f0g ¼ 0; ∂t̄Θa

f1g −DaRf−1g ¼ 0; ð30Þ

respectively. Finally, one wants Eq. (26e), and so

DaΘa
f0g þ 2Rf−1g ¼ 0: ð31Þ

This result is derived using detðg̃0ðmÞ
ab Þ ∼ r̃4 detðγ̃abÞ at the

leading order. The condition that detðg̃0ðmÞ
ab Þ vanishes at

Oðr̃3Þ leads to a relation involving Rf0g and field pertur-
bations. Since now, we are presenting the general method to
perform the asymptotic analysis, we do not give the explicit

relation, which shall be displayed in the later sections. Up
to now, one may solve Eqs. (28)–(31), and get

Θa
f0g ¼ −YaðθbÞ; ð32aÞ

Rf−1g ¼
1

2
DaYa; ð32bÞ

Uf0g ¼ −f ≡ −TðθaÞ − u
2
DaYa; ð32cÞ

Θa
f1g ¼ −ZaðθbÞ −Daf; ð32dÞ

where T, Ya, and Za depend only on the angular
coordinates.
Let us collect the results obtained so far and define a

vector field χμðmÞ with

χuðmÞ ¼ Uf0g ¼ −f; ð33aÞ

χrðmÞ ¼ rRf−1g þ Rf0g ¼
r
2
DaYa þ Rf0g; ð33bÞ

χaðmÞ ¼ Θa
f0g þ

Θa
f1g
r

¼ −Ya −
1

r
ðZa −DafÞ: ð33cÞ

Although the form of χμðmÞ was obtained under the good

gauge, it actually does not change even if one carries out a
further gauge transformation (20a). It is easy to recognize
that χμðmÞ is similar to the BMS generator in GR, for

example, ξμBMS in Eq. (3.10) in Ref. [37], modulo the sign
difference. They differ mainly in the subleading terms of
χrðmÞ and χaðmÞ, i.e., Rf0g and Za. At the moment, Rf0g has

not yet been determined, but as elucidated later, Rf0g is a
function of T, Ya, Za, and field perturbations. One shall
redefine Rf0g such that its dependency on the field
perturbations is moved to R0 introduced in Eq. (27),
resulting in

Rf0g ¼
1

2
ðDaZa −D2fÞ; ð34Þ

and thus, χμðmÞ is a function of T, Ya, and Za, only.

Obviously, χμðmÞ would define the asymptotic symmetry

for the mode m, like ξμBMS in Ref. [37]. By analog, one
knows that T and Ya generate the supertranslation and
super-Lorentz transformation, respectively. So, the asymp-
totic symmetry includes the familiar BMS symmetry. In
addition, the existence of Za suggests that there is the
subleading BMS symmetry parametrized by it. In GR, BD,
and dCS, Za is zero in the Newman-Unti gauge or Bondi
gauge [19,25,27,57]. One may want to set it to zero in
Einstein-æther theory, as a gauge fixing condition, and
then, the asymptotic symmetry group reduces to BMS.
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However, the analysis on the vector memory effect in
Sec. V D suggests to keep it free so that the treatment for all
modes would be uniform. Of course, ignoring Za, the
expressions for χμðmÞ still differ from the standard ones, e.g.,

Eq. (2.16) in Ref. [19], by higher order terms in 1=r. This is
due to the fact that the analysis is at the linear order in field
perturbations. Once the nonlinear analysis is done, one
expects that χμðmÞ takes exactly the same form as Eq. (2.16)

in Ref. [19], when Za is set to zero. So, the asymptotic
symmetry is generated by T, Ya, and Za, and includes
BMS, as the leading part, and the subleading BMS
symmetries.
In fact, the Minkowski spacetime also enjoys the

asymptotic symmetry, as it is asymptotically flat, too.
The generator of the asymptotic symmetry in the flat
spacetime is still χμðmÞ, defined by Eq. (33) with Rf0g given
by Eq. (34). It is now interesting to examine how χμðmÞ
transforms the æther VEV, ũ0μ ¼ δμu → δμu þ ∂uχ

μ
ðmÞ. Since

χμðmÞ depends on u in general, the æther VEV is not

invariant. Usually, in the treatment of the spontaneous
symmetry breaking [11,12], one would like to fix VEV.
So, if one followed common practice in quantum field
theory, one would require χμðmÞ be independent of u, which
means that

DaYa ¼ 0; ð35Þ

which amounts to the statement that the super-boost
transformations are removed from the asymptotic sym-
metry group of Einstein-æther theory. However, since the
super-boost is deeply related to the CM memory effect in
GR, BD, and dCS, one may not want to fix the æther VEV
so that the intimate relation between the super-boost and
the CM memory remains in Einstein-æther theory.
Now, one should also check the components of the æther

field, as the asymptotic symmetry also transforms the æther
field components. One can show that

ũ0u
ðmÞ ¼ 1þ ∂t̄Uþ v00 t̄ − njv00j; ð36aÞ

ũ0r
ðmÞ ¼ ∂t̄Rþ njv00j; ð36bÞ

ũ0a
ðmÞ ¼ ∂t̄Θa þ eaj

r
v00j; ð36cÞ

using the coordinate transformation law of a vector field.
Since every term on the right-hand sides are series
expansions in 1=r, the components of the æther field in
the new coordinates have no logarithmic terms.
Up to now, one may notice that U, R, and Θa are fixed

only at the leading orders in 1=r. Their higher order
expansion coefficients are still unknown. This is because
here, we have imposed very weak conditions on the metric

components, given by Eq. (26). These are insufficient to
determine all expansion coefficients of U, R, and Θa. If it is

desired, one may further require g̃0ðmÞ
rr , g̃0ðmÞ

ur þ 1, and g̃0ðmÞ
ra

be zero at the orders higher than 1=r, and this completely
fixes U, R and Θa, respectively. These requirements are
weaker than, but resemble Eq. (22a). In the following
sections, we will explicitly determine the coordinate trans-
formations and calculate the unphysical metric and æther
fields in the pseudo-Newman-Unti coordinate systems for
all radiative modes.

A. Memory effects

Once one obtains the pseudo-Newman-Unti coordinates,
one would like to calculate the geodesic deviation equa-
tion (12) and inspect the memory effect due to the modem.
It is better to reexpress Eq. (12) in the pseudo-Newman-
Unti coordinate system. Since the right-hand side of this
equation involves Rtjtk, which is already of the first order in
the field perturbations, let us consider the leading order part
of the physical metric in the pseudo-Newman-Unti coor-
dinates:

η̃μνdx̃μdx̃ν ¼ −s−2m dũ2 − 2s−2m dũdr̃

þ ð1 − s−2m Þdr̃2 þ r̃2γ̃abdθ̃
adθ̃b: ð37Þ

Therefore, one can identify an orthonormal basis,

ẽ0̂ ¼ sm∂̃u; ẽr̂ ¼ −∂̃u þ ∂̃r; ẽâ ¼ r̃ẽja∂j: ð38Þ

The dual basis is

ẽ0̂ ¼ s−1m ðdũþ dr̃Þ; ẽr̂ ¼ dr̃; ẽâ ¼ ẽaj
r̃
dxj: ð39Þ

In fact, near the infinity, the four-velocities ∂τ of the test
particles approach ẽ0̂, and it is natural to decompose the

deviation vector S⃗ in the following way,

S⃗ ¼ Sẽr̂ þ Sâẽâ: ð40Þ

Then, Eq. (12) can be rewritten as

d2S
dτ2

¼ −s2mðR̃ururSþ R̃uruâSâÞ; ð41aÞ

d2Sâ
dτ2

¼ −s2mðR̃uruâSþ R̃uâub̂S
b̂Þ: ð41bÞ

Here, the Riemann tensor components can be calculated
using

R̃urur ¼ s−2m njnkRtjtk; ð42Þ

R̃uruâ ¼ s−2m ẽjân
kRtjtk; ð43Þ
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R̃uâub̂ ¼ s−2m ẽjâẽ
k
b̂
Rtjtk: ð44Þ

Usually, one call S the longitudinal mode and Sâ the
transverse modes.
Suppose the radiative mode m exists at r̃ → ∞ from the

time ũ0 to ũf. Integrating Eq. (41) gives the total changes
ΔS andΔSâ between ũ0 and ũf. IfΔS ≠ 0 orΔSâ ≠ 0, one
claims that there exists the memory effect. By studying the
functional dependencies of ΔS and ΔSâ on the radiative
modes, one can decipher the relation between memories
and asymptotic symmetries, as explicitly demonstrated in
Secs. IV D, V D, and VI D.

IV. PSEUDO-NEWMAN-UNTI COORDINATES
FOR TENSOR MODES

In this section, the pseudo-Newman-Unti coordinate
system will be determined for the tensor mode. For this
purpose, one should solve Eq. (9a) and write hTTjk using
multipolar moments in the physical frame. This would be
done in Sec. IVA. Then, work in the unphysical frame
with σ ¼ s2g. Now, fix the gauge and perform a suitable
infinitesimal transformation Eq. (20a) such that h̄00μν takes a
simple form in Sec. IV B. In Sec. IV C, one gets the
transformation Eq. (21), and the pseudo-Newman-Unti
coordinates are obtained, together with the asymptotic
symmetries. The unphysical metric and æther fields will
also be explicitly calculated. Finally, the memory effects of
the tensor mode are discussed in Sec. IV D.

A. Vacuum multipolar solution

Consider the tensor equation (9a) first. In the vacuum,
one knows that the solution is [109,110]

hTTjk ¼
X
l¼0

�
∂jkL

�
EL

r

�
þ δjk∂L

�
FL

r

��

þ
X
l¼1

∂L−1

�
∂ðj

�
GkÞL−1

r

�
þ ϵpqðj∂kÞp

�
HqL−1

r

��

þ
X
l¼2

∂L−2

��
IjkL−2
r

�
þ ∂p

�
ϵpqðjJkÞqL−2

r

��
;

in general. Here, the symmetric-trace-free tensors
ðEL; FL;GL;HL; IL; JLÞ are all functions of sgt − r, the
retarded time associated with the tensor GW. What essen-
tially differentiates Eq. (9a) from Eq. (2.2) in Ref. [110] is
that hTTjk here satisfies the transverse-trace-free condition,
while hμν there is merely transverse. Then, imposing the
transverse-trace-free condition (∂khTTjk ¼ 0 and δjkhTTjk ¼ 0)
leads to

F ¼ Eð2Þ ¼ 0; FL ¼ s−2g Eð2Þ
L ðl ≥ 1Þ; ð45aÞ

Gð2Þ
j ¼ 0; GL ¼ −4s−2g Eð2Þ

L ðl ≥ 1Þ; ð45bÞ

IL ¼ 2s−4g Eð4Þ
L ðl ≥ 2Þ; ð45cÞ

Hð2Þ
j ¼ 0; JL ¼ −s−2g Hð2Þ

L ðl ≥ 2Þ; ð45dÞ

where the superscript (n) indicates the nth order partial
derivative with respect to t. The metric perturbation is now
given by

hTTjk ¼
X
l¼0

∂jkL
EL

r
þ δjk

X
l¼1

∂L
Eð2Þ
L

s2gr

− 4
X
l¼1

∂L−1ðj
Eð2Þ
kÞL−1
s2gr

þ
X
l¼1

ϵpqðj∂kÞpL−1
HqL−1

r

þ
X
l¼2

∂L−2

�
2
Eð4Þ
jkL−2

s4gr
− ∂p

ϵpqðjH
ð2Þ
kÞqL−2

s2gr

�
: ð46Þ

From this expression, one notices that the metric perturba-
tion is determined by two sets of transverse-trace-free
tensors, EL and HL, which is consistent with the fact that
there are two tensorial degrees of freedom.

B. Gauge fixing

According to the discussion in Sec. III, one should now
fix the gauge such that εj ¼ 0 and ω ¼ γ ¼ 0 [105]. If one
considers only the tensor mode, then one finds out that

hjk ¼ hTTjk ; ð47Þ

and the remaining components of hμν vanish, as do all of the
components of vμ. Now, one should work in the unphysical
framewith σ ¼ s2g so that the tensormode travels at the speed

of one, as measured by the unphysical metric g0ðgÞμν . Then,
perform the coordinate transformation t → t̄ ¼ smt,
xj → xj. So, the unphysical metric and æther fields are

g0ðgÞt̄ t̄ ¼ −1; g0ðgÞt̄j ¼ 0; g0ðgÞjk ¼ δjk þ hTTjk ; ð48aÞ

u0 t̄
ðgÞ ¼ 1; u0j

ðgÞ ¼ 0: ð48bÞ

This way, the leading order parts of the metric and æther
fields take the usual forms. The trace-reversed metric
perturbation h̄0μν is

h̄0̄t t̄ ¼ 0; h̄0̄tj ¼ 0; h̄0jk ¼ hTTjk : ð49Þ

In this gauge, h̄0μν, given by Eqs. (49) and (46), is drastically
different from the one inGR, referring toEq. (2.3) inRef. [37].
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Now, one tries to make h̄0μν look like the one in GR as
much as possible. This means one should perform the
gauge transformation parametrized by Eq. (19), with W L,
VL, T L, and RL all functions of sgt − r. After some trial
and error, one takes the following good gauge conditions:

W L ¼
E½1�
L

2
; VL ¼

EL

2
; T L ¼−2E½2�

L ; RL ¼
HL

2
;

where [n] means to take the nth order derivative with
respect to u. Furthermore, if one defines

E½2�
L ¼ 2

ð−1Þl
l!

ML ðl≥ 0Þ; ð50Þ

H½1�
L ¼ −8

ð−1Þl
l!

l
lþ 1

SL ðl ≥ 1Þ; ð51Þ

then, one has

h̄00̄t t̄ ¼ 4
X
l¼0

ð−1Þl
l!

∂L
ML

r
; ð52aÞ

h̄00̄tj ¼ 4
X
l¼1

ð−1Þl
l!

∂L−1

�
M½1�

jL−1

r
þ lϵjpq
lþ 1

∂p
SqL−1
r

�
; ð52bÞ

h̄00jk ¼ 4
X
l¼2

ð−1Þl
l!

∂L−2

�
M½2�

jkL−2

r
þ 2l
lþ 1

∂p

ϵpqðjS
½1�
kÞqL−2
r

�
:

ð52cÞ

These equations are equivalent to Eq. (2.3) in Ref. [37].ML
and SL are the mass and current multipole moments,
respectively. Also, Eqs. (45b) and (45d) imply that the

linear momentum Pj ≡M½1�
j and angular momentum Sj are

constant as in GR. Note that M ¼ E½2�=2 ¼ 0 according to
Eq. (45a), so the mass monopole is zero in the tensor sector
in Einstein-æther theory. Despite this minor difference,
these expressions suggest that one can repeat the calcu-
lation in Ref. [37] to obtain the Newman-Unti coordinates
for the tensor mode and analyze the asymptotic behaviors.
However, in this work, we will not carry out this compu-
tation as it is impossible to find the well-behaved Newman-
Unti coordinates for the vector and scalar modes using the
same method as discussed in Sec. III.
One should also calculate the perturbation of the æther

field, given by

v00 t̄ ¼−
X
l¼0

ð−1Þl
l!

∂L
ML

r
; ð52dÞ

v00j ¼
X
l¼0

ð−1Þl
l!

∂jL
M̂L

r
− 4

X
l¼1

ð−1Þl
l!

× ∂L−1

�
M½1�

jL−1

r
þ l
lþ 1

ϵjpq∂p
SqL−1
r

�
; ð52eÞ

where M̂L ¼ R
MLdt̄. These equations are presented for

completeness.

C. Constructing pseudo-Newman-Unti coordinates

In the following, we will explicitly obtain U, R, and Θa

in Eq. (21) based on the discussion in Sec. III. The metric
components and the æther field would also be calculated.
Let us consider χμðgÞ first, defined in Eq. (33), which

includes the leading order parts ofU,R, andΘa. According
to the discussion in Sec. III, χμðgÞ can be determined by

requiring the components of g̃0ðgÞμν in the pseudo-Newman-
Unti coordinates to obey certain boundary conditions (26)
near the infinity r → ∞. The boundary conditions imposed
in that section are relatively weak for the tensor mode. As
one can check, it is possible to further impose

g̃0ðgÞra ∼Oð1=rÞ, compared with Eq. (26c). This results in
Za ¼ −4eajPj, and thus, Rf0g ¼ 5njPj −D2f=2 by requir-

ing detðg̃0ðgÞab Þ vanish at Oðr3Þ. However, this stronger
condition may not be consistently imposed in the vector
sector. In order to make the treatment uniform, we will stick
with conditions (26) for the tensor mode. Meaningly, one
should let Za be free, and that leads to

Rf0g ¼
1

2
ðD̃aZa − D̃2fÞ: ð53Þ

Therefore, χμðgÞ is completely parametrized by T, Ya, and

Za, and the asymptotic symmetry includes the BMS and the
subleading BMS symmetries as discussed in the previous
section. This is different from GR [37], BD [24,57], and
dCS [25,64].
Now, one can determine the higher order terms of U, R,

and Θa. It turns out that

U ¼ χuðgÞ þ 4
X
l¼1

1

l!

Xl

k¼1

2k − 1

ðlþ kÞðlþ k − 1Þ

× akl
nLM

½l−k�
L

rk
; ð54aÞ

R ¼ χrðgÞ þ 2
X
l¼2

1

l!

X
k¼1

ðl − kÞðlþ 3k − 1Þ
ðlþ kÞðlþ k − 1Þðkþ 1Þ

× akl
nLM

½l−k�
L

rk
; ð54bÞ

Θa ¼ χaðgÞ − 4
eaj
r

X
l¼1

1

l!

Xl

k¼1

akl
ðlþ kÞðkþ 1Þ

nL−1
rk

×

�
2k2 − l
lþ k − 1

M½l−k�
jL−1 þ

2kl
lþ 1

ϵjpqnpS
½l−k�
qL−1

�
; ð54cÞ
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where

akl ¼
ðlþ kÞ!

2kk!ðl − kÞ! : ð55Þ

One can compare these equations with Eq. (3.2) in Ref. [37].
First, let us compare the leading order terms represented by
χμðgÞ with ξ

μ
BMS given by Eq. (3.10) in Ref. [37]. Although at

the subleading orders, χμðgÞ is different from ξμBMS byRf0g and
Za, their leading order parts are actually the same, modulo
the difference in the sign convention. Second, let us focus on
the higher order terms in Eq. (54) and compare themwith the
corresponding terms in Eq. (3.2) inRef. [37]. It is easy to find
that these two sets of equations share the same parts that are
proportional to the symbols akl. The remaining parts are
different. That is, here, there are no ln r-terms, as we have
imposed weaker conditions on the metric components.
In the pseudo-Newman-Unti coordinates, some of the

metric components are thus

g̃0ðgÞrr ¼ −
4ñjPj

r̃
; g̃0ðgÞur ¼ −1; g̃0ðgÞra ¼ −Za; ð56Þ

by Eq. (24). As one can see, g̃0ðgÞrr is not zero at a finite r̃, and

g̃0ðgÞra can be freely specified. So, the pseudo-Newman-Unti
coordinate system for the tensor mode is almost in the
Newman-Unti gauge. If one works in the center-of-mass
frame with Pj ¼ 0, and chooses a gauge such that Za ¼ 0,
the Newman-Unti gauge is recovered. The remaining
metric components are

g̃0ðgÞuu ¼ −1 − ðD̃2 þ 2Þf½1� þ 2

r̃

�
mþ

X
k¼1

Kk

r̃k

�
; ð57aÞ

g̃0ðgÞua ¼ 1

2
D̃bcab þ

1

r̃

�
2

3
Na þ ẽja

X
k¼1

Pj
k

r̃k

�
þ Δg̃0ðgÞua ; ð57bÞ

g̃0ðgÞab ¼ r̃2
�
γ̃ab þ 2D̃ haYbiþ

1

r̃

�
cab þ ẽjhaẽ

k
bi
X
l¼1

Qjk
l

r̃l

��

þ Δg̃0ðgÞab ; ð57cÞ

where Ya ¼ γ̃abYb, Δg̃0ðgÞua ¼ D̃aD̃bZb=2, and Δg̃0ðgÞab ¼
2r̃D̃ haZbi with Za ¼ γ̃abZb. Note that Δg̃0ðgÞab is traceless,
like cab. Here, these metric components are put in such a
form that the so-called Bondi data can be easily read off.
Indeed, m and Na resemble the Bondi mass aspect and
angular momentum aspect [27,37,111],

m ¼
X
l¼0

ðlþ 1Þðlþ 2Þ
2l!

ñLM
½l�
L ; ð58aÞ

Na ¼ ẽja
X
l¼1

ðlþ 1Þðlþ 2Þ
2ðl − 1Þ! ñL−1

�
M½l−1�

jL−1

þ 2l
lþ 1

ϵ̃jpqñpS
½l−1�
qL−1

�
; ð58bÞ

at the linear order in the field perturbations. The tensor cab
looks like the shear tensor, given by

cab ¼ 4ẽjhaẽ
k
bi
X
l¼2

ñL−2
l!

�
M½l�

jkL−2 −
2l

lþ 1
ϵ̃jpqñpS

½l�
kqL−2

�

− 2D̃ haD̃bif: ð59Þ

And, the remaining symbols Kk, P
j
k, and Qij

k are

Kk ¼
1

ðkþ1Þðkþ2Þ
X
l¼k

ðlþ1Þðlþ2Þ
l!

aklñLM
½l−k�
L ; ð60aÞ

Pj
k ¼

2

kþ 3

X
l¼kþ1

lþ 2

l!
akþ1;lñL−1

�
M½l−k−1�

jL−1

þ 2l
lþ 1

ϵ̃jpqñpS
½l−k−1�
qL−1

�
; ð60bÞ

Qij
k ¼ 4

k − 1

kþ 1

X
l¼k

akl
l!

ñL−2

�
M½l−k�

ijL−2 þ
2l

lþ 1
ϵ̃ipqñpS

½l−k�
jqL−2

�
:

ð60cÞ

Now, let us compare Eq. (57) with Eq. (3.14) in Ref. [37].
These two sets of equations are basically the same, except

that g̃0ðgÞua and g̃0ðgÞab both have extra terms, i.e., Δg̃0ðgÞua and

Δg̃0ðgÞab , respectively. These extra terms and g̃0ðgÞra are due to
the presence of Za and can be viewed as pure gauge in the
tensor sector.
The form of cab as defined by Eq. (59) indicates its

transformation under the supertranslation ũ → ũþ αðθ̃aÞ,
i.e.,

cab → c0ab ¼ cab − 2D̃ haD̃biα: ð61Þ

This is similar to the familiar transformation rule of the
shear tensor under the supertranslation in GR, BD, and dCS
[19,24,25,27,57]. This rule will be useful for interpreting
the tensor displacement memory effect. Under the trans-
formation described by Ya,

cab → cab − 2uD̃ haD̃biD̃cYc: ð62Þ

Of course, neither of Eqs. (61) and (62) is exactly the same
as those appearing in GR, BD and dCS [19,24,25,27,57], as
several terms are missing. However, these missing terms
are products between α, Ya or their derivatives and cab or its
derivatives, so they are of the second order in the field
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perturbations and can be ignored in the linearized analysis.
Under Za transformation, cab is invariant.
Finally, the æther field has the following components:

ũ0u
ðgÞ ¼ 1 −

D̃aYa

2
− 2

X
l¼1

1

l!

Xl

k¼0

αuklakl
ñLM

½l−k�
L

r̃kþ1

þ
X
l¼0

lþ 1

l!
all

ñLM̂L

r̃lþ2
; ð63aÞ

ũ0r
ðgÞ ¼ −

D̃2D̃aYa

4
−
X
l¼2

1

l!

Xl

k¼0

αrklakl
ñLM

½l−k�
L

r̃kþ1

−
X
l¼0

lþ 1

l!
all

ñLM̂L

r̃lþ2
; ð63bÞ

ũ0a
ðgÞ ¼

D̃aD̃bYb

2r̃
þ ẽaj

r̃

X
l¼1

ñL−1

�
all

ðl − 1Þ!
M̂jL−1

r̃lþ2

þ 2
1

l!

Xl

k¼0

αaklakl
M½l−k�

jL−1

r̃kþ1
þ 4

l
ðlþ 1Þ!

×
Xl

k¼0

l − 2k − 2

kþ 2
aklϵ̃jpq

ñpS
½l−k�
qL−1

r̃kþ1

�
; ð63cÞ

where there are several complicated factors given by

αukl ¼
l − k
lþ k

4kþ 3

kþ 1
−

k2

ðlþ kÞðl − kþ 1Þ ; ð64aÞ

αrkl ¼
ðl − kÞðl − k − 1Þðlþ 3kþ 4Þ

ðlþ kÞðkþ 2Þðkþ 1Þ

−
3l2 − ð8k − 3Þlþ kð3k − 5Þ

ðlþ kÞðl − kþ 1Þ ; ð64bÞ

αakl ¼
kl

ðlþ kÞðl − kþ 1Þ

−
l − k
lþ k

l − 2ðkþ 1Þð2kþ 3Þ
ðkþ 2Þðkþ 1Þ : ð64cÞ

Unlike the metric components in Eqs. (56) and (57), the
æther field is expressed directly in terms of the mass and
current multipole moments ML and SL as it is not easy to
recognize the physical meaning of their combinations.
As one can see, Eq. (63) is very complicated, and it is

difficult to interpret the physical meaning of the terms.
Similar situation will happen to the metric and æther fields
for the vector and scalar modes. Therefore, in Secs. V
and VI, we will not present the complete expressions for the
metric and æther fields. Only leading order terms in 1=r̃
will be given.

D. Tensor memory effects

Let us now examine the memory effects associated with
the tensor modes. One can show that at Oð1=r̃Þ, R̃urur ¼
R̃uruâ ¼ 0; then, simply consider

d2Sâ
dτ2

¼ −s2gR̃uâub̂S
b̂ ¼ 1

2r̃
s2gc

½2�
â b̂
Sb̂ þO

�
1

r̃2

�
: ð65Þ

Provided that the initial relative velocity of the test particles
is nonzero, one integrates this equation twice to get

ΔSâ ≈ S½1�â

���
0
Δũþ Δcâ b̂

2r̃
Sb̂
���
0

þ 1

r̃

�
câ b̂ðũfÞ þ câ b̂ðũ0Þ

2
Δũ − ΔCâ b̂

�
S½1�â

����
0

; ð66Þ

where Sâj0 and S½1�â j0 are the initial relative displacement
and velocity at the time ũ0, when the GW arrives,
Δũ ¼ ũf − ũ0 with ũf the time when the GW disappears,

Δcâ b̂ ¼ câ b̂ðũfÞ − câ b̂ðũ0Þ, and ΔCâ b̂ ¼
R ũf
ũ0

câ b̂ðũ0Þdũ0.
If one compares this equation with, for example,

Eqs. (62) and (63) in Ref. [25], one realizes that the term
withΔcâ b̂ is the (leading) displacement memory effect, and
the one with ΔCâ b̂ contains the spin and the CM memory
effects. See also Ref. [24]. One can always express

cab ¼ D̃ haD̃biCþ ϵ̃cðaD̃bÞD̃
cD; ð67Þ

where ϵ̃ab is the volume element on a unit two-sphere, and
C and D are the electric and magnetic parts of cab,

respectively. The spin memory is given by
R ũf
ũ0

Ddũ, while

the CM memory is
R ũf
ũ0

ũC½1�
o dũ. Here, Co is the part of C

that is related to the so-called ordinary memory effect. In
fact, in the linearized theory, one can show that the
evolution equation of m is

m½1� ¼ 1

4
D̃aD̃bNab; ð68Þ

with Nab ¼ c½1�ab the news tensor. Integrating this equation
over the time ũ∈ ðũ0; ũfÞ gives

Δm ¼ 1

8
D̃2ðD̃2 þ 2ÞΔCo: ð69Þ

Of course, if one could find the nonlinear evolution
equation for m, one would obtain a similar equation for
the null memory part C − Co. Therefore, like in GR, BD,
and dCS, the displacement memory, spin, and CM memory
are related to the shear tensor cab. Of course, in Einstein-æ
ther theory, cab is the shear tensor of the unphysical metric

tensor g̃0ðgÞμν .
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So, if a vacuum state for the tensor mode is also the one
described by cab ¼ D̃ haD̃biC with C ¼ Cðθ̃aÞ, then the
displacement memory effect in Einstein-æther theory is
also the vacuum transition as

Δcab ¼ D̃ haD̃biΔC; ð70Þ

where ΔC ¼ −2α with α defined in the sentence above
Eq. (61). One can expand ΔC using ñL in the following
way [112]:

ΔC ¼
X
l¼0

ñLΔCL: ð71Þ

Then, by the definition (59), one can also show that

ΔCL ¼ 2
ðl − 2Þ!
ðl!Þ2 ΔM½l�

L ; ð72Þ

for l ≥ 2 so the tensor displacement memory effect is of the
so-called electric parity as in GR [113].
Because of Eq. (70), one expects that the flux-balance law

associatedwith the supertranslation could also be rewritten as
the constraint equation on the displacement memory effect
for the tensor mode as in Refs. [19,24,58,64]. Equivalently,
one can integrate the evolution equation for the Bondi mass
aspect to obtain the constraint. Unfortunately, since we are
working in the linear theory, the evolution equation for the
Bondi mass aspectm does not include the contribution of the
energy flux of the GW, which shall be quadratic in Nab.
Therefore, one cannot get the constraint on the displacement
memory effect. Constructing the pseudo-Newman-Unti
coordinate system up to second order in the field perturba-
tions could provide the quadratic terms [37], but this is
beyond the scope of the present work. Similarly, for the spin
and the CM memory effects, their constraint equations shall
also rely on the construction of the evolution equation of the
angular momentum aspect Na up to the second order in the
field perturbations, which cannot be obtained in the linear-
ized analysis. So here, we will not try to calculate the
constraints on memory effects.
In summary, the leading displacement memory in the

tensor sector shares many characteristics with the one in
GR. They are both the variation in the shear tensor cab, can
be viewed as the vacuum transition, and are deeply related
to the supertranslations. Although not explicitly verified in
the linear analysis, the triangular equivalence between the
leading displacement memory, the supertranslation and the
leading soft graviton theorem shall also hold in Einstein-æ
ther theory, which can be examined in the nonlinear
analysis.

V. PSEUDO-NEWMAN-UNTI COORDINATES
FOR VECTOR MODES

In this section, the pseudo-Newman-Unti coordinates
will be obtained for the vector mode following the general
scheme in Sec. III. The structure is similar to Sec. IV for the
tensor mode.

A. Vacuum multipolar solution

Now, the vector equation (9b) is to be solved. The
general solution to Eq. (9b) is [109,110]

Σj ¼
X
l¼0

∂jL
BL

r
þ
X
l¼1

∂L−1

�
CjL−1

r
þ ϵjpq∂p

DqL−1

r

�
;

for some transverse-trace-free tensors BL, CL, and DL, all
functions of the retarded time svt − r. The transverse
condition leads to

∂
jΣj ¼

X
l¼0

∂L
Bð2Þ
L

s2vr
þ
X
l¼1

∂L
CL

r
¼ 0; ð73Þ

which implies that

Bð2Þ ¼ 0; s−2v Bð2Þ
L þ CL ¼ 0 ðl ≥ 1Þ: ð74Þ

Therefore, one has

Σj ¼
X
l¼0

∂jL
BL

r
−
X
l¼1

∂L−1

�
Bð2Þ
jL−1

s2vr
− ϵjpq∂p

DqL−1

r

�
: ð75Þ

Again, there are two sets of transverse-trace-free tensors,
BL and DL, here. Indeed, there are two vectorial degrees of
freedom. Ξj can thus be obtained using Eq. (11c).

B. Gauge fixing

To fix the gauge, one also sets εj ¼ 0 and ω ¼ γ ¼ 0 as
for the tensor mode. Then, perform the coordinate trans-
formation t̄ ¼ svt such that in the coordinates ðt̄; xjÞ,
g0ðvÞt̄ t̄ ¼ −1 ¼ −u0 t̄

ðvÞ, g
0ðvÞ
jk ¼ δjk, and

g0ðvÞt̄j ¼
X
l¼0

∂jL
B̌L

r
−
X
l¼1

∂L−1

�
B̌½2�
jL−1

r
− ϵjpq∂p

ĎqL−1

r

�
;

ð76aÞ

u0j
ðvÞ ¼

X
l¼0

∂jL
B̊L

r
−
X
l¼1

∂L−1

�
B̊½2�
jL−1

r
− ϵjpq∂p

D̊qL−1

r

�
;

ð76bÞ
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where [n] also means to take the nth derivative with respect
to u. Here, one defines

B̌L¼k1BL; ĎL¼k1DL; k1¼−
1þcþs2g−s2v

sv
; ð76cÞ

B̊L ¼ k2BL; D̊L ¼ k2DL; k2 ¼
2 − s2g
sv

; ð76dÞ

to simplify equations. These expressions are already written
in the unphysical frame with σ ¼ s2v. The trace-reversed

metric perturbation of g0ðvÞμν is given by h̄0̄t t̄ ¼ h̄0jk ¼ 0, and

h̄0̄tj¼
X
l¼0

∂jL
B̌L

r
−
X
l¼1

∂L−1

�
B̌½2�
jL−1

r
− ϵjpq∂p

ĎqL−1

r

�
: ð77Þ

The first term on the right-hand side would make the
computation very tedious, so it would be better to simplify
the metric components by performing the gauge transforma-
tion described by Eq. (20). Then, one knows that the
following good gauge

W L ¼ B̌L; VL ¼ T L ¼ RL ¼ 0 ð78Þ
gives

h̄00̄t t̄ ¼
X
l¼0

∂L
B̌½1�
L

r
; ð79aÞ

h̄00̄tj ¼ −
X
l¼1

∂L−1

�
B̌½2�
jL−1

r
− ϵjpq∂p

ĎqL−1

r

�
; ð79bÞ

h̄00jk ¼ δjk
X
l¼0

∂L
B̌½1�
L

r
: ð79cÞ

The æther perturbation is

v00 t̄ ¼ −
X
l¼0

∂L
B̌½1�
L

r
; ð79dÞ

v00j¼
X
l¼0

∂jL
B̊L

r
−
X
l¼1

∂L−1

�
B̊½2�
jL−1

r
−ϵjpq∂p

D̊qL−1

r

�
: ð79eÞ

It is apparent that h̄00μν takes a very different form from the one
in GR [37]. In particular, h̄00jk is diagonal, while the corre-
sponding perturbation in GR is trace free [37,109]. These
differences lead to the difficulty in determining a well-
defined Newman-Unti coordinate system for this mode.

C. Constructing pseudo-Newman-Unti coordinates

In this subsection, one will determine the pseudo-
Newman-Unti coordinates using the general scheme
described in Sec. III.

As in the case of the tensor mode, let us first consider
χμðvÞ. In Sec. III, χμðvÞ has been determined up to two sets of

unspecified functions, Za and Rf0g, as the boundary
conditions (26) were chosen to be relatively weak. Now,
for the case of the vector mode, it is impossible to
strengthen the condition (26c). This is due to the form
of h̄00μν given by Eq. (79). In particular, it is the following
combination of the components that prevents the condition
(26c) from being tightened:

ejaðh̄00̄tj þ h̄00jknkÞ ¼
eja
r

X
l¼1

ð−1ÞlnL−1ðB̌½lþ1�
jL−1 þ ϵjpqnpĎ

½l�
qL−1Þ

þO
�
1

r2

�
: ð80Þ

The left-hand side of the above expression appears in
Eq. (24e), which thus acquires a contribution atOðr0Þ. One
can check that Za also appears atOðr0Þ on the right-hand of
Eq. (24e). As the leading order term of Eq. (80) is generally
nonvanishing and time dependent, one cannot choose a

suitable ZaðθÞ to remove it, so g̃0ðvÞra has to start at Oðr0Þ.
This also means that one shall leave Za free, as a nonzero
Za does not violate the condition (26c).
Now, let us discuss the form ofRf0g. As in the case of the

tensor mode, one makes use of the vanishing of detðg̃0ðvÞab Þ at
Oðr̃3Þ to get

Rf0g ¼
1

2
ðD̃aZa − D̃2fÞ: ð81Þ

This equation takes the same form as Eq. (53) in the tensor
sector, which guarantees the uniform treatment. Therefore,
χμðvÞ is completely fixed for the vector mode. Just like χμðgÞ
for the tensor mode, χμðvÞ is also parametrized by T, Ya, and

Za, so the asymptotic symmetry in the vector sector also
includes the BMS and the subleading BMS symmetries.
The coordinate transformation from the Lorentz coordi-

nates to the pseudo-Newman-Unti coordinates are given by

U ¼ χuðvÞ þ 2
X
l¼1

ð−1Þl
Xl

k¼1

lakl
kðlþ kÞ

nLB̌
½l−kþ1�
L

rk
; ð82aÞ

R ¼ χrðvÞ þ
X
l¼1

ð−1Þl
Xl

k¼1

lðl − kÞ þ ðkþ 1Þ2
ðkþ 1Þ2

× akl
nLB̌

½l−kþ1�
L

rk
; ð82bÞ

Θa ¼ χaðvÞ − eja
X
l¼1

ð−1Þl
Xl

k¼1

akl
ðkþ 1Þrkþ1

nL−1

×

�
2l − k
k

B̌½l−kþ1�
jL−1 þ ϵjpqnpĎ

½l−k�
qL−1

�
: ð82cÞ
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The leading order part of the coordinate transformation is
given by χμðvÞ, which describes the asymptotic symmetry, as

elucidated in the previous paragraph. The remaining parts of
the transformation (82) are certainly different from Eq. (3.2)
in Ref. [37]. They are given by functions of the multipole
moments B̌L and ĎL related to the vector degrees of freedom
in Einstein-æther theory.
Substituting Eq. (82) into Eq. (24), one can calculate the

following metric components:

g̃0ðvÞrr ¼ 2

r̃

�
B̌½1� þ 2

X
l¼1

ð−1ÞlñLB̌½lþ1�
L

�
; ð83aÞ

g̃0ðvÞur ¼ −1þ 2B̌½1�

r̃
þ 2

r̃

X
l¼1

ð−1Þl l
2 þ 3

2
ñLB̌

½lþ1�
L ; ð83bÞ

g̃0ðvÞra ≡ Γa ¼ −Za þ ẽja
X
l¼1

ð−1ÞlñL−1
�
B̌½lþ1�
jL−1

þ ϵ̃jpqñpĎ
½l�
qL−1

	
; ð83cÞ

where the symbol Γa is defined for the upcoming dis-
cussion on asymptotic symmetries and vector memories.
So, these components are different from Eq. (22a). Again, r̃

is not null at a finite value, but g̃0ðvÞrr approaches zero at the
infinity. All of these components are even time dependent
in general in contrast with the corresponding terms in the
tensor sector and those in Newman-Unti gauge in GR. The
Newman-Unti gauge can be imposed in the special case

when B̌½lþ1�
L ¼ Ď½l�

L ¼ 0 under the gauge condition Za ¼ 0.
As discussed below, this means that the presence of the
vector GW prevents the construction of the Newman-Unti
coordinates. The remaining metric components are

g̃0ðvÞuu ¼ −1 −
1

2
D̃aðYa þ D̃2YaÞ þO

�
1

r̃

�
; ð83dÞ

g̃0ðvÞua ¼ −D̃a

�
fþ 1

2
D̃2fþ 1

2
D̃bZb

�

þ ẽja
X
l¼1

ð−1ÞlñL−1

�

1þ 1

4
× lðlþ 1Þð2l− 1Þ

�
B̌½lþ1�
jL−1

þ l2 þ lþ 4

4
ϵ̃jpqñpĎ

½l�
qL−1

�
þO

�
1

r̃

�
; ð83eÞ

g̃0ðvÞab ¼ r̃2ðγ̃ab þ 2D̃ haYbiÞ
þ 2r̃ðD̃ haZbi − D̃ haD̃bifÞ þOðr̃0Þ: ð83fÞ

The complete expressions are very tedious and not very
illuminating. So here, only the leading order terms are
presented. The higher order terms in 1=r̃ are all expressed
in terms of B̌L, ĎL, B̊L, or D̊L, defined in Eqs. (76c)
and (76d).

The terms containing f, Ya, and Za in Eq. (83) tell us how
the corresponding metric components transform under BMS
and the subleading BMS transformations. The particularly
interesting one for the discussion on memory effects is

g̃0ðvÞra ≡ Γa. If one performs an infinitesimal subleading BMS
transformation given by Θa → Θa − za=r̃ [114], then

Γa → Γa − za; ð84Þ

ignoring higher order terms in the field perturbations. So, Γa
transforms nonlinearly, like cab in the tensor sector. Note that
Γa, ignoring the Za part, is proportional to the angular
component ofΣa atOð1=r̃Þ byEq. (75). That is, although the
æther field has no internal symmetries, its transformation
under the diffeomorphism can be nontrivial.
Finally, in the pseudo-Newman-Unti coordinates, the

unphysical æther field is

ũ0u
ðvÞ ¼ 1 −

D̃aYa

2
þ B̊½1�

r̃

þ 1

r̃

X
l¼0

ð−1Þlðl2 − 1ÞñLB̌½lþ1�
L þO

�
1

r̃2

�
; ð85aÞ

ũ0r
ðvÞ ¼ −

D2DaYa

4
−
B̊½1�

r̃

þ
X
l¼1

ð−1Þl
�
1þ lðl − 1Þ

4

�
lðlþ 1Þ

2

ñLB̌
½lþ1�
L

r̃

þO
�
1

r̃2

�
; ð85bÞ

ũ0a
ðvÞ ¼

DaDbYb

2r

þ ẽaj
r̃2

X
l¼1

ð−1ÞlñL−1

�

B̊½lþ1�
jL−1 þ ϵ̃jpqñpD̊

½l�
qL−1

�

−
1

2

�
ð2l − 1ÞB̌½lþ1�

jL−1 þ ϵ̃jpqnpĎ
½l�
qL−1

��

þO
�
1

r̃3

�
: ð85cÞ

We present the expressions for the components of the æther
field for the completeness.

D. Vector memory effects

Now, let us calculate the geodesic deviation equation (41)
to study the memory effects excited by the vector mode. It
turns out that

d2S
dτ2

¼ −s2vR̃uruâSâ;
d2Sâ
dτ2

¼ −s2vR̃uruâS; ð86Þ
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as R̃urur ¼ R̃uâub̂ ¼ 0 at Oð1=r̃Þ, and

R̃uruâ ¼ −
cþs2g
2svr̃

ẽjâ
X
l¼1

ð−1ÞlñL−1
�
B½lþ3�
jL−1 þ ϵ̃jpqñpD

½lþ2�
qL−1

�

þO
�
1

r̃2

�
: ð87Þ

So, there is a mixing between the longitudinal mode S and
the transverse modes Sa. This is just the special feature of

the vector polarizations. Since when B̌½lþ1�
L ¼ Ď½l�

L ¼ 0, it is
permissible to take the Newman-Unti gauge, the above
discussion implies that in that case, there are no vector GWs
at r̃ → ∞, noting that B̌L ∝ BL and ĎL ∝ DL by Eqs. (76c)
and (76d). Therefore, in some sense, it is the presence of the
vector GWs that impedes the use of the Newman-Unti
coordinates in the vector sector.
Comparing Eqs. (87), (75), and (83c), one can rewrite

R̃uruâ ¼ −
cþs2g
2svk1

Γ½2�
â ; ð88Þ

atOð1=r̃Þ, with k1 defined in Eq. (76c). This is expected, as
the vector polarizations are excited by the vector modes Σj,

and one can show that ẽjaΣj ¼ Γa=k1r̃þOð1=r̃2Þ. So,
integrating Eq. (86) twice results in

ΔS ¼ dS
dτ

����
0

Δũþ cþsvs2g
2k1

ΔΓâSâ
���
0

þ cþsvs2g
2k1



½ΓâðũfÞ þ Γâðũ0Þ�Δũ

− 2

Z
ũf

ũ0

Γâdũ

�
dSâ

dτ

����
0

; ð89Þ

and an exactly similar expression for ΔSâ with S and Sâ

exchanged in the above equation. Note that one should
evaluate this equation up to 1=r̃. Here, Eq. (89) is written in
terms of Γa so that it is easy to associate the memory effect
with the symmetry [see Eq. (84)]. This equation is similar
to Eq. (66) for the tensor mode, so one could call the term
proportional to ΔΓâ the (leading) displacement memory
effect of the vector mode and the one proportional to the
integral of Γâ the subleading displacement memory effect.
By the transformation law (84), one may state that the
(leading) displacement memory of the vector mode is
associated with the subleading transformation,

ΔΓa ¼ −za; ð90Þ

similar to Eq. (70) for the tensor displacement memory
effect. So, the (leading) vector displacement memory effect
may be interpreted as the vacuum transition Γaðu0Þ →
ΓaðufÞ in the vector sector. This observation serves as one

reason for keeping Za in χμðmÞ. It seems that the subleading

vector displacement memory
R ũf
ũ0

Γadũ has no close relation
with the asymptotic symmetry.
Since any vector field on a unit two-sphere can be

decomposed into its electric and magnetic parts, e.g.,

Γa ¼ D̃aμþ ϵ̃abD̃
bν; ð91Þ

one may callΔμ the electric-type vector memory effect, and
Δν the magnetic type. Due to Eq. (90), one writes

Δμ ¼ −x; Δν ¼ −y; ð92Þ

where one decomposes za ¼ D̃axþ ϵ̃abD̃
by. This means

that the electric-type vector memory effect can be viewed as
the vacuum transition caused by the electric parity part of
the subleading BMS symmetry za ¼ D̃ax, while the mag-
netic-type memory is the vacuum transition associated with
the magnetic parity part of za ¼ ϵ̃abD̃

by. If one expandsΔμ
and Δν in the similar manner to ΔC in Eq. (71), calculation
shows that

ΔμL ¼ ð−1Þl
l

ΔB̌½lþ1�
L ; ð93Þ

ΔνL ¼ ð−1Þl
l

ΔĎ½lþ1�
L ; ð94Þ

for l ≥ 1, according to the definition of Γa. As a compari-
son, the velocity kick memory effect in Maxwell’s electro-
dynamics is related to the change in the electric part of the
leading order term of the radiative mode since the gauge
symmetry of the four-potential A μ → A μ þ ∂μϑ involves
the electric part ofA μ [18]. Here, the linear analysis shows
that the electric-type and magnetic-type memories both
exist in a generic process in Einstein-æther theory.
Similarly, one can decompose the subleading displace-

ment memory effect
R uf
u0 Γadũ into its electric (

R ũf
ũ0

μdũ) and

magnetic (
R ũf
ũ0

νdũ) parts. Their relations with the sym-
metries are trivial at least in the linearized case.
Finally, in the linearized theory, one could not get the

constraint equations for the vector memory effects, either.

VI. PSEUDO-NEWMAN-UNTI COORDINATES
FOR SCALAR MODE

In this section, the pseudo-Newman-Unti coordinates
will be obtained for the scalar mode following the general
scheme in Sec. III. The structure is again similar to Sec. IV
for the tensor mode.
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A. Vacuum multipolar solution

For the scalar mode, one can simply set, for example,

Ω ¼
X
l¼0

∂L
ALðsst − rÞ

r
: ð95Þ

This solves Eq. (9c). With Eqs. (11a) and (11b), one has

Φ ¼ c14 − 2cþ
2 − c14

X
l¼0

∂L
ȦL

r
; ð96Þ

Ψ ¼ 2c14ðcþ − 1Þ
2 − c14

X
l¼0

∂L
ȦL

r
: ð97Þ

There are no constraints on AL’s from the equation of
motion (9c).

B. Gauge fixing

Similarly to the tensor and vector modes, one wants to fix
the gauge before obtaining the pseudo-Newman-Unti coor-
dinates. Again, one may set εj ¼ 0 and ω ¼ γ ¼ 0 and
perform the coordinate transformation t → t̄ ¼ sst; xj → xj.
In this way, one knows that

g0ðmÞ
t̄ t̄ ¼ −1 −

4

2 − c14

s2s
s2g

X
l¼0

∂L
A½2�

L

r
; ð98aÞ

g0ðmÞ
t̄j ¼ 0; ð98bÞ

g0ðmÞ
jk ¼δjk−

2c14
2−c14

s2s
s2g

X
l¼0

∂L
A½2�

L

r
δjkþ2

X
l¼0

∂jkL
AL

r
; ð98cÞ

and

u0 t̄
ðmÞ ¼ 1 −

2

2 − c14

s2s
s2g

X
l¼0

∂L
A½2�

L

r
; ð98dÞ

u0j
ðmÞ ¼ 0: ð98eÞ

In the above expressions, the superscript [n]means to take the
nth order derivative with respect to t̄, and AL ¼ R

ALdt.
These expressions are already written in the unphysical
frame with σ ¼ s2s. The trace-reversed metric perturbation
can be read off and given by h̄0̄tj ¼ 0, and

h̄0̄t t̄ ¼
�
1 −

2þ 3c14
2 − c14

s2s
s2g

�X
l¼0

∂L
A½2�

L

r
; ð99aÞ

h̄0jk ¼ −δjk
�
1þ s2s

s2g

�X
l¼0

∂L
A½2�

L

r
þ 2

X
l¼2

∂jkL
AL

r
: ð99bÞ

A further gauge transformation given byEq. (19) should now
depend on sst − r and help simplify the following calcu-
lation. Then, the good gauge in the scalar sector is

VL ¼ AL; W L ¼ V½1�
L ¼ A½1�

L : ð100Þ

After this transformation, the trace-reversed metric pertur-
bation transforms to

h̄00̄t t̄ ¼ ð2F1 −F2Þ
X
l¼0

∂L
A½2�

L

r
; ð101aÞ

h̄00̄tj ¼ 0; ð101bÞ

h̄00jk ¼ δjkF2

X
l¼0

∂L
A½2�

L

r
; ð101cÞ

where

F1 ¼ 1 −
2þ c14
2 − c14

s2s
s2g

; F2 ¼ 1 −
s2s
s2g

: ð101dÞ

The æther perturbation is given by

v00 t̄ ¼ F1 þF2 − 4

2

X
l¼0

∂L
A½2�

L

r
; ð101eÞ

v00j ¼
X
l¼0

∂jL
A½1�

L

r
: ð101fÞ

Again, h̄00μν differs from the one in GR [37,109] in several
aspects. Here, h̄00jk is also diagonal as for the case of the vector
mode, and h̄00̄tj ¼ 0. Finally, there are no constantAL’s, while

in GR, M, Pj ¼ M½1�
j , and Sj are constant.

C. Constructing pseudo-Newman-Unti coordinates

Finally, let us determine the pseudo-Newman-Unti
coordinates for the scalar mode. Again, we start with
χμðsÞ; i.e., we want to check if Za and Rf0g can be fixed.

As one can check, Za appears in Eq. (24e), and one can set
it free to make the condition (26c) be satisfied. Now, to
determine Rf0g, one uses the condition (26e), and thus, one
should calculate Eq. (24f). It turns out that

Rf0g ¼
1

2
ðD̃aZa − D̃2fÞ þFΔ

2

X
l¼0

ð−1ÞlñLA½lþ2�
L ;

where

FΔ ¼ F1 −F2: ð102Þ
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However, this expression does not take the similar forms as
Eqs. (53) and (81) for the tensor and vector modes,
respectively. Moreover, Rf0g depends on the scalar pertur-
bation. Thus, it is better to redefineRf0g for the scalar mode
by moving the scalar dependent part to R0 introduced in
Eq. (27) so that

Rf0g ¼
1

2
ðD̃aZa − D̃2fÞ: ð103Þ

In this way, Rf0g is completely independent of the field
perturbation and truly becomes one component of the
generator of an asymptotic symmetry, which shall not be
a function of the field perturbations. Rf0g now also agrees
with Eqs. (53) and (81), confirming the uniform treatment
of the different propagating modes. Therefore, χμðsÞ is again
described by T, Ya, and Za. The asymptotic symmetry in
the scalar sector also includes the BMS symmetry and the
subleading BMS symmetry.
Now, the complete coordinate transformation is given by

U ¼ χuðsÞ þF1

X
l¼1

ð−1Þl
Xl

k¼1

akl
k
nLA

½l−kþ2�
L

rk
; ð104aÞ

R ¼ χrðsÞ þ
X
l¼1

ð−1Þl
Xl

k¼1

�
F2 þ

l − k
2

×
lþ kþ 1

ðkþ 1Þ2 F1

�
akl
k
nLA

½l−kþ2�
L

rk
; ð104bÞ

Θa ¼ χaðsÞ −
eaj
r

X
l¼1

ð−1Þl
Xl

k¼1

lakl
kðkþ 1Þ

nLA
½l−kþ2�
L

rk
; ð104cÞ

based on the general scheme presented in Sec. III. Under
the coordinate transformation (104), one gets

g̃0ðsÞrr ¼ 2F1

X
l¼0

ð−1Þl ñLA
½lþ2�
L

r̃
; ð105aÞ

g̃0ðsÞra ¼ −Za; ð105bÞ

g̃0ðsÞur ¼ −1þ
X
l¼0

ð−1Þl
�
F2 þ

l2 þ lþ 2

2
F1

�

×
ñLA

½lþ2�
L

r̃
; ð105cÞ

so, at the finite r̃, e∂r is not a null vector. In the special

solution withA½lþ2�
L ¼ 0 under the gauge condition Za ¼ 0,

the Newman-Unti gauge is recovered. The remaining
metric components have the following leading order terms:

g̃0ðsÞuu ¼ −1 −
1

2
D̃aðYa þ D̃2YaÞ þO

�
1

r̃

�
; ð105dÞ

g̃0ðsÞua ¼ −D̃a

�
f þ 1

2
D̃2f þ 1

2
D̃bZb

�
þO

�
1

r̃

�
; ð105eÞ

g̃0ðsÞab ¼ r̃2ðγ̃ab þ 2D̃ haYbiÞ þ r̃

�
2D̃ haZbi

− 2D̃ haD̃bif þ γ̃abFΔ

X
l¼0

ð−1ÞlñLA½lþ2�
L

�

þOðr̃0Þ: ð105fÞ

From these equations, one knows that the coefficients of the
higher order terms in 1=r̃ transform trivially under the BMS
and subleading BMS transformations in the linearized
theory. In Eq. (105f), the term proportional to FΔ may
seem transform nontrivially, but since this term is a trace,
while the remaining ones in the squared brackets are
tracefree, then it truly remains invariant under the BMS
and the subleading BMS symmetries.
Finally, the unphysical æther field is

ũ0u ¼ 1 −
D̃aYa

2
þ 1

2r̃

X
l¼0

ð−1Þl½ðl2 þ lþ 1ÞF1

þF2 − 2�ñLA½lþ2�
L þO

�
1

r̃2

�
; ð106aÞ

ũ0r ¼ −
D̃2D̃aYa

4
þO

�
1

r̃

�
;

u0a ¼ D̃aD̃bYb

2r̃
−F1ẽaj

X
l¼1

ð−1Þl l
2

ñLA
½lþ2�
jL−1

r̃2

þO
�
1

r̃2

�
: ð106bÞ

D. Scalar memory effects

After some mathematical manipulation, Eq. (41)
becomes

d2S
dτ2

¼ −s2mR̃ururS;
d2Sâ
dτ2

¼ −s2mR̃uâub̂S
b̂; ð107Þ

at the linear order in 1=r̃ for the scalar mode, where
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R̃urur ¼ F3

X
l¼0

ð−1Þl ñLA
½lþ4�
L

r̃
þO

�
1

r̃2

�
;

R̃uruâ ¼ O
�
1

r̃2

�
;

R̃uâub̂ ¼ F4γ̃ab
X
l¼0

ð−1Þl ñLA
½lþ4�
L

r̃
þO

�
1

r̃2

�
;

and

F3 ¼
1

2 − c14

��
1þ s2s

s2g

�
c14 − 2cþ

�
;

F4 ¼
c14

2 − c14

s2s
s2g

:

So, there is no mixing between the longitudinal mode S and
the transverse modes Sâ. As discussed above, when

A½lþ2�
L ¼ 0, it is possible to impose Newman-Unti gauge

condition. In this case, the geodesic deviation equation is
trivial, which means that the scalar GW is absent at r̃ → ∞.
Therefore, the scalar GW prevents one from constructing
the Newman-Unti coordinate system in the scalar sector.
One can also rewrite

R̃urur ¼ F3Ω½3�; R̃uâub̂ ¼ F4γ̃abΩ½3�; ð108Þ

at the linear order in 1=r̃. Indeed, the scalar mode excites
the longitudinal (S) and breathing (Sa) polarizations
[79,98,115–117]. Therefore, the integration of Eq. (107)
gives

ΔS ¼ S½1�j0Δũ −F3ΔΩ½1�Sj0
−F3f½Ω½1�ðũfÞ þΩ½1�ðũ0Þ�Δũ − 2ΔΩgS½1�j0;

with a similar equation for ΔSâ with S andF3 replaced by
Sâ and F4, respectively. Again, this equation shall be
evaluated at the order of 1=r̃, as in the case of the tensor and
vector modes. One would like to call ΔS and ΔSâ the
longitudinal and the breathing memory effects, with the
term proportional to ΔΩ½1� the leading memory effects and
the one proportional to ΔΩ the subleading effects. Unlike
the tensor or vector memory effects, there seems to be no
clear relation between the asymptotic symmetries and the
scalar memories.

VII. DISCUSSION AND CONCLUSION

In this work, the asymptotic analysis of the vacuum
Einstein-æther theory has been done in the linear case.
Since there are three types of radiated modes, and they
generally travel at different speeds, the asymptotic analysis
has to be performed separately for each mode. These
radiative modes satisfy the similar d’Alembertian equations

with the speed of light replaced by their respective speeds.
This implies that one may analyze their solutions using a
general scheme such that a suitable coordinate system,
named the pseudo-Newman-Unti coordinates (ũ; r̃; θ̃a),
can be constructed for each mode. In this coordinate system,
the components of the metric and æther fields can be written
as series expansions in 1=r̃, without ln r̃-terms. Although r̃ is
not always a null direction, it is approximately null,measured

by a suitably defined unphysical metric g̃0ðmÞ
μν , as r̃ → ∞. It

turns out that, at the leading orders in 1=r̃, the asymptotic
symmetry is parametrized by three sets of functions of
angles, T, Ya, and Za, for all modes. As in GR, BD, and
dCS,T generates the supertranslation transformation, andYa

belongs to the Lorentz algebra or its extensions. In addition,
Zaðθ̃bÞ parameterizes the transformation subleading relative
to Ya. Therefore, the asymptotic symmetry group of
Einstein-æther theory contains the BMS and the subleading
BMS symmetries for each radiative mode, generally larger
than that in GR, BD, or dCS.
One may find it uneasy that the asymptotic symmetry

group of Einstein-æther theory is larger. So, let us explain it
here. The asymptotic symmetry is actually the residual
gauge symmetry, obtained once one fixes the asymptotic
behaviors of the metric components. Since all metric
theories mentioned so far enjoy the diffeomorphism invari-
ance, the stronger the boundary conditions of the metric
are, the smaller the residual gauge symmetry group is. As
discussed in Sec. III, one could not impose the Newman-
Unti gauge condition (22); otherwise, there would be ln r̃ or
even r̃ ln r̃ terms appearing in the metric and æther fields for
the vector and scalar modes, relative to their respective
leading order terms. These blowing up terms render the
linearization inconsistent. Therefore, in this work, one may
impose weaker conditions (26), and this leads to the larger
asymptotic symmetry group of Einstein-æther theory.
In the main text, it was implicitly assumed that three

kinds of radiative modes travel at different speeds, so the
construction of the pseudo-Newman-Unti coordinates was
done separately for each mode. Although we used the same
symbols, e.g., T, Ya, and Za, they actually have different
meanings in Secs. IV, V, and VI. When all modes share the
same velocity, not necessarily the physical speed of light,
one can construct a single pseudo-Newman-Unti coordi-
nate system. Formally, one just adds up the corresponding
equations. For example, one can add up the right-hand sides
of Eqs. (54), (82), and (104) to get the coordinate trans-
formation. Of course, in doing so, one should treat all
symmetric-trace-free tensors, ML, SL, BL, DL, AL, etc.,
functions of st − rwith s a common speed. One should also
drop the subscripts of χμðg;v;sÞ and formally, keep one copy

of them [118]. Therefore, the asymptotic symmetry group
is still BMS and its subleading version.
The memory effects have also been analyzed by inte-

grating the geodesic deviation equation for each radiative
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mode. Like in GR, BD, and dCS, the tensor modes excite the
displacement, spin, and CM memories. The displacement
memory effect is also closely related to the supertranslation
and canbe treated as thevacuumtransition in the tensor sector.
As in the linear theory, one cannot determine the complete
transformation rules of various quantities, in particular, the
shear tensor cab, and it is impossible to find the constraint
equations on these memory effects, which involve terms
quadratic in cab and Nab. For the vector and scalar modes,
there are also (leading) displacement memories. Like the
tensor displacement memory effect, the (leading) vector
displacement memory can also be associated with the
subleading transformation generated by Za. Both the elec-
tric-type and magnetic-type vector memory effects take place
in a generic physical process. The subleading displacement
memories could also be defined using the integrated geodesic
deviation equations. The vector subleading memories can be
decomposed into the electric and magnetic parts. Finally,
there seems to be no relation between the scalarmemories and
the asymptotic symmetries. One may seek for the dual
formalism similar to those described in Refs. [61,119,120],
which is beyond the scope of the current work.
There are several questions that would be answered in

the future. For example, χμðmÞ has been defined at the

leading orders in r̃, so whether it has higher order
corrections like ξμBMS in GR [27] is such a question.
Once one obtains the complete expression for χμðmÞ, one
can work out the Lie algebra consistently. This would help
determine the Noether charges and flux-balance laws, using
Hamiltonian formalism [121]. Also, is there any soft
theorem related to Za, and what are the conserved quan-
tities associated with BMS, and the flux-balance laws? All
of these questions may involve the complete nonlinear
analysis, which will be done in the future.
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