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Nonlinear differential equations are derived that describe the time evolution of the test particle
coordinates during finite motions in the gravitational field of oscillating dark matter. It is shown that in the
weak field approximation, the radial oscillations of a test particle and oscillations in orbital motion are
described by the Hill equation and the nonhomogeneous Hill equation, respectively. In the case of scalar
dark matter with a logarithmic self-interaction, these equations are integrated numerically, and the solutions
are compared with the corresponding solutions of the original nonlinear system to identify possible
resonance effects.
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I. INTRODUCTION

The nature of dark matter (DM) remains one of the main
mysteries of modern cosmology. Currently, the most
realistic hypothesis seems to be that DM consists of
ultralight bosons, e.g., axions [1], with a mass in the
10−23–10−21 eV range. New arguments in favor of this
hypothesis are provided by very recent astronomical
observations [2]. Coherent states of such ultralight particles
are described by a classical scalar field, whose wave
properties solve serious problems of the standard ΛCDM
model on galactic and subgalactic scales [3–12]. In the
early Universe, the primordial fluctuations of this field are
stretched by inflation to form an almost homogeneous
scalar background. This background oscillates near the
minimum of the effective potential with a fundamental
frequency ω depending on both the mass m of the scalar
field and the shape of the potential. However, these
oscillations are unstable [13]. If the bosons of DM are
not self-interacting, the corresponding free scalar field
behaves on average as a dustlike matter [3]. In this case,
due to Jeans instability, the scalar background breaks into
diffuse lumps, which begin to collapse under the influence
of self-gravity. On a scale comparable to the Jeans length,
the collapse of a single lump stops due to the action of the
so-called quantum pressure which appears from the grow-
ing gradient of the energy density of the scalar field. From
the quantum mechanical point of view, this pressure is a
manifestation of the Heisenberg uncertainty principle. The
result of the established equilibrium is a “fuzzy” DM halo,
in which the scalar field oscillates with the fundamental

frequency ω ∼m [9]. In addition, as numerical simulations
show, the central region of the formed halo, the core,
undergoes quasinormal low-frequency oscillations, which
are superimposed on the fundamental oscillations leading
to their modulation [14,15].
If DM particles are self-interacting, another scenario for

the formation of the localized DM configurations is
realized. Self-interaction is described by additional
higher-order terms in the effective potential. These terms
can be either regular or singular. In the first case, they have
a significant effect on the dynamics of the scalar field only
at large oscillation amplitudes. In the second case, this is
not necessary. An example of a singular potential will be
considered in Sec. III of our paper. In both cases, the scalar
field oscillations turn out to be unstable due to parametric
resonance between the oscillating background and pertur-
bations. As a result, the homogeneous scalar background
breaks up into an ensemble of oscillating lumps, oscillons
(pulsons). This mechanism works on both cosmological
and astrophysical scales [16–23] (see Ref. [24] for a
review). Under the action of gravity, after the completion
of some relaxation processes, oscillons turn into long-lived
self-gravitating oscillating objects with the size ∼m−1,
oscillatons (gravipulsons) [25–27], separated from the
Hubble flow. This means that each individual oscillaton
is the result of an established dynamic equilibrium
between self-interaction, self-gravity, and quantum pres-
sure and therefore must be described by the self-consistent
system of Einstein-Klein-Gordon equations (see Ref. [28]
for a recent review). Note that, within this system of
equations, oscillatons can also arise from rather arbitrary
localized initial conditions due to the gravitational cooling
process [4,5,29].*eugen.masloff2014@yandex.ru
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In any case, all the DM oscillations mentioned above lead
to the corresponding oscillations of the gravitational field,
which can be detected by their effect on the motion of
photons and test particles. For example, as shown in [30], the
gravitational time delay for a photon passing through an
oscillating halo should cause small periodic fluctuations in
the observed timing array of a pulsar located inside the halo,
which can be detected in future pulsar timing experiments.
In paper [31], it was proposed to use the laser interferometers
for detecting the “gravitational waves” appearing due to the
motion of the Earth through oscillating DM. The secular
variations of the orbital period in the system of binary
pulsars were discussed in [32,33] as a probe for ultralight
oscillating DM. Also, in this context, in Refs. [34,35] the
motion of test bodies in spherically symmetric time-periodic
spacetimes induced by a nonself-interacting DM was
numerically investigated. In paper [35] it was shown, in
particular, that the orbital resonances may occur in the
motion of stars in oscillating halos. In addition, in [35] it was
demonstrated that spectroscopic emission lines from stars in
such halos exhibit characteristic, periodic modulations
due to variations in the gravitational frequency shift.
These modulations were found analytically in Ref. [36].
Recently, in the above context, we studied the infinite

motions of photons and test particles in the oscillating DM
[37,38]. Namely, we considered deflection of their trajec-
tories when passing through an oscillating spherically
symmetric lump of DM. Using the geodesic method and
the perturbative approach, we have found and calculated
analytically periodic variations in the deflection angle of
both light rays and trajectories of the test particles. In the
present paper, we apply the same approach to study the
finite motions of the test particles in oscillating DM,
focusing on radial and orbital trajectories.
Our paper is organized as follows. In Sec. II, on the basis

of geodesic equations, we derive exact equations that
describe the time dependence of the radial and angular
coordinates of a test particle making a finite motion inside
an oscillating self-gravitating lump of DM. We show that in
the weak field approximation these equations reduce to the
homogeneous and nonhomogeneous Hill equations for
radial and perturbed circular motions, respectively.
In Sec. III we use these equations to describe the radial
and perturbed circular motions in the case when the DM
lump is formed by a real scalar field with a logarithmic self-
interaction. Applying numerical integration, we compare
solutions to Hill equations with solutions to exact equations
to explore possible resonance effects. Discussion and
concluding remarks can be found in Sec. IV.

II. FINITE TRAJECTORIES OF TEST PARTICLES
IN TIME-PERIODIC SPHERICALLY

SYMMETRIC SPACETIMES

The motion of a particle in a gravitational field obeys the
geodesic equation

d2xμ

ds2
þ Γμ

αβ

dxα

ds
dxβ

ds
¼ 0; ð1Þ

where ds is the proper time interval. Consider a spherically
symmetric oscillating localized lump of DM. The gravita-
tional field inside the lump is described by the metric

ds2 ¼ Bðt; rÞdt2 − Aðt; rÞdr2 − r2ðdϑ2 þ sin2ϑdφ2Þ; ð2Þ

where Aðt; rÞ and Bðt; rÞ are time-periodic and tend to unity
as r → ∞. For the trajectories lying in the plane ϑ ¼ π=2,
the geodesic equation reduces to the system

d
ds

ln
�
B
dt
ds

�
¼ Ḃ

2B
dt
ds

−
Ȧ
2B

�
dr
ds

�
2
�
dt
ds

�
−1
; ð3Þ

d2r
ds2

þ B0

2A

�
dt
ds

�
2

þ Ȧ
A
dt
ds

dr
ds

þ A0

2A

�
dr
ds

�
2

¼ r
A

�
dφ
ds

�
2

; ð4Þ

d2φ
ds2

þ 2

r
dr
ds

dφ
ds

¼ 0; ð5Þ

where ð̇Þ ¼ ∂=∂t, ð0Þ ¼ ∂=∂r. From Eqs. (5) and (2) it
follows that

dφ
ds

¼ J
r2

; ð6Þ

B

�
dt
ds

�
2

− A

�
dr
ds

�
2

¼ 1þ J2

r2
; ð7Þ

where J ¼ const is the particle’s angular momentum.
Now suppose for a moment that the trajectory of the

particle is known. Passing from variable s to variable t and
denoting

YðtÞ ¼ Bðt; rðtÞÞðds=dtÞ−1; ð8Þ

from Eq. (7) we get

�
dr
dt

�
2

¼ B
A

�
1 −

B
Y2

�
1þ J2

r2

��
: ð9Þ

From Eq. (3) with (9), the equation for Y2 follows:

dY2

dt
¼

�
Ḃ
B
−
Ȧ
A

�
Y2 þ ȦB

A

�
1þ J2

r2

�
: ð10Þ

Given that d=ds ¼ ðY=BÞd=dt and using Eqs. (9) and (10),
we find

d2r
ds2

¼ Y2

B2

�
d2r
dt2

−
Ḃ
2B

dr
dt

−
B0

B

�
dr
dt

�
2

−
Ȧ
2B

�
dr
dt

�
3
�
: ð11Þ
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Substituting (11) into Eq. (4) and taking into account (6),
(8), and (9), we finally obtain

d2r
dt2

þ
�
Ȧ
A
−

Ḃ
2B

�
dr
dt

þ
�
γðrÞ
r

þ A0

2A
−
B0

B

��
dr
dt

�
2

−
Ȧ
2B

�
dr
dt

�
3

¼ γðrÞ
r

B
A
−

B0

2A
; ð12Þ

�
dφ
dt

�
2

¼ γðrÞ
r2

�
B − A

�
dr
dt

�
2
�
; ð13Þ

where

γðrÞ ¼ J2=r2

1þ J2=r2
; 0 ≤ γ < 1: ð14Þ

For Eqs. (12) and (13) we choose the initial conditions

rð0Þ ¼ r0; ðdr=dtÞt¼0 ¼ 0; φð0Þ ¼ 0: ð15Þ

The Eqs. (12)–(15) completely determine the time depend-
ence of the coordinates of the moving particle. For radial
motions we set γ ¼ 0. For orbital motions, the requirement
for the absence of a constant component on the right-hand
side of Eq. (12) leads to the condition

γðr0Þ ¼
r0
2

B0ðt; r0Þ=Aðt; r0Þ
Bðt; r0Þ=Aðt; r0Þ

; ð16Þ

where the bar means the average over the period of
oscillations of the gravitational field. This condition gives
the relation between r0 and the angular momentum J at
which, in the case of a static mass distribution, the particle
moves along a circular orbit of radius r0. Of course, this is
only possible if the right-hand side of Eq. (16) is positive
and less than one. In this case, for a given J, the value
of r0 is found by solving Eq. (16). Alternatively, one can
choose r0 and calculate γ0 ¼ γðr0Þ using Eq. (16). This
gives J2 ¼ r20γ0=ð1 − γ0Þ for the squared momentum, and
hence γðrÞ involved in Eqs. (12)–(14) can be written as

γðrÞ ¼
�
1þ 1 − γ0

γ0

�
r
r0

�
2
�
−1
: ð17Þ

A. Weak field approximation

Now let us assume that the oscillating lump of DM has a
low density, so that its gravitational field is weak every-
where on the particle trajectory. It follows that

A ¼ 1 − 2ψ þOðϰ2Þ; B ¼ 1þ 2χ þOðϰ2Þ; ð18Þ

where ψðt; rÞ and χðt; rÞ are small time-periodic functions
of order ϰ, ϰ ≪ 1 being a dimensionless small parameter
proportional to the gravitational constant G. With finite

motions of particles in such a gravitational field, the particle
velocities are small. Taking this into account and using
(18), from Eq. (12) we obtain

d2r
dt2

− ð2ψ̇ðt; rÞ þ χ̇ðt; rÞÞ dr
dt

¼ γðrÞ
r

− χ0ðt; rÞ: ð19Þ

When deriving this equation, we neglected the terms
of the orders ϰ2=Rg, ðϰ2=TgÞdr=dt, ðϰ=RgÞðdr=dtÞ2, and
ðϰ=TgÞðdr=dtÞ3, where Rg is the characteristic radius of the
gravitating lump, Tg is the oscillation period of the
gravitational field. In the same approximation, Eq. (13)
becomes �

dφ
dt

�
2

¼ γðrÞ
r2

½1þ 2χðt; rÞ�; ð20Þ

and condition (16) takes the form

γðr0Þ ¼ r0χ̄0ðr0Þ; ð21Þ

where we denote χ̄ðr0Þ ¼ χðt; r0Þ.
Note that Eq. (19) is generally nonlinear. Nevertheless,

there are two types of finite motions for which one can
restrict oneself to a linear analysis. Consider, at first, small
radial oscillations near the center. Setting γ ¼ 0, we expand
ψðt; rÞ and χðt; rÞ at r ¼ 0, taking into account that
ψ 0ðt; 0Þ ¼ χ0ðt; 0Þ ¼ 0 due to the assumed smoothness of
the gravitational field. Neglecting the terms of the orders
ðϰ=TgÞðr=RgÞ2dr=dt and ϰr2=R3

g, we obtain

d2r
dt2

− ð2ψ̇ðt; 0Þ þ χ̇ðt; 0ÞÞ dr
dt

þ χ00ðt; 0Þr ¼ 0: ð22Þ

Substitution

rðtÞ ¼ uðtÞ exp
�
ψðt; 0Þ þ 1

2
χðt; 0Þ

�
ð23Þ

transforms Eq. (22) into the equation

d2u
dt2

þ
�
ψ̈ðt; 0Þ þ 1

2
χ̈ðt; 0Þ þ χ00ðt; 0Þ

�
u ¼ 0; ð24Þ

where in the brackets the terms of the order ϰ2=T2
g were

neglected. The remaining terms are Tg-periodic. Equations
of this type are usually called Hill equations. They have
numerous applications in physics and technology (see, e.g.,
[39]). The properties of solutions to the Hill equations
depend significantly on the parameters involved in the
equation. In the parameter space, there are regions in which
solutions grow exponentially with time (resonant zones)
and regions in which solutions are bounded (nonresonant
zones). The Floquet theory of the Hill equation is pre-
sented, e.g., in the book [40].
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Now consider the motion along a trajectory close to
circular. In this case we set

rðtÞ ¼ r0ð1þ ηðtÞÞ; ð25Þ

where ηðtÞ is small. Making expansions in Eq. (19) at
r ¼ r0 and taking into account (21), we obtain

d2η
dt2

− ð2ψ̇ðt; r0Þ þ χ̇ðt; r0ÞÞ
dη
dt

þ
�
χ00ðt; r0Þ þ

3γðr0Þ
r20

�
η ¼ −

1

r0
χ̃0ðt; r0Þ; ð26Þ

where χ̃ðt; r0Þ ¼ χðt; r0Þ − χ̄ðr0Þ and the terms of the
orders ðr0=RgÞðϰη=TgÞdη=dt, ϰ2η=R2

g, ϰη2=ðr0RgÞ, and
r0ϰη2=R3

g were neglected. Finally, substitution

ηðtÞ ¼ uðtÞ exp
�
ψðt; r0Þ þ

1

2
χðt; r0Þ

�
ð27Þ

results in the nonhomogeneous Hill equation

d2u
dt2

þ
�
ψ̈ðt; r0Þ þ

1

2
χ̈ðt; r0Þ þ χ00ðt; r0Þ þ

3γðr0Þ
r20

�
u

¼ −
1

r0
χ̃0ðt; r0Þ; ð28Þ

where we neglected the terms of the orders ϰ2=T2
g and

ϰ2=ðr0RgÞ in the brackets and on the right-hand side,
respectively.
The nonhomogeneous Hill equation has also been

studied in the literature (see, e.g., [41] and references
therein), but not in as much detail as its homogeneous
counterpart. For our analysis, it is only important that the
periodic forcing term on the right-hand side of Eq. (28)
does not affect the location of the boundaries of the
resonant zones [42,43].

III. MOTIONS OF THE TEST PARTICLE
IN A TIME-PERIODIC SPHERICALLY

SYMMETRIC SCALAR FIELD

As examples, we consider radial and orbital motions of
the test particle in the self-gravitating real scalar field with
the potential

UðϕÞ ¼ m2

2
ϕ2

�
1 − ln

ϕ2

σ2

�
; ð29Þ

where σ is the characteristic magnitude of the field,m is the
mass (in units ℏ ¼ c ¼ 1). This potential is singular: its
second derivative tends to infinity as ϕ passes through zero.
Originally, such potentials were considered in quantum
field theory in connection with dilatation covariance of

relativistic field equations [44]. Later in Refs. [45,46] it was
shown that the requirements of separability of noninteract-
ing quantum subsystems and the validity of Planck’s
relation E ¼ ℏω for stationary states uniquely determine
the logarithmic potential (29) (with a complex wave
function) in the Schrödinger-Pauli and Klein-Gordon-type
equations. Also, when taking into account quantum cor-
rections, such potentials naturally appear in the inflationary
cosmology [47–49], as well as in some supersymmetric
extensions of the Standard Model (flat direction potentials
in the gravity mediated supersymmetric breaking scenario)
[50,51]. It is remarkable that in the Minkowski spacetime
the potential (29) admits a whole family of exact solutions
of the Klein-Gordon equation in the form ϕ ¼ aðtÞwðrÞ,
describing multidimensional localized time-periodic con-
figurations of a real scalar field, the pulsons (oscillons)
[52,53]. Moreover, it turned out that potential (29) is the
only one that allows such solutions to exist [54]. It was also
shown that pulsons can arise due to the fragmentation of a
homogeneous scalar background oscillating around the
local minimum of the potential (29) [17]. Stability analysis
of the real pulsons have shown that, despite the absence of a
global charge, there are values of oscillation amplitudes at
which they are long-lived objects that retain their perio-
dicity for a long time [17,55,56].
The above mentioned unique properties of the logarith-

mic potential motivate us to use this field model to test our
approach. To do this, we need to take into account the
effects of self-gravity. The corresponding solution of the
Einstein–Klein–Gordon system was found in Ref. [27] by
the Krylov-Bogoliubov method. This solution describes a
self-gravitating field lump of an almost Gaussian shape that
pulsates in time. In the weak field approximation, the
corresponding metric functions Aðt; rÞ and Bðt; rÞ can be
written as (18), where

ψðt; rÞ ¼ ϰ

2

�
a2ρ2 þ Vmax

�
1 −

ffiffiffi
π

p
erfρ
2ρ

eρ
2

��
e3−ρ

2

; ð30Þ

χðt; rÞ ¼ −
ϰ

2

�
a2 ln a2 þ Vmax

�
1þ

ffiffiffi
π

p
erfρ
2ρ

eρ
2

��
e3−ρ

2

;

ð31Þ

τ ¼ mt, ρ ¼ mr, ϰ ¼ 4πGσ2 ≪ 1 (G is the gravitational
constant). The function aðθðτÞÞ oscillates in the range
−amax ≤ aðθÞ ≤ amax ð0 < amax < 1Þ in the local mini-
mum of the potential VðaÞ,

aθθ ¼ −dV=da; VðaÞ ¼ ða2=2Þð1 − ln a2Þ; ð32Þ

where Vmax ¼ VðamaxÞ, dθ=dτ ¼ 1þ ϰΩþOðϰ2Þ, and
the constant ϰΩ is the frequency correction due to
gravitational effects (see Ref. [27] for details). The period
(in θ) of these oscillations can be approximated by
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T ≈ 2πð1 − ln a2maxÞ−1=2 ða2max ≪ 1Þ; ð33Þ

T ≈ 2
ffiffiffi
2

p
ln ð1 − a2maxÞ−1 ð1 − a2max ≪ 1Þ: ð34Þ

The energy density of the field lump we are considering
is concentrated on the characteristic scale r ∼ Rg ¼ m−1

and decays as

T0
0 ∼m2σ2a2ðθÞρ2e3−ρ2 ðρ ¼ r=Rg ≫ 1Þ: ð35Þ

As seen from Eqs. (30) and (31), at large distances from
the lump the gravitational field turns into the static
Schwarzschild field, in accordance with the Birkhoff theo-
rem (see, e.g., [57]). However, inside the lump the gravita-
tional field oscillates with the period Tg¼½2mð1þϰΩÞ�−1T
(with respect to t). Assuming no direct interaction with the
scalar field, let us consider the radial and orbital motions of a
test particle in this gravitational field.

A. Radial motion

As has been shown, small radial oscillations of a test
particle are generally described by Eqs. (23) and (24).
Considering Eq. (24), we can put d=dt ≈md=dθ with the
accepted accuracy, and d=dr ¼ md=dρ. Using Eqs. (30)–
(32) we obtain

ρ ¼ v exp

�
−
ϰ

4
e3ða2 ln a2 þ 2VmaxÞ

�
; ð36Þ

d2v
dθ2

þ ϰe3
�
3

2
a2 − a2 ln a2

�
1

2
þ ln a2

�

− Vmax

�
5

3
þ ln a2

��
v ¼ 0: ð37Þ

Equation (37) is the singular Hill equation because
the expression in the square brackets is periodic in θ
and tends to infinity as aðθÞ passes through zero. For this
equation, Fig. 1 shows the parametric resonance zones on
the ϰ − a2max plane.
We solved Eqs. (32), (36), and (37) numerically in both

resonant and nonresonant zones using initial conditions

að0Þ¼amax; aθð0Þ¼0; ρð0Þ¼ρ0; ρθð0Þ¼0; ð38Þ

vð0Þ ¼ ρ0 exp

�
ϰ

4
e3a2max

�
; vθð0Þ ¼ 0: ð39Þ

For comparison, using the same initial conditions (38), we
numerically solved the exact equation (12) with γ ¼ 0 and
metric functions Aðt; rÞ and Bðt; rÞ given by formulas (18),
(30), and (31), The results are shown in Fig. 2.

B. Orbital motion

In this case, the particle trajectory, close to circular, is
generally described by Eqs. (25), (27), (28), (20), and (21).
Using Eqs. (30)–(32), with the accepted accuracy, we
obtain

η ¼ u expSða; ρ0Þ; ð40Þ

d2u
dθ2

þ
�
γ0
ρ20

þ ϰ

2
½2Vmaxð1 − ln a2Þ þ ð3 − 2ρ20Þa2

− a2 ln a2ð1þ 2 ln a2Þ þ 4a2 ln a2�e3−ρ20
�
u

¼ −ϰ ga2 ln a2e3−ρ
2
0 ; ð41Þ

where

Sða;ρÞ ¼ ϰ

4
e3−ρ

2

×

�
2a2ρ2 − a2 lna2 þVmax

�
1−

3
ffiffiffi
π

p
erfρ

2ρ
eρ

2

��
;

ð42Þ

γ0 ¼ ϰρ20e
3−ρ2

0

×
�
a2 ln a2 þ Vmax

�
1 −

1

2ρ20

�
1 −

ffiffiffi
π

p
erfρ0
2ρ0

eρ
2
0

���
;

ð43Þ

and ga2 ln a2 ¼ a2 ln a2 − a2 ln a2. Eq. (41) is nonhomo-
geneous singular Hill equation. The resonance zones of this
equation are depicted in Fig. 3 on the ϰ − a2max plane with
fixed ρ0. We solved Eqs. (32), (40), and (41) numerically
using the initial conditions

að0Þ¼ amax; aθð0Þ¼ 0; ηð0Þ¼ 0; ηθð0Þ¼ 0; ð44Þ

uð0Þ ¼ 0; uθð0Þ ¼ 0: ð45Þ

FIG. 1. Resonance zones and Floquet exponent μ for Eq. (37).
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Further, assuming that γðrÞ, Aðt; rÞ, and Bðt; rÞ are given by
formulas (17), (18), (30), and (31), we numerically solved
Eq. (12) to find η ¼ ðρ − ρ0Þ=ρ0 with the same initial
conditions (44). The results can be compared in Fig. 4. In
addition, we show the evolution of the orbital trajectory
obtained by integrating Eq. (13).

IV. DISCUSSION

Thus, based on the geodesic equation, we have derived
the nonlinear system determining the time dependence of
the test particle coordinates in finite motions in the
oscillating spherically symmetric spacetime. In the weak
field approximation we have reduced the nonlinear equa-
tion (12) for the radial coordinate to linear equations,
namely, to the Hill equation (24) for the radial oscillations
and the nonhomogeneous Hill equation (28) for the

oscillations near circular orbit, respectively. Using these
equations we studied resonance effects in radial and orbital
motions of test particles inside oscillating spherically
symmetric field lump in the scalar model with the loga-
rithmic self-interaction (29). Equations (24) and (28) then
take the form (37) and (41), respectively.
The resonant solutions of the Hill equation at large times

θ have the asymptotic form ∼FðθÞeμθ, where FðθÞ is a
T-periodic (T=2-periodic or T=2-antiperiodic) function,
and the Floquet exponent μ is positive in parametric
resonance zones (see, e.g., [40]). In the case of radial
motions, the resonance zones of Eq. (37) are depicted in
Fig. 1 on the ϰ − a2max plane. We solved numerically
Eq. (37) at different points of this plane and compared
the solutions with the corresponding solutions of Eq. (12)
in the domain of sufficiently small ϰ and ρ0 for which our
approximation is valid. We have found that, far from the
resonance zones, the solutions are in good agreement
with each other over a sufficiently large time interval
(see Fig. 2(a) as an example). It can be seen that the
oscillations are practically sinusoidal. As you approach
(with fixed ϰ) the resonance zone, these oscillations
become modulated, turning into beats [Fig. 2(b)]. In the
resonance zone, the beats acquire a different character
[Fig. 2(c)]. As can be seen from Fig. 2(d), the increase in
the oscillation amplitude in each beat is well approximated
by an exponent with a growth rate close to the Floquet
exponent in the corresponding solution of the Hill equation.
This suggests a resonant mechanism for the growth of
oscillations. When the oscillation amplitude reaches suffi-
ciently large values, the high-order nonlinear terms in
Eq. (12) come into play, periodically suppressing the
resonance and limiting the amplitude of the beats.

�

�

�

�

�

�

(a)

(b)

(d)

(c)

FIG. 2. Solutions of the equations (32), (36) and (37) far from the resonance zone (a), in the vicinity of the resonance zone (b), and at
the center of the resonance zone (c), ρ0 ¼ 0.1, ϰ ¼ 0.01, amax ¼ 0.9(a), 0.995(b), 0.997(c). The results are shown in dashed lines. The
corresponding solutions of the nonlinear Eq. (12) for the same parameters are shown in solid lines. Panel (d) depicts the comparison of
the initial fragment of (c) with the exponentially growing solution obtained in the linear approximation.

FIG. 3. Resonance zones and Floquet exponent μ for Eq. (41)
with ρ0 ¼ 0.3.
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Now consider the orbital motions. The resonance zones
of Eq. (41) are shown in Fig. 3 on the ϰ − a2max plane for a
fixed ρ0. Far from resonance zones, the solutions of
Eqs. (40) and (41) are in excellent agreement with solutions
of Eq. (12) (see Fig. 4(a), where the curves in the inset
practically coincide). Near the resonant zones, the solutions
gradually diverge with time [Fig. 4(b)]. Nevertheless, it is
clear that the solutions of Eqs. (40) and (41) here gives an
acceptable description of the beats that have appeared.

However, in the resonance zones, the solutions diverge
significantly [see Figs. 4(c) and 4(d)]. First, we have found
that the resonance zones of Eq. (12) are located within the
resonance zones of Eq. (41), but they are much narrower.
Secondly, the growth rate of resonant solutions of Eq. (12)
is much less (more than three times at maximum) than the
Floquet exponent for the corresponding solutions of
Eq. (41). We believe that, as in the case of radial motions,
the high-order nonlinear terms in Eq. (12) tame the

η

θ

η

θ ρ

(a)

(b)

(c) (d)

FIG. 4. Solutions of the equations (32), (40), and (41) far from the resonance zone (a), in the vicinity of the resonance zone (b),
and at the center of the same zone (c). The results of integration are shown in dashed lines, ρ0 ¼ 0.3, ϰ ¼ 0.005,
amax ¼ 0.950ðaÞ; 0.985ðbÞ; 0.98625ðcÞ. The corresponding solutions of the nonlinear system (12), (13) are shown in solid lines.
Panel (d) presents the comparison of the initial fragment of (c) with the rapidly growing solution obtained in the linear approximation
[see Eqs. (40) and (41)]. The nearly circular particle orbits shown in the right insets of panels (a), (b), and (c) correspond to the
oscillation curves depicted in the left insets.
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resonance, which results in limiting the growth of oscil-
lations and appearance of the long-period beats [Fig. 4(c)].
As expected, the maximum values of the amplitude and
period of the beats were observed at the center of the
resonance zone of Eq. (12). In this regard, our results are
similar to those obtained in Ref. [35] for the case of orbital
motion of a test particle inside an oscillating star with
uniform density. The role of nonlinear terms was also
discussed in Ref. [58] in the study of parametric resonance
in Bose-Einstein condensates.
Summing up, we can conclude that in the absence of

resonance, the finite motions of a test particle are well
described in the linear approximation by the Hill equations.
In the resonance zones, the nonlinearities suppress the
resonance and limit the growth of the oscillation amplitude.
Here, the resonant effects manifest themselves only in a
change in the shape of the beats and must be described
within the framework of the original nonlinear system.
When applied to the motion of short-period stars near the

center of the Galaxy, where the density of dark matter is
presumably greatest, the resonance phenomena we are
discussing can manifest themselves in the form of charac-
teristic oscillations (with the specific beats) of the star’s
radial velocity and as slow variations of the orbital
eccentricity with a beating period. Because these effects
are small, very precise and long-term measurements of the
orbital parameters and radial velocity are required to

estimate the deviation of the star’s radial velocity from
that expected for stable orbital motion.
As concerns the central star cluster, however, so far this

deviation has been evaluated only for the most well-studied
short-period star S0-2 in the search for its binarity [59]. In
this research, the radial velocity variations from the S0-2
orbital model have been studied using data from several
dozen of radial velocity measurements but no significant
periodic signals have been detected at the current level of
measurement accuracy. The expected uncertainties with
Extremely Large Telescope will be lowered by one order of
magnitude or so, but as it was estimated in [35], only
reduction of this uncertainties by two orders of magnitude
can reveal fluctuations caused by the above mentioned
effects of axion DM instability.
We hope that upcoming long-term spectroscopic studies

of stars in the center of the Galaxy using new generation
telescopes will provide more accurate data and confirm the
ultra-light axion nature of dark matter or impose new
constraints on the models under consideration.
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