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Gravitational self-force theory is the primary way of modeling extreme-mass-ratio inspirals (EMRISs).
One difficulty that appears in second-order self-force calculations is the strong divergence at the worldline
of the small object, which causes both numerical and analytical issues. Previous work [Phys. Rev. D 95,
104056 (2017); Phys. Rev. D 103, 124016 (2021)] demonstrated that this could be alleviated within a class
of highly regular gauges and presented the metric perturbations in these gauges in a local coordinate form.
We build on this previous work by deriving expressions for the highly regular gauge metric perturbations in
both fully covariant form and as a generic coordinate expansion. With the metric perturbations in covariant
or generic coordinate form, they can easily be expressed in any convenient coordinate system. These results
can then be used as input into a puncture scheme in order to solve the field equations describing an EMRI.
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I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRIs) [1] will be a key
source of the gravitational waves that will be detected by
the Laser Interferometer Space Antenna (LISA), a future
space-based gravitational wave detector [2,3]. An EMRI
features an object of mass m ~ 1-10>M, slowly spiralling
into an object of mass M ~ 10°~10” M ,. The smaller object
is a compact object, such as a black hole or neutron star,
whereas the larger object is a supermassive black hole,
existing in the centre of most galaxies [4—6].

As the mass ratio, € := m/M ~ 107, is very small, the
inspiral occurs over a long timescale, with the smaller object
expected to complete €' ~ 103 intricate orbits before
plunging into the central black hole [7,8]. Due to the large
number of orbits occurring near to the supermassive black
hole, the gravitational waves emitted are expected to provide
an excellent picture of the geometry of the black hole in the
strong-gravity regime. This will allow highly accurate tests of
general relativity to be performed [8-11].

A. Gravitational self-force

The primary method of modeling EMRIs is through a
perturbative method known as gravitational self-force
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theory [12-16]. The self-force refers to the process by
which changes in an external field caused by an object’s
dynamics propagate back and affect the motion of the very
same object. This method expands the metric describing
the geometry of the full spacetime, g,,, around a known,
background metric, g,,, with perturbations, £,,, caused by
the presence of the small object. In an EMRI, the disparate
sizes of the small and large object lead to a natural per-
turbative parameter, the mass ratio between the two objects,
€ < 1. One can then write the full spacetime metric as the
sum of the background spacetime and these perturbations,

g/w :gﬂv+hﬂb’ (1)

where
h,ub = Z G"hﬁy [}’] (2)

In the case of an EMRI, the background metric describes
the geometry of the large black hole if it were isolated in
spacetime and is taken to be either the Schwarzschild [17]
or Kerr [18] metric.

At the leading order in the mass ratio, the small object’s
worldline, y, is a geodesic of the background spacetime,
9y~ The metric perturbations then alter the motion at higher
orders and exert a self-force on the body, moving it away
from a background geodesic. This can be written as

DZZ(I

W:€f7+€2fg+o(€3)v (3)
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which reduces to the geodesic equation when ¢ — 0. In
Eq. (3), z* are coordinates on the accelerated worldline, y, 7
is the proper time in the background metric, g,,, D/dz :=
utV,, is the covariant derivative along the worldline and is
compatible with g,,, u® :== dz*/dr is the four-velocity and
[ is the nth-order self-force. The self-force (or at least part
of it) causes the orbit to evolve at a rate of E/E ~e,
resulting in an inspiral over the radiation reaction time,
t,, ~E/E ~1/e [13]. Here, E is the orbital energy and is
one of three constants of motion that completely describe
the geodesic of a test particle in the background Kerr
spacetime; the other two are the azimuthal angular momen-
tum, L, and the Carter constant, Q [19].

One challenge is that we are required to go to second
order in the mass ratio in order to model the waveforms
accurately. This is a result of the requirement that for us to
extract information from the data gathered by LISA, the
phase of the waveform must be accurate to within a fraction
of 1 radian. A precise argument for the need for second
order was made by Hinderer and Flanagan [20]. The orbital
parameters, Jz = {E, L., Q}, slowly evolve over the radi-
ation reaction time, ¢, ~ 1/¢. This motives the introduction
of a “slow time,” 7 = et, so that Jz = J(7). The orbital
frequencies, Q4 = {Q,.Q,,Q,} in the case of Kerr, are
functions of the orbital parameters, Jz(7), and have
perturbative expansions,

0 1
Qu(Jp.€) = ' (J5) +6Q'(J5) + O().  (4)
where QE‘"ZI) are the nth order corrections to ng) due to the
conservative part of the self-force. The orbital frequencies
evolve with respect to the time, ¢, as

aQ,

= eF Un) + @FDUn) + 0. (9)

where Fi") is constructed from the nth-order dissipative
force. These can then be related to the orbital phases by

Pa = /QAdf, (6)
so that
m= (D H+0@). )

where the adiabatic term, 401(4()), is constructed from ng) and

F;l), and the first postadiabatic (1PA) term, q)gl), is

constructed from Qg) and F/(f). One can see this through
noting that an integration over ¢ introduces a factor of 1/¢
through dr = dt/didf = e~'di. Therefore, to calculate the

orbital phases with an error much less than order-¢°

requires the entirety of the first-order self-force and the
dissipative part of the second-order self-force.

It should be stressed that the conservative piece of the
first-order self-force and the dissipative piece of the second-
order self-force are on equal footing: even if one has the
entirety of the first-order self-force (both dissipative and
conservative parts), if one does not have the dissipative
piece of the second-order self-force then one cannot
correctly track the motion of the small object.

As to the current status of the self-force field, at first
order, full inspirals driven by the self-force can be com-
puted for generic orbits in the Schwarzschild spacetime for
a spinning small object [21-24]. One can calculate the full
first-order self-force for a nonspinning small object on any
generic bound orbit in Kerr [25]. Adiabatic inspirals in Kerr
have been performed for equatorial [26] and generic [27]
orbits with Ref. [28] performing an equatorial inspiral
using the entirety of the first-order self-force.

Second-order calculations are at a much more prelimi-
nary stage but important breakthroughs have been made in
recent years [29-31] with Ref. [32] presenting the first
postadiabatic waveforms for quasicircular orbits in the
Schwarzschild spacetime. Work has also been undertaken
on incorporating effects of the spin of the small object as
this has an impact at 1PA order on the gravitational-wave
phase [33-45].

B. Local form of the metric perturbations,
puncture scheme and infinite mode coupling

1. Metric perturbations and effective stress-energy tensor

To find the local form of the metric perturbations, one
uses the method of matched asymptotic expansions (for a
general introduction to matched asymptotic expansions,
see, e.g., Refs. [46,47], and for an introduction to their use
in self-force, see, e.g., Ref. [13]). When close to the small
object, the expansion from Egs. (1) and (2) breaks down as
the gravitational field from the small object dominates over
that of the background spacetime. One then introduces a
second expansion that focuses in on the small object and
then matches this with the external expansion at some
appropriate lengthscale. This is then combined with the
vacuum Einstein field equations to solve for the metric
perturbations, /.

The metric perturbation can be split into two fields [48],

h;w - h/l}u + hﬁw (8)
where h}fy and hﬁy are the regular field and singular field,
respectively. The regular and singular fields can be
expanded in an analogous manner to Eq. (2), as

S, =" ehi, 9)
n=1
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hS, =Y e"hs. (10)
n=1

The regular field has the form of a Taylor series centred
on the worldline of the small object and satisfies the
vacuum Einstein field equations,

5GM[hR1] =0, (11)
5GH[IR2] = —2GM[AR1, hR1], (12)

throughout the entire spacetime. When combined with the
background metric, it forms a smooth, vacuum effective
metric that determines the local geometry that the small
object “feels,”

g/,w = 9w + h;l}v (13)

Through second order, the trajectory of the small object
(assuming zero spin) is governed by the equation of
motion [49,50]

D>z 1
= 5@ ) (ga’ — )
x (25, = )ulur + O(e?), (14)

which can be written as a geodesic in the effective
spacetime, g,w, as

D*z+
F = 0(63), (15)

where all quantities with tildes are defined with respect
to g,,. This correspondence is known as the generalized
equivalence principle [50], which states that (ignoring
finite-size effects) a compact object immersed in an
external gravitational field will follow a geodesic in some
effective metric whose geometry is determined by its own
physical mass.

The remaining part of the metric perturbations, the
singular field, contains information about the small object’s
multipole structure [48]. Schematically, it has the form

S~ 16
s~ (16)
m2+Ma+Sa

where r is the proper spatial distance to y and M*/S* are the
mass/spin dipole terms, respectively. As in previous work,
we enforce that the mass dipole and any higher-order
corrections to it vanish. This ensures that y tracks the small
object’s center of mass [50-52].

In certain classes of gauges, the small object also has the
effective stress-energy of a point mass in the effective
spacetime [53,54].! Using this effective stress-energy
tensor, the field equations can be written in the form

5G*[eh! + e*h?] + 28°G*[h', h'] = 8xT* + O(€?),
(18)

where T* is the Detweiler stress-energy tensor,

4
™" = m/ ﬁ”ﬂ”wdi (19)
y V=i
and all quantities with tildes are defined with respect to
the effective metric. The existence of this stress-energy
tensor was first postulated by Detweiler [53] and explicitly
derived in Ref. [54] (hereafter Paper I). One can also write
the left-hand side of Eq. (18) in terms of effective quantities
as [53,54]

5G"[hS] = 8T + O(%), (20)

demonstrating that the system can be described as a linear
perturbation of an effective background.

It should be noted that the split into regular and singular
fields is not unique [55], but we choose the split to match
that of, e.g., Refs. [48-50,54], ensuring that the regular and
singular fields satisfy the properties listed above. That is,
the regular field is smooth on the worldline of the small
object, forms the effective metric, g,,, and satisfies the
generalized equivalence principle. In addition to the non-
uniqueness of the split, it should be emphasized that neither
hﬁ,, nor h,sw represent the true physical field; only their sum
h,, = h%, + Iy, does.

We stress that the results discussed in this section are all
derived from the principle of matched asymptotic expan-
sions. One does not start by assuming that the small object
is described by a point-particle stress-energy with some
effective equation of motion. Instead, one uses the match-
ing process at each order in € to rigorously derive these
properties from first principles.

2. Puncture scheme

To date, all second-order calculations have involved
the use of a puncture scheme [29,30,32]; see, e.g.,
Refs. [14,16,55,56] for technical details.” In this scheme,

one introduces a puncture field, hl, ~ h;,, that approx-

imates the singular field to some sufficient order in r away

"This has explicitly been shown in the highly regular gauge
and (using a specific distributional definition of the second-order
Einstein tensor) in the Lorenz gauge. While it has not been
shown, it is likely to hold true in other gauges as well; see the
discussion in Sec. V E of Ref. [54].

The first implementations of the puncture scheme were
performed at first order in Refs. [57-59] although Ref. [60]
originally suggested its used at second order.
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from the worldline, and goes to zero beyond that. From this,
one can define a residual field,

R . P
hyy = hyy — hyy,

(21)

so that hﬁ ~ h/}},, near y. These fields are then analytically
extended down to the worldline, and one solves for the
residual field, hlﬁ, with the puncture field as the source,
instead of directly for the physical field, 4,,.

We wish to be able to replace h}fv with hlﬁ in the equation
of motion (14). This is possible if hny and its first
derivatives are identical to h},. To ensure this, we impose

the conditions

lim(h%, — h$,) =0, (22)
X—=Z
lim(h},, - hS,,) =0, (23)
X—=Z

where 7 is a point on the worldline. Explicitly, to calculate
the second-order self-force, we need to go to order 7 in our
second-order punctures so that our residual field is once
differentiable.

Substituting Eq. (21) into the field equations and
expanding the residual and puncture fields order-by-order,
as in Eq. (2),

" =" h ™", (24)
n=l1

we get

8GR = =G [hPY], 1> 0, (25)

S5G" [hR?] = —5G*[h"?] — *G*[h', k'], r>0. (26)
These equations can be promoted to the entire domain,
including r = 0, provided that the puncture field is known
to a sufficiently high order in r; see the discussion after
Eq. (13) of Paper I. Combining the field equations with the
equation of motion (14), one can solve the coupled system
of equations and determine how the small object travels in
spacetime.

3. The problem of infinite mode coupling

When implementing the puncture scheme at second
order, one encounters the problem of infinite mode cou-
pling [61]. To take advantage of the symmetries of
the spacetime, one decomposes the metric perturbations
into a suitable basis of harmonics.” For example, in
Schwarzschild, one could choose Barack—Lousto—Sago

*Note that the issue described here cannot be avoided by
performing a full 4D calculation. Instead of having to go to very
high mode numbers in order to obtain convergence of the mode-
sum, one would have to perform a very delicate numerical
calculation between two terms that diverge as 1/r%.

tensor spherical harmonics [62,63], so that the metric
perturbations can be decomposed as

by = Zh?fm(tBL’ reL) Y} (0. ). (27)

itm

With the modes written as such, to calculate a single mode
of 8°G,,[h', h'] requires one to calculate the infinite sum of
products of first-order modes [61,64],

52Gifm [hl’hl] = Z fozfmlizfzmz [hz!]flm] ’htlzfzmz]’ (28)

1:1 £ym
iplymy

where D7, o hitimys Biserm,) 18 a certain differ-
ential operator [64]. From Eq. (16), we see that
hil ~m/r. This means that, generically, the second-

order Einstein tensor diverges as ~m?/r* at the world-
line of the small object as it has the structural form,
8*G*[h', '] ~ (0h')* + h'o*h! ~m?/r*. After decom-
posing into modes and integrating over two of the dimen-
sions, one finds that Eq. (28) acts as

m?

52Gl‘fm{hl,hl} N7 (29)
However, the modes of the first-order field are finite on the
worldline [65,660], meaning that Eq. (28) is attempting to
reconstruct a divergent function through summing up finite
modes. Thus to get convergence requires one to calculate
an arbitrarily large number of modes of the first-order fields
to calculate even one second-order mode.

A way to circumvent this problem was provided by
Miller et al. [61]. Instead of summing over modes, as in
Eq. (28), one expands the first-order field into regular and
singular pieces. After expanding the first-order field, the
second-order Einstein tensor in the source of the second-
order field equations has the form

52G’w[l’l1, /’11] — 52G”U[hR1, th] + 252G’w[l’1R1, hSl]
+ 882G 1S, r>0. (30)

One then replaces the regular and singular fields in
Eq. (30) with the residual and puncture fields. The
?Gip,, [WRY, W7 and 8°Gyy,, [W*', hP'] terms are suffi-
ciently well-behaved that one may compute the modes
directly from the modes of the first-order residual and
puncture fields. As described in Ref. [61], the problem is
entirely caused by the slow converge of the modes of
Gy, [W7', hP'] as this is the term that causes the
nonmode-decomposed second-order FEinstein tensor to
diverge as ~m?/r*. Instead of summing up the products
of the modes of hE}, Miller et al. [61] directly cal-
culate $*G*[h”', h”!] in four dimensions using the four
dimensional expression for hf,,l and then decompose this
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quantity into modes. Unfortunately, while this makes
the calculation of the modes of the source possible, it is
incredibly computationally expensive and takes up almost all
the code runtime when implemented (such as in Ref. [29]).
This is due to having to calculate the modes by numerically
integrating the complete four-dimensional expression on
a grid of rg;, and r values. This will not be efficiently
extendible when approaching problems involving more
complicated dynamics, such as generic orbits in Kerr.

C. Highly regular gauge

The highly regular gauge was introduced by Pound [50]
to ameliorate the strong divergences that occur near the
worldline of the small object when in a generic gauge. In
this gauge, the most singular piece of the second-order
perturbation now has the form ~m?r’ instead of the
~m?/r? behavior previously seen; see Refs. [50,54] for
a full discussion. One can divide the second-order singular
field into two pieces: a “singular times regular” piece,
RS} ~mhR}/r, and a “singular times singular” piece,
h5s ~m?r°. By simple order counting of m and A%}, we
see that, in the second-order Einstein field equations, /5 is
sourced by 8G*[hS!, hS!], as they both feature terms ~m?,

and that h3x is sourced by 8*G*[hR!, hS'] as both expres-
sions have terms of the form ~mhY!. Although the A5}
term appears more divergent, as discussed in Paper I,
its source, 6*°G*[hR!, hS'], is well defined as a distri-
bution. The singular times singular term causes the
most issues. Acting on the singular times singular piece
with the linearized Einstein operator, we see that
SG*[h3S] ~ m?/r*. Therefore, we know that the most
singular piece of the second-order Einstein tensor can only
act as badly 8>°G* [hS!, k3] ~ m?/r? instead of ~m?/r* as
in a generic gauge. This means that when decomposing into
modes, the individual modes of the second-order Einstein
tensor can behave, at worst, as 5°G,z,, [h', h'| ~ m* log |r|.
While this is still divergent, it is much weaker than in the
Lorenz gauge.

The highly regular gauge enforces that the local light
cone structure around y is preserved in the perturbed
spacetime. To do so, two gauge conditions are imposed
on the singular field. Firstly, the metric perturbations vanish
when contracted with k*, the null vector tangent to the
future light cone that emanates from the worldline:

hS, k= 0, (31)

Second, the perturbations are trace-free with respect to
Q, 5, the metric on surfaces of constant luminosity distance:

el ey QA8 =0, (32)

where an upper case Latin letter indicates a quantity defined
on those surfaces and eﬁ = oxH /69A is the basis vector,

FIG. 1. Geometric picture of the gauge conditions for the highly
regular gauge. The image features a light cone emanating from
the worldline, y. The null vector, &, is tangent to the light cone
along radially outgoing curves, and the basis vector, ¢, is tangent
to the light cone along spheres of constant luminosity distance,
S,. Based on Fig. 16 from Ref. [67].

where x* are coordinates in the full spacetime and ¢ are
coordinates on the surface of constant luminosity distance.
These gauge conditions ensure that the local background
light cone structure is preserved in the perturbed spacetime
and that the background luminosity distance is an affine
parameter on the null rays that generate the light cones.
An image showing the geometric construction is given
in Fig. 1.

When working with a puncture scheme, one can impose
different gauge conditions on the residual and puncture
fields; see the discussions in Sec. IVA of Ref. [68],
Sec. VIIA of Ref. [50] and Sec. VIA of Paper L
Therefore, to control the singularity structure, one can
impose the highly regular gauge conditions on the punc-
ture. Then, one can impose any convenient gauge con-
ditions on the residual field that simplify the left-hand side
of the field equations (25) and (26).

Reference [50] only provided the leading-order pieces of
the second-order metric perturbations in this gauge. Paper I
extended this to include all orders needed to perform a
numerical calculation of the self-force. These expressions
were provided in Fermi-Walker coordinates, a particular
coordinate system that is tethered to an accelerated world-
line, y, and is useful for analyzing the properties of fields
near to this worldline. However, in order to use the expres-
sions in a puncture scheme, one needs to write them in a
coordinate scheme specialized to the problem at hand, such
as Boyer-Lindquist coordinates (g, rgr, g1, Ppr) [69].
To avoid a potentially complicated coordinate transforma-
tion from Fermi-Walker coordinates to the new coordinate
system, one can convert the Fermi-Walker expressions into
covariant form. This can then be written in the chosen
coordinate system.

To do so, one can use the method given by Pound and
Miller [55] (hereafter Paper II). This method was developed
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in order to transform expressions for the singular field in
the Lorenz gauge into covariant form. These expressions,
after being written in an appropriate coordinate system and
decomposed into a suitable basis of modes, were used as
input into the two-timescale expansion [56] that has been
used in the only existing calculations of second-order
quantities [29,30,32].

The aim in Paper II was the same as the aim here: to
convert expressions for the singular field written in Fermi-
Walker coordinates into fully covariant expressions. This
covariant expression can then be used as input into the
previously mentioned puncture scheme.

D. Paper outline

We begin in Secs. II and III by recapping local
expansion methods using bitensors; tensorial functions
of two spacetime points; the construction of Fermi-
Walker coordinates, and the conversion from Fermi-
Walker coordinates to covariant form, as introduced by
Paper II. Readers familiar with these concepts should feel
free to skip directly to Sec. IV, where the covariant
punctures for the metric perturbations in the highly
regular gauge are derived. These are displayed in an
abridged form due to their length, but the full expressions
are provided in a Mathematica notebook in the
Supplemental Material [70].

Section V then re-expands the covariant expressions
from Sec. IV D into a generic coordinate expansion. The
method for reexpanding the various covariant quantities is
detailed in Sec. VA and, as before, readers familiar with
this method can skip directly to Sec. V B where the generic
coordinate expansions are presented. As with the covariant
expressions, the coordinate punctures are too lengthy to
include fully in this paper and are provided in the
Supplemental Material [70].

Finally, we sum up the findings of this paper in Sec. VI
and discuss potential future avenues for research.

E. Conventions and definitions

We use metric signature (—,+,+,+) and geometric
units with ¢ = G = 1. Indices using Greek letters run from
0 to 3 and with lowercase Latin letters run from 1 to 3.
Greek/Latin indices are raised and lowered from the
background metric, g,,, and the flat-space Euclidean
metric, J,;,, respectively.

A primed index on a tensor, A¥ | indicates the tensor is
evaluated at x’# := z¢(r), where z#(r) are coordinates on the
worldline, y. An unprimed index on a tensor, A*, is used for
when the tensor is evaluated away from the worldline at x*.
An overset bar on a tensorial index, A*, is used when a
tensor is evaluated at x*. This is a point on the worldline
which is connected to x* by an orthogonal geodesic.

A hat on a tensor, 7% % refers to the symmetric trace-
free (STF) part of the tensor with respect to the flat-space

metric, 8,,. The covariant derivative is given by V or a
semicolon and is compatible with the background metric,
9w~ The partial derivative is given by 0 or a comma.

We adopt notation from Ref. [71] for contractions of ut,
o and Ax* so that,

Toan =T Axgul Ax* Ax”, (33)

/ J / ! /
Ruﬂmf = Ra//}’y’z/;y’o-ﬂ o’ ututu”, (34)
for example. We use analogous notation for contractions of
tensors evaluated at x*, e.g.

: ol utut i’ (35)

The calculations in this paper make extensive use of
Wolfram Mathematica [72] and the tensor algebra package
xAct [73—78].

II. LOCAL EXPANSION METHODS

In this section, we recap the methods of performing
covariant and coordinate expansions of tensorial quantities
near the worldline. We also give an overview of the
construction of Fermi-Walker coordinates.

A. Covariant expansions using bitensors

In this section, we outline how one may construct local
covariant expansions of tensor fields. Our explanation of
the method follows that of Refs. [12,79,80]. To do this, we
introduce the concept of a bitensor: a tensor which is a
function of two spacetime points. One important bitensor
that we will make extensive use of is Synge’s world

function [12,79],
e 2
o(x,x') == </ ds) , (36)
2\ Jp

where f is the unique geodesic connecting x* and x*, s is
an affine parameter and ¢ = F1 for time/spacelike geo-
desics (not to be confused with the mass ratio €). This gives
half the geodesic distance squared between the points x*
and x*'. If the two points are connected by a null geodesic,
then o(x, x’) is identically zero. We will use 4 as a formal
order counting parameter to count powers of spatial
distance away from the worldline, y, so that ¢ ~ A2,

We denote derivatives of Synge’s world function as
o, = Vyo(x,x') = dy0(x,x'). Note also that we may take
derivatives of Synge’s world function at the unprimed
coordinates as well, giving o, := V,6(x,x') = 9,0(x,x’).
This can be generalized to higher and higher derivatives,
e.g.,o,y =V,Vyoore,, =V,V,c Theindices of o tell
us its tensorial structure at both x* and x*', that is, oy isa
rank-2 tensor at x* but a scalar at x*. Likewise, Oy 1S a
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covector at both x* and x* . This property demonstrates that
we can always commute primed and unprimed indices as
the existence of one does not affect the tensorial rank at the
other point. Derivatives of Synge’s world function also
satisfy the useful identity

g(lﬂo-aaﬁ = g(l//)"d(/aﬂl = 20()(, .X'/). (37)

By taking derivatives of Eq. (37) and then the limit as x*
goes to x*, one may derive local covariant expansions of
64 .. interms of quantities defined on the worldline. To
see an example, we start by introducing the standard
notation for the coincidence limit [79],

] =

gt )= lim Ag-a-(x, ). (38)

It immediately follows from Egs. (36) and (37) that

[6] = [Ua] = [6(1’} =0, (39)

as, if the length of # goes to 0, then the integral in Eq. (36)
vanishes. Taking primed derivatives of Eq. (37), we see

oy =0’ oy, (40)

which implies that
[Uﬂ/l/l] =9)v- (41)

This can be repeated to find higher and higher derivatives of
o(x,x") [80],

(o] = 0. (42)

W'p

[O-ﬂ’l/a’/i’] = %Rﬂl((l/ﬁ/)l/' (43)

Another object we will make use of is the parallel
propagator, g”/” (x,x") [12,79,80]. The parallel propagator
parallel transports a tensor from x* to x* along f. For
instance, the vector A¥(x) can be transported from/to
A¥ (x') via

A (x) = g (. X)) A (), (44)
A () = ¢y (¥ ) A4 (x), (45)
respectively. These expressions hold for covectors as well

and tensors with any number of indices with the inclusion
of an appropriate number of parallel propagators, e.g.

AP (x) = o d 5 g v AP Y (X). (46)

It also has the properties that when contracted with itself, it
returns the Kronecker delta,

gud' s =5, (47)
oy =3, (48)

and is symmetric in indices and arguments,
g (x.x) = ¢y (¥, x). (49)
When contracted with Synge’s world function, it gives
0, = —g“/”oﬂ/, (50)

oy =—0g"y0, (51)
and its derivative contracted with Synge’s world function
vanishes for all combinations of primed and unprimed

indices, e.g.

gﬂ/ﬂ;bay =0. (52)

As we did for Synge’s world function with Eq. (37), we can
calculate different covariant expansions by repeatedly
differentiating Eq. (52) and taking the coincidence limit.
For example [80],

9] = 8., (53)
[gﬂu’;a’] =0, (54)

1 ’
[gﬂl/;aﬂ] == ER” vadp - (55)

Combining the previous definitions, we can then express
an arbitrary tensor A¥,, evaluated at x, in terms of quantities
evaluated at x’ as

AR (x) = ¢ g, (A“WU/ () + 2AK oy (x) o™

+ EA@W’M,,/ (x’)aa’a/”’) + O3, (56)
where 1 is a formal order counting parameter to be set to
unity at the end of the calculation. The unknown coef-
ficients, AM¥ , , ....a,» can be found in the same manner as
before by repeated differentiation and taking of the coinci-
dence limit. As an example, we seek the covariant expan-
sion of 6. We first expand, as in Eq. (56) but without the
need for parallel propagators, as

/12
0 1 o 2 od B
0”’1/ - 0;4/3/ + AG;(/IE/&/G + 56"(/2/a/ﬂ/6 Gﬂ + 0(13) (57)

We know from Eq. (41), that ASB, = gy - Taking primed
derivatives and the coincidence limit gives that
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6(}>’(/ [6 /I/{X} - 07 (58)
@ _2
Gﬂ/l/a/ﬂ/ - [Gﬂ/bla//}/] = gRﬂl(a,ﬂ/ﬁ/’ (59)
meaning that
Ouy = Guv + 3 R wpyo” o’ + O (60)

3

This can be repeated for any required covariant quantity.
Ref. [81] provides a semirecursive method for calculating
expansions of Synge’s world function and the parallel
propagator, along with many other covariant quantities.

B. Fermi-Walker coordinates

To analyze the properties of the fields near the worldline
of the small object, we introduce Fermi-Walker coordi-
nates, (¢, x%), attached to the accelerated worldline, y. Our
description of Fermi-Walker coordinates summarizes that
of Refs. [12,82]. To begin, we introduce an orthonormal
tetrad, (u”, ), on y which is defined at the point z(z) so
that it satisfies

"
Dey,

e a,eut, (61)
Gt u’ = —1, (62)
Gueaut” =0, (63)
G €a€ly = Sup. (64)

where u* = dz//dr is the curve’s four-velocity, a* =
D?z¢/de? is the acceleration of y and &,, = diag(1,1,1)
is the three-dimensional flat space metric. If y is a geodesic
then a* vanishes. Equation (61) ensures that the tetrad basis
is Fermi-Walker transported along y, thus keeping it
orthogonal to the worldline as it travels along it. This
condition reduces to that of parallel transport when the
worldline is a geodesic. Equations (62)—(64) then ensure
that it is orthonormal at all points on y. The dual tetrad,
(€. e4), can be defined as satisfying

¢ =—u,, (65)

et =5%g,,eb. (66)

Equations (62)—(66) then imply that we can write the metric
and inverse metric as

G = —€bed + 5pelel, (67)
¢ = —u'u’ + 5eel, (68)

respectively.

With the orthonormal tetrad constructed, we may now
create a local coordinate system so that we may derive
the form of the metric near y. The full technical details
are not considered here (see Ref. [ [12], Chs. 9.3-9.5] for
more details) but we outline the geometric picture of the
coordinate construction. At a point X := z(¢) on y, where 7 is
the proper time, we generate a surface orthogonal to the
worldline by emitting spacelike geodesics from z() that are
orthogonal to y. We can then label a point on this surface
with coordinates x“ so that we have coordinates, (f,x“),
that describe points near to the worldline. The tetrad can be
written in terms of Synge’s world function as

K0 =1, (69)
x4 = —ed(x)o%(x, %), (70)
oa(x, X)u’(x) = 0. (71)

As stated previously, Synge’s world function gives half the
geodesic distance squared between two points (up to a
minus sign) meaning that a derivative gives the geodesic
distance. This quantity is then contracted with the spatial
Fermi-Walker tetrad leg, e%, to give the Fermi-Walker
spatial distance, x“. The third equation ensures that o is
always orthogonal to the worldline. Alternatively, we can
write x' = rn!, with r := \/8,,xx> = \/20(x, X) being the
proper distance (along a unique spacelike geodesic ortho-
gonal to y) from y to the point being considered and n'
being a unit vector giving the direction that the point lies
in respective to y. We note as well that, as with 6, r ~ 4
and so counts powers of distance from the worldline. A
geometric representation of the Fermi-Walker coordinate
construction is given in Fig. 2.

Using these coordinates, we can write the metric near y
in the form [50]

Gy = —1=2ra;n" —
3

r2<Rtitj + aiaj>nij

r ..
- g (4Rtitjak + Rtizj;k)nl]k + O(I’4), (723)
2r2 r
Jta = _TRtiajn 12 (4Rllajak + 3Rtlaj k) ik
+ O, (72b)
7'2 .. r3 ik 4
Gab = Oap — ?Raibjnu - gRaibj;k"” +0(r*), (72c)

where all Riemann terms are evaluated on y at time 7. When
evaluating Eq. (72) on y, we immediately see that the metric
in Fermi-Walker coordinates reduces to the Minkowski
metric. However, the Christoffel symbols at lowest order
are not all zero. Instead, I'},|, = a, and I'§j|, = a“; both
reduce to O if y is a geodesic.
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FIG. 2. Visualization of construction of Fermi-Walker coor-
dinates. At the point z(#), we generate an orthogonal surface and
label points on that surface with the coordinate x’. The quantity r
gives the proper distance to x’ and n’ picks out the unique
orthogonal geodesic that connects x’' and y. Based on Fig. 6
from Ref. [12].

As we are looking at a vacuum solution with R, =0,
we may use the identities from Appendix D 3 of Ref. [83]
to write

Ri, = Ealﬂ (738')
Riper = eabiBic’ (73b)
Rabcd = _eabiecdjgij (730)
and the derivatives as
2 o
Rtatb;c = gahc + geci(th) ’ (748')
(4 2 .
Rupera = €ap' (g Bica - §€dj<i5]c)>a (74b)

Rabcd;e = —€upi€cdj <glje + geek(lB])k> . (74C)

The quantities £ and B are the tidal moments felt by an
extended body moving on the world line, y, where two/
three indices refer to the quadrupole/octopole moments
respectively. They are symmetric and trace-free, with
respect to d,p, over all indices and only depend on the
proper time, ?.

III. CONVERTING FERMI-WALKER
COORDINATES TO COVARIANT FORM

In this section we review the method used in Paper II
to derive the covariant Lorenz gauge puncture. While the
full technical details containing derivations of the various
quantities are contained within that paper, we reproduce the
essential results that we will need to produce the highly
regular gauge puncture. The final results will be covariant
quantities expressed entirely in terms of parallel propaga-
tors, the four-velocity, Riemann tensors, and Synge’s world
function.

The idea behind the method from Paper II is to express
the field at a point x in terms of an arbitrary nearby point
on the worldline, x’ = z(’). This is done through an
intermediary point, X = z(7), which lies on y and is
separated from x’ by the difference in proper time

Ar=7—17. (75)

The intermediary point, X, is then connected to x by the
unique geodesic that intersects the worldline orthogonally.
A visual representation is provided in Fig. 3.

As Fermi-Walker coordinates are constructed geo-
metrically, see Sec. II B, there is a very straightforward
way to convert them into covariant form. We know from
Egs. (69)—(71), that there is a simple correspondence
between Fermi-Walker coordinates and covariant quantities.
As we saw in the text below Eq. (71), we can write the Fermi-
Walker radial distance in terms of covariant quantities with

ri= \/5abx"xb = \/P& 5000 = /26, (76)

where
&= o(x, %). (77)
gl
X <,—_,r‘/_'> T
AT
1,/
FIG. 3. Diagram illustrating the relationship between x, x’, and

X. The two points x’ and X are points on the worldline, y, separated
by Az while X and x are connected by the geodesic that intersects
y orthogonally. Based on Fig. 1 from Paper II.
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We have added an extra step in Eq. (76), where we have
rewritten the flat-space metric in terms of the projection
operator,

etef = PP = g 4y, (78)

which immediately follows from Eq. (68). The radial unit
vector is then given by

x4 —elo”
nt=—=—2— 79
r 26 (79)

Additionally, we must replace the Fermi-Walker basis
one-forms, as when written explicitly, the singular field has
the standard form

h5,dxtdx? = hydeds + 2h3,dedx + hS,dx“dx”.  (80)

These are given in Eqs. (82)—(84) from Paper II by

dt = pogzu®dx®, (81)
dx? = —ed(o%, + po®gulozul), (82)

where
U= —(aa/;uﬁu/} + oza%)7". (83)

Finally, the second-order singular field hgf features deriv-

atives of the first-order regular field, i3, . Using Eqgs. (122)

and (123) of Paper II, these can be written as

O} = hRL u® + O(a"), (84)
0,hR} = hgé‘aeg + O(a"), (85)
9,0l = &L e+ O(a), (86)
0,0, h = &L seaul + 0(a"), (87)

—eZeg + 2RF b u Gz h!

OuOphuy = 3515 Pi

R )0 P* (@l + Ola), (88)

where the bar, |, indicates a covariant derivative at x* and
any acceleration terms can be ignored as they would belong
to the third-order singular field. These expressions can be
derived by taking covariant derivatives of hg};, and calcu-

lating the Christoffel symbols constructed from the FW
background metric in Eq. (72).

After rewriting all quantities in terms of X, we then
reexpand them in powers of Az, the time difference given in
Eq. (75). For example,

(5]

i} da
hy(x,X) = Z A" y hy(x,x'), (89)

n=0

where % = u“V, and the expansion in distance of the
difference in proper time is given by

At = Ir + A*ra, + O(23), (90)
originally from Eqs. (97) and (98) in Paper II. Here, 4 is our
formal order-counting parameter from Sec. Il A, and we
have introduced the quantity,

ri=uo", (91)

i

and below we will also use the quantity,

p =1/ P”/,/a”/a’/. (92)

for notational simplicity.4 This means that the contraction
of Synge’s world function with itself can be written as

oo, =20(x.x)=p* -1 (93)

Here, r gives a notion of the difference in proper time while
p denotes a difference in proper distance.

We note that we expand all quantities [such as Egs. (89)
and (90)] through four total orders, but we only display
the leading two orders here to indicate the forms of the
expressions; the full expansions can be found in Paper II.
We may do our series expansions as a normal power series
as all the Fermi-Walker quantities (including one-forms)
are scalars at x. The expansion of Synge’s world function is
given by Eqgs. (99)—(101) of Paper II as

1d%c 1d%¢

_ do
o(x,x)=0o(x,x')+ 7Ar + 34 A+ 63 AT+ 02
1
=3 [A%p? + 2r?a,]+ O, (94)

and expansions of the Fermi-Walker basis one-forms are
then given by Eqgs. (103)—(106) of Paper II as

dt = —g% [Puy + Aray + asuy) + O(A)]dx",  (95)

dx® = g [0 + A(eP rugay) + O(A)]dx".  (96)

In the above expressions, we see that acceleration terms
have appeared. This is a result of taking the derivatives with
respect to 7. As stated, d/d7’ = u”V, so taking multiple
7/ derivatives results in us taking derivatives of u? along the
worldline, providing us with acceleration terms. These can

*We use r in agreement with Refs. [55,71,84] but we use p to
match Refs. [66,85] instead of s as in Paper II.
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then be differentiated along the worldline, giving us terms
like a¥, where a dot indicates a time derivative in the usual
manner.

When accounting for these terms, at first order, we split
up hf,f,} into an acceleration-independent and a linear-in-
acceleration piece:

RS = h3M + 3l + O(a?). (97)

Recall from Eqgs. (3) and (14) that each acceleration term
carries an €. This effectively makes hﬁi" a second-order
term and allows us to ignore any nonlinear acceleration
terms that appear in the expansion of h% Additionally, we
can ignore any explicit acceleration terms that appear in
both /3% and /3 as these would become third-order terms.

IV. CREATING THE COVARIANT PUNCTURE

With the methods from Paper II recapped, we can now
proceed to use them to generate our covariant puncture
in the highly regular gauge. We begin in Sec. IVA by
reviewing the form of the metric perturbations in the highly
regular gauge. Section IV B will provide the components of
the highly regular gauge singular field when evaluated at x
with each being written in covariant form. We then move to
Sec. IV C, which provides the components evaluated at x’
before combining this with one-form expansions to find the
final, fully covariant form in Sec. IV D.

A. Metric perturbations in the highly regular gauge

In this section, we review the main results from Paper 1.
All results in this section are from there but are reproduced
here for convenience.

We write the metric perturbations in the highly regular
gauge as

gﬂl/ = g/w + hﬁw (98)
where the singular field is given by
hS, = ehl) + e*hi; + O(e?). (99)
The second-order singular field is then split as

S2 _ 1SS | 1SR
huy = hyy + hyy,

(100)

where the “singular times singular” piece, hgf, features all

terms proportional to m? and the “singular times regular”
piece, hSR, features all terms with the form mhk}.

The full expressions for the first-order singular field in
the highly regular gauge are given in Eq. (56) of Paper I. We

reproduce the two leading orders here:

2m 11

h?rl = T + ?mrgabﬁ”b + (Q(rz), (1018.)

2m 2
H} === g mr(11ER" + 1086 eay’

+ 15E,.2,5¢) + O(r?), (101b)

2m 1
Bk =3, Bus + 3p) + g5 mr(154 = 1685 €5 ca

+ 580E¢ (uitp)e + 15E 48upn! + 840B e,/ 71y,
+ 1058 oy 4) + O(r?). (101c)

Moving to second order, /SR is given in full by Eq. (130) of

s "uy
Paper 1. The two leading orders are

mr?
2
—4n9,hR} + 8n0,nR}) + O(r),

m .
Bl = —— (2! + hgyn) (R ™

(102a)

BER = =22 (2! + K, =20 n® + 205 n, )

0
mr
- T <2I’lb [Q'hf[cllb]

—0,hR}] +4n, 0,k
_ nbc [20th

ab.,c

+AR ]

bc,a

—2n,%°0,hR) + O(r), (102b)

m
R = =2 Ay = AL+ 3

mr?

2
— 2k,

(4050 o)+ A a10) € = A )
(@) 3 e = An 0y )

+ O(r). (102c)

Finally, k3 is given by Eq. (131) of Paper I, which we
reproduce here in full as

1. 2
hSS = —4m? [rOEabn“b + r<§ Eabn“b{ll —6log (_m) }
.

2
+ 3gahcnahc>:| + O(r2)7

2, 2
1SS — _4m? [roé’bcnab” 4 r(§ Subnh{7 _3log <—m> }
-
1 2. 2
+ _gabcnbc - _Bbdeacdnbc 4-3 IOg _m
6 9 r
1, 2 1
to&n 19— 1210g () b g S8y gn, el
9 r 2

- ngcieadiand>:| + O(rz)’

(103a)

(103b)

044021-11



SAMUEL D. UPTON PHYS. REV. D 109, 044021 (2024)

1 2 1

: 5
hy, = —4m? [’”0 <B(ad€b)cdnc 3 Eap + —5c(anb)c ~5 Ecabapn — Bcledi(anb)Cd + 5 gcd”abaj)

2. 4. 2 1. 1 S 2
+ r<§£ab + §5c(a {4 3 log( m) } + _ng5aand + §l’lvd(a{3£b)cd - 4B|C|l€b)d,- |:4 -3 10g (Tm)] }

4 2 2 1 .
9Bcd €ij(a’lb) “A+s gcdnade{4 310g< T) } +§gcdinab6dl>:| +O(r?). (103c¢)

B. Perturbation components expanded about X

We begin by calculating the form of the components of the first-order singular field, hf;;, when expanded around x*. To
do so, we substitute the appropriate expressions from Sec. III into Eq. (101). The components of h 5 are then given by

V2 2m  11ma
hlsl] = RMO'MO' O(ﬂ’z)’ (104a)
We 3%
a 30-
htsal =~ n:;e_a ( j:(l - /1[2\/ER&6126\/5 - 2R(,_¥ﬁl_7126 - 3Rﬁ6ﬁ66&]) + O(’lz)’ (104b)
o
@/ (6\/26,0;
meg e a = _
ligh = 1o s < 7 P 4 2V2R; 5456205 — 16756 (R 505 + sﬂaa(aRﬁ)m.,ﬁD +O(22). (104c)

We have omitted the highest-order piece of hg}, due to its length, but it will be used to calculate the covariant punctures.
This can then be continued at second order for the singular fields h; (102) and h > (103). The singular times regular
piece is given by

SR____ ™M R1 0(1¢=jRl | pRI ~1/2jR1
hSR = whe P |1 [ (hEL + 4hE15) — °(165RE ] + hEL . + 425 hm)} +0O(), (105a)
htSR _ _me(a |:/1 (2]11317 + 2\/_hR1 =3/2 _ th hRIO'G ) +/10<5. _1_ o 2\/_0.3/2(th‘ + pR1 - hRI)
a 4(_7 ac0 a0 6|6 a aillé ac
+V260:h85 — G(hSL 4+ 2hEL - —4ozhdh)) | + O(2), (105b)

me“ei

SR _
" 165°/2

[ (3V2hELo05 — 8V26hE 05 — 16572 L 05) + 1°(4V26(hEL 05

+20Gh5] )~ 3V20,05hR!

B + 16572 (hE} 205 + o@ht), = o@hy), ))} + O(A). (105¢)

pula — °@"p)

Gé6lo

As in the expression for 431, we omit the highest-order piece of h;’l; due to length constraints. Finally, the singular times

D
singular piece is given by

2m?2°  2m?) V2m

hs = - isasls — V20R; 11 —6log| —= 0(2%), 106

it 5 + 35 |: iGiucl|le — ORG506 { Og</1\/(:7>}:| + ( ) ( a)

2

ss _ Mmeq _ V2m

hta - 185 1Q=~3/2 |:18\/_/1 Rﬁ&ﬁ& Oa /1<2\/_6|:2Rauo'u|a+Rﬂ6ﬂ6a+4Raaua{4 3lo g(ﬂ\/&)}]

2m

4R(lu(7u_3/2{29_121 g(;/\;_)}+9fRuﬂuﬂﬂ ( \/_{6R{16u6|6+2Ru0u0

x {37 —241log (%) }a]ﬂ +0O(2), (106b)
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2 a0
ss _ Mmeqe
ab 1852

+ 6\/551/2Rau5(55ﬁ) - 85'Rﬁ&ﬁ(a5ﬁ)) + /1(6Rﬁ6ﬁ6\5%70'[f - 48\/§Rau[m‘_’5/2

. 2
—_5l/2 [2\/5&7{;&5{7 —6log <@) }6(30/‘; + 6\/§U(aRﬁ)mzf;a]

{3/10(2Ruﬁu6ga/}5 + 8R;z ‘u52 - SRuaua%‘zUﬁ - 12\/553/2&2(&[1)5

G
_ V2m\  ; )
+ G|:{64 —48 log <_ﬂ\/§> }R(;E&(&Uﬁ) + 4<26(0—‘R[})ﬁ5ﬁ0 + Rﬁ&ﬁ&(ézg/_})):| —4\/563/2
; V2m .
X |3R;5559:3 + 3 17 —12]log| —= Ry +0O2). 106

C. Expansion about x’

Accounting for the introduction of acceleration terms and splitting up h;',l as in Eq. (97), we find that the components of

h3l4, when expanded around x'*, are given by
i — 2 o 4 11p?) + O 107
tt _% ? uaua(r + 4 )+ ( )’ ( a)
o 722
e = -2 [%H(lzpzmm (P + 410+ 20%) = 2R g (1 +29)) + 4R, 1 +3p2>a{f>] +O().  (107b)
Y
Sla megeg/ 6p*c 0y 2 2 2 2 2
hab = 3p5 P +A<Ruauaaa’0ﬂ’(3r2 +p ) - 2ﬂ [2(r+ 2p>o-(a’Rﬁ’)zma - (r +4rp + 2p )G(a’Rﬂ’)u(m]) + (9(/1 )
(107c)
The acceleration terms that appear as a result of our expansion of the first-order singular field are
mla,r*  mia,r?
hile = — p - 3 +0(22), (108a)
me’'r
it = =L (300 a0 = 2a,0) + W0 agh? = 20,0, + OR), (108b)
7
Sla meg éyr’ 0 2 : 2. 2
hab = —T {3& (3a00a/0ﬁ/ - Zp a(a/aﬁ/)) + /Ir(3a(,0a/0ﬁ/ - 2p Cl(a/Uﬁ/))} =+ O(ﬂ ) (1080)

As k3l is a second-order term, we can neglect any terms of order-4* and higher to match the orders required for ASX
and hs.
Moving to the second-order field, we calculate the SR components to be

m |2
htStR = ﬁ |:z (hg(} + 2/’15,417' + hl;li <r2 =+ 2p2)) - /10("<rh51;;o' + Zh(l?z},(i) =+ h(l?ol;a - (I‘ - 4p)
x hRL —2(r2 —4rp — 4p* )R} —r(r? — 4rp — 4p2)h§,})] +O(4), (109a)
me? 2
o = — o [; (2R 9% + 2hB! p2(r + p) — (2hR) + 4hRlr + WRL(2r2 + p?))oy) = P (WRL, +2(r + p) X!,
+r(r+ 20 0 + 2005, + (r 4+ p) (WY, — hiy,) —r(r +2p)h)) + 04/ (2(r = p)hi;
- 2("2}1511;0 + 2rh§u];a + h?;;a) + 2(”2 -y _p2>(2h§ul + rhlu{i))]] + O(ﬂ)’ (109b)
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me"/eﬂ/ 2
i = = 2 508+ AL+ Wy ~ 40K 00,400+ Do)
—°Boyoy (8, —r(h8) - 2h§$~a r(2hR — nRL +rifl)))
= 20%(0(a Mol + 2+ P)OW@ g ) + 10+ 20)0( Moy + 200 )
D)o~ o) =l + 2o B8] + O (109¢)

where, again, we have omitted the highest order term. The SS components are calculated to be

4 , 2
htsts = 3m2 |:3J’ORIAO'M(T -4 <2Ru6u0’;6 - Rumm |:r + llp - 610g </{:>p:| >:| + 0(12)’ (1 loa)
2 ,
htSaS - ’791 e |:18/1 Ru(mo'daj + i( |:3Ra’mm;o' - Ru(ma;a/p - Ra/u(m;ﬁ(?’r + Zp) + Ra’mm
p’
2m . ) 5 2m
x (3r—4(4=3log|=—) )p ) — Ryuou| 3r* — 14rp — 29p% + 1210g| — |p(r +p)
Ap p
. 2m 5
— 04 | OR youo:0 — Ruous | 9r + 37p — 24 log m P + O(17), (110b)
sS ZmZeZef 0,2
hab = T 34 (p [Rummga/[)" =+ 2R(1’u/3’up(3r +p) - 6pRu(a//)”)(i] + zpa(a’ [3R/J”)(nm - Rﬁ’)u(m(3r + 2p)]

- SRuauaga’O—ﬂ’) +4 <3p2 [Ruauaga’[}’ (r - 2p) + 2Ra’uﬁ’u (31’ - 2p)p(r +p) - 6rpRu(a’ﬁ’)6]

. 2
+ Oy Op |:6Ruo'uo';a - Ruo’mf <9r + 14p - 12/) IOg <$) >:|

2 .
- 2p |:3G(a’Rﬁ’)o'ua;o' -2 <3r + Sp -6 IOg (g)p> Raua(a’aﬂ’) - (31’ + 2p)6(a’Rﬂ’)uzm;o'

2 .
+ <6r2 +20rp + 17p* — 121log </{;1>p(r +p)> Roou(a Op) —pRW,M;(G/Gﬁ/)] ﬂ +O(2). (110c)

D. Final expressions for the covariant punctures
With all of the individual components of the singular field now expressed as functions of x’*, we now combine them with
the expansions of df and dx“, given in Egs. (95) and (96) to find the final form of the covariant punctures. After contracting
with the basis vectors, we obtain the covariant form of hzudx”dx”, as in Eq. (80). We then read off the coefficients of dx*dx”
to obtain /.
The first-order singular field is given by

pSld _ ga/ o p [-720°
ap 36p° 2
+ 2R 5ot (31 = p) (1 + P)0 (i) + Ruguo(r = p) (r +p)>(3r + puguy +20° (60 + (r + p)u(y)
X (R)ous (1 = 3p) + 2Ry (P> = 17))) + 22 (3(=3R 5o (I* + p7) + Ruguo:s (3 + p*) )00
+ 6(Ruouc:a (31 = p)(r + p) = Riguo(3r* +28°p + 3p*))o(wttp) + 3(Ruuois(r —p)(r +p)*(3r + p)
— Ruus(3r° + 4r'p = 2r°p> — 61°p° + 3rp* + 14p°) )uyuy + 4949p* 3Rususs + 3Rusuol = 8Ruguah)

(O-a’ + (r +p)ua’)(6/3/ + (r +p)l/t/,'/) - 12/1(Rurmo'(3r2 +p2)6a’o-[)”
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- 8p° (Ra’aﬂ’zr = Ry upus(3r +p) + Ra’uﬂ’u(9p2 + 4rp — 2r?) + 3Ry o + (r = 5p)R, (@p)o
+ 20R i) = 20°05 (6(20 = 1) Ret)gugo + (317 = 241p = 3207 )Rt g + 9 Rt oo

+ 20° R uous = O Repyuou + 12P7pR )i + 5810° Ry + 80° Rty + PP R uouolr))
=207 (6(4p> + 19 = )Ry \oupie + (317 = 21P°p — 44rp? — 44p° )R\ + I Rty
+9PR o yuowo = 10M* Ry uouso = 20° Rt yuouso = OF* Repyuou + O PR ) o + 58207 Rt

. . 2m
+ 74rp3Ra’)uau + 52p4Ra/)u0'u (r - 7p)p R\Imuo\ ) ) + 24Ru0ua 10g</1 )ga’/}/p
2m . . .
+48 log ( Aﬂ) (Ra u/)"upz (l‘ + p) - szu((z’ﬂ’)ﬂ - (O'(al + (2p + r)u(a/)R/}'/)(mn' + ra(a’Rﬂ’)u(m

L +p>2u<a/Rﬂf>m>>] L o), (1)

We have confirmed that this satisfies the Einstein field equations to the appropriate order, i.e.
G [hS1] = O(2), x¢&y. (112)

At second order, the SS piece of the singular field is given by

2m*¢ oo
g;figf’ﬂ |:3j'0 <Ru(mo’(5r2 + 6rp + sz)uu/ Uy + SRu{mryO_a/Uﬂ’ + 2Ruo’uﬂ(5r + 3/))0((1; Up)

- 2pu (3Rﬂ’ auo’ Rﬂ’)uo—u<3r2 + 2rp =+ 3p2)) 2p6 (3Rﬂ’ Jouc Rﬂ’)uau(3r + 2p))

SS _
hop =

_pz(Ruo'uaga’ﬂ’ + 2Ra’uﬂ’up(3r+p) 6pR u(dp)o )) —i-/l(l,t ’uﬂ’|: uo‘ua( +p><9r + llrp + 38p
2m 5 . 2m
- 1210g % p(r +p) - 6Rurmo';6(r +p) ) + O-a/a/}’ Ru(mn or + 14p - 1210g E P — 6Ru{mo’;6
+ Zu(a’aﬂ’) |: uocuc <9r + 17rp + 20ﬂ - 1210g</{p>p(" _'_p)) - 6Ruo—u5;a(r +p):|
[ 2m
- zpu(a’ R/f’)mm <6r2 + 13rp + 16p2 — 12log (E)p(r +p)) - 3Rﬂ’)o’u6;0’(r+p) + (r+p)

. 2m
X <R|uau6|;ﬂ/)p + Rﬂ/)uau;a(3r + 2ﬂ) - R/’”)utm [6]‘2 + 1lrp + 29p2 — 12log (E)p(r +P):| >i|

. 2m .
- zpa(a’ R\uaua\;ﬂ’)p - 3Rﬁ’)zmo‘:0 + R//)uo‘u;ﬂ(:)’r + 2p) + 2Rﬁ’)o‘uo’ <3r + Sp -6 IOg <E)p> - Rﬁ/)uzm
2m . .
x <6r2 +20rp + 17p* — 121og (E>p(r + p))] = 3p*[Rucuclarp (r = 29) + 2Ryyup (3r = 2p)p(r + p)
—6rpRu<a/ﬂ/)0]>} + O(ﬂz) (113)
This again satisfies the appropriate Einstein field equations,

3G [1SS] + G S, 1S = O(1°), x ¢ 7. (114)
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The first-order singular field with linear acceleration terms is

(,g/”

Sle =

(r +p)(3r3 +r2p —4rp* = 4p* uyupy)) + (24

ar’p*(r+3p)(op)

P1320(2rp? (r + 2p)a(ogy + (r+p)ug)) — a,(3r’c oy + 2(3r° +2r’p — 2rp* — 2p° oy uy)

+ (I’ —I—p)uﬂ)/) - agr(3r26a76ﬂ/

+2(3r +2r°p = 3rp* — 6p°)o g + (r +p)(3r° 4+ rPp — 6rp* — 12p% ) uyuy))] + O(2%), (115)
while the SR piece of the second-order singular field is
iy
hg;} %Sg/ﬁ’ %[4,)2(};5;,‘6‘0,3/) + (r —I—p)(h(a 1u(Op) T h( o Up) T (r +p)h |M‘uﬂ,)))
— h3s(Bogoy + (r+p)(3r+pluguy +2(3r +2p)ouy)) — hi, (6ro oy + 2(r + p)((3r — 2p)
X (r+p)ugug +23r —p)oup))) — hyy (3r*cyoy + (r+p)((r+p)(3r* = 2rp = 2p*)uuy
+2(3r% —1p — p?)o(yup)))] + (WL (30405 — (r+p)(3r + p)uguy —2(3r + 2p)o(yuz))
+rh8i(3r?c 05 + (r+p)(3r* +r’p — 6rp* — 8p* uyuy + 2(3r* + 2r°p = 3rp* — 4p*)o yuy))
+ B (6r2c oy + 2(r +p)(3r* + rPp — 4rp® — 4p*)uguy + 4(3r° + 2r%p = 2rp* — 2p% )0y uy))
— s (3rPo o5 + (r+p)(3r* +r2p — 4rp* — 4p*)uyuy + 2(3r° 4+ 2r°p — 2rp* — 2p% oy uy))
= 2h§4e(3rogop + (r+p)((3r—2p)(r + p)uguy +2(3r — p)o(yug)))
+ ¥ (Brogoy + (r+p)((3r = 2p)(r + p)uguy +2(3r — p)oug)))
+20% (0 hil gy + 200+ p)o( A, ) + T +20)0(hS 5 + 20(0/}1/,,]66 +2(r+p)owhy),,
=2(r +p)owhy, = 2r(r + 2p)o(w g, + (r +puhily ) +2(r +p)uwhfy, z)

+r(r+p)(r +20)ui by 5y +20r +puhi, 4+ 2(r +p)uighy, , = 2(r +p)uhy,
=2r(r +p)(r + 2p)ui i3} ,)] | + O). (116)

These need to satisfy

5G* [hSR] 4 5GH [hS19] + 282G [} hS19) = O(29),

Xé&y. (117)

We have successfully checked that the covariant punctures

for hf,f and hﬁi"’ satisfy Eq. (117) through the leading two
orders, 173 and /2. However, we have not been able to verify
this at the highest order we have calculated, order 271 Thisis
due to the complexity and length of the expressions when
taking multiple different combinations of derivatives.
Despite this, we provide all orders of the covariant punctures
for the different singular field terms in a Mathematica
notebook in the Supplemental Material [70].

Comparing the covariant puncture for /) from Eq. (111)
to the Lorenz gauge version of the puncture from Eq. (127)
of Paper II,

SlaLor __ 2’"

af - (118)

o) (G + 2uuy) + O(2),

|

we see that the highly regular gauge puncture has a more
complicated form. This continues at higher order with the
Lorenz gauge puncture being substantially simpler and
shorter at all orders. The more complex form results from
the highly regular gauge conditions that seek to preserve
the background light cone structure emanating from the
worldline in the perturbed spacetime; see Sec. IC for
further discussion. This has the knock-on effect that the
coordinate expansion in the highly regular gauge will be
much more complicated than the Lorenz gauge one as we
are introducing more and more terms, and more quantities
will need to be expanded. Thus, if we wanted to perform a
mode decomposition of the singular field in the highly
regular gauge, we would find that the process is likely to
be more complicated than in the Lorenz gauge due to an
increase in the number of quantities that need to be
decomposed into modes. However, we believe that the
benefits of the highly regular gauge outweigh any dis-
advantages that may come from the metric perturbations
having a more complicated structure. Merely eliminating
the two leading orders of /5 in Eq. (113) has dramatic
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consequences as it alleviates the problem of infinite mode
coupling [61] that was discussed in the introduction. This
should allow one to much more efficiently calculate modes
of the second-order source.

V. COORDINATE EXPANSION

In order to implement the covariant expansions in a
specific calculation, one must first write them in a chosen
coordinate system. This necessitates reexpanding all the
covariant quantities in terms of coordinate differences,

Ax? = x* — X7 (119)

where Ax? ~ 1. A derivative of Ax? at x* then gives

Ax® g = —6;,. (120)
This leaves us with coefficients evaluated at x*, as in
Eq. (56), contracted into certain combinations of Ax®.

A. Expanding Synge’s world function
and the parallel propagator

In this section, we generate generic coordinate expan-
sions of the covariant quantities appearing in the punctures
from Sec. IVD. We begin by expanding Synge’s world
function, o/, and then use that to find expansions for r and
p. We then move on to find the coordinate expansion for the
parallel propagator.

To find a coordinate expansion of Synge’s world
function, we exploit the fact that it satisfies the identity
from Eq. (37). We make the following ansatz as an

expansion for Synge’s world function,

o= ng ) (x
3
= mgm + PAGA W) + HAGLaa ()
4
+ ﬂSA(AgAAA(xl) + O(2°);

/
Ax]...Axan

(121)

see Refs. [84,86] for similar expansions but with dif-

ferent conventions for Ax?. The primed derivative is then
given by

(1) (1)

2/1A”A +’12(AAA,4

+ﬂ3<A2;A,, 4A£, im

@)
— 3A,/AA)

+ I AD s (122)

We then substitute Eqs. (121) and (122) into the identity
for Synge’s world function from Eq. (37) and solve order-

by-order. The expressions for AW

/1 . are

am _1
A(//}/ - Ega//}’v (1238.)
@ _1 5
A(l’/}’}/ — Eg(s/(a/rﬁ/y/)y (123b)
@ _1 ,
Aa’ﬂ'y’5’ = ﬁ (Ra’[y’é’]ﬂ' + 3ga’t’rl’5' 7
+ 99,’(}'Fl’«5/ , + 991/ /F (/},F ,5,)
+ 69y a'r/i’) Fl’&’ + 69y },/F{S,)ﬂ,l"” ) (123c)
A<4) _ (5 F + SF/)’ , FK!
dpY8 T 120 9@t v yp) @p 971N )8

+ lorp rﬁ/g|p’K/‘F§// / + 10Fpaj| /‘gﬂ"p"a /Fg/l’)
+ 3F /ﬂ/r /5/F ) /gK’/j + 7F( ,ﬁ/r}’ §/F )K/gp”u’

+ 517 (123d)

Cap T 119000
These are similar to the expansions appearing in Eq. (2.10)
of Ref. [86] and Eq. (3.10) of Ref. [84], but here, we have
a slightly different definition for Ax? and we take the
derivatives at x* instead of x*. Taking the primed derivative
of the appropriate quantities and then substituting these and
Eq. (123) into Eq. (122) gives us the final expression for the
coordinate expansion of Synge’s world function,

Z/l"o o (124)
where the first four orders are given by
o)) = —Axy, (125a)
2 1 /
o = _Ega’é'F(ZA’ (125b)
1 ,
3 / /
0{(1’> =75 (grfz’FAA,A + gfl’ﬂ/FAAFiz’)’ (125¢)
1
4 W %
0((1’> Y [Pha (90 sy FAK’ + 9 Upy a
- R()/AAI/) + Jov (2FZ;HFIXAA + FZA,AA)]' (125(1)

To check these expressions, one can substitute Eq. (125)
into Eq. (37) to demonstrate they satisfy the identity for
Synge’s world function.

We also require the expansions of r and p from Egs. (91)
and (92) which can be performed by substituting in
Egs. (124) and (125). The expression for r is trivial as it
just requires us to contract the four-velocity into Eq. (124),
so that, at leading order,

r=—ry+ O(A?), (126)

where, in analogy with Eq. (91), we define the four-velocity
contracted with the coordinate difference as
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ro = uy Ax", (127)
We write the expansion of p as a power series,
=> 1ptn) (128)
n=1
and define
po =/ Py Ax" Ax”. (129)

We then proceed to substitute our coordinate expansion for
o, from Eq. (124) into the definition for p from Eq. (128)
and collect terms at each order in A. The first four orders of
the expansion are given by

PV = po, (130a)
@ _ !
P = 2, (FAA +T'RaT0), (130b)
1
P = 7 (Ths +T4r0)* + Yp (3T4 2+ 4T84 4
AT, org + droT, T+ 4T, TS
+3ga'ﬁ'FAAFAA)’ (1300)
1
(4) A u 3_ A u u 2
p= (I'3a +T2a%0) (Taa +TRa70) (3T} A
16p5 48p3
CALATS |+ 3Gy D +4T% ro] +4[T5 4
1
+TRaaT0l) +57— 29, (204 a5 a0 +20%0 ATS A

+T8a a0+ 2T, Al aTo +TAa aaT0 +T%, 217 AT RA
+ FAa’.A + Zgo/ﬁ’ FAA,A + FZO/,A"O + Ry auaTo)
+T, 0,0

8 a 290, T 5 +TY 1)) (130d)

To calculate the coordinate expansion of g/”l/, we proceed
in a similar way to that of ¢,,. To begin, we use the ansatz

g =8, +AGUY + PGUN + BGUN + 00 (131)
|

2m
h!sltld ﬂpg(Ax’+M’(O

— (Ca +T4ar0)po —
+ A (ro —po) (3ro + po) Jur Ax,)

_pO))(Axu’ + ML/(rO

_pO)) -5 [”ﬂ’uv’ (rO

2T aP5) + 3Ax, Axy (TR + Tiaro) + 2(R4 (310

and substitute this into the identity for the derivative of the
parallel propagator contracted into a derivative of Synge’s
world function from Eq. (52). We proceed to solve this
order-by-order to find

e y
Gy =19 . (132a)
G l(rﬂf I, +RY, +T% ), (132b)
ﬂ/ylal 2 /! 6/ <y 5/)ﬂ/ y 5/
6 = Lsymrs, 3R, 4T, )
ﬁ/yl(sl ! 6 %/ , I(s/ (g/ll)ﬁ/ l/g/qﬂ/
+ T [0S TS, + 5, ] = T5 Ry + RY
+T9 TS 1% 0. (132¢)

As with Eq. (123), similar expansions of the parallel
propagator have been done previously in Egs. (3.10)—
(3.12) of Ref. [87]. We have checked our expressions by
substituting them into Eq. (52) and have verified that they
satisfy the identity to the appropriate order in A.

B. Coordinate expansions of the covariant punctures

With our covariant punctures derived, we can proceed
to write them as a generic coordinate expansion using the
techniques discussed for the singular scalar field in Sec. VA.
This will allow them to be easily written in any desired
coordinate system.

To do so, we substitute our coordinate expansion for o,

from Egs. (124) and (125), p from Egs. (128)—(130) and g’;/
from Egs. (131) and (132) into the expression for hgy from
Sec. IV D. Doing so results in expressions that are written
in terms of the coordinate difference, Ax* and the four-

velocity, w* along with hR! L Fy,p,, and Ryp,y and their
respective derivatives. The final expressions are incredibly
long and, as such, we only display them through order A°
(except for hﬂv, for which we just display the leading-
order term). The higher order terms are available in the
Supplemental Material in a Mathematica notebook [70].
The coordinate expansion of the first-order singular field,
with no acceleration, in the highly regular gauge is given by

mA°
- o) (3"0(FﬁA +I'ka¥o)

- 2py)

Po

- 2Lt( /(ZFZ/)A + gl/)(l/FAA —+ 2FZ/)A("0 —po))
X (ro = po)Pg — 28x(uP5 (200 5 + 91w Ui + 214 (ro = po))] + O(2).

(133)
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Moving to second order, the first-order singular field with acceleration is

0

mA
higa = —p—s [aAuﬂ/u,/(?’rg - r%po - 4r0p(2) + 4p8)<p0 bl ro) - 3AXM/AX,/GA"% + 2("0("0 - Zpo)

0

X PRAX/ ) + an (230 + 200} = 293 = 313 Ax ity + 1o (o — 200)(Fo — po)Ragteny)] + O().  (134)
The singular times singular piece is given by
sS 2m?2 3 2
hm/ = - 3pg [6p0R(;/\A|z/)u + 2(37’0 _pO)pOR(//\u\y’)u + RAuAu(SAxM/AxL/ — 9Py
+ Mﬂ’uz/(S"(z) — 6ropg + 5P(2)) + (10ry — 6ﬂo)Ax(ﬂ’“u’)) = 6poAx( Ryyanu + 2p0
X (2p0 - 3r0)Ax(/4’Rl/)uAu - 6r0p0u(/4’R1/)AAu - 2p0(3r% - 2rOPO + 3p(2))M(M’RL/)uAu] + O(/l) (135)
Finally, the singular times regular piece is
m
hSR = % [4p%Ax(#/hyR,;A +4(r —po)p(%Axwhf,;u — hRL(6Ax, Ax,rg + 2u,uy (ro — po)?
X (3rg +2po) + 4(ro — po) (3ro + po) Axrity)) — hish (3AX, Axy + ey (ro = po)(3ro — po)
+2(3r0 = 2po) Ax(ty)) = hiy (3Ax, Axyrg + uuy (ro — po)* (315 + 2ropy — 2p5)
+2(ro —Po)(3’(2) +ropo —P%)Ax(;/”u’)) +4(ry —ﬂo)ﬂgu(y'(h,l}/;A + (ro —ﬂo)h%u)] + O(/lo)- (136)

VI. CONCLUSION AND APPLICATIONS

The main result of this paper is the conversion of the
local coordinate form of the metric perturbations given in
Paper I into fully covariant form using the methods of
Paper II. These were provided in truncated form in
Sec. IVD and in full form in the Mathematica notebook
in the Supplemental Material [70].

We have then reexpanded these covariant expressions
and written them as a generic coordinate expansion that
is valid in any desired coordinate system. As with the
covariant expressions, abridged forms were presented in
Sec. V B, with the full expressions appearing in the Supple-
mental Material [70]. By providing the metric perturbations
in these forms, we have enabled them to be written in any
desired coordinate system without necessitating the use of a
potentially complicated coordinate transformation from
Fermi-Walker coordinates.

One useful immediate extension of this work would be to
calculate the modes of the punctures to see how well the
highly regular gauge alleviates the problem of infinite mode
coupling. For quasicircular orbits in Schwarzschild, for
example, one could decompose the punctures into modes
using the methods of Ref. [66]. From this, one could use the
mode coupling formula from Eq. (28) to explicitly calculate
the behavior of the second-order Einstein tensor near to the
worldline of the small object.

An interesting property of the highly regular gauge
to note is that, following from the gauge conditions
given in Sec. I C, one can write the singular field metric

|
perturbations in terms of null vectors. For example, if one

defines
9
k(l = Uy +
V2 (

—j;wd+o+m%»

so that k%k,, = 0, one can write the first-order singular field
from Eq. (111) as

Puyo’ )
p

(137)

4m

; (138)

One can then write Eq. (1) in terms of these null vectors as

O = G + () + B3) + O(e?),

= gu + €A 2Vk,k, + O(el’,¢?),  (139)
where V = 2m/(p). This has the form of a Kerr-Schild per-
turbation [88,89] on the background spacetime. However,
this correspondence is broken in the singular field at order 4
through the introduction of Riemann tidal terms in Aj;}.
Additionally, h%!k#k* # 0 due to the regular field being in a
generic gauge.

It would be interesting to further explore the connection
between the highly regular gauge and Kerr-Schild gauges,
potentially drawing on previous work by Harte [90] and
Harte and Vines [91].
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APPENDIX: QUASI-KERR-SCHILD FORM OF
THE METRIC PERTURBATIONS

In this section, we derive the leading-order form of the
second-order metric perturbations when written in the
quasi-Kerr-Schild form discussed in Sec. VL.

We begin with the first-order singular field with accel-
eration. This now takes the form

JhSla — vV
W g
X {2k}lkl/(r2 - _p2) - k(ﬂNU) (r2 + 2"[) + 2p2)}]
+0(4), (A1)

Ragk,rp(r+2p) +{a*(r—p) +a"(r+p)}

where we have contracted in the parallel propagators and
introduced the auxiliary null vector

o Pygo”
N,,:g—“<ua,_ o«p >

V2 P
g
= __(Ga’ + (r _p)ua’) (AZ)
V2p
that is normalized so that k*N, = —1. Moving on to

the singular times singular piece, after substituting in
Egs. (137) and (A2), we see that

l()p2v2
6 [4Rykyk - 2Rk(;w)N - 2RuNuN

+ 2(4k(;4 - N(ﬂ)RD)ka - z(k(y - 2N(,u)Rz/NkN

+ (g/w - Sk;lku - ZNﬂNu)RkaN] + O(j’)

SS _
huy =

(A3)

Finally, the singular times regular piece is now given by

%
3 [BEISL + (HE) -+ R}~ 381k k,

+ 4h5 kN |+ O(°).

nSR =
(A4)

These calculations can be extended to higher order in 4 by
continuing to replace u, and o, with k, and N, through
the use of Egs. (137) and (A2).
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