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We present bhpwave: a new Python-based, open-source tool for generating the gravitational waveforms

of stellar-mass compact objects undergoing quasicircular inspirals into rotating massive black holes. These

binaries, known as extreme-mass-ratio inspirals (EMRIs), are exciting mHz gravitational wave sources for
future space-based detectors such as the Laser Interferometer Space Antenna (LISA). Relativistic models of
EMRI gravitational wave signals are necessary to unlock the full scientific potential of mHz detectors, yet
few open-source EMRI waveform models exist. Thus we built bhpwave, which uses the adiabatic
approximation from black hole perturbation theory to rapidly construct gravitational waveforms based on

the leading-order inspiral dynamics of the binary. In this work, we present the theoretical and numerical

foundations underpinning bhpwave. We also demonstrate how bhpwave can be used to assess the impact
of EMRI modeling errors on LISA gravitational wave data analysis. In particular, we find that for
retrograde orbits and slowly spinning black holes we can mismodel the gravitational wave phasing by as
much as ~10 radians without significantly biasing EMRI parameter estimation.
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I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRISs) are binaries com-
posed of a compact object with mass u ~ 10M inspiraling
into a massive black hole with mass M ~ 10°M. They
emit gravitational waves in the milliHertz (mHz) band for
months to years, making them promising sources for future
space-based detectors, such as the Laser Interferometer
Space Antenna (LISA) [1,2]. The prolonged evolution
and rich harmonic structure of an EMRI waveform com-
municates a wealth of information about the binary. Thus,
we expect LISA to measure the masses, spins, and orbital
characteristics of observed EMRIs with unprecedented
accuracy [3]. These measurements will provide novel
observations of massive black holes and their surrounding
environments, while also facilitating high-precision tests of
general relativity [4]. Extracting this information from an
observed signal, however, will likely require subradian-
accurate models of EMRI gravitational wave emission.

Due to their small mass ratios ¢ = u/M < 1, EMRIs
are naturally modeled by black hole perturbation theory
and the self-force formalism [5]. Within this framework, the
small body is treated as a perturbation to a background Kerr
spacetime. The inspiral of the small body is then driven by a
gravitational self-force (GSF), which arises from the small
body interacting with its own perturbation of the spacetime
metric. The metric perturbations and the GSF are con-
structed perturbatively, order by order in €, to derive the
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dynamics and resulting gravitational waves radiated by
the binary.

We can understand the relative impact of these self-
forces on EMRI gravitational waveforms by expanding the
phasing of the gravitational wave signal @y in powers of €
via a two-timescale analysis [6],

1

Dgw = ¢ [@opa + €7Dy + €@ipp + O(e?)]. (1)

The leading-order adiabatic term' ®ppa only depends
on the time-averaged dissipative first-order GSF, which
drives the dissipation of energy and angular momentum
from the system. The subleading first postadiabatic order
(1PA) piece ®p, depends on the remaining contributions
from the first-order GSF, corrections due to the spin of
the smaller body, and the time-averaged components of the
second-order GSF. The half-order correction @, arises due
to the presence of self-forced r@-resonances experienced by
EMRIs undergoing eccentric and inclined inspirals [7].
EMRI gravitational models must, therefore, include the
Dppa> Pres, and @pp effects in order to maintain subradian
phase accuracy and enable the full scientific potential of
future mHz gravitational wave observatories.

Nonetheless purely adiabatic models—which only
include ®gp, in the gravitational wave phasing—may be

"This term is also referred to as the zeroth postadiabatic order,
post-0 adiabatic, or OPA term to remain consistent with the
naming conventions of the subleading terms (e.g., @ pp)-
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suitable for detecting (and possibly characterizing) EMRI
signals [8] and are invaluable tools for developing data
analysis pipelines for EMRI search and parametrization.
They capture almost all of the phasing information and
relativistic behavior of EMRI signals, making them power-
ful probes of astrophysical parameter space. The theoretical
foundation and numerical calculation of adiabatic wave-
forms is also well understood and has been performed for
eccentric, precessing2 EMRIs [9].

However, in practice it is challenging to optimize
adiabatic EMRI waveform calculations in order to make
them efficient and accessible, so that they can be incorpo-
rated in large scale samplings of parameter space.
Currently, there is one main open-source self-force model
for producing adiabatic EMRI waveforms: the
FastEMRIWaveforms (FEW) Python package [10-13].
While this tool is the gold standard for EMRI waveform
models and data analysis, particularly due to its ability to
leverage GPUs, it is currently restricted to eccentric
binaries with nonrotating black holes. Since we expect
almost all astrophysical EMRIs to possess a rotating
massive black hole, it is important to extend models such
as FEW into this crucial area of parameter space.

Therefore we introduce bhpwave3 an open-source
Python-based waveform generator that models the adiabatic
dynamics and gravitational wave signals produced by a
small body undergoing a quasicircular’* (noneccentric,
nonprecessing) inspiral into a rotating massive black hole.
This code can model any binary with an initial orbital
separation of ry < 60M and a massive black hole spin in
the range |a| < 0.9999M. (See Sec. II for exact definitions
of a and r,.) Furthermore, the model supports any mass-
ratio, though adiabatic waveform models are most relevant
for € <107, By leveraging parallel computations across
CPUs, bhpwave can evaluate years-long waveforms in
milliseconds. Even on a standard laptop, waveform eval-
uations still complete within a few hundred milliseconds to
a couple seconds.

Importantly, bhpwave does not provide the first adia-
batic calculation of quasicircular inspirals. These systems
have long been studied in the literature [14,16—19], and
other works have even modeled eccentric, equatorial and
eccentric, inclined (precessing) EMRIs for a variety of
massive black hole spins [9,20,21]. Recent works have also
produced waveforms that include the effects due to the
small body’s spin (which is a postadiabatic effect) [21,22],

’In a frame where the massive black hole’s angular momentum
is held fixed, precession is instead described in terms of the
inclination of the small body relative to the equatorial plane of the
more massive black hole.

https://bhpwave.readthedocs.io.

By “quasicircular,” we mean that, at any moment of time, the
inspiral motion is tangent to a circular geodesic as described in
Sec. II. This is a consequence of the fact that in the adiabatic limit,
circular orbits remain circular, i.e., e() = O(e) [14,15].

while effective-one-body models have combined post-
Newtonian and GSF information to provide EMRI wave-
forms for binaries with aligned spins [23].

Despite this rich literature, it remains a practical chal-
lenge to implement an adiabatic model that is efficient,
accurate, and accessible across a majority of the parameter
space, especially for arbitrary values of the massive black
hole spin. Even when neglecting eccentricity, the inclusion
of spin presents a number of issues that are less pronounced
for binaries with nonspinning bodies, such as the larger
range of radial separations accessible to spinning binaries,
the faster frequency evolution for more deeply bound
orbits, and the higher harmonic content needed for model-
ing rapidly rotating systems. By building upon the theo-
retical foundations described in the literature, our aim for
bhpwave is to provide an efficient and accessible model
that fills in a new area of parameter space and provides an
important stepping stone for developing more advanced
waveform codes that incorporate all possible orbital effects.

To encourage the continued development of open-source
adiabatic EMRI models, this paper outlines the theoretical
and numerical foundations underpinning bhpwave. In
Sec. I we summarize the quasicircular limit of the adiabatic
approximation within the context of black hole perturbation
theory to establish methods and notation. In Sec. III we
describe both the numerical routines used to generate the
adiabatic data for bhpwave and the algorithms employed
by bhpwave to generate quasicircular inspirals, wave-
form harmonics, and gravitational signals. Additionally, we
provide validation tests and model comparisons to verify
the accuracy of bhpwave. To demonstrate the utility of
bhpwave, in Sec. IV we present example problems for
testing the impact of modeling errors on parameter biases
for LISA data analysis. Finally, we discuss further appli-
cations and possible extensions of bhpwave in Sec. V. To
support community collaboration and open-science, the
codes for calculating all of the data, performing all of the
analyses, and generating all of the plots presented in
this work are made available via the public Github
repository bhpwave—article.5 For this paper we use
the metric signature (—+ ++), the sign conventions,
where applicable, of [24], and units such that G = ¢ = 1.

II. ADIABATIC APPROXIMATION

We provide a brief summary of the leading-order
adiabatic approximation of a small body’s quasicircular
inspiral into a rotating massive black hole. (For extensive
discussions of the point-particle and adiabatic approxima-
tions see [9,18,25,26] and references therein.) At zeroth-
order the small body follows a circular, equatorial geodesic
in Kerr spacetime (see Sec. Il A). Due to its mass and
motion, the small body excites gravitational radiation.

*hitps://github.com/znasipak/bhpwave-article.
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At leading-order this radiation is captured by nonzero
perturbations to the Weyl scalar y,, which we construct
via the Teukolsky equation (see Sec. Il B). The resulting
flux of energy dissipated via gravitational wave emission—
which we compute from y,4—then drives the decay of the
small body’s orbital energy and thus the adiabatic inspiral
(see Sec. II C). From this inspiral, we then construct the
adiabatic gravitational waveform (see Sec. 11 D).

A. Circular, equatorial geodesics
Consider a small body with mass u orbiting in a Kerr
spacetime with metric g,,, which, in Boyer-Lindquist
coordinates (z,r, @, ¢), is defined by the line element,

2Mr 4Marsin? 6 >
ds?=—(1- dr? — dtd Zdr?
s < > ) > ¢+A r

2Ma?rsin 6

+2d92+sin29<r2+a2+ S

Jag. @
where a is the Kerr spin parameter, M is the Kerr mass
parameter, A = r> —2Mr + a?, and T = r?> + a’cos’ 0.

The mass y follows a geodesic zj, = (,,7,.0,.¢,) that
maintains a constant Boyer-Lindquist radius r, = r and is
restricted to the equatorial plane 6, = /2 (with respect to
the angular momentum of the Kerr black hole). Due to the
Killing symmetries of Kerr spacetime, this motion pos-
sesses three constants of motion: the orbital energy
& = —u,, the z-component of the orbital angular momen-
tum £, = uy, and the Carter constant 0= QO u'u” [see
Eq. (8) in [27] for an explicit definition of Q,, ], which are
related to a and ry by

1 =202+ av?
s v av 7 (3a)
V1=3v+2a03
1 F 2av + a%v*

W1 =302 + 24103
Q=0, (3¢)

L.=+M (3b)

where & = a/M, v> = M/r,, and + (=) refers to prograde
(retrograde) orbits.

For circular orbits, the four-velocity u® = dz}/dr =
(0,,0,0,m,) is constant along the geodesic, where 7 is
the proper time of the small body. The rates at which
(Boyer-Lindquist) time and the azimuthal angle accumulate
with 7 are given by

E+ gL 1+ a0’
w, = 0" T Stz “_ (4a)
Gp = 9999 V1 =30* +2a0°
E+g, L 3
a)¢ — _g[(/) gll Z — :t v (4b)

MV1 =302 £2a13

Gop = 999

respectively. Straightforward integration then yields

7
t,(t) =wz, r,(r) =1y, 6,(1) = > $,(t) = wy7.

Combining these results, we can reexpress the evolution of
the orbital phase in terms of coordinate time, ¢, (1) = Q,1,

where the geodesic orbital frequency is given as

(l)¢ v
Q =—=+—"—"—. 5
P w, M(1 % av?) )

Finally, the innermost stable circular orbit (ISCO) is
defined in terms of the minimum radius,

risco — 3 +Z2 F \/(3 _Zl)(3 +Z} +2Z2),
G= 1 (=)A= 1 (1+a)P),

7 =/3a% + 23, (6)

and maximum frequency MQisco = rideo (M3 +arileo) ™.

B. Gravitational wave fluxes

Next we consider how the small body’s motion excites
perturbations to the background spacetime. Using the
Teukolsky formalism [28], we describe these perturbations
in terms of the Weyl scalar y,, which vanishes in an
unperturbed Kerr spacetime and captures 2 of the 10
gravitational degrees of freedom of the metric perturbation.
Near infinity, these 2 degrees of freedom can be related to
h, and h, [26], the two polarizations of the gravitational
strain, via

wa(r — oo):%(h+—ihx). (7)
At adiabatic order, y, satisfies the spin-weight s = -2
Teukolsky equation [Eq. (4.7) in [28] ] with a point-particle
source (see Sec. II of [29]). The solution is amenable to
separation of variables in the frequency-domain, leading to
the mode-sum representation,

© J
e =" S 37 R (P)Soaju(0:y) et (8)

Jj=2 m=—j

where p = —(r—iacos6)™!, S_,,,(6;y) is the spin-
weighted spheroidal harmonic of spin-weight s = —2 and
spheroidicity y = amQ,, [which satisfies Eq. (2.7) in [30] ],
and R_;,(r) is the s = —2 radial Teukolsky solution
[which satisfies Eq. (3.12) in [26] ].

The spin-weighted spheroidal harmonics can be con-
veniently represented as a rapidly converging series of spin-
weighted spherical harmonics Y, (6)e™? [18],
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[Se]

§ : slm

=i

sjm 9 7 sz,’m 9) (9)

where £,;, = max| s|]. This decomposition is particu-
larly useful because we can then reproject y, onto an
angular basis that is independent of frequency,

) 4
:P4Z Z X apm(r)Y aem(0)e™ =0, (10)
=2 m=-¢
where
X me Z —ij(y R ZJm( ) (11)
J=Cmi

Furthermore, the spin-weighted spherical harmonics form a
complete and orthonormal set of basis functions on the unit
sphere (for the same value of spin-weight),

/ YSfm st'm’ei(m_m/)(ﬁdg = 511’5mm" (12)

For our point-particle source on a circular geodesic, the
radial mode function R_,, (r) have the asymptotic form,

R_Qjm(r —ry) Zﬁzij2 e imkpr. (13a)
R—2jm<r N 00) ~ Z{ZimrSe-&-imer*’ (13b)

where k, =Q,—Q,, the horizon frequency Q, =
a/(2Mr. ), and the tortoise coordinate r, is given by the
differential relation dr,/dr = (r> + a*)/A. The ampli-

tudes Zt‘z/jzm
and are constructed via the standard Green’s function
method, also known as the method of variation of param-
eters (see Sec. III A in [9] or [26] for further details).
From (11), we see that X_,,, then possesses the same
asymptotic behavior as R_,,,, in (13) but with modified

amplitudes,

are often referred to as Teukolsky amplitudes

ZHT /T

H A
—2jm —2tm — Z b—ZJm Z/jm‘ (14)

mm

kel

H
—2jm X )

“5¢m depend on the

As a final note, because and

source motion, we can parametrize both amplitudes in
terms of the orbital constants, e.g., X’}—-{Z/,;m thz/?m(Q sa).

Upon obtaining vy, we can then calculate the flux of
energy that y, radiates away to infinity £Z and down the
black hole horizon E™ [30],

4”Za/m —2/m ’

jm

Za

(15a)

(15b)

—ij ’

where

1
m>Q2’
w 256m*k,Q,(2Mr, )’ (m*k;, + 4€*) (m*k;, + 16€)
Ay = 3 ,
|C2jm|
e = (r, - M)/(2Mr,),
constant is given by

and the Teukolsky-Starobinsky

Cojul* = 2],,1(/\2,,,, —2)? + 8am*Q, (1 — aQ,)
x [4(Azjm —-1)+3m(1-aQ,)]. (16)

Note that the Chandrasekhar eigenvalue Ayj, = A, +
s(s + 1) is invariant under the interchange s — —s [31].
The angular momentum fluxes are then related to the
energy fluxes by LZ/" = Q-1EZ/™ leading to the total
gravitational wave fluxes,

LGW

EOW = BT 4 M, LT+ i% (17)

C. Adiabatic quasicircular inspirals

Due to gravitational radiation-reaction, the small body
does not remain on a circular geodesic. The binary radiates
gravitational waves and the small body reacts to the
radiative losses of energy and angular momentum by
undergoing a quasicircular inspiral into the rotating mas-
sive black hole. We can parametrize this motion in terms of
the time-evolving orbital energy E(¢) and orbital phase
®(7) of the inspiraling body, which at leading order is given
by the equations of motion [5,9],

dE ) o
E——E‘.FE‘FO(G )a E—Q—i—O(é‘) (18)

Because E ~ e, the orbital energy evolves gradually and the
evolution can be understood in terms of a time-averaged
osculating geodesics method [32]. At any time f?,, the
motion is approximately tangent to a geodesic with energy
E(ty) = £ and frequency Q(ty) ~ Q. The small body then
evolves from geodesic to geodesic based on its gravita-
tional wave emission until the body approaches the ISCO,
at which point the approximation breaks down and we end
the evolution.
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In effect, at leading order we can express the orbital
frequency Q in terms of the orbital energy E using
Egs. (3) and (5), but with £ and €, replaced by E and Q,
respectively. Furthermore, the forcing term Fp is con-
structed using flux-balance arguments [25,33,34]: for a
point-particle on a circular geodesic the loss of orbital
energy is balanced by the gravitational wave energy flux
EOW | leading to the relation eF = EOW.

As seen from Eq. (18), the time it takes the system to
undergo this inspiral scales with the radiation reaction
timescale Tpg, ~ Ty = Me™". Similarly, the total accumu-
lated phase scales like A®;,, ~ €', thus giving the
leading-order phase contribution to the gravitational wave
signal, as described in Eq. (1).

D. Time domain adiabatic waveform

After determining the adiabatic inspiral of the smaller
body, we generalize (10)—our geodesic expression for
yw,4—by once again leveraging the fact that at any moment
of time the motion is approximately tangent to a geodesic.
Consequently, the field amplitudes are promoted from
constants to quantities that slowly evolve with frequency
and time X'Y? (Q,;a) = X"47 (Q(1); a), while the fields
phase rapidly accumulates in proportion to the orbital
phase Q,t — ®(¢). As a result, the adiabatic waveform
h = h, —ih, takes the form,

u
=23 1

h(u9r309¢) 7 o hfm(u7r’9’¢)’ ( 9a)

hfm(uv r, 9’ ¢) = Bfm(u) Y—2fm (H)eim[z/)—fb(u)], (19b)

where, assuming r > M, the waveform amplitudes are
given by

Xzzfm(g(”); a)

Bow(u) = =2 m>Q2*(u)

= Agpeen. (20)

For later convenience we introduce the magnitude of the
waveform amplitudes A,,, = |Bs,,| and the phase of the
complex amplitudes v ,,,, both of which depend on Q(u)
and a. Furthermore, rather than using the conventions
of [9,13], we follow [5] and parametrize the adiabatic
waveform in terms of the outgoing time-coordinate
u=t-—r,. As aresult, our expression is consistent with
the adiabatic expression obtained from a full two-timescale
analysis, and if we hold the orbital constants and frequen-
cies fixed, (19) reduces to a geodesic “snapshot” waveform
obtained via (7) and (10). In practice, when imple-
menting (19) in bhpwave, we replace u with Boyer-
Lindquist time 7 to match the FEW model [which is
described by (10) in [13]]. This is equivalent to para-
metrizing all of our waveforms with an initial time 7, = r,.
Therefore, we replace u with ¢ for the remainder of this work.

E. Frequency domain waveforms

The amplitude and phase decomposition of (19) makes
it particularly straightforward to represent our waveforms
in the frequency domain via the stationary phase approxi-
mation [9],

~ S i /[ ~

i) = [T noenra=ESh . e
—o ‘m

Fpm(F) % B ()Y _apme 281N tm@=20, (D] (21D)

where

- 2w

By (f) = me;n(tp(f))’ (22)

and 1,(f) refers to the times at which the binary emits
gravitational waves with frequency f. For each (Z,m)-
mode, time and frequency are (approximately) related by

27f = md(t) = mQ(t), (23)

which we can invert to obtain 7,(f) for individual har-
monics. Both (22) and (23) neglect terms related to v, and
W > Which introduces an O(e) error to the phase and an
O(e'/?) error to the amplitude. (See Appendix A for further
details.) Since the amplitudes scale as By,,(f) ~ 1/+/€, itis
safe to neglect these terms for small mass-ratios.

F. Solar system barycenter waveforms

Up to this point, waveforms have been constructed in
the source frame, with our Boyer-Lindquist coordinate
system centered on the massive black hole. To get the
observed waveform in the solar system barycenter (SSB)
frame hggp, we adopt the same conventions as the FEW
model and make use of the transformation provided in [13].
In this frame, a generic EMRI system is parametrized by
12 intrinsic parameters (M, u, a, d,, po, €y, Xo, @0, Pgo»
®,)—where d, is the spin-vector of the smaller body;
Pos €p, and x, are respectively the initial semilatus rectum,
orbital eccentricity, and projection of the orbital inclination;
and @,, @y, @ are respectively the initial radial, polar,
and azimuthal phases—and by five extrinsic parameters
(dr,qs, ¢s, qx, px)—where d; is the luminosity distance
to the source EMRI, ¢¢ and ¢g are the polar and azimuthal
sky positions of the source, and gx and ¢ are the polar and
azimuthal angles defining the orientation of the massive
black hole’s axis of rotation. In our simplified quasicircular
setup, five of the intrinsic parameters are constrained to the

values @, = 0, ey = 0, x| = 1, @,y = Pyy = 0, while two
of the remaining free intrinsic parameters are given by
(I)</)0 = q)(()) and Po = To-
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The extrinsic parameters are related to Boyer-Lindquist
(r,0,¢) via

r=d, (24a)
cos @ = — oS g5 COS gg

— sin gg sin gg cos(¢pg — Pps), (24b)

b= —g. (24c)

The frame transformation also rotates the polarization basis
by the polarization angle y [13]. As a result, hggp is related
to h, the strain in the source frame, via

2y —

D3 D
Y h="Yp, (25)
D> Dy,

hssg = e

where D, is given by

D, = cos gy sin gg cos(¢g — ¢s) — sin ggcos gk

+ isingg sin(¢px — @s), (26)

and a* denotes the complex conjugate of a. Note that there
are two cases in which the preferred wave basis in [13]
is no longer uniquely defined: (gg,¢x) = (gs,ds) and
(gx, dx) = (7 — g5, @ + ¢bg). In these instances the SSB
and source frames are aligned or antialigned with one
another, leading to D,, = 0 and invalidating the last equal-
ity in (25). Therefore, we set hggg = h if (gg,Px) =
(g5, #s) or (gx. Px) = (7 — g5, 7 + Ps).

III. NUMERICAL METHODS

In the following section we discuss the numerical
implementation of bhpwave, in particular our process
for solving the equations of motion (Secs. III A and III B),
constructing the harmonic amplitudes of the gravitational
wave modes (Sec. III C), and evaluating the total waveform
signal (Sec. IID). Finally we compare our model,
bhpwave, to the FastEMRIWaveform (FEW) model to
test its accuracy (Sec. III E).

A. Equations of motion and the numerical domain

To simplify the calculation of our inspirals, we introduce
the dimensionless and rescaled orbital quantities,

=2 d=E= QG=mMQ a=—. (27

A hat represents a quantity that is made dimensionless,
while a check represents a quantity that is dimensionless
and scaled by the mass ratio. We then reparametrize the
equations of motion in terms of the (dimensionless) orbital
frequency, yielding

dQ A A A
= [0 a) Fp(Q: ). (28a)
dd
— =0, 28b
= (28b)
for time-domain trajectories, and
G000 ) F (@) (29a)
a6 e
dd . 5
5= ~Q[0:0(Q 0) Fp(Qsa)] 7, (29b)

for the frequency domain. The Jacobian agfz is analytically
obtained from (3) and (5), while we construct F  numeri-
cally via (15).

In this form, the equations of motion no longer depend
on the masses of the binary, just the dimensionless orbital
frequency and dimensionless Kerr spin parameter. By
parametrizing in terms of frequency in (29), we decouple
the evolution in time and phase, leading to solutions 7(Q; &)
and ®(Q; a). In this form, it is straightforward to construct
the frequency domain waveforms via Egs. (21)—(23).

Therefore, we first interpolate the data F(Q;a) and
then solve the equations of motion for the rescaled
frequency-domain trajectories 7(Q;a) and ®(Q;a). We
set the initial conditions 7(Qsco) = D(Qisco) = 0. Thus
all time and phase values are <0. We then solve for the
time-domain trajectories Q(7; a) and ®(f;a). Data can be
precomputed and stored on a numerical grid spanning the
domains of (&, Q) or (&, 7). From these grids, we construct
bicubic spline interpolants to represent the trajectories,
which can be rapidly evaluated to get any quasicircular
inspiral within our domain. For this work, we set the
boundaries of our grid at & € [—amay. +ama] and Q €
[Quin. Qisco] With apa = 0.9999 and Qi = 2 x 1073
(which corresponds to ry =~ 60M). This domain is plotted
in Fig. 1.

Note that, due to the one-to-one mapping between time
and frequency, we could calculate the frequency-domain
trajectories and then invert them to get the time-domain
trajectories. In practice, however, we create four separate
spline representations for #(Q;a), ®(Q;a), Q(i;a), and
®(#; a). This is much more computationally efficient then
inverting one set of solutions through root-finding methods
le.g., Q(fy) = Root[{(Q) — #,]] and avoids the accumula-
tion of interpolation errors when taking the composition of
two splines [e.g., D(7)) = D[Q(7))]].

B. Interpolated fluxes and trajectories

There are two main challenges to constructing F z(Q; @)
via numerical interpolation: (1) the lower frequency

044020-6
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FIG. 1. A 32 x 64 grid in (@, y) mapped to the (&, Q) domain.
Each dot represents a sampled point in the parameter space.
These points are equally spaced in a and in y, but cluster around

Q= leco and a = a,,,,. The shading of each point reflects the

relative density of points in the (a, Q) domain, while the dashed
lines represent the domain boundaries. Note that this is the
downsampled version of the numerical grid used for interpolating
flux and trajectory information within bhpwave.

boundary Q= QISCO has a particularly strong dependence
on the black hole spin as highlighted in Fig. 1; and (2) Fp,
7, and & rapidly accumulate as Q- leco and a — 1 as
shown in Fig. 2. A simple uniform sampling in a and Q-
QISCO could lead to substantial errors in our interpolating
functions due to the large magnitudes of the higher-order
derivatives with respect to a and Q.

Consequently, we alter our parametrization to mitigate
errors in our numerical spline interpolations. We first
ameliorate the growth in flux, time, and phase by rescaling
Fp, 1, and @ by their frequency-dependence at leading
post-Newtonian order,

FIN = Q1053 (30)
X 8-5/3 _ -
O = lec/o -7, (31)
. A—8/3  A_
"N = lec/o -, (32)

resulting in the normalized functions,

v

Fr & .

F = PN’ = ¥YpN  <° t:v—a
NN NoeNys N N4

(33)

which are plotted in the middle panel of Fig. 3. We
introduce the § = 1076 offset to avoid division by zero
as Q > QISCO. As a result of this shift, the normalized
time and phase data still satisfy the initial conditions
in(Qisco) = Py (Qisco) = 0. Next, motivated by post-
Newtonian and near-extremal expansions of the orbital

quantities, we introduce x = Q'3 and y = (1 — a)'/3, from
which we define the final sampling parameters,

X — X —y_
o2 — 1sco ’ y2= u’ (34)
XI1SCO ~ *min Yy — Y-
1/3 1/3
where x;, = Qm/in’ Xi1sco = QIS/CO’ andy, = (1 + amax)1/3'

We square the left-hand side of (34) to further smooth out
the behavior near the ISCO and maximal spin values. This
can be seen in Fig. 4, where we plot the variation in 7 and o
with respect to a and y.

After choosing this parametrization, we solve for the
fluxes ESW using the Teukolsky solver provided in the
PYBHPT Python package.’ Flux data are calculated with a
requested precision of 107!°. We precompute £SV, from
which we get F g, on a fixed grid in the (e, y) domain using
129 equally spaced samples in y and 257 equally spaced
samples in a. A downsampling of these points is mapped to
the (&, Q) domain in Fig. 1 to illustrate the concentration of
sampling points towards the ISCO and near-extremal spins.
From this grid we construct the interpolated function
F f\,(a, %), then solve (29) for 7 and ® on a more densely
sampled 513 x 513 grid in (@, y). We then assemble the
interpolated functions 7. (a, y) and ® (a, y). Note that we
explicitly differentiate between numerical solutions and
their interpolated approximants by labeling interpolated
functions with the superscript /. Furthermore, all splines are
generated by imposing the E(3) boundary conditions of
Behforooz and Papamichael [35,36].

Next, we construct numerical interpolants for Q(f; a) and
®(#; ). Because 7 (a, y) is not monotonic with respect to
a, we cannot simply parametrize Q and @ in terms of 7.
Instead, we introduce the alternative time-parametrization,

(@ a) =In[1-#Qa), (35)

where we take the logarithm to tame the rapid growth in 7
while preserving its monotonic relationship with Q.
The choice of y® was determined through numerical
experimentation and helps to smooth out the behavior as
t > 0 and y — 0. From this we define the renormalized
parameter,

A fl; d A
ﬁ(Q’)() = m» Vmax = 7(Qmin; _amax)’ (36)

ymax

and only focus on the interval # € [0, 1]. Limiting 3 does cut
off some low-frequency values in our new domain, since
B(Quin:x < 1) > 1. However, in practice this choice has
a minimal impact: our frequency boundary is truncated at
Q ~0.00206 instead of Q = Q,;, = 0.002. Note that we

®This code is available at github.com/znasipak/pybhpt.
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FIG.2. The energy flux F (left panel), (rescaled) orbital phase & (middle panel), and (rescaled) orbital time to merger f as a function
of (dimensionless) orbital frequency Q. Different colors (shades) correspond with different values of a. Therefore, lower spins terminate
at lower ISCO frequencies. Note that the spin has a very small effect on the flux.
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FIG. 3. The normalized energy flux Fy (left panel), normalized orbital phase ®, (middle panel), and normalized orbital time to
merger 7y as a function of normalized distance from the ISCO frequency leco in frequency space. We rescale each vertical axis by the
leading post-Newtonian coefficient. Thus all curves asymptote to one at low frequencies.
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FIG. 4. The normalized energy flux Fy (left panel), normalized orbital phase ®, (middle panel), and normalized orbital time to
merger 7y as a function of the final grid parameters @ and y. The values of y correspond to the same values of & used in Fig. 2.

could extend our boundary out to Q=0 by redefining
Ymax (@) = 7(Quin: @), but this functional dependence adds
another layer of computational complexity when relating Q
and f. To avoid unnecessary computational costs, we use
the more simple transformation in (36).

We then evaluate the time-domain equations of motion
(28) and store solutions on an uniform 513 x 513 grid in

(3. x). Because we use a in place of Q when solving (28),

we must excise f = 0 (7 = 0). The solution is trivially @ =
& =0 at S =0, but da/dt diverges at this point and thus
typical numerical methods for solving ordinary differential
equations fail at this point. Therefore, we instead solve the
equations of motion by starting one grid point away from
p = 0. To incorporate the correct initial conditions, we use
the Brent root-solving method to invert #(€;a) and then
é(ﬁ; a). Once we have solutions, we create the bicubic
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FIG.5. The logarithm of the maximized phase difference log ||6®|| a.0 as described in Sec. 111 B for different observation periods 7 qp.
We can see that for any observation period, all the way up to 25 years, our phase spline maintains subradian phase accuracy when

compared to direct numerical integration of the orbital phase.

spline a/ (B, ), which we can transform to get Q(%; &). For
the phase, we introduce a new renormalization that does not

depend on Q,

v v

Dypy =1In(1-D), (37)

and create the interpolant (i)f\,(z) (p,x), which we can then

transform to get ®(#; ).

To evaluate the fidelity of our interpolated trajectories,
we perform a series of self-consistency checks and com-
parisons, which are discussed in full detail in Appendix B.
We find that our interpolated fluxes have fractional errors
<1078 over the entire domain, and they agree with inde-
pendent flux calculations [19,37] provided within the
“Circular Orbit Self-force Data” repository on the Black
Hole Perturbation Toolkit [38].” This high level of accuracy
is achieved, in part, by our choice of the E(3) spline
boundary condition, which improves the precision of our
flux interpolant by several orders of magnitude when
compared to the more common “natural” or “not-a-knot”
boundary conditions (see Appendix B 1).

Furthermore, we find that the interpolated frequency-
domain quantities, 7, and ®l;, possess absolute errors
<5 x 1077, and the derivatives of the interpolated splines
satisfy the frequency-domain equations of motion (29) to a
precision ~107. Likewise, a! has estimated fractional
errors <5 x 107 and d)f\,(z) has estimated absolute

errors <5 x 1078,

Next we quantify the impact of these interpolation errors
on the gravitational wave phases. Recall from (19) that the
phase of each gravitational wave mode /,,, is proportional
to the orbital phase ®. Therefore, the accuracy of the
gravitational wave phases is set by the accuracy of ®. To
quantify this accuracy, we first calculate the orbital phase

"Note that the flux results in the Toolkit repository are not
accurate to all reported digits for a > 0.9 and 2M < rp < 4M, as
discussed in B 1.

accumulated over an inspiral with initial orbital frequency
QO using our interpolated data,

1{¢,/. T v

where 7y = 7(Qq; &) and T is the duration of the observed
inspiral. Note that &' is reconstructed from ‘i);v(z) via (37).

We then compare A®’ to the accumulated orbital phase
®OPE obtained by directly integrating (28) with the initial
conditions Q(7 = 0) = Q, and ®(7 = 0) = 0. The inter-
polation error is then estimated by the difference 6®' =
|A®! — ®OPE| Next, we find the maximum value of 5@’
for a range of & values and initial orbital frequencies €.
We denote this maximized difference as [[6®'||, 4. In
Fig. 5 we plot [|6®’||, 4 as a function of mass-ratio 1077 <
€ < 1072 and massive black hole mass 10* < M < 108 for
binaries observed for T =0.5,2,5,10,25] years. We
exclude binaries with secondary masses u < My. We
measure maximum phase errors of 0.0097, 0.0186,
0.0307, 0.0430, and 0.0642 for the observation periods
0.5, 2, 5, 10, and 25 years, respectively. These phase errors
are reduced by about a factor of 2 if we only focus on
inspirals with initial frequencies Q > 0.013 (corresponding
to ro < 18M) and binaries with smaller bodies of mass
u >2Mg. Because the (£,m) = (2,2) mode dominates
each gravitational wave signal, 2A®’ provides a reasonable
estimate of the gravitational wave phase error. Based on this
approximation, our interpolation errors most likely meet
the subradian gravitational wave phase accuracy require-
ments for realistic space-based mHz gravitational wave
observations, which we further verify in Sec. IV.

C. Mode amplitudes

Similar to the trajectories, we presample the complex
waveform amplitudes B, on a fixed 65 x 65 grid in («, y).
To optimize the accuracy of our amplitude interpolation, we
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FIG.6. Waveform amplitudes A, as a function of the radius of
the orbit y/M. The top panel plots A,_, ,,—, for different Kerr
spin parameters a > 0.9. The middle and bottom panels plot
Ayp - and Ay ,,_,, respectively, for a = 0.9999 and 2 < 7 < 15.
In the two lower panels, the mode magnitudes are ordered
inversely with #. In other words, the # = 2 mode is the dominant
mode, the £ = 3 is the next most dominant mode, then Z = 4,
¢ =5, and so on, with £ = 15 being the mode with the smallest
magnitude (and darkest solid line).

decompose By, into its phase y,,, and the log of its real
amplitude InA,,,. We then interpolate these quantities
independently. We generate mode data for £ < 15 and
0 <m < 7. Even with the reduced sampling, the interpo-
lation errors introduce estimated fractional errors <3 x 107>
in A,,, and absolute errors <2 x 107 for y,,,, as discussed
in Appendix B.

The amplitudes display a number of interesting
properties, particularly as we move into the near-horizon
extremal Kerr (NHEK) regime, ie., 1-— 4 <1 and
(r—ry)/r. < 1. For a £0.995 the amplitudes peak at
the ISCO and decay with the orbital frequency. For a =
0.995 the amplitudes can instead peak well before reaching
the ISCO and then decay as the orbital frequency increases.
This behavior has been reported in previous investigations
of extremal Kerr black holes [19,39]. For the dominant £ =
m = 2 mode, the waveform amplitudes reach their maxi-
mum magnitudes near the stationary surface of the outer
ergosphere rf = 2M, as demonstrated in the top panel of
Fig. 6. The modes do not have the same turnover behavior
for £ # m, but instead plateau around r}; before rising again
as they approach the ISCO, which is highlighted in the
middle panel of Fig. 6 for all m = 2 modes. This behavior
is due to our reprojection of the (j, m)-modes of a spin-
weighted spheroidal harmonic basis to the (£, m)-modes of
a spherical basis, given in (11). As demonstrated in [39],
larger spheroidal j modes (for a fixed m) will decay
more rapidly as one approaches the ISCO in the NHEK
regime. Therefore, in the spherical (¢, m)-basis, the near-
ISCO behavior is dominated by the contribution from
the modes around j = m, even when £ > m. As a result,
for £ > m the spherical-spheroidal mixing with many
j~m modes prevents the turnover and decay of A,,
as Q — QISCO'

Finally, we consider the relative power between the £ =
m =72 and £ =m = 15 modes for a given orbital fre-
quency. In the bottom panel of Fig. 6, we plot the A, ,,_,
amplitudes as functions of r, for different values of a.
We see that |As55/A5,]* <5x 107* for all orbital fre-
quencies and spins, placing a conservative upper bound for
the relative power contributed by the £ = m = 15 mode at
a fixed frequency. For most year-long EMRI signals, the
relative fotal power (i.e., the power integrated across
the entire frequency evolution of an inspiral) contributed
by the £ = m = 15 mode is <107, as we demonstrate in
the following section. Therefore, we find it unnecessary to
include higher harmonic contributions beyond # < 15.

D. Waveform evaluation and mode selection

Given a fixed time step dt, signal duration 7', and binary
source parameters (e.g., M, u, ro, dr), time-domain wave-
forms are constructed using (19), (24), and (25), with all
functions evaluated from the trajectory and mode amplitude
splines outlined above. We simplify the sum over (¢, m)-
modes using B,_,, = (—1)?Bj,, and the identities of spin-
weighted spherical harmonics,

Yieom(0) = (=1)"Y_s (0), (39a)

= (=1)Ypn(n = 0), (39b)
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leading to the reduced sums,

o
h+<t) =+ Z Z Ame;m COS(me + m[¢ - q)])’ (403)

=2 m=1
) 14
h>< (t) = - Z Z -Afm Y;m Sin(l//fm + m[¢ - q)])’ (4Ob)
=2 m=1
where A, = puAz,,/r and
Y;r{lx (0) =Y _20m(0) £ Y o0 (7= 0), (41a)
=Y _20m(0) £ (=1)"""Y 1200 (6). (41b)

The truncation of the (£, m)-mode sum is determined by
the power in each harmonic mode,

T
Py = / (A (Y 5 2+ [Aom ()75, 2] dr, (422)

N
~ V5PV A () PAt,,

n=1

(42b)

where Q, = Q(r =0) + nAQ with orbital frequency
spacing AQ = [Q ( =T)-Q(r=0)]/N, time spacing
At, = 1(Q,) — 1(Q,_,), and signal duration 7. In this
work, we find that N = 500 sufficiently approximates the
mode power. Additionally, we find that an equal spacing in
frequency space is more numerically efficient than an equal
sampling in time. We include all (£, m)-modes that satisfy
the selection criteria,

me>€m0dexzzpt” /s (43)

=2m'=1

for a user-specified threshold €,,,4.- Rather than computing
the power for all of the modes and then removing the modes
that do not satisfy (43), we instead perform a serial search.
First we find all modes that meet (43) for m < 2. We then
increase m to m = 3 and increment over Z, beginning with
¢ =m until (43) is no longer satisfied. We repeat this
process of increasing m and then #, until either P,,,, no
longer satisfies (43) or m > £ ,x = 15.

In Table I, we report the number of selected modes N, 4e
for a variety of inspirals and threshold values. As expected,
varying €,04c has the most significant impact on the
number of modes included. Additionally, increasing the
large mass-ratio M/u or the primary mass M enhances
N mode» Most likely because these changes also increase the
amount of time that binary spends orbiting near the ISCO,
where subdominant modes are the most pronounced. Like-
wise, subdominant modes are more significant at smaller
separations, which is why increasing & also leads to more

TABLE 1. The number of selected (£, m)-modes N4 for a
given inspiral (a4, M,u,T) and mode selection threshold €;,qqc-
The initial conditions are chosen so that each system reaches the
ISCO after T years. In the final column we also include the
relative power in the £ = m = 15 mode, Ps5 15/ Py, Where Py is
the summed power from all selected (£, m)-modes.

a M(MO) ﬂ(MO) T (yrS) €mode Nmode %

0.5000 100 10 0.1 1073 14  2x10°°
0.9000 100 10 0.1 1075 18  1x1077
0.9950 100 10 0.1 1073 24 3x10°°
0.9999 105 10 0.1 1073 17 8x 1077
0.9999 100 10 0.1 1073 28 1x 1075
0.9999 107 10 0.1 1073 39 2x10
0.9500 10° 10 1.0 1073 11 5x10°°
0.9500 100 10 1.0 1073 15 6x10-
0.9500 107 10 1.0 105 23 1x10°°
0.9999 100 10 0.5 105 23 4x10°
0.9999 100 10 2.0 1075 20 2x10°°
0.9999 100 10 4.0 1075 18 1x10°
0.9999 100 10 0.1 1073 10 1x107°
0.9999 100 10 0.1 107 16  1x1075
0.9999 100 10 0.1 10 40 1x107°

modes being selected. On the other hand, increasing the
duration of the waveform decreases N4, since more
power comes from earlier in the inspiral, where the sub-
dominant modes are much weaker.

In the final column of Table I we also report the relative
power of the £ = m = 15 mode, P,s55/P\y, Where Py, is
the summed power from all selected (£, m)-modes. Conse-
quently, this mode is only included if €04 < Pis.15/Pior-
Previous investigations of adiabatic model suggest that
1072 < €poge < 1075 is a sufficient threshold range to
prevent systematic biases in EMRI data analysis for
LISA [12]. Thus, we see that there is no need to go beyond
the £ = 15 modes for the range of spin values considered
by our model.

Following this mode selection, we evaluate all of the
selected modes in (40) at the time steps f; = i x dt for
i=0,1,2,...,T/dt. To speedup the calculation, we paral-
lelize evaluations over the time steps #; using OpenMP [40].

Frequency-domain waveforms are generated in a similar
manner for a fixed frequency step df and maximum
frequency f.. Alternatively, one can specify a time
step dt and signal duration 7, for which we set df =
1/T and 2f,,.x = 1/dt. By eliminating sums over negative
m-modes, we have

o £
ZZW/mQAme et¥en  (44)
=2

m=1

l\)l'—‘
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- i S (27 .
hx(f) = Ez Z EAme?meﬂwm’ (45)

=2 m=1

where the phases are given by ¥, (f) = y/fm(Qf/ m) +
2mft(Qs/m) + mp — D(Q;/m)] — x/4 and all mode-
functions are evaluated at Qf =2zf. Mode selection is
identical to the time-domain waveforms. Similarly we
parallelize evaluations over the frequency steps f; =
jxdf for j=0,1,2,..., fou/df.

As a final note, waveforms produced by retrograde orbits
can be parametrized one of two ways: (1) by keeping the
massive black hole spin positive and setting the orbital
angular momentum to be negative, (¢ > 0 and x, < 0); or
(2) vice versa (a <0 and xq > 0). These two parametriza-
tions are identical up to the transformation (6,¢) —
(r—6,—¢), as shown in Appendix C. In this work, we
keep xy = 1 fixed at its positive value and vary the sign of
a, allowing for a much smoother transition from prograde
to retrograde orbits in the equatorial limit. This choice also
has the advantage of keeping all other orbital constants
(e.g., Q,, L) strictly positive. However, users can still

h(t;a,—xq,0,¢) = h(t;—a,xy, 7 — 0,—¢p). (46)

For waveforms in the SSB frame, ¢ is fixed, while the
orientation of the spin vector is set by g and ¢ . Therefore
we introduce the azimuthal shift through @, and transform
0 via a parity inversion of (gg, ¢x), leading to

hssg (t; a. =xo. qx. Px- Pyo)
= hSSB(l;—a,Xo,ﬂ'—qK,JT+¢K,ﬂ'+q)¢0). (47)

The transformations are identical for the frequency-domain
waveforms.

E. Model comparison

To demonstrate the accuracy of our model, we compare
our waveforms with those produced by FEW for a =
eg = 0. As a visual demonstration, in Fig. 7 we plot 4, for
an EMRI with source properties (M, u, py) = (10°M,
10M 4, 12.05) observed in the SSB frame for four years.
The strain calculated by FEW is given by the dashed lines,
while the bhpwave result is given by the solid lines. The
waveforms are aligned to agree at time ¢ = (. We zoom in

specify xy = —1, and internally we construct the wave-  on the waveform at three time windows placed near the
form using beginning, middle, and end of the waveform. Across all
x10~%
— FEW
21 ~~- BHPW ” n
<0
2 V |
0 2000 4000 0 2000 4000 6000 8000
t (sec) t(sec) +4.5x 107 t (sec)+1.2622 x 10°
0.00 1 O ’\,f\-—'\-’\/'*’\’\"v,\'"‘."/\'\-"",.‘v"—’\’AV\”.'\—-"‘\”\’”\-—\_
= —0.051
&)
5
0101 \uscaled FEW
_oq5] T scaled FEW
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
t (yrs)

FIG. 7. Comparisons between waveforms produced by the FEW and bhpwave models for an EMRI with intrinsic parameters
(M, u,a, po, ey, x) = (106My, 10M 5,0, 12.05,0, 1). The top panels show the evolution of the strain /2, with time ¢. In the top plots, the
solid (blue) lines correspond to the waveform computed by FEW, while the dashed (orange) lines are produced by bhpwave. The three
different panels focus on three small time windows within the full four year signal. The bottom panel plots the difference in the
gravitational wave phases between the waveform models. The solid (cyan) line shows the phase difference when the waveforms are
evaluated at the same set of parameters. The dashed (black) line is the phase difference after rescaling the FEW parameters to account for

different definitions of GM,.
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three periods there is minimal disagreement between the
two models. In the bottom panel of Fig. 7, we also plot the
phase difference between the two models as a function of
time. The two waveforms maintain subradian agreement
over all five years of the signal.

The agreement between the two models is further
improved when we account for the fact that bhpwave
and FEW use different values of GM, which impacts
unit conversions as one goes from the geometric units
(G = c=1) in the inspiral calculation to SI units for the
observed waveform. In bhpwave, we use the gravitational
parameter GM g = 1.32712440041279419 x 10%° m?s—2
from Jet Propulsion Laboratory’s (JPL) planetary and lunar
ephemerides [41]. The fractional difference between this
value and the FEW value is 1.557 x 1078, If we rescale time
and mass quantities by this difference, we improve the phase
agreement between FEW and bhpwave by a factor of ~5, as
demonstrated by the dashed line in the right panel of Fig. 7.

For a more quantitative comparison, in Table II we report
the mismatch between the bhpwave waveforms Ay and the
FEW waveforms Ay for a series of different EMRI systems.
The mismatch is defined by

(hg|hg)
M(hg, hg) =1 - (48)
Z (hg|hs) hF|hF
where
= a(f)b*(f)

alb —4Re/ ——2df, 49

by = 4R S0 )

TABLE II. Mismatches between bhpwave waveforms and

FEW waveforms for different sets of intrinsic parameters
éimrinsic ={M,u, py, Dy = 0.2} and signal duration 7. We scale
the distance so that each signal has an SNR p = 20. The third to
last column reports the mismatch between bhpwave and FEW
when both models are evaluated at the same set of parameters 50.
In the second to last column, we give an estimate of the “best-fit”
mismatch between the two waveform models. This is computed
by evaluating bhpwave at hg (éo) and FEW at hF(éO - Aéo),
where Aéo is determined using the Cutler-Vallisneri bias esti-
mate. The maximum ratio between the systematic biases and
the statistical errors estimated from the bhpwave model,

R = ||A§0 /A8 > 18 reported in the last column.

M/Mg u/Me  py  T/yrs M Mg R

10° 1 159 155 4x1073 2x105 0.12
10° 10 159 016 6x10° 1x105 001
10° 1 159 800 7x10* 3x105 0.11
10° 10 159 800 5x10* 8x10° 0.12
10° 10 120 4.00 8x1073 6x107° 0.07
10° 50 159 3.00 6x10* 6x1075 0.16
107 50 100 800 9x10° 5x107 0.07
107 50 75 260 3x107* 1x107° 0.04

10—16

10—17 4

10—18 4

lh (f)]

10719 J

10720 J

10~ 103 10-2
f (Hz)

FIG. 8. Comparison between the discrete Fourier transform of
the time-domain gravitational wave strain A, produced by
bhpwave (solid blue line) and the frequency-domain waveform
for h, produced by bhpwave using the stationary phase
approximation (dashed orange line). For reference, the sensitivity
curve S, is also plotted as the dot-dashed (black) curve. Note that
we downsample the number of the frequency samples included in
this plot by a factor of 10000 in order to more clearly see how
well the two waveforms agree, even in the highly oscillatory
region between 1073-1072 Hz.

is the noise-weighted inner product between two real
signals, S,(f) is the one-sided noise spectral density of
LISA, and the sum is performed over the plus and cross
polarizations of the gravitational wave strain. For this work,
we use the analytic approximation of S, (f) given in [42],
and provided through the LISATOOLS Python package.8 We
estimate the Fourier transforms of our time-domain signals
by first applying a tapered cosine window, also known as a
Tukey window, and then taking the discrete Fourier trans-
form (DFT) of the windowed function. We choose the
tapered cosine window shape parameter a = 0.001, which
leads to minimal loss in the signal-to-noise ratio (SNR)
p = +/(h|h), while also providing an improved estimate of
the Fourier transform. We find mismatches <1073 across
different sets of intrinsic source parameters.

Furthermore, we perform a self-consistency check
between our time-domain and frequency-domain wave-
forms. In Fig. 8 we plot the frequency-domain waveform
h. (f) for the system (M,u,a/M, py) = (10°My,30M,
0.9,13.55). The system is observed for T =4 years
(but merges after ~3.95 years) at a time step of
dt = 15 sec, which corresponds to f,.x = 1/30 Hz and

*https://github.com/mikekatz04/LIS Aanalysistools.
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df ~1.6 x 1078 Hz. Overlaying the DFT of the time-
domain waveform DFT[A ](f) for the same system, we
find a good overlap between the two signals, which have a
mismatch of M = 6 x 107>, However, as seen in other
investigations of the frequency-domain EMRI wave-
forms [43], the mismatch is highly dependent on the sample
size due to the spectral leakage inherent in the DFT.
For example the mismatch increases to M = 7 x 1072 for
dt = 10 sec orto M =3 x 1073 for dt = 2 sec. Note that
the agreement can also be improved by windowing the time-
series data [43].

IV. ASSESSING MODELING ERRORS

Finally, we use bhpwave to provide a few examples of
how we can assess the impact of modeling errors and
systematics on EMRI parameter estimation. In Bayesian
inference, the probability that a given set of model para-

meters 6 describes an observed signal d(¢) is given by the
posterior distribution,

p(0]d) o« p(d|0)p(0), (50)

where the prior distribution p(0) is the probability of

observing the parameters 0 (in the absence of any signal or
evidence) and the likelihood p(6|d) is the probability of the

evidence d(t) given fixed parameters €. In gravitational
wave data analysis, the (log) likelihood reduces to [44]

log p(d|6) « —% (d = h,(0)|d = h, (). (51

for a waveform model #,,. When assuming uniform priors,
the likelihood provides an unnormalized estimate for the
posterior distribution. Thus (51) peaks at the model para-

meters 5peak that “best fit” the data, and the width of this
peak corresponds the statistical certainty Aém with which

we can measure Gpey.
Naturally, every model possesses some degree of

numerical or systematic error, which can bias 0., away

from the true parameters ém,e that describe d(z). Conse-
quently, a waveform model is considered sufficiently
accurate for parameter estimation if the systematic biases

Abpias = Opeak — Oirue are smaller than the inherent statis-

tical uncertainty A, in the measurement.
We can estimate this intrinsic statistical uncertainty via

Aeétat ~ [F;f (epeak)] ii’ (52)

where I";! is the inverse of the Fisher information matrix,

F%(Q) = (aihm (epeak)wjhm(gpeak))’ (53)

and 0; = d/00'. Likewise the impact of the systematic
errors can be estimated from the Cutler-Vallisneri bias [45],

Ae{,ias ~ [Fr_nl <9peak)] i (ajhm (6peak) |Ahm (gpea.k)) ’ (54)

where Ay, (Opeac) = 1y(Opear) = M (Opeax) s the difference
between the “true” strain s, and the biased strain £,
produced by our model.

First we verify that the mismatches between the
bhpwave and FEW models correspond to small biases,
such that A6L. = < AGL,. To do this, we take FEW to be the
“true” waveform h; = hg and bhpwave to be the model
waveform h,, = hg. Next, we solve (52) and (54) at the
“peak” parameters listed in Table II. Appendix D details
our numerical procedures for constructing and verifying
the Fisher matrix and its inverse. We then calculate the
maximum ratio between the systematic biases and statis-
tical uncertainties across all of the parameters,

R :H Aglli)ias

) 55
Abga 59

[se]

which are reported in the last column of Table II. We find
that R < 0.1 across all of the considered systems, indicat-
ing that the systematic errors between the two waveform
models will not bias parameter estimates in this region of
parameter space (i.e., noneccentric, nonspinning EMRIs).
Furthermore, to verify the accuracy of our bias estimates,

« 2 i _pi i
we calculate the “true” parameters Oy = Oy — Ay,

and then compute the mismatch between hg(6y,.) and
hg(Opeax)- As shown in the second to last column of
Table II, correcting for the biases between the two models
reduces their mismatch across all of the tabulated source
parameters.

Next, we consider how phase errors introduce systematic
biases to our waveform model. To quantify this, we take
the time-domain phase and frequency splines, ®(#; @) and
Q(?; a), and downsample their interpolated datasets by a
factor of 2 in each dimension. This introduces a known
source of interpolation noise into our waveform model. The
(noisy) waveforms generated by this downsampled data are
denoted by hp. We then take the original bhpwave
waveform generator to be the truth (e.g., h, = hg), hp to
be our model (e.g., h,, = hp), and evaluate (52) and (54)
for peak parameters Hi,eak = (M, u,a, py, ey, xo,dr, qs, Ps,
qk- Px. Pyo. Poo. P,p). For this analysis we hold (e, = 0,
Xg = lqu = O.3,¢S = 1'3’qK = 1'87¢K = 12,®¢0 = 02,
Dy =0,P,, =0) constant and vary over M/Mgy =
{5x10°,10%,5 x 10%}, u/My = {10,50}, and a =
{-0.5,0.5,0.9,0.995}. Each signal is observed for
T =2 years at a time spacing of dt = 10 sec until it
reaches the ISCO. This sets the value of p,. Additio-
nally, we scale the distance d; so that each signal has a
SNR p = 30. We find that R < 0.1 for all of the sources.
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In Fig. 9 we plot the resulting statistical uncertainties
and systematic biases of (Alog(M/Mgy),Alog(u/My),
Ada, Apg) as a function of 1 — a for the various sources.
Solid lines refer to the statistical uncertainties, while dashed
lines refer to the systematic biases. Different colors refer
to different combinations of M and p. We see that the
systematic biases always fall under the intrinsic uncertainty
estimates. Furthermore, the uncertainties decrease as spin
increases, with the biases possessing largely the same
behavior. Thus, at least in the region of parameter space
considered for this toy analysis, we see that the interpo-
lation errors in the phases and frequencies of our adiabatic
trajectories do not significantly bias our waveforms.

As a final test, we inject artificial noise into our original
flux data and then recompute all of the trajectory splines to
create a new biased waveform model, which we denote by
hg. The flux is modified via the replacement,

1+ (146)1220%3
Fep— Fp = ( ) 6 Fr, (56)

1247 A2/3
1 +1210Y

where we set 6 = 107. With this rescaling, the post-
Newtonian expansion of % is

32 . 1247 - A
Fip~5 QO 1= (1-0)0° +0(Q)|. (57)

By setting 6 = 0 we recover the first two post-Newtonian
orders of the energy flux [e.g., see (178) in [29] ], while
setting & = 107> adds a slight perturbation at the first
(subleading) post-Newtonian order. From a postadiabatic
standpoint, this error is on the same order as 1PA correc-
tions for systems with mass ratios y/M ~ 6.

Once again, we take the original bhpwave model to
represent the true waveform and the corrupted model to
represent our model waveform. We then compute A#,,, and
A6L.  for a variety of systems. As before we fix (ey =0,
Xo=1,g5=03,5=13,9x =18,y = 1.2, D4, = 0.2,
Dy, =0,P,, =0) and use the same signal duration, p,
values, and time step size. For this analysis we only
consider the masses (M,u)= (10°My,10M,) and
(M, ) = (5 x 10°M, 10M ), and we vary over the spins
a={-0.99,-0.5,0.,0.5,0.9,0.99,0.9995}.

In Fig. 10 we plot the dephasing A®gy = 2(®p — D)
of the two gravitational wave models, the maximum ratio
between A6, and A@i for the intrinsic parameters
Rininsic» the maximum ratio between Afi, and Af.
for the extrinisic parameters Reyyinsic» along with the
mismatch M, between hgz(0 — Af;,,) and hg(6). Note
that we estimate A®gy from the dephasing between
just the (2,2)-modes of the two waveforms, which is two
times the difference between the phase trajectories of the
bhpwave and corrupted models, @y and @), respectively.
The left panel includes results for the binary with masses

i
=
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FIG.9. Comparisons of the statistical uncertainties A, (solid
lines) and systematic biases A@:. = (dashed lines) in the intrinsic
parameters (M, u, @, py) as a function of spin a for a range of
binaries with different masses. Different mass combinations
(M, i) corresponds to different colors and markers, as given
by the legend in the third panel. The systematic biases are
introduced by downsampling the trajectory data to introduce
larger interpolation errors into our waveform model.
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FIG. 10. The impact of flux errors on parameter estimation as a function of spin &, as discussed in Sec. IV. The circular markers (purple
line) plot the mismatch between hg(6) and hg (6 — Oy, ), Where hp is our accurate model, i is our biased model, € are the parameters of
the GW source predicted by hp and 6, are the biases in those parameters from the true values € — 6,;,;. The diamond markers (blue
line) plot the maximum ratio between these biases and the intrinsic uncertainty in the extrinsic parameters, while the triangle markers
(green line) plot the same ratio for the intrinsic parameters. The square markers (yellow line) report the overall dephasing between the

two models. The dashed line marks a magnitude of 1.

(M, u) = (10°My, 10M ), while the right panel is for a
binary with (M, u) = (5 x 10°M, 10M). The dashed
line denotes a magnitude of 1. Thus, dephasings below
the dashed line indicate subradian agreement between the
two models, and ratios below the line indicate that the
systematic biases are below the intrinsic uncertainty of
the measured parameters.

For both systems we see that the dephasing and biases in
the intrinsic parameters tend to increase with spin. This is
expected, since the error scales with the frequency, and
higher spin systems will reach larger orbital frequencies
and consequently possess larger errors. However, large
dephasings do not necessarily guarantee that the systematic
errors will significantly bias the measured parameters. For
instance, in the (M, a) = (10°M,0.9) system, ADgy ~
10 rad, yet the systematic biases remain smaller than the
statistical parameter uncertainties. This result mirrors
recent studies of EMRI waveforms of systems with non-
rotating massive black hole, but with postadiabatic effects
and spinning secondaries included [46].

Furthermore, for both systems, the biases in the extrinsic
parameters are consistently below the parameter uncertain-
ties. At least in this simplified quasicircular case, this
suggests that errors in the trajectory predominantly affect
the intrinsic properties of the source. Interestingly, after
accounting for the biases, we still generate small mis-
matches between the models across all of the tested
systems. This indicates that our erroneous models, despite
their large biases, can still capture most of the power in the
EMRI gravitational wave signal (in the absence of noise).
Thus, adiabatic waveforms may be sufficiently accurate for

measuring the extrinsic parameters of quasicircular EMRIs
in the LISA data stream and systems with very low spins or
retrograde orbits. It remains to be seen if this would also
hold true in the case of eccentric orbits or if we were to
incorporate a realistic LISA response in our analysis.

V. CONCLUSION

We presented the theoretical and numerical methods
behind bhpwave: a new Python-based adiabatic gravita-
tional waveform generator for binary sources composed of
a compact object undergoing a quasicircular inspiral into a
rotating massive black hole. To build this waveform model,
we precomputed mass-independent trajectories for systems
with initial separations ryo/M <60 and Kerr spins
la| < 0.9999. Furthermore, we precomputed all potential
waveform harmonic amplitudes for £ < 15. By implement-
ing the E(3) boundary conditions in our numerical spline
algorithm, we improved the precision of our interpolated
flux data and trajectories by as much as 3 orders of
magnitude over traditional spline methods. We computed
waveforms in both the time and frequency domains and
observed good agreement between these models. Further-
more, we compared our model against the FEW wave-
form generator for @ = ey = 0 and achieved mismatches
M~ 1072, Using Fisher matrix calculations, we also
assessed the magnitudes of any systematic biases intro-
duced by numerical error in our model. We found that
biases due to interpolation error are well below the thresh-
olds required for LISA data analysis. Additionally, we
demonstrated that waveform dephasing does not provide a
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complete picture of modeling error. In particular, for
systems with retrograde orbits and slowly rotating massive
black holes, we found that waveform models could have
phase errors of up to 10 rad, and yet the biases introduced
by these errors would not be measurable by LISA. Thus,
the claim that waveform models require subradian phase
accuracy for LISA is a useful guide for model fidelity,
but more sophisticated analyses are required to understand
the true impact of modeling errors on LISA science
(see also [46]).

A notable limitation of bhpwave is that it currently
neglects the effects of eccentricity and precession. None-
theless, while most observed EMRIs are expected to be
highly eccentric [47], there are possible formation channels
driven by accretion flow that circularize EMRI dynamics
and align the orbital angular momentum with the massive
black hole’s spin [48]. Thus, bhpwave is applicable to
these so-called “wet-formation” EMRIs.

In the future, we plan on integrating our Kerr data in the
FEW model in order to leverage its ability to run on GPUs.
Additionally, moving forward we will use bhpwave to
perform a more thorough investigation of how different
interpolation schemes, levels of flux accuracy, trajectory
parametrizations, and mode selection criteria can impact
LISA data analysis. In particular, we plan to incorporate
a second-generation time-delay interferometry (TDI)
response and verify Fisher matrix calculations by perform-
ing full MCMC samplings (similar to the one provided in
Appendix D). With a more detailed and rigorous inves-
tigation of these computational systematics, we can put
more stringent bounds on the accuracy requirements for
EMRI waveform modeling, which will be particularly
important as we design more complicated (eccentric,
precessing) EMRI waveform models.
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APPENDIX A: APPROXIMATIONS OF THE
FREQUENCY DOMAIN WAVEFORMS

In the small mass-ratio limit, M® = MQ ~ O(1) while
My, ~ O(¢€). Therefore, neglecting the time-evolution of
Wem» We invert f~ m€(t)/(2x) to approximate ¢, (f) for
each (£, m) mode. At first glance, one might expect that
ignoring this O(¢) term would introduce an error of O(1) in

the values of ¢, and ®(7,), thus diminishing the phase
accuracy of our frequency-domain waveform. However,
these errors perfectly cancel, leading to an O(¢) error. This
can be seen by parametrizing the time and phase in terms of
Q. Then Q; = Q(f) = Q) + 6Q where Q) = 2zf/m and
8Q ~ O(e). The induced error in the phasing ¥(f) =
27f () + Wem(Qr) — m®(Qy) for a fixed value of f
is then given by

P(f) = mQot(Q) + wem(Q) — mDP(Q)
+ [mQ01(Q) + daw £ (Qo)

— mog®())]6Q + 0(6Q2), (A1)
= mQt(Qo) + W rm (L) — mP(Ly)
+ 00 i (Q0)0Q + O(5Q?), (A2)

where we have made use of the fact that Qdgt = do®.
Finally, we take into account that dqgy 4, = VW ,,,0qt. Since
M?Q ~ O(e), then dqy,,,0Q ~ O(€), which sets the over-
all error in the phase at O(¢) due to neglecting vr,,,.

Furthermore, when calculating B,,,(f), we neglect any
contribution from ., in (22). We expect this approxima-
tion to introduce an O(e) error relative to the leading-order
behavior of B,,,(f) ~ 1/+/€ and therefore is safe to neglect
in the small mass-ratio limit.

APPENDIX B: VALIDATING FLUXES,
TRAJECTORIES, AND NUMERICAL SPLINES

We describe several validation tests for assessing the
accuracy of our inspiral trajectory data.

1. Numerical precision of fluxes

To confirm the numerical accuracy of our interpolated
data, we perform a series of comparisons and self-
consistency checks. First we assess the accuracy of our flux
interpolant by downsampling the data. Let ffn.m)(x,y)
denote a bicubic spline that approximates a function
f(x,y) by interpolating sampled values of f on a rectilinear
(2" 4+ 1) x (2™ + 1) grid in (x,y). Thus, in this notation
our fully sampled interpolant F4(a,y) can also be
expressed as F fv(gj)(a, x), because it is constructed from
a 257 x 128 grid of flux values in (e, y). We then estimate
the fractional interpolation error for the flux spline
fg\/(N/,M’) Via
Fiovary(@x)

j:zlv(N’Jrl.M’Jrl)(a’)() .

Ay (ax) = |1 (B1)

F
(6.5)°

in Fig. 11, demonstrating that

By downsampling the data, we calculate A(fm), A

and A{M). We plot A(fm)
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FIG. 11. The fractional interpolation error A(fm) of the flux
spline F 5\1(7@ as a function of the grid parameters a and y.

Af; 6 < 107° across the entire domain. To estimate the

interpolation error of our fully-sampled spline, A{;j), we

€;+1 n)”oo in Fig. 12. We

« 27%" which is consistent with the

examine the convergence rate of || A

find that ||A{;,+1,n)||oo

standard fourth-order scaling for cubic spline errors (error
~Ax* for grid spacing Ax). Provided this scaling holds true

as we increase the sampling rate, we estimate
that A(jg 7 S5% 1078,

We also compare the flux interpolant to Kerr circular flux
values produced by independent codes [19,37]. Tables of
these values are provided within the “Circular Orbit Self-
force Data” repository hosted by the Black Hole Pertur-
bation Toolkit [38]. Figure 13 plots the fractional errors
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FIG. 12. Convergence of the maximum fractional interpolation
error ||A{; ) |l as we increase n. Increasing n by one amounts
to doubling the sampling density in each dimension of our grid.
Thus a power law decay of 2% (dashed blue line) indicates
fourth-order convergence of our bicubic spline.

between the Toolkit dataset and our interpolated fluxes
for the spin values a = [-0.99,-0.8,-0.5,0.1,0.6, 0.9,
0.995,0.999] as a function of the orbital separation r;.
For ry = 3.5M the fractional errors in the fluxes are
consistent with the interpolation error estimated in Fig. 11,
indicating that our flux results are reliable to a precision
~107? in this domain. Crucially, we find that our use of the
E(3) boundary condition in our spline interpolation is
essential for achieving these small fractional errors. For
example, in Fig. 14 we plot the fractional errors resulting
from the use of the more common “natural” or “not-a-knot”
spline boundary conditions when interpolating our flux
results. Both boundary conditions degrade the accuracy of
our interpolated flux data, with the natural spline providing

Circular Orbit Self-force Data

Circular Orbit Self-force Data

High-precision Mathematica Values

104 o 0.999 0.1
x0.995 —-0.5
106 09 o 08
0.6 o —0.99
10—8 p

1~ 7

oo
x %2
iR e *
.§ ‘)o( oXX
+
* :( ++e g;‘”
+ )§x

To/M

To/M

FIG. 13. Fractional error between our interpolated flux data 7% and the flux data reported within the Circular Orbit Self-force Data
repository in the BHPToolkit. The left panel displays errors across the entire domain covered by our spline. The middle plot focuses on a
region where we find strong disagreement between our model and the repository. The right plot compares our data to flux calculations
from a high-precision (>100 digits) Mathematica code in this problem region, demonstrating that our results are consistent with high-

precision calculations.
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1 Fh/Fg

1 Fh/FgY

FIG. 14. The same comparison as the left plot of Fig. 13, only
this time we construct our flux interpolant by imposing not-a-
knot boundary conditions (top panel) or natural boundary condi-
tions (bottom panel), leading to worse agreement with the
pretabulated flux data.

the largest fractional errors. For both the natural and not-a-
knot splines, the fractional errors rise as we approach larger
negative values of the spin (¢ — —1) and larger orbital
separations (€2 — ), where our flux data are sparsely
sampled. Therefore, a careful choice of boundary conditions
can significantly improve the accuracy of our splines, thereby
reducing the number of points at which we need to perform
expensive calculations of the gravitational wave fluxes.
Finally, we return the near-ISCO region of Fig. 13. The
fractional errors between our data and the fluxes published
in the Toolkit peak at ~107> near r, ~ 3M, as seen in the
middle plot of Fig. 13. To identify the source of this
disagreement, we perform another set of flux calculations
using the Teukolsky Mathematica package [51], which is also
provided in the Black Hole Perturbation Toolkit.” In the
Mathematica code, we use anywhere from 50 to 400 digits
of precision to guarantee the accuracy of the computed flux

Note that this package was designed and implemented
independently of the circular flux data published in the “Circular
Orbit Self-force Data” toolkit data repository.

values. The fractional error between our flux interpolant
and the high-precision Teukolsky fluxes are shown in the
right plot of Fig. 13, demonstrating strong agreement
between our data and the Toolkit-generated fluxes. There-
fore, we suspect that the flux values published in the
“Circular Orbit Self-force Data” repository are not accurate
to all reported digits for 2M < rg < 4M.

Altogether, these tests indicate that the error in our
interpolated flux function is <10® and often matches the
intrinsic error in the underlying flux data, which was
calculated to a requested precision of ~10 digits. Since
flux errors scale as ~¢~! over an inspiral, we expect that this
level of flux interpolation error will have a subradian
impact on the phase accuracy of our gravitational wave-
forms for astrophysically realistic systems.

2. Numerical accuracy of trajectories

Next we validate the accuracy of our trajectories. For
the evolution of Q¢ and ®, we are concerned with the
absolute error in the splines, since these quantities only
appear directly in the phasing of our frequency- and time-
domain waveforms, respectively. However, we are con-
cerned with the precision of ¢t when evaluating the initial
phase of our waveform based on an initial frequency,
i.e., @pia = D(1(Q)).

To verify the numerical convergence of our splines, we
define the convergence measures,

At o 1 1 - ;fN/,M/> B2

(VM) T A ’ ( )
(N'+1,M'+1)

A?]\t/'/,M/) =Q \ié /,M/) - ;éN’+1,M’+1) 5 (B3)

A((DN/.M/) - (I)fN/,M/) - (DfN/+1,M/+1) ) (B4)

and plot [|A{"|l for n=(5,6,7,8) in Fig. 15. As

before, the error improves as we increase the sampling
density by a factor of 2 in each dimension, though in this
case the maximum absolute error converges slightly faster
than 2%, Thus extrapolating this rate of convergence, we
estimate ||AZ§?9";I’||oo <3x1078.

Next, we check that the interpolated trajectories satisfy
the equations of motion (29) via the two tests,

5,(0.8) = ‘1 - {1 +%§V<%>] [1 —z—Z]_l . (BS)
5o(Q, ) — ‘1 - {1 +J% (%)} {1 —‘%]_1 . (B6)

where, on the right-hand side, all functions and derivatives
are evaluated at a(a, Q) and y(a). We shift the numerators
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FIG. 15. Convergence of the maximum absolute interpolation

error for the frequency-weighted time and phase splines,
||Affl’.n)||00 (orange squares) and HA?;,")HOO (green diamonds),
along with the fractional interpolation error for the unweighted

time-spline [|Af, || (blue diamonds). The dashed lines corre-

spond to a power-law convergence of 2%".

and denominators by a factor 1, because the a-derivatives
vanish at @ = 0. This translation effectively leads to &, and
0¢ measuring absolute error for values of a < 0.05, while
measuring relative error for values a 2 0.05. Based on this
analysis, we find ||5,]|, ~ 10757 and ||8¢ ||, =~ 107%® when
maximizing over all values of a and Q.

To assess the precision of Q!(7;a), we calculate the
fractional error,

Q
ZS(AW,AT) 1 BN

]
Q(N’+1,M’+1)

QI 2 a
’ M) ’ (B7)

and plot the maximum values ||A€fl forn =(5,6,7,8)

in Fig. 16. With the convergence slightly better than 24",
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FIG. 16. Convergence of the maximum fractional interpolation

error for the frequency spline, ||Af3w) Il oo -

we estimate that [|Afj g [l < 2 x 10~ Furthermore, we
can apply the self-consistency check,
Q

awai

59(90,51) = ’1 -

and we find that the maximum error across all values
is [|6gl =3 x 107°.

3. Numerical precision and accuracy
of waveform amplitudes

We look at the numerical precision of the spline for the
magnitude of our complex waveform amplitude, AZ, , and
the accuracy of the amplitude phase spline y, . Since the
grids that we interpolate are already sparsely populated we
do not follow the same analysis as the previous subsections.
Rather than comparing splines from successive iterations
of downsampled data, we instead compute a new set of
complex amplitude values on a 10 x 30 grid in (y, a). We
perform this calculation for (£, m) = [(2,2), (5,2), (5,5),
(20,2), (20,20)] to get a representative sample of small and
large Z-values and small and large m values. As a result,
the maximum fractional errors in AL ~are 2.1 x 107°,
6.2x107%, 52 x107%, 5.5x 1073, and 2.1 x 10~ for
the (2,2), (5,2), (5,5), (20,2), and (20,20) modes, respec-
tively. For the maximum absolute errors in y’,  we get
23x107%, 2.4 x 1076, 4.8 x 1076, 2.3 x 1073, and 1.9 x
1073 for the (2,2), (5,2), (5,5), (20,2), and (20,20) modes,
respectively. Therefore, v, achieves subradian phase
accuracy while Aipm maintains precision to at least three
digits even for the least dominant mode (20,2), which will
only be included in waveforms with very low mode
selection thresholds €,,,4. < 107°.

APPENDIX C: TRANSFORMATIONS FOR
RETROGRADE ORBITS

Consider an orbit with positive spin a > 0, but negative

angular momentum and orbital frequency Q < 0 and L, <0
(which is parametrized by the choice x < 0). Under the

transformation (&,Q) — (—a,—{) on the waveform, we
must first understand the impact on the mode ampli-

tudes Az, (&, Q)evm@® = A, (—a, —Q)e~Wem(-a-%) and
®(a,Q) = —d(a,Q). Consequently, the waveform takes
the form,

o (=a,-0) = 3 A (0. Q) c05(w = mlip + B,
‘m

(Cla)
h(=a.-Q) = " Ap, (0. Q)Y sin(y s, — m(¢ + D)),
‘m
(Clb)

or hyy(=a,—0,¢) = hy ) (4, Q.7 — 0.—¢).

044020-20



ADIABATIC GRAVITATIONAL WAVEFORM MODEL FOR ...

PHYS. REV. D 109, 044020 (2024)

APPENDIX D: NUMERICAL METHODS FOR
FISHER CALCULATIONS

To construct the Fisher information matrix in (53) we
first compute derivatives of our waveforms in the time-
domain. We take derivatives with respect to the intrinsic
parameters (e.g., oh,,/0log M) on a mode by mode basis
via (40). Note that we take derivatives with respect to the
logs of the masses, log M and log p, rather than the masses
themselves. We use a basic finite central difference stencil,

fO+h)—f(0—h)

9,f(0) ~ 2 ;

(D1)

to differentiate A,,, and ®,,, =y, + m(¢ — @) at each
time step. We adapt the step-size & until we converge to a
stable numerical approximation of the derivative. However,
very small step-sizes can accentuate numerical noise
inherent in our waveforms. To mitigate this noise, we
apply a Savitzky-Golay filter to suppress this noise in our
numerical derivatives.

Then the waveform derivative is assembled in the source
frame via

aih+ = +Z [aiAfm COos q)rf’m - -Afmaiq)fm sin q)fm] Y;;m’
‘m

(D2a)
o;h, = —Z [0: Az, sin @y, + A,y 0@y, cOs Dy | Y5
‘m
(D2b)

and then we transform to the SSB frame. For derivatives with
respect to @, rather than using numerical derivatives, we
use the analytic solutions dg, 50 Com = 0 and dg, o Pem = —M.

For derivatives with respect to the extrinsic parameters,
we use a higher-order numerical finite central difference
stencil,

2,/(6) z—lé—hf(9+2h) +%f(9+h)

2 1
— SO = 1)+ 13 (0~ 2h)

12h (D3)

which we apply to the full time-domain waveform in the
SSB waveform. For derivatives with respect to d;, we
replace numerical derivatives with the analytic solution
04, hssp = —hssp/dy . Finally, to construct I'/, we apply a
Tukey window to the numerical derivatives prior to
applying the DFT. We then throw away the last 50
frequency bins of the Fourier transform to remove any
residual high-frequency noise. We find that this is essential
for improving the numerical stability of our Fisher matrix
analysis. We then evaluate the inner products to determine
the components of '/

Due to high condition numbers of EMRI Fisher matrices,
I/ is very nearly a singular matrix, and thus inverting the
Fisher matrix can also be a numerically unstable process.
Thus, we instead construct the pseudoinverse [['"']"/, which
is well defined for singular matrices and satisfies the relation,

[ [P=1irst = rab. (D4)
For nonsingular matrices [[™']¥ = [I~']¥. We numerically
compute [["~!] using a singular value decomposition (SVD),

r=usvr, (D5)
where U and V are unitary matrices and S is a diagonal
matrix of the form S = diag(s, s, ..., Sy_;) where some

of the values s; may be zero, which would indicate that I" is
singular. The pseudoinverse is then given by

' =vs1yrt, (D6)
where S~ = diag(55', 57, ..., 55",) is the pseudoinverse
of S. The elements are given by

571 =571, |s;| >0, (D7a)
51=0,  |s,|=0. (D7b)

To numerically compute S~! we instead replace (D7) with

571 = 0for|s;| < egyp, for some numerical tolerance egyp.
-1

We then vary egyp until we find a numerical solution l:gSVD

that best satisfies (D4).

To check these calculations, we verify that I'~! presents a
good representation of the covariances between the model
parameters. In the neighborhood of Qéeak (where the like-
lihood peaks), the posterior distribution p(8|d = h,,(6peax))
is described by a multivariate normal distribution,

_ % (o Opeaic) = P (0) oy (Opeai) — T (6))

1 . . o :
= =5 (0" = O [E717(0V = Ot

> (D8)

where L ~T~! are the covariances between the model
parameters. To verify the relation X ~T~!, we look to

perturb two model parameters ¢ = 67, + A@" and 6° =

0. -+ A6” so that we move one-c away from the peak of
our posterior distribution. This amounts to finding values
AG* and AGP that satisfy

2A0AAGPTAE 1 AGAAGATA + AGPAOPTEE =1, (DY)
where I' = I is the pseudoinverse of I'™!. Picking A4 =
[[44]71/2 then uniquely determines AG® = —2A9ATAB /TBB,
We then verify that for all values of A and B (e.g., A =
logM and B = a),
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FIG. 17. Posterior distribution based on an parallel-tempered MCMC sampling (dark blue lines) and a Fisher matrix analysis (lighter

orange lines).

(hm <9peak> - hm (0(A8)>|hm<9peak) - hm (Q(AB)>> ~1, (DIO)

where 9’(' 4p) Tepresents the set of parameters that have been

perturbed away from 67, by A@* and A¢”. For all of the
Fisher matrix calculations performed in this work, we find
(D10) is satisfied to a precision <107! across all combi-
nations of model parameters and to a precision <1072 for
all intrinsic parameters.

As a final check, we perform a parallel-tempered

Markov chain Monte Carlo (MCMC) sampling of the

posterior distribution for intrinsic the source parameters
(M.p,a, py.@y0) = (10M,10°M,0.9,12.55,0.2) using
the open-source Eryn sampling tool [52-54]."" To

"Note that we choose a very comparable mass ratio to speed-
up waveform evaluation and the calculation of the likelihood.
This allows us to perform the sampling within a day on a laptop.
More realistic EMRI systems are much more computationally
expensive to sample and beyond the scope of this work. MCMC
sampling of astrophysically-realistic EMRIs with bhpwave will
be presented in a following paper.
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simplify the calculation, we only sample over the intrinsic
parameters (logM,logu,a, py.®y) and hold all other
parameters fixed. We then perform our Fisher analysis
on the same system. In Fig. 17 we plot the two-dimensional
contours of the posterior distribution calculated from our
MCMC sampling (dark blue lines). Each contour line
corresponds to a one-o deviation from a neighboring

contour. We then use the covariances predicted from our
Fisher analysis to sample a multivariate distribution and
overlay this on top of our MCMC results (lighter orange
lines). As we can see, the two sets of samples lie nearly on
top of one another, indicating that our Fisher matrix
analysis provides a leading-order estimate for the shape
of the posterior.
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