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We present bhpwave: a new Python-based, open-source tool for generating the gravitational waveforms
of stellar-mass compact objects undergoing quasicircular inspirals into rotating massive black holes. These
binaries, known as extreme-mass-ratio inspirals (EMRIs), are exciting mHz gravitational wave sources for
future space-based detectors such as the Laser Interferometer Space Antenna (LISA). Relativistic models of
EMRI gravitational wave signals are necessary to unlock the full scientific potential of mHz detectors, yet
few open-source EMRI waveform models exist. Thus we built bhpwave, which uses the adiabatic
approximation from black hole perturbation theory to rapidly construct gravitational waveforms based on
the leading-order inspiral dynamics of the binary. In this work, we present the theoretical and numerical
foundations underpinning bhpwave. We also demonstrate how bhpwave can be used to assess the impact
of EMRI modeling errors on LISA gravitational wave data analysis. In particular, we find that for
retrograde orbits and slowly spinning black holes we can mismodel the gravitational wave phasing by as
much as ∼10 radians without significantly biasing EMRI parameter estimation.
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I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRIs) are binaries com-
posed of a compact object with mass μ ∼ 10M⊙ inspiraling
into a massive black hole with mass M ∼ 106M⊙. They
emit gravitational waves in the milliHertz (mHz) band for
months to years, making them promising sources for future
space-based detectors, such as the Laser Interferometer
Space Antenna (LISA) [1,2]. The prolonged evolution
and rich harmonic structure of an EMRI waveform com-
municates a wealth of information about the binary. Thus,
we expect LISA to measure the masses, spins, and orbital
characteristics of observed EMRIs with unprecedented
accuracy [3]. These measurements will provide novel
observations of massive black holes and their surrounding
environments, while also facilitating high-precision tests of
general relativity [4]. Extracting this information from an
observed signal, however, will likely require subradian-
accurate models of EMRI gravitational wave emission.
Due to their small mass ratios ϵ ¼ μ=M ≪ 1, EMRIs

are naturally modeled by black hole perturbation theory
and the self-force formalism [5]. Within this framework, the
small body is treated as a perturbation to a background Kerr
spacetime. The inspiral of the small body is then driven by a
gravitational self-force (GSF), which arises from the small
body interacting with its own perturbation of the spacetime
metric. The metric perturbations and the GSF are con-
structed perturbatively, order by order in ϵ, to derive the

dynamics and resulting gravitational waves radiated by
the binary.
We can understand the relative impact of these self-

forces on EMRI gravitational waveforms by expanding the
phasing of the gravitational wave signalΦGW in powers of ϵ
via a two-timescale analysis [6],

ΦGW ¼ 1

ϵ

�
Φ0PA þ ϵ1=2Φres þ ϵΦ1PA þOðϵ2Þ�: ð1Þ

The leading-order adiabatic term1 Φ0PA only depends
on the time-averaged dissipative first-order GSF, which
drives the dissipation of energy and angular momentum
from the system. The subleading first postadiabatic order
(1PA) piece Φ1PA depends on the remaining contributions
from the first-order GSF, corrections due to the spin of
the smaller body, and the time-averaged components of the
second-order GSF. The half-order correctionΦres arises due
to the presence of self-forced rθ-resonances experienced by
EMRIs undergoing eccentric and inclined inspirals [7].
EMRI gravitational models must, therefore, include the
Φ0PA, Φres, and Φ1PA effects in order to maintain subradian
phase accuracy and enable the full scientific potential of
future mHz gravitational wave observatories.
Nonetheless purely adiabatic models—which only

include Φ0PA in the gravitational wave phasing—may be
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1This term is also referred to as the zeroth postadiabatic order,
post-0 adiabatic, or 0PA term to remain consistent with the
naming conventions of the subleading terms (e.g., Φ1PA).
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suitable for detecting (and possibly characterizing) EMRI
signals [8] and are invaluable tools for developing data
analysis pipelines for EMRI search and parametrization.
They capture almost all of the phasing information and
relativistic behavior of EMRI signals, making them power-
ful probes of astrophysical parameter space. The theoretical
foundation and numerical calculation of adiabatic wave-
forms is also well understood and has been performed for
eccentric, precessing2 EMRIs [9].
However, in practice it is challenging to optimize

adiabatic EMRI waveform calculations in order to make
them efficient and accessible, so that they can be incorpo-
rated in large scale samplings of parameter space.
Currently, there is one main open-source self-force model
for producing adiabatic EMRI waveforms: the
FastEMRIWaveforms (FEW) Python package [10–13].
While this tool is the gold standard for EMRI waveform
models and data analysis, particularly due to its ability to
leverage GPUs, it is currently restricted to eccentric
binaries with nonrotating black holes. Since we expect
almost all astrophysical EMRIs to possess a rotating
massive black hole, it is important to extend models such
as FEW into this crucial area of parameter space.
Therefore we introduce bhpwave3 an open-source

Python-based waveform generator that models the adiabatic
dynamics and gravitational wave signals produced by a
small body undergoing a quasicircular4 (noneccentric,
nonprecessing) inspiral into a rotating massive black hole.
This code can model any binary with an initial orbital
separation of r0 ≤ 60M and a massive black hole spin in
the range jaj ≤ 0.9999M. (See Sec. II for exact definitions
of a and r0.) Furthermore, the model supports any mass-
ratio, though adiabatic waveform models are most relevant
for ϵ≲ 10−4. By leveraging parallel computations across
CPUs, bhpwave can evaluate years-long waveforms in
milliseconds. Even on a standard laptop, waveform eval-
uations still complete within a few hundred milliseconds to
a couple seconds.
Importantly, bhpwave does not provide the first adia-

batic calculation of quasicircular inspirals. These systems
have long been studied in the literature [14,16–19], and
other works have even modeled eccentric, equatorial and
eccentric, inclined (precessing) EMRIs for a variety of
massive black hole spins [9,20,21]. Recent works have also
produced waveforms that include the effects due to the
small body’s spin (which is a postadiabatic effect) [21,22],

while effective-one-body models have combined post-
Newtonian and GSF information to provide EMRI wave-
forms for binaries with aligned spins [23].
Despite this rich literature, it remains a practical chal-

lenge to implement an adiabatic model that is efficient,
accurate, and accessible across a majority of the parameter
space, especially for arbitrary values of the massive black
hole spin. Even when neglecting eccentricity, the inclusion
of spin presents a number of issues that are less pronounced
for binaries with nonspinning bodies, such as the larger
range of radial separations accessible to spinning binaries,
the faster frequency evolution for more deeply bound
orbits, and the higher harmonic content needed for model-
ing rapidly rotating systems. By building upon the theo-
retical foundations described in the literature, our aim for
bhpwave is to provide an efficient and accessible model
that fills in a new area of parameter space and provides an
important stepping stone for developing more advanced
waveform codes that incorporate all possible orbital effects.
To encourage the continued development of open-source

adiabatic EMRI models, this paper outlines the theoretical
and numerical foundations underpinning bhpwave. In
Sec. II we summarize the quasicircular limit of the adiabatic
approximation within the context of black hole perturbation
theory to establish methods and notation. In Sec. III we
describe both the numerical routines used to generate the
adiabatic data for bhpwave and the algorithms employed
by bhpwave to generate quasicircular inspirals, wave-
form harmonics, and gravitational signals. Additionally, we
provide validation tests and model comparisons to verify
the accuracy of bhpwave. To demonstrate the utility of
bhpwave, in Sec. IV we present example problems for
testing the impact of modeling errors on parameter biases
for LISA data analysis. Finally, we discuss further appli-
cations and possible extensions of bhpwave in Sec. V. To
support community collaboration and open-science, the
codes for calculating all of the data, performing all of the
analyses, and generating all of the plots presented in
this work are made available via the public Github
repository bhpwave-article.5 For this paper we use
the metric signature ð−þþþÞ, the sign conventions,
where applicable, of [24], and units such that G ¼ c ¼ 1.

II. ADIABATIC APPROXIMATION

We provide a brief summary of the leading-order
adiabatic approximation of a small body’s quasicircular
inspiral into a rotating massive black hole. (For extensive
discussions of the point-particle and adiabatic approxima-
tions see [9,18,25,26] and references therein.) At zeroth-
order the small body follows a circular, equatorial geodesic
in Kerr spacetime (see Sec. II A). Due to its mass and
motion, the small body excites gravitational radiation.

2In a frame where the massive black hole’s angular momentum
is held fixed, precession is instead described in terms of the
inclination of the small body relative to the equatorial plane of the
more massive black hole.

3https://bhpwave.readthedocs.io.
4By “quasicircular,” we mean that, at any moment of time, the

inspiral motion is tangent to a circular geodesic as described in
Sec. II. This is a consequence of the fact that in the adiabatic limit,
circular orbits remain circular, i.e., eðtÞ ¼ OðϵÞ [14,15]. 5https://github.com/znasipak/bhpwave-article.
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At leading-order this radiation is captured by nonzero
perturbations to the Weyl scalar ψ4, which we construct
via the Teukolsky equation (see Sec. II B). The resulting
flux of energy dissipated via gravitational wave emission—
which we compute from ψ4—then drives the decay of the
small body’s orbital energy and thus the adiabatic inspiral
(see Sec. II C). From this inspiral, we then construct the
adiabatic gravitational waveform (see Sec. II D).

A. Circular, equatorial geodesics

Consider a small body with mass μ orbiting in a Kerr
spacetime with metric gμν, which, in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ, is defined by the line element,

ds2 ¼ −
�
1−

2Mr
Σ

�
dt2 −

4Marsin2 θ
Σ

dtdϕþ Σ
Δ
dr2

þΣdθ2 þ sin2 θ

�
r2 þ a2 þ 2Ma2rsin2 θ

Σ

�
dϕ2; ð2Þ

where a is the Kerr spin parameter, M is the Kerr mass
parameter, Δ ¼ r2 − 2Mrþ a2, and Σ ¼ r2 þ a2cos2 θ.
The mass μ follows a geodesic zμp ≐ ðtp; rp; θp;ϕpÞ that

maintains a constant Boyer-Lindquist radius rp ¼ r0 and is
restricted to the equatorial plane θp ¼ π=2 (with respect to
the angular momentum of the Kerr black hole). Due to the
Killing symmetries of Kerr spacetime, this motion pos-
sesses three constants of motion: the orbital energy
E ¼ −ut, the z-component of the orbital angular momen-
tum Lz ¼ uϕ, and the Carter constant Q ¼ Qμνuμuν [see
Eq. (8) in [27] for an explicit definition of Qμν], which are
related to a and r0 by

E ¼ 1 − 2v2 � âv3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2 � 2âv3

p ; ð3aÞ

Lz ¼ �M
1 ∓ 2âv3 þ â2v4

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2 � 2âv3

p ; ð3bÞ

Q ¼ 0; ð3cÞ

where â≡ a=M, v2 ¼ M=r0, and þ (−) refers to prograde
(retrograde) orbits.
For circular orbits, the four-velocity uα ¼ dzαp=dτ ≐

ðωt; 0; 0;ωϕÞ is constant along the geodesic, where τ is
the proper time of the small body. The rates at which
(Boyer-Lindquist) time and the azimuthal angle accumulate
with τ are given by

ωt ¼
gϕϕE þ gtϕLz

g2tϕ − gϕϕgtt
¼ 1� âv3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3v2 � 2âv3
p ; ð4aÞ

ωϕ ¼ −
gtϕE þ gttLz

g2tϕ − gϕϕgtt
¼ � v3

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2 � 2âv3

p ; ð4bÞ

respectively. Straightforward integration then yields

tpðτÞ ¼ ωtτ; rpðτÞ ¼ r0; θpðτÞ ¼
π

2
; ϕpðτÞ ¼ ωϕτ:

Combining these results, we can reexpress the evolution of
the orbital phase in terms of coordinate time, ϕpðtÞ ¼ Ωpt,
where the geodesic orbital frequency is given as

Ωp ¼ ωϕ

ωt
¼ � v3

Mð1� âv3Þ : ð5Þ

Finally, the innermost stable circular orbit (ISCO) is
defined in terms of the minimum radius,

rISCO ¼ 3þ z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − z1Þð3þ z1 þ 2z2Þ

p
;

z1 ¼ 1þ ð1 − â2Þ1=3ðð1 − âÞ1=3 þ ð1þ âÞ1=3Þ;
z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3â2 þ z21

q
; ð6Þ

and maximum frequencyMΩISCO¼r3=2ISCOðM3=2þ âr3=2ISCOÞ−1.

B. Gravitational wave fluxes

Next we consider how the small body’s motion excites
perturbations to the background spacetime. Using the
Teukolsky formalism [28], we describe these perturbations
in terms of the Weyl scalar ψ4, which vanishes in an
unperturbed Kerr spacetime and captures 2 of the 10
gravitational degrees of freedom of the metric perturbation.
Near infinity, these 2 degrees of freedom can be related to
hþ and h× [26], the two polarizations of the gravitational
strain, via

ψ4ðr → ∞Þ ≃ 1

2

�
ḧþ − iḧ×

�
: ð7Þ

At adiabatic order, ψ4 satisfies the spin-weight s ¼ −2
Teukolsky equation [Eq. (4.7) in [28] ] with a point-particle
source (see Sec. II of [29]). The solution is amenable to
separation of variables in the frequency-domain, leading to
the mode-sum representation,

ψ4 ¼ ρ4
X∞
j¼2

Xj

m¼−j
R−2jmðrÞS−2jmðθ; γÞeimϕe−imΩpt; ð8Þ

where ρ ¼ −ðr − ia cos θÞ−1, S−2jmðθ; γÞ is the spin-
weighted spheroidal harmonic of spin-weight s ¼ −2 and
spheroidicity γ ¼ amΩp [which satisfies Eq. (2.7) in [30] ],
and R−2jmðrÞ is the s ¼ −2 radial Teukolsky solution
[which satisfies Eq. (3.12) in [26] ].
The spin-weighted spheroidal harmonics can be con-

veniently represented as a rapidly converging series of spin-
weighted spherical harmonics YslmðθÞeimϕ [18],
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Ssjmðθ; γÞ ¼
X∞

l¼lmin

blsjmðγÞYslmðθÞ; ð9Þ

where lmin ¼ max½jmj; jsj�. This decomposition is particu-
larly useful because we can then reproject ψ4 onto an
angular basis that is independent of frequency,

ψ4 ¼ ρ4
X∞
l¼2

Xl
m¼−l

X−2lmðrÞY−2lmðθÞeimðϕ−ΩptÞ; ð10Þ

where

X−2lmðrÞ ¼
X∞
j¼lmin

bl−2jmðγÞR−2jmðrÞ: ð11Þ

Furthermore, the spin-weighted spherical harmonics form a
complete and orthonormal set of basis functions on the unit
sphere (for the same value of spin-weight),

Z
YslmYsl0m0eiðm−m0ÞϕdΩ ¼ δll0δmm0 : ð12Þ

For our point-particle source on a circular geodesic, the
radial mode function R−2jmðrÞ have the asymptotic form,

R−2jmðr → rþÞ ≃ ZH
−2jmΔ2e−imkpr� ; ð13aÞ

R−2jmðr → ∞Þ ≃ ZI
−2jmr

3eþimΩpr� ; ð13bÞ

where kp ¼ Ωp −Ωþ, the horizon frequency Ωþ ¼
a=ð2MrþÞ, and the tortoise coordinate r� is given by the
differential relation dr�=dr ¼ ðr2 þ a2Þ=Δ. The ampli-
tudes ZH=I

−2jm are often referred to as Teukolsky amplitudes
and are constructed via the standard Green’s function
method, also known as the method of variation of param-
eters (see Sec. III A in [9] or [26] for further details).
From (11), we see that X−2lm then possesses the same
asymptotic behavior as R−2lm in (13) but with modified
amplitudes,

ZH=I
−2jm → XH=I

−2lm ¼
X∞
j¼lmin

bl−2jmðγÞZH=I
−2jm: ð14Þ

As a final note, because ZH=I
−2jm and XH=I

−2lm depend on the
source motion, we can parametrize both amplitudes in
terms of the orbital constants, e.g., XH=I

−2lm ¼ XH=I
−2lmðΩp; aÞ.

Upon obtaining ψ4, we can then calculate the flux of
energy that ψ4 radiates away to infinity ĖI and down the
black hole horizon ĖH [30],

ĖI ¼ 1

4π

X
jm

α∞jmjZI
−2jmj2; ð15aÞ

ĖH ¼ 1

4π

X
jm

αHjmjZH
−2jmj2; ð15bÞ

where

αIjm ¼ 1

m2Ω2
p
;

αHjm ¼ 256m2kpΩpð2MrþÞ5ðm2k2p þ 4ϵ2Þðm2k2p þ 16ϵ2Þ
jC2jmj2

;

ϵ ¼ ðrþ −MÞ=ð2MrþÞ, and the Teukolsky-Starobinsky
constant is given by

jC2jmj2 ¼ Λ2
2jmðΛ2jm − 2Þ2 þ 8am2Ωpð1 − aΩpÞ

× ðΛ2jm − 2Þð5Λ2jm − 4Þ þ 48ðamΩpÞ2
×
�
4ðΛ2jm − 1Þ þ 3mð1 − aΩpÞ

�
: ð16Þ

Note that the Chandrasekhar eigenvalue Λsjm ¼ λsjm þ
sðsþ 1Þ is invariant under the interchange s → −s [31].
The angular momentum fluxes are then related to the
energy fluxes by L̇I=H

z ¼ Ω−1ĖI=H, leading to the total
gravitational wave fluxes,

ĖGW ¼ ĖI þ ĖH; L̇GW
z ¼ L̇I

z þ L̇H
z : ð17Þ

C. Adiabatic quasicircular inspirals

Due to gravitational radiation-reaction, the small body
does not remain on a circular geodesic. The binary radiates
gravitational waves and the small body reacts to the
radiative losses of energy and angular momentum by
undergoing a quasicircular inspiral into the rotating mas-
sive black hole. We can parametrize this motion in terms of
the time-evolving orbital energy EðtÞ and orbital phase
ΦðtÞ of the inspiraling body, which at leading order is given
by the equations of motion [5,9],

dE
dt

¼ −ϵFE þOðϵ2Þ; dΦ
dt

¼ ΩþOðϵÞ: ð18Þ

Because Ė ∼ ϵ, the orbital energy evolves gradually and the
evolution can be understood in terms of a time-averaged
osculating geodesics method [32]. At any time t0, the
motion is approximately tangent to a geodesic with energy
Eðt0Þ ≈ E and frequency Ωðt0Þ ≈ Ωp. The small body then
evolves from geodesic to geodesic based on its gravita-
tional wave emission until the body approaches the ISCO,
at which point the approximation breaks down and we end
the evolution.
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In effect, at leading order we can express the orbital
frequency Ω in terms of the orbital energy E using
Eqs. (3) and (5), but with E and Ωp replaced by E and Ω,
respectively. Furthermore, the forcing term FE is con-
structed using flux-balance arguments [25,33,34]: for a
point-particle on a circular geodesic the loss of orbital
energy is balanced by the gravitational wave energy flux
ĖGW, leading to the relation ϵFE ¼ ĖGW.
As seen from Eq. (18), the time it takes the system to

undergo this inspiral scales with the radiation reaction
timescale T insp ∼ Trr ¼ Mϵ−1. Similarly, the total accumu-
lated phase scales like ΔΦinsp ∼ ϵ−1, thus giving the
leading-order phase contribution to the gravitational wave
signal, as described in Eq. (1).

D. Time domain adiabatic waveform

After determining the adiabatic inspiral of the smaller
body, we generalize (10)—our geodesic expression for
ψ4—by once again leveraging the fact that at any moment
of time the motion is approximately tangent to a geodesic.
Consequently, the field amplitudes are promoted from
constants to quantities that slowly evolve with frequency
and time XH=I

−2lmðΩp; aÞ → XH=I
−2lmðΩðtÞ; aÞ, while the field’s

phase rapidly accumulates in proportion to the orbital
phase Ωpt → ΦðtÞ. As a result, the adiabatic waveform
h ¼ hþ − ih× takes the form,

hðu; r; θ;ϕÞ ¼ μ

r

X
lm

hlmðu; r; θ;ϕÞ; ð19aÞ

hlmðu; r; θ;ϕÞ ¼ BlmðuÞY−2lmðθÞeim½ϕ−ΦðuÞ�; ð19bÞ

where, assuming r ≫ M, the waveform amplitudes are
given by

BlmðuÞ ¼ −2
XI
−2lmðΩðuÞ; aÞ
m2Ω2ðuÞ ¼ Almeiψlm: ð20Þ

For later convenience we introduce the magnitude of the
waveform amplitudes Alm ¼ jBlmj and the phase of the
complex amplitudes ψlm, both of which depend on ΩðuÞ
and a. Furthermore, rather than using the conventions
of [9,13], we follow [5] and parametrize the adiabatic
waveform in terms of the outgoing time-coordinate
u ¼ t − r�. As a result, our expression is consistent with
the adiabatic expression obtained from a full two-timescale
analysis, and if we hold the orbital constants and frequen-
cies fixed, (19) reduces to a geodesic “snapshot” waveform
obtained via (7) and (10). In practice, when imple-
menting (19) in bhpwave, we replace u with Boyer-
Lindquist time t to match the FEW model [which is
described by (10) in [13] ]. This is equivalent to para-
metrizing all of our waveforms with an initial time t0 ¼ r�.
Therefore, we replace uwith t for the remainder of this work.

E. Frequency domain waveforms

The amplitude and phase decomposition of (19) makes
it particularly straightforward to represent our waveforms
in the frequency domain via the stationary phase approxi-
mation [9],

h̃ðfÞ ¼
Z

∞

−∞
hðtÞe2πiftdt ¼ μ

r

X
lm

h̃lmðfÞ; ð21aÞ

h̃lmðfÞ ≈ B̃lmðfÞY−2lmei½2πftpðfÞþmðϕ−Φ½tpðfÞ�Þ�; ð21bÞ

where

B̃lmðfÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

imΩ̇½tpðfÞ�

s
BlmðtpðfÞÞ; ð22Þ

and tpðfÞ refers to the times at which the binary emits
gravitational waves with frequency f. For each ðl; mÞ-
mode, time and frequency are (approximately) related by

2πf ≈mΦ̇ðtÞ ¼ mΩðtÞ; ð23Þ

which we can invert to obtain tpðfÞ for individual har-
monics. Both (22) and (23) neglect terms related to ψ̇lm and
ψ̈lm, which introduces an OðϵÞ error to the phase and an
Oðϵ1=2Þ error to the amplitude. (See Appendix A for further
details.) Since the amplitudes scale as B̃lmðfÞ ∼ 1=

ffiffiffi
ϵ

p
, it is

safe to neglect these terms for small mass-ratios.

F. Solar system barycenter waveforms

Up to this point, waveforms have been constructed in
the source frame, with our Boyer-Lindquist coordinate
system centered on the massive black hole. To get the
observed waveform in the solar system barycenter (SSB)
frame hSSB, we adopt the same conventions as the FEW
model and make use of the transformation provided in [13].
In this frame, a generic EMRI system is parametrized by
12 intrinsic parameters ðM; μ; a; a⃗2; p0; e0; x0;Φr0;Φθ0;
Φϕ0Þ—where a⃗2 is the spin-vector of the smaller body;
p0, e0, and x0 are respectively the initial semilatus rectum,
orbital eccentricity, and projection of the orbital inclination;
and Φr0, Φθ0, Φϕ0 are respectively the initial radial, polar,
and azimuthal phases—and by five extrinsic parameters
ðdL; qS;ϕS; qK;ϕKÞ—where dL is the luminosity distance
to the source EMRI, qS and ϕS are the polar and azimuthal
sky positions of the source, and qK and ϕK are the polar and
azimuthal angles defining the orientation of the massive
black hole’s axis of rotation. In our simplified quasicircular
setup, five of the intrinsic parameters are constrained to the
values a⃗2 ¼ 0⃗, e0 ¼ 0, jx0j ¼ 1,Φr0 ¼ Φθ0 ¼ 0, while two
of the remaining free intrinsic parameters are given by
Φϕ0 ¼ Φð0Þ and p0 ¼ r0.
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The extrinsic parameters are related to Boyer-Lindquist
ðr; θ;ϕÞ via

r ¼ dL; ð24aÞ

cos θ ¼ − cos qS cos qK

− sin qS sin qK cosðϕK − ϕSÞ; ð24bÞ

ϕ ¼ −
π

2
: ð24cÞ

The frame transformation also rotates the polarization basis
by the polarization angle ψ [13]. As a result, hSSB is related
to h, the strain in the source frame, via

hSSB ¼ e2iψh ¼ D2
ψ

jDψ j2
h ¼ Dψ

D�
ψ
h; ð25Þ

where Dψ is given by

Dψ ¼ cos qS sin qK cosðϕK − ϕSÞ − sin qS cos qK

þ i sin qK sinðϕK − ϕSÞ; ð26Þ

and a� denotes the complex conjugate of a. Note that there
are two cases in which the preferred wave basis in [13]
is no longer uniquely defined: ðqK;ϕKÞ ¼ ðqS;ϕSÞ and
ðqK;ϕKÞ ¼ ðπ − qS; π þ ϕSÞ. In these instances the SSB
and source frames are aligned or antialigned with one
another, leading to Dψ ¼ 0 and invalidating the last equal-
ity in (25). Therefore, we set hSSB ¼ h if ðqK;ϕKÞ ¼
ðqS;ϕSÞ or ðqK;ϕKÞ ¼ ðπ − qS; π þ ϕSÞ.

III. NUMERICAL METHODS

In the following section we discuss the numerical
implementation of bhpwave, in particular our process
for solving the equations of motion (Secs. III A and III B),
constructing the harmonic amplitudes of the gravitational
wave modes (Sec. III C), and evaluating the total waveform
signal (Sec. III D). Finally we compare our model,
bhpwave, to the FastEMRIWaveform (FEW) model to
test its accuracy (Sec. III E).

A. Equations of motion and the numerical domain

To simplify the calculation of our inspirals, we introduce
the dimensionless and rescaled orbital quantities,

ť ¼ μt
M2

; Φ̌ ¼ μΦ
M

; Ω̂ ¼ MΩ; â ¼ a
M

: ð27Þ

A hat represents a quantity that is made dimensionless,
while a check represents a quantity that is dimensionless
and scaled by the mass ratio. We then reparametrize the
equations of motion in terms of the (dimensionless) orbital
frequency, yielding

dΩ̂
dť

¼ −
�
∂EΩ̂ðΩ̂; âÞFEðΩ̂; âÞ

�
; ð28aÞ

dΦ̌
dť

¼ Ω̂; ð28bÞ

for time-domain trajectories, and

dť

dΩ̂
¼ −

�
∂EΩ̂ðΩ̂; âÞFEðΩ̂; âÞ

�−1; ð29aÞ

dΦ̌
dΩ̂

¼ −Ω̂
�
∂EΩ̂ðΩ̂; âÞFEðΩ̂; âÞ

�−1; ð29bÞ

for the frequency domain. The Jacobian ∂EΩ̂ is analytically
obtained from (3) and (5), while we construct FE numeri-
cally via (15).
In this form, the equations of motion no longer depend

on the masses of the binary, just the dimensionless orbital
frequency and dimensionless Kerr spin parameter. By
parametrizing in terms of frequency in (29), we decouple
the evolution in time and phase, leading to solutions ťðΩ̂; âÞ
and Φ̌ðΩ̂; âÞ. In this form, it is straightforward to construct
the frequency domain waveforms via Eqs. (21)–(23).
Therefore, we first interpolate the data FEðΩ̂; âÞ and

then solve the equations of motion for the rescaled
frequency-domain trajectories ťðΩ̂; âÞ and Φ̌ðΩ̂; âÞ. We
set the initial conditions ťðΩ̂ISCOÞ ¼ Φ̌ðΩ̂ISCOÞ ¼ 0. Thus
all time and phase values are ≤0. We then solve for the
time-domain trajectories Ω̂ðť; aÞ and Φ̌ðť; aÞ. Data can be
precomputed and stored on a numerical grid spanning the
domains of ðâ; Ω̂Þ or ðâ; ťÞ. From these grids, we construct
bicubic spline interpolants to represent the trajectories,
which can be rapidly evaluated to get any quasicircular
inspiral within our domain. For this work, we set the
boundaries of our grid at â∈ ½−âmax;þâmax� and Ω̂ ∈
½Ω̂min; Ω̂ISCO� with âmax ¼ 0.9999 and Ω̂min ¼ 2 × 10−3

(which corresponds to r0 ≈ 60M). This domain is plotted
in Fig. 1.
Note that, due to the one-to-one mapping between time

and frequency, we could calculate the frequency-domain
trajectories and then invert them to get the time-domain
trajectories. In practice, however, we create four separate
spline representations for ťðΩ̂; âÞ, Φ̌ðΩ̂; âÞ, Ω̂ðť; aÞ, and
Φ̌ðť; aÞ. This is much more computationally efficient then
inverting one set of solutions through root-finding methods
[e.g., Ω̂ðť0Þ ¼ Root½ťðΩ̂Þ − ť0�] and avoids the accumula-
tion of interpolation errors when taking the composition of
two splines [e.g., Φ̌ðť0Þ ¼ Φ̌½Ω̂ðť0Þ��.

B. Interpolated fluxes and trajectories

There are two main challenges to constructing FEðΩ̂; âÞ
via numerical interpolation: (1) the lower frequency
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boundary Ω̂ ¼ Ω̂ISCO has a particularly strong dependence
on the black hole spin as highlighted in Fig. 1; and (2) FE,
ť, and Φ̌ rapidly accumulate as Ω̂ → Ω̂ISCO and â → 1 as
shown in Fig. 2. A simple uniform sampling in â and Ω̂ −
Ω̂ISCO could lead to substantial errors in our interpolating
functions due to the large magnitudes of the higher-order
derivatives with respect to â and Ω̂.
Consequently, we alter our parametrization to mitigate

errors in our numerical spline interpolations. We first
ameliorate the growth in flux, time, and phase by rescaling
FE, ť, and Φ̌ by their frequency-dependence at leading
post-Newtonian order,

F PN
E ¼ Ω̂10=3; ð30Þ

Φ̌PN ¼ Ω̂−5=3
ISCO − Ω̂−5=3; ð31Þ

ťPN ¼ Ω̂−8=3
ISCO − Ω̂−8=3; ð32Þ

resulting in the normalized functions,

FN ¼ FE

F PN
E

; Φ̌N ¼ Φ̌
Φ̌PN þ δ

; ťN ¼ ť
ťPN þ δ

; ð33Þ

which are plotted in the middle panel of Fig. 3. We
introduce the δ ¼ 10−6 offset to avoid division by zero
as Ω̂ → Ω̂ISCO. As a result of this shift, the normalized
time and phase data still satisfy the initial conditions
ťNðΩ̂ISCOÞ ¼ Φ̌NðΩ̂ISCOÞ ¼ 0. Next, motivated by post-
Newtonian and near-extremal expansions of the orbital

quantities, we introduce x ¼ Ω̂1=3 and y ¼ ð1 − âÞ1=3, from
which we define the final sampling parameters,

α2 ¼ xISCO − x
xISCO − xmin

; χ2 ¼ y − y−
yþ − y−

; ð34Þ

where xmin ¼ Ω1=3
min, xISCO ¼ Ω1=3

ISCO, and y� ¼ ð1� amaxÞ1=3.
We square the left-hand side of (34) to further smooth out
the behavior near the ISCO and maximal spin values. This
can be seen in Fig. 4, where we plot the variation in ť and Φ̌
with respect to α and χ.
After choosing this parametrization, we solve for the

fluxes ĖGW using the Teukolsky solver provided in the
PYBHPT Python package.6 Flux data are calculated with a
requested precision of 10−10. We precompute ĖGW, from
which we get FE, on a fixed grid in the ðα; χÞ domain using
129 equally spaced samples in χ and 257 equally spaced
samples in α. A downsampling of these points is mapped to
the ðâ; Ω̂Þ domain in Fig. 1 to illustrate the concentration of
sampling points towards the ISCO and near-extremal spins.
From this grid we construct the interpolated function
F I

Nðα; χÞ, then solve (29) for ť and Φ̌ on a more densely
sampled 513 × 513 grid in ðα; χÞ. We then assemble the
interpolated functions ťINðα; χÞ and Φ̌I

Nðα; χÞ. Note that we
explicitly differentiate between numerical solutions and
their interpolated approximants by labeling interpolated
functions with the superscript I. Furthermore, all splines are
generated by imposing the Eð3Þ boundary conditions of
Behforooz and Papamichael [35,36].
Next, we construct numerical interpolants for Ω̂ðť; âÞ and

Φ̌ðť; âÞ. Because ťINðα; χÞ is not monotonic with respect to
α, we cannot simply parametrize Ω̂ and Φ̌ in terms of ťN .
Instead, we introduce the alternative time-parametrization,

γ6ðΩ̂; âÞ ¼ ln
�
1 − ťðΩ̂; âÞ�; ð35Þ

where we take the logarithm to tame the rapid growth in ť
while preserving its monotonic relationship with Ω̂.
The choice of γ6 was determined through numerical
experimentation and helps to smooth out the behavior as
t → 0 and γ → 0. From this we define the renormalized
parameter,

βðΩ̂; χÞ ¼ γ
�
Ω̂; âðχÞ�
γmax

; γmax ¼ γ
�
Ω̂min;−amax

�
; ð36Þ

and only focus on the interval β∈ ½0; 1�. Limiting β does cut
off some low-frequency values in our new domain, since
βðΩ̂min; χ < 1Þ > 1. However, in practice this choice has
a minimal impact: our frequency boundary is truncated at
Ω̂ ≃ 0.00206 instead of Ω̂ ¼ Ω̂min ¼ 0.002. Note that we

FIG. 1. A 32 × 64 grid in ðα; χÞ mapped to the ðâ; Ω̂Þ domain.
Each dot represents a sampled point in the parameter space.
These points are equally spaced in α and in χ, but cluster around
Ω̂ ¼ Ω̂ISCO and â ¼ âmax. The shading of each point reflects the
relative density of points in the ðâ; Ω̂Þ domain, while the dashed
lines represent the domain boundaries. Note that this is the
downsampled version of the numerical grid used for interpolating
flux and trajectory information within bhpwave.

6This code is available at github.com/znasipak/pybhpt.
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could extend our boundary out to Ω̂ ¼ Ω̂min by redefining
γmaxðâÞ ¼ γðΩ̂min; âÞ, but this functional dependence adds
another layer of computational complexity when relating Ω̂
and β. To avoid unnecessary computational costs, we use
the more simple transformation in (36).
We then evaluate the time-domain equations of motion

(28) and store solutions on an uniform 513 × 513 grid in
ðβ; χÞ. Because we use α in place of Ω̂ when solving (28),

we must excise β ¼ 0 (ť ¼ 0). The solution is trivially α ¼
Φ̌ ¼ 0 at β ¼ 0, but dα=dt diverges at this point and thus
typical numerical methods for solving ordinary differential
equations fail at this point. Therefore, we instead solve the
equations of motion by starting one grid point away from
β ¼ 0. To incorporate the correct initial conditions, we use
the Brent root-solving method to invert ťðΩ̂; aÞ and then
Φ̌ðΩ̂; aÞ. Once we have solutions, we create the bicubic

FIG. 3. The normalized energy flux FN (left panel), normalized orbital phase Φ̌N (middle panel), and normalized orbital time to
merger ťN as a function of normalized distance from the ISCO frequency Ω̂ISCO in frequency space. We rescale each vertical axis by the
leading post-Newtonian coefficient. Thus all curves asymptote to one at low frequencies.

FIG. 4. The normalized energy flux FN (left panel), normalized orbital phase Φ̌N (middle panel), and normalized orbital time to
merger ťN as a function of the final grid parameters α and χ. The values of χ correspond to the same values of â used in Fig. 2.

FIG. 2. The energy flux FE (left panel), (rescaled) orbital phase Φ̌ (middle panel), and (rescaled) orbital time to merger ť as a function
of (dimensionless) orbital frequency Ω̂. Different colors (shades) correspond with different values of â. Therefore, lower spins terminate
at lower ISCO frequencies. Note that the spin has a very small effect on the flux.
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spline αIðβ; χÞ, which we can transform to get Ω̂ðť; âÞ. For
the phase, we introduce a new renormalization that does not
depend on Ω̂,

Φ̌Nð2Þ ¼ ln
�
1 − Φ̌

�
; ð37Þ

and create the interpolant Φ̌I
Nð2Þðβ; χÞ, which we can then

transform to get Φ̌ðť; âÞ.
To evaluate the fidelity of our interpolated trajectories,

we perform a series of self-consistency checks and com-
parisons, which are discussed in full detail in Appendix B.
We find that our interpolated fluxes have fractional errors
<10−8 over the entire domain, and they agree with inde-
pendent flux calculations [19,37] provided within the
“Circular Orbit Self-force Data” repository on the Black
Hole Perturbation Toolkit [38].7 This high level of accuracy
is achieved, in part, by our choice of the Eð3Þ spline
boundary condition, which improves the precision of our
flux interpolant by several orders of magnitude when
compared to the more common “natural” or “not-a-knot”
boundary conditions (see Appendix B 1).
Furthermore, we find that the interpolated frequency-

domain quantities, ťIN and Φ̌I
N , possess absolute errors

<5 × 10−7, and the derivatives of the interpolated splines
satisfy the frequency-domain equations of motion (29) to a
precision ∼10−6. Likewise, αI has estimated fractional
errors <5 × 10−8 and Φ̌I

Nð2Þ has estimated absolute

errors <5 × 10−8.
Next we quantify the impact of these interpolation errors

on the gravitational wave phases. Recall from (19) that the
phase of each gravitational wave mode hlm is proportional
to the orbital phase Φ. Therefore, the accuracy of the
gravitational wave phases is set by the accuracy of Φ. To
quantify this accuracy, we first calculate the orbital phase

accumulated over an inspiral with initial orbital frequency
Ω̂0 using our interpolated data,

ΔΦI ¼ 1

ϵ

	
Φ̌I

�
ť0 þ

ϵT
M

; â

�
− Φ̌Iðť0; âÞ



; ð38Þ

where ť0 ¼ ťðΩ̂0; âÞ and T is the duration of the observed
inspiral. Note that Φ̌I is reconstructed from Φ̌I

Nð2Þ via (37).
We then compare ΔΦI to the accumulated orbital phase
ΦODE obtained by directly integrating (28) with the initial
conditions Ω̂ðť ¼ 0Þ ¼ Ω̂0 and Φ̌ðť ¼ 0Þ ¼ 0. The inter-
polation error is then estimated by the difference δΦI ¼
jΔΦI −ΦODEj. Next, we find the maximum value of δΦI

for a range of â values and initial orbital frequencies Ω̂0.
We denote this maximized difference as jjδΦIjjâ;Ω̂. In
Fig. 5 we plot jjδΦIjjâ;Ω̂ as a function of mass-ratio 10−7 ≤
ϵ ≤ 10−2 and massive black hole mass 104 ≤ M ≤ 108 for
binaries observed for T ¼ ½0.5; 2; 5; 10; 25� years. We
exclude binaries with secondary masses μ < M⊙. We
measure maximum phase errors of 0.0097, 0.0186,
0.0307, 0.0430, and 0.0642 for the observation periods
0.5, 2, 5, 10, and 25 years, respectively. These phase errors
are reduced by about a factor of 2 if we only focus on
inspirals with initial frequencies Ω̂ ≥ 0.013 (corresponding
to r0 ≲ 18M) and binaries with smaller bodies of mass
μ ≥ 2M⊙. Because the ðl; mÞ ¼ ð2; 2Þ mode dominates
each gravitational wave signal, 2ΔΦI provides a reasonable
estimate of the gravitational wave phase error. Based on this
approximation, our interpolation errors most likely meet
the subradian gravitational wave phase accuracy require-
ments for realistic space-based mHz gravitational wave
observations, which we further verify in Sec. IV.

C. Mode amplitudes

Similar to the trajectories, we presample the complex
waveform amplitudes Blm on a fixed 65 × 65 grid in ðα; χÞ.
To optimize the accuracy of our amplitude interpolation, we

FIG. 5. The logarithm of the maximized phase difference log jjδΦIjjâ;Ω̂ as described in Sec. III B for different observation periods Tobs.
We can see that for any observation period, all the way up to 25 years, our phase spline maintains subradian phase accuracy when
compared to direct numerical integration of the orbital phase.

7Note that the flux results in the Toolkit repository are not
accurate to all reported digits for â ≥ 0.9 and 2M ≲ r0 ≲ 4M, as
discussed in B 1.
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decompose Blm into its phase ψlm and the log of its real
amplitude lnAlm. We then interpolate these quantities
independently. We generate mode data for l ≤ 15 and
0 < m ≤ l. Even with the reduced sampling, the interpo-
lation errors introduce estimated fractional errors <3 × 10−5

in Alm and absolute errors <2 × 10−5 for ψlm, as discussed
in Appendix B.

The amplitudes display a number of interesting
properties, particularly as we move into the near-horizon
extremal Kerr (NHEK) regime, i.e., 1 − â2 ≪ 1 and
ðr − rþÞ=rþ ≪ 1. For â≲ 0.995 the amplitudes peak at
the ISCO and decay with the orbital frequency. For â ≳
0.995 the amplitudes can instead peak well before reaching
the ISCO and then decay as the orbital frequency increases.
This behavior has been reported in previous investigations
of extremal Kerr black holes [19,39]. For the dominant l ¼
m ¼ 2 mode, the waveform amplitudes reach their maxi-
mum magnitudes near the stationary surface of the outer
ergosphere rþE ¼ 2M, as demonstrated in the top panel of
Fig. 6. The modes do not have the same turnover behavior
for l ≠ m, but instead plateau around rþE before rising again
as they approach the ISCO, which is highlighted in the
middle panel of Fig. 6 for all m ¼ 2 modes. This behavior
is due to our reprojection of the ðj; mÞ-modes of a spin-
weighted spheroidal harmonic basis to the ðl; mÞ-modes of
a spherical basis, given in (11). As demonstrated in [39],
larger spheroidal j modes (for a fixed m) will decay
more rapidly as one approaches the ISCO in the NHEK
regime. Therefore, in the spherical ðl; mÞ-basis, the near-
ISCO behavior is dominated by the contribution from
the modes around j ¼ m, even when l ≫ m. As a result,
for l > m the spherical-spheroidal mixing with many
j ∼m modes prevents the turnover and decay of Alm
as Ω → ΩISCO.
Finally, we consider the relative power between the l ¼

m ¼ 2 and l ¼ m ¼ 15 modes for a given orbital fre-
quency. In the bottom panel of Fig. 6, we plot the Al;m¼l

amplitudes as functions of r0 for different values of â.
We see that jA15;15=A2;2j2 ≲ 5 × 10−4 for all orbital fre-
quencies and spins, placing a conservative upper bound for
the relative power contributed by the l ¼ m ¼ 15 mode at
a fixed frequency. For most year-long EMRI signals, the
relative total power (i.e., the power integrated across
the entire frequency evolution of an inspiral) contributed
by the l ¼ m ¼ 15 mode is ≲10−6, as we demonstrate in
the following section. Therefore, we find it unnecessary to
include higher harmonic contributions beyond l ≤ 15.

D. Waveform evaluation and mode selection

Given a fixed time step dt, signal duration T, and binary
source parameters (e.g., M, μ, r0, dL), time-domain wave-
forms are constructed using (19), (24), and (25), with all
functions evaluated from the trajectory and mode amplitude
splines outlined above. We simplify the sum over ðl; mÞ-
modes using Bl−m ¼ ð−1ÞlB�

lm and the identities of spin-
weighted spherical harmonics,

Ysl−mðθÞ ¼ ð−1ÞmY−slmðθÞ; ð39aÞ

¼ ð−1ÞlYslmðπ − θÞ; ð39bÞ

FIG. 6. Waveform amplitudes Al;m as a function of the radius of
the orbit r0=M. The top panel plots Al¼2;m¼2 for different Kerr
spin parameters â ≥ 0.9. The middle and bottom panels plot
Al;m¼2 and Al;m¼l, respectively, for â ¼ 0.9999 and 2 ≤ l ≤ 15.
In the two lower panels, the mode magnitudes are ordered
inversely with l. In other words, the l ¼ 2 mode is the dominant
mode, the l ¼ 3 is the next most dominant mode, then l ¼ 4,
l ¼ 5, and so on, with l ¼ 15 being the mode with the smallest
magnitude (and darkest solid line).
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leading to the reduced sums,

hþðtÞ ¼ þ
X∞
l¼2

Xl
m¼1

AlmY
þ
lm cosðψlm þm½ϕ −Φ�Þ; ð40aÞ

h×ðtÞ ¼ −
X∞
l¼2

Xl
m¼1

AlmY×
lm sinðψlm þm½ϕ −Φ�Þ; ð40bÞ

where Alm ¼ μAlm=r and

Yþ=×
lm ðθÞ ¼ Y−2lmðθÞ � Y−2lmðπ − θÞ; ð41aÞ

¼ Y−2lmðθÞ � ð−1ÞlþmYþ2lmðθÞ: ð41bÞ

The truncation of the ðl; mÞ-mode sum is determined by
the power in each harmonic mode,

Plm ¼
Z

T

0

�jAlmðtÞYþ
lmj2 þ jAlmðtÞY×

lmj2
�
dt; ð42aÞ

≈
�jYþ

lmj2 þ jY×
lmj2

�XN
n¼1

jAlmðΩ̂nÞj2Δtn; ð42bÞ

where Ω̂n ¼ Ω̂ðt ¼ 0Þ þ nΔΩ̂, with orbital frequency
spacing ΔΩ̂ ¼ ½Ω̂ðt ¼ TÞ − Ω̂ðt ¼ 0Þ�=N, time spacing
Δtn ¼ tðΩ̂nÞ − tðΩ̂n−1Þ, and signal duration T. In this
work, we find that N ¼ 500 sufficiently approximates the
mode power. Additionally, we find that an equal spacing in
frequency space is more numerically efficient than an equal
sampling in time. We include all ðl; mÞ-modes that satisfy
the selection criteria,

Plm > ϵmode ×
Xl
l0¼2

Xl0
m0¼1

Pl0m0 ; ð43Þ

for a user-specified threshold ϵmode. Rather than computing
the power for all of the modes and then removing the modes
that do not satisfy (43), we instead perform a serial search.
First we find all modes that meet (43) for m ≤ 2. We then
increase m to m ¼ 3 and increment over l, beginning with
l ¼ m until (43) is no longer satisfied. We repeat this
process of increasing m and then l, until either Pmm no
longer satisfies (43) or m > lmax ¼ 15.
In Table I, we report the number of selected modesNmode

for a variety of inspirals and threshold values. As expected,
varying ϵmode has the most significant impact on the
number of modes included. Additionally, increasing the
large mass-ratio M=μ or the primary mass M enhances
Nmode, most likely because these changes also increase the
amount of time that binary spends orbiting near the ISCO,
where subdominant modes are the most pronounced. Like-
wise, subdominant modes are more significant at smaller
separations, which is why increasing â also leads to more

modes being selected. On the other hand, increasing the
duration of the waveform decreases Nmode, since more
power comes from earlier in the inspiral, where the sub-
dominant modes are much weaker.
In the final column of Table I we also report the relative

power of the l ¼ m ¼ 15 mode, P15;15=Ptot, where Ptot is
the summed power from all selected ðl; mÞ-modes. Conse-
quently, this mode is only included if ϵmode ≤ P15;15=Ptot.
Previous investigations of adiabatic model suggest that
10−2 ≲ ϵmode ≲ 10−5 is a sufficient threshold range to
prevent systematic biases in EMRI data analysis for
LISA [12]. Thus, we see that there is no need to go beyond
the l ¼ 15 modes for the range of spin values considered
by our model.
Following this mode selection, we evaluate all of the

selected modes in (40) at the time steps ti ¼ i × dt for
i ¼ 0; 1; 2;…; T=dt. To speedup the calculation, we paral-
lelize evaluations over the time steps ti using OpenMP [40].
Frequency-domain waveforms are generated in a similar

manner for a fixed frequency step df and maximum
frequency fmax. Alternatively, one can specify a time
step dt and signal duration T, for which we set df ¼
1=T and 2fmax ¼ 1=dt. By eliminating sums over negative
m-modes, we have

h̃þðfÞ ¼
1

2

X∞
l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffi
2π

mΩ̇

r
AlmY

þ
lme

þiΨlm; ð44Þ

TABLE I. The number of selected ðl; mÞ-modes Nmode for a
given inspiral ðâ;M; μ; TÞ and mode selection threshold ϵmode.
The initial conditions are chosen so that each system reaches the
ISCO after T years. In the final column we also include the
relative power in the l ¼ m ¼ 15mode, P15;15=Ptot, where Ptot is
the summed power from all selected ðl; mÞ-modes.

â MðM⊙Þ μðM⊙Þ T (yrs) ϵmode Nmode
P15;15

Ptot

0.5000 106 10 0.1 10−5 14 2 × 10−9

0.9000 106 10 0.1 10−5 18 1 × 10−7

0.9950 106 10 0.1 10−5 24 3 × 10−6

0.9999 105 10 0.1 10−5 17 8 × 10−7

0.9999 106 10 0.1 10−5 28 1 × 10−5

0.9999 107 10 0.1 10−5 39 2 × 10−4

0.9500 105 10 1.0 10−5 11 5 × 10−9

0.9500 106 10 1.0 10−5 15 6 × 10−8

0.9500 107 10 1.0 10−5 23 1 × 10−6

0.9999 106 10 0.5 10−5 23 4 × 10−6

0.9999 106 10 2.0 10−5 20 2 × 10−6

0.9999 106 10 4.0 10−5 18 1 × 10−6

0.9999 106 10 0.1 10−3 10 1 × 10−5

0.9999 106 10 0.1 10−4 16 1 × 10−5

0.9999 106 10 0.1 10−6 40 1 × 10−5
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h̃×ðfÞ ¼
i
2

X∞
l¼2

Xl
m¼1

ffiffiffiffiffiffiffiffi
2π

mΩ̇

r
AlmY×

lme
þiΨlm; ð45Þ

where the phases are given by ΨlmðfÞ ¼ ψlmðΩ̂f=mÞ þ
2πftðΩ̂f=mÞ þm½ϕ −ΦðΩ̂f=mÞ� − π=4 and all mode-
functions are evaluated at Ω̂f ¼ 2πf. Mode selection is
identical to the time-domain waveforms. Similarly we
parallelize evaluations over the frequency steps fj ¼
j × df for j ¼ 0; 1; 2;…; fmax=df.
As a final note, waveforms produced by retrograde orbits

can be parametrized one of two ways: (1) by keeping the
massive black hole spin positive and setting the orbital
angular momentum to be negative, (a ≥ 0 and x0 ≤ 0); or
(2) vice versa (a ≤ 0 and x0 ≥ 0). These two parametriza-
tions are identical up to the transformation ðθ;ϕÞ →
ðπ − θ;−ϕÞ, as shown in Appendix C. In this work, we
keep x0 ¼ 1 fixed at its positive value and vary the sign of
a, allowing for a much smoother transition from prograde
to retrograde orbits in the equatorial limit. This choice also
has the advantage of keeping all other orbital constants
(e.g., Ωp, Lz) strictly positive. However, users can still
specify x0 ¼ −1, and internally we construct the wave-
form using

hðt; a;−x0; θ;ϕÞ ¼ hðt;−a; x0; π − θ;−ϕÞ: ð46Þ

For waveforms in the SSB frame, ϕ is fixed, while the
orientation of the spin vector is set by qK and ϕK. Therefore
we introduce the azimuthal shift throughΦϕ0 and transform
θ via a parity inversion of ðqK;ϕKÞ, leading to

hSSBðt; a;−x0; qK;ϕK;Φϕ0Þ
¼ hSSBðt;−a; x0; π − qK; π þ ϕK; π þΦϕ0Þ: ð47Þ

The transformations are identical for the frequency-domain
waveforms.

E. Model comparison

To demonstrate the accuracy of our model, we compare
our waveforms with those produced by FEW for â ¼
e0 ¼ 0. As a visual demonstration, in Fig. 7 we plot hþ for
an EMRI with source properties ðM; μ; p0Þ ¼ ð106M⊙;
10M⊙; 12.05Þ observed in the SSB frame for four years.
The strain calculated by FEW is given by the dashed lines,
while the bhpwave result is given by the solid lines. The
waveforms are aligned to agree at time t ¼ 0. We zoom in
on the waveform at three time windows placed near the
beginning, middle, and end of the waveform. Across all

FIG. 7. Comparisons between waveforms produced by the FEW and bhpwave models for an EMRI with intrinsic parameters
ðM; μ; a; p0; e0; xÞ ¼ ð106M⊙; 10M⊙; 0; 12.05; 0; 1Þ. The top panels show the evolution of the strain hþ with time t. In the top plots, the
solid (blue) lines correspond to the waveform computed by FEW, while the dashed (orange) lines are produced by bhpwave. The three
different panels focus on three small time windows within the full four year signal. The bottom panel plots the difference in the
gravitational wave phases between the waveform models. The solid (cyan) line shows the phase difference when the waveforms are
evaluated at the same set of parameters. The dashed (black) line is the phase difference after rescaling the FEW parameters to account for
different definitions of GM⊙.
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three periods there is minimal disagreement between the
two models. In the bottom panel of Fig. 7, we also plot the
phase difference between the two models as a function of
time. The two waveforms maintain subradian agreement
over all five years of the signal.
The agreement between the two models is further

improved when we account for the fact that bhpwave
and FEW use different values of GM⊙, which impacts
unit conversions as one goes from the geometric units
(G ¼ c ¼ 1) in the inspiral calculation to SI units for the
observed waveform. In bhpwave, we use the gravitational
parameter GM⊙ ¼ 1.32712440041279419 × 1020 m3 s−2

from Jet Propulsion Laboratory’s (JPL) planetary and lunar
ephemerides [41]. The fractional difference between this
value and the FEW value is 1.557 × 10−8. If we rescale time
and mass quantities by this difference, we improve the phase
agreement between FEWand bhpwave by a factor of∼5, as
demonstrated by the dashed line in the right panel of Fig. 7.
For a more quantitative comparison, in Table II we report

the mismatch between the bhpwavewaveforms hB and the
FEW waveforms hF for a series of different EMRI systems.
The mismatch is defined by

MðhB; hFÞ ¼ 1 −
X
þ;×

ðhBjhFÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhBjhBÞðhFjhFÞ
p ; ð48Þ

where

ðajbÞ ¼ 4Re
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð49Þ

is the noise-weighted inner product between two real
signals, SnðfÞ is the one-sided noise spectral density of
LISA, and the sum is performed over the plus and cross
polarizations of the gravitational wave strain. For this work,
we use the analytic approximation of SnðfÞ given in [42],
and provided through the LISATOOLS Python package.8 We
estimate the Fourier transforms of our time-domain signals
by first applying a tapered cosine window, also known as a
Tukey window, and then taking the discrete Fourier trans-
form (DFT) of the windowed function. We choose the
tapered cosine window shape parameter α ¼ 0.001, which
leads to minimal loss in the signal-to-noise ratio (SNR)
ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp

, while also providing an improved estimate of
the Fourier transform. We find mismatches ≲10−3 across
different sets of intrinsic source parameters.
Furthermore, we perform a self-consistency check

between our time-domain and frequency-domain wave-
forms. In Fig. 8 we plot the frequency-domain waveform
h̃þðfÞ for the system ðM; μ; a=M; p0Þ ¼ ð106M⊙; 30M⊙;
0.9; 13.55Þ. The system is observed for T ¼ 4 years
(but merges after ∼3.95 years) at a time step of
dt ¼ 15 sec, which corresponds to fmax ¼ 1=30 Hz and

TABLE II. Mismatches between bhpwave waveforms and
FEW waveforms for different sets of intrinsic parameters
θ⃗intrinsic ¼ fM; μ; p0;Φϕ0 ¼ 0.2g and signal duration T. We scale
the distance so that each signal has an SNR ρ ¼ 20. The third to
last column reports the mismatch between bhpwave and FEW
when both models are evaluated at the same set of parameters θ⃗0.
In the second to last column, we give an estimate of the “best-fit”
mismatch between the two waveform models. This is computed
by evaluating bhpwave at hBðθ⃗0Þ and FEW at hFðθ⃗0 − Δθ⃗0Þ,
where Δθ⃗0 is determined using the Cutler-Vallisneri bias esti-
mate. The maximum ratio between the systematic biases and
the statistical errors estimated from the bhpwave model,
R ¼ jjΔθ⃗0=Δθ⃗statjj∞, is reported in the last column.

M=M⊙ μ=M⊙ p0 T=yrs M Mbf R

105 1 15.9 1.55 4 × 10−3 2 × 10−5 0.12
105 10 15.9 0.16 6 × 10−5 1 × 10−5 0.01
106 1 15.9 8.00 7 × 10−4 3 × 10−5 0.11
106 10 15.9 8.00 5 × 10−4 8 × 10−5 0.12
106 10 12.0 4.00 8 × 10−3 6 × 10−5 0.07
106 50 15.9 3.00 6 × 10−4 6 × 10−5 0.16
107 50 10.0 8.00 9 × 10−5 5 × 10−5 0.07
107 50 7.5 2.60 3 × 10−4 1 × 10−5 0.04

FIG. 8. Comparison between the discrete Fourier transform of
the time-domain gravitational wave strain hþ produced by
bhpwave (solid blue line) and the frequency-domain waveform
for hþ produced by bhpwave using the stationary phase
approximation (dashed orange line). For reference, the sensitivity
curve Sn is also plotted as the dot-dashed (black) curve. Note that
we downsample the number of the frequency samples included in
this plot by a factor of 10000 in order to more clearly see how
well the two waveforms agree, even in the highly oscillatory
region between 10−3–10−2 Hz.

8https://github.com/mikekatz04/LISAanalysistools.
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df ≃ 1.6 × 10−8 Hz. Overlaying the DFT of the time-
domain waveform DFT½hþ�ðfÞ for the same system, we
find a good overlap between the two signals, which have a
mismatch of M ¼ 6 × 10−5. However, as seen in other
investigations of the frequency-domain EMRI wave-
forms [43], the mismatch is highly dependent on the sample
size due to the spectral leakage inherent in the DFT.
For example the mismatch increases to M ¼ 7 × 10−2 for
dt ¼ 10 sec or toM ¼ 3 × 10−3 for dt ¼ 2 sec. Note that
the agreement can also be improved by windowing the time-
series data [43].

IV. ASSESSING MODELING ERRORS

Finally, we use bhpwave to provide a few examples of
how we can assess the impact of modeling errors and
systematics on EMRI parameter estimation. In Bayesian
inference, the probability that a given set of model para-
meters θ⃗ describes an observed signal dðtÞ is given by the
posterior distribution,

pðθjdÞ ∝ pðdjθÞpðθÞ; ð50Þ

where the prior distribution pðθÞ is the probability of
observing the parameters θ⃗ (in the absence of any signal or
evidence) and the likelihood pðθjdÞ is the probability of the
evidence dðtÞ given fixed parameters θ⃗. In gravitational
wave data analysis, the (log) likelihood reduces to [44]

logpðdjθÞ ∝ −
1

2

�
d − hmðθÞjd − hmðθÞ

�
; ð51Þ

for a waveform model hm. When assuming uniform priors,
the likelihood provides an unnormalized estimate for the
posterior distribution. Thus (51) peaks at the model para-
meters θ⃗peak that “best fit” the data, and the width of this

peak corresponds the statistical certainty Δθ⃗stat with which
we can measure θ⃗peak.
Naturally, every model possesses some degree of

numerical or systematic error, which can bias θ⃗peak away

from the true parameters θ⃗true that describe dðtÞ. Conse-
quently, a waveform model is considered sufficiently
accurate for parameter estimation if the systematic biases
Δθ⃗bias ¼ θ⃗peak − θ⃗true are smaller than the inherent statis-

tical uncertainty Δθ⃗stat in the measurement.
We can estimate this intrinsic statistical uncertainty via

Δθistat ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Γ−1
m ðθpeakÞ

�
ii

q
; ð52Þ

where Γ−1
m is the inverse of the Fisher information matrix,

Γij
mðθÞ ¼

�
∂ihmðθpeakÞj∂jhmðθpeakÞ

�
; ð53Þ

and ∂i ¼ ∂=∂θi. Likewise the impact of the systematic
errors can be estimated from the Cutler-Vallisneri bias [45],

Δθibias ≈
�
Γ−1
m ðθpeakÞ

�
ij
�
∂jhmðθpeakÞjΔhmðθpeakÞ

�
; ð54Þ

where ΔhmðθpeakÞ ¼ htðθpeakÞ − hmðθpeakÞ is the difference
between the “true” strain ht and the biased strain hm
produced by our model.
First we verify that the mismatches between the

bhpwave and FEW models correspond to small biases,
such that Δθibias < Δθistat. To do this, we take FEW to be the
“true” waveform ht ¼ hF and bhpwave to be the model
waveform hm ¼ hB. Next, we solve (52) and (54) at the
“peak” parameters listed in Table II. Appendix D details
our numerical procedures for constructing and verifying
the Fisher matrix and its inverse. We then calculate the
maximum ratio between the systematic biases and statis-
tical uncertainties across all of the parameters,

R ¼
����ΔθibiasΔθistat

����
∞
; ð55Þ

which are reported in the last column of Table II. We find
that R≲ 0.1 across all of the considered systems, indicat-
ing that the systematic errors between the two waveform
models will not bias parameter estimates in this region of
parameter space (i.e., noneccentric, nonspinning EMRIs).
Furthermore, to verify the accuracy of our bias estimates,
we calculate the “true” parameters θitrue ¼ θipeak − Δθibias
and then compute the mismatch between hFðθtrueÞ and
hBðθpeakÞ. As shown in the second to last column of
Table II, correcting for the biases between the two models
reduces their mismatch across all of the tabulated source
parameters.
Next, we consider how phase errors introduce systematic

biases to our waveform model. To quantify this, we take
the time-domain phase and frequency splines, Φ̌ðť; aÞ and
Ω̌ðť; aÞ, and downsample their interpolated datasets by a
factor of 2 in each dimension. This introduces a known
source of interpolation noise into our waveform model. The
(noisy) waveforms generated by this downsampled data are
denoted by hD. We then take the original bhpwave
waveform generator to be the truth (e.g., ht ¼ hB), hD to
be our model (e.g., hm ¼ hD), and evaluate (52) and (54)
for peak parameters θipeak ¼ ðM; μ; a; p0; e0; x0; dL; qS;ϕS;
qK;ϕK;Φϕ0;Φθ0;Φr0Þ. For this analysis we hold ðe0 ¼ 0;
x0 ¼ 1; qS ¼ 0.3;ϕS ¼ 1.3; qK ¼ 1.8;ϕK ¼ 1.2;Φϕ0 ¼ 0.2;
Φθ0 ¼ 0;Φr0 ¼ 0Þ constant and vary over M=M⊙ ¼
f5 × 105; 106; 5 × 106g, μ=M⊙ ¼ f10; 50g, and a ¼
f−0.5; 0.5; 0.9; 0.995g. Each signal is observed for
T ¼ 2 years at a time spacing of dt ¼ 10 sec until it
reaches the ISCO. This sets the value of p0. Additio-
nally, we scale the distance dL so that each signal has a
SNR ρ ¼ 30. We find that R < 0.1 for all of the sources.
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In Fig. 9 we plot the resulting statistical uncertainties
and systematic biases of ðΔ logðM=M⊙Þ;Δ logðμ=M⊙Þ;
Δâ;Δp0Þ as a function of 1 − â for the various sources.
Solid lines refer to the statistical uncertainties, while dashed
lines refer to the systematic biases. Different colors refer
to different combinations of M and μ. We see that the
systematic biases always fall under the intrinsic uncertainty
estimates. Furthermore, the uncertainties decrease as spin
increases, with the biases possessing largely the same
behavior. Thus, at least in the region of parameter space
considered for this toy analysis, we see that the interpo-
lation errors in the phases and frequencies of our adiabatic
trajectories do not significantly bias our waveforms.
As a final test, we inject artificial noise into our original

flux data and then recompute all of the trajectory splines to
create a new biased waveform model, which we denote by
hE. The flux is modified via the replacement,

FE → F δ
E ¼ 1þ ð1þ δÞ 1247

336
Ω̂2=3

1þ 1247
336

Ω̂2=3 FE; ð56Þ

where we set δ ¼ 10−5. With this rescaling, the post-
Newtonian expansion of F δ

E is

F δ
E ∼

32

5
Ω̂10=3

	
1 −

1247

336
ð1 − δÞΩ̂2=3 þOðΩ̂Þ



: ð57Þ

By setting δ ¼ 0 we recover the first two post-Newtonian
orders of the energy flux [e.g., see (178) in [29] ], while
setting δ ¼ 10−5 adds a slight perturbation at the first
(subleading) post-Newtonian order. From a postadiabatic
standpoint, this error is on the same order as 1PA correc-
tions for systems with mass ratios μ=M ∼ δ.
Once again, we take the original bhpwave model to

represent the true waveform and the corrupted model to
represent our model waveform. We then computeΔθistat and
Δθibias for a variety of systems. As before we fix ðe0 ¼ 0;
x0 ¼ 1; qS ¼ 0.3;ϕS ¼ 1.3; qK ¼ 1.8;ϕK ¼ 1.2;Φϕ0 ¼ 0.2;
Φθ0 ¼ 0;Φr0 ¼ 0Þ and use the same signal duration, p0

values, and time step size. For this analysis we only
consider the masses ðM; μÞ ¼ ð106M⊙; 10M⊙Þ and
ðM; μÞ ¼ ð5 × 106M⊙; 10M⊙Þ, and we vary over the spins
a ¼ f−0.99;−0.5; 0.; 0.5; 0.9; 0.99; 0.9995g.
In Fig. 10 we plot the dephasing ΔΦGW ¼ 2ðΦB −ΦEÞ

of the two gravitational wave models, the maximum ratio
between Δθistat and Δθibias for the intrinsic parameters
Rintrinsic, the maximum ratio between Δθistat and Δθibias
for the extrinisic parameters Rextrinsic, along with the
mismatch Mbf between hBðθ − ΔθbiasÞ and hEðθÞ. Note
that we estimate ΔΦGW from the dephasing between
just the (2,2)-modes of the two waveforms, which is two
times the difference between the phase trajectories of the
bhpwave and corrupted models, ΦB and ΦD, respectively.
The left panel includes results for the binary with masses

FIG. 9. Comparisons of the statistical uncertainties Δθistat (solid
lines) and systematic biases Δθibias (dashed lines) in the intrinsic
parameters ðM; μ; â; p0Þ as a function of spin â for a range of
binaries with different masses. Different mass combinations
ðM; μÞ corresponds to different colors and markers, as given
by the legend in the third panel. The systematic biases are
introduced by downsampling the trajectory data to introduce
larger interpolation errors into our waveform model.
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ðM; μÞ ¼ ð106M⊙; 10M⊙Þ, while the right panel is for a
binary with ðM; μÞ ¼ ð5 × 106M⊙; 10M⊙Þ. The dashed
line denotes a magnitude of 1. Thus, dephasings below
the dashed line indicate subradian agreement between the
two models, and ratios below the line indicate that the
systematic biases are below the intrinsic uncertainty of
the measured parameters.
For both systems we see that the dephasing and biases in

the intrinsic parameters tend to increase with spin. This is
expected, since the error scales with the frequency, and
higher spin systems will reach larger orbital frequencies
and consequently possess larger errors. However, large
dephasings do not necessarily guarantee that the systematic
errors will significantly bias the measured parameters. For
instance, in the ðM; âÞ ¼ ð106M⊙; 0.9Þ system, ΔΦGW ∼
10 rad, yet the systematic biases remain smaller than the
statistical parameter uncertainties. This result mirrors
recent studies of EMRI waveforms of systems with non-
rotating massive black hole, but with postadiabatic effects
and spinning secondaries included [46].
Furthermore, for both systems, the biases in the extrinsic

parameters are consistently below the parameter uncertain-
ties. At least in this simplified quasicircular case, this
suggests that errors in the trajectory predominantly affect
the intrinsic properties of the source. Interestingly, after
accounting for the biases, we still generate small mis-
matches between the models across all of the tested
systems. This indicates that our erroneous models, despite
their large biases, can still capture most of the power in the
EMRI gravitational wave signal (in the absence of noise).
Thus, adiabatic waveforms may be sufficiently accurate for

measuring the extrinsic parameters of quasicircular EMRIs
in the LISA data stream and systems with very low spins or
retrograde orbits. It remains to be seen if this would also
hold true in the case of eccentric orbits or if we were to
incorporate a realistic LISA response in our analysis.

V. CONCLUSION

We presented the theoretical and numerical methods
behind bhpwave: a new Python-based adiabatic gravita-
tional waveform generator for binary sources composed of
a compact object undergoing a quasicircular inspiral into a
rotating massive black hole. To build this waveform model,
we precomputed mass-independent trajectories for systems
with initial separations r0=M ≲ 60 and Kerr spins
jaj ≤ 0.9999. Furthermore, we precomputed all potential
waveform harmonic amplitudes for l ≤ 15. By implement-
ing the Eð3Þ boundary conditions in our numerical spline
algorithm, we improved the precision of our interpolated
flux data and trajectories by as much as 3 orders of
magnitude over traditional spline methods. We computed
waveforms in both the time and frequency domains and
observed good agreement between these models. Further-
more, we compared our model against the FEW wave-
form generator for â ¼ e0 ¼ 0 and achieved mismatches
M ∼ 10−5. Using Fisher matrix calculations, we also
assessed the magnitudes of any systematic biases intro-
duced by numerical error in our model. We found that
biases due to interpolation error are well below the thresh-
olds required for LISA data analysis. Additionally, we
demonstrated that waveform dephasing does not provide a

FIG. 10. The impact of flux errors on parameter estimation as a function of spin â, as discussed in Sec. IV. The circular markers (purple
line) plot the mismatch between hEðθÞ and hBðθ − θbiasÞ, where hB is our accurate model, hE is our biased model, θ are the parameters of
the GW source predicted by hB and θbias are the biases in those parameters from the true values θ − θbias. The diamond markers (blue
line) plot the maximum ratio between these biases and the intrinsic uncertainty in the extrinsic parameters, while the triangle markers
(green line) plot the same ratio for the intrinsic parameters. The square markers (yellow line) report the overall dephasing between the
two models. The dashed line marks a magnitude of 1.
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complete picture of modeling error. In particular, for
systems with retrograde orbits and slowly rotating massive
black holes, we found that waveform models could have
phase errors of up to 10 rad, and yet the biases introduced
by these errors would not be measurable by LISA. Thus,
the claim that waveform models require subradian phase
accuracy for LISA is a useful guide for model fidelity,
but more sophisticated analyses are required to understand
the true impact of modeling errors on LISA science
(see also [46]).
A notable limitation of bhpwave is that it currently

neglects the effects of eccentricity and precession. None-
theless, while most observed EMRIs are expected to be
highly eccentric [47], there are possible formation channels
driven by accretion flow that circularize EMRI dynamics
and align the orbital angular momentum with the massive
black hole’s spin [48]. Thus, bhpwave is applicable to
these so-called “wet-formation” EMRIs.
In the future, we plan on integrating our Kerr data in the

FEW model in order to leverage its ability to run on GPUs.
Additionally, moving forward we will use bhpwave to
perform a more thorough investigation of how different
interpolation schemes, levels of flux accuracy, trajectory
parametrizations, and mode selection criteria can impact
LISA data analysis. In particular, we plan to incorporate
a second-generation time-delay interferometry (TDI)
response and verify Fisher matrix calculations by perform-
ing full MCMC samplings (similar to the one provided in
Appendix D). With a more detailed and rigorous inves-
tigation of these computational systematics, we can put
more stringent bounds on the accuracy requirements for
EMRI waveform modeling, which will be particularly
important as we design more complicated (eccentric,
precessing) EMRI waveform models.
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APPENDIX A: APPROXIMATIONS OF THE
FREQUENCY DOMAIN WAVEFORMS

In the small mass-ratio limit, MΦ̇ ¼ MΩ ∼Oð1Þ while
Mψ̇lm ∼OðϵÞ. Therefore, neglecting the time-evolution of
ψlm, we invert f ≈mΩðtÞ=ð2πÞ to approximate tpðfÞ for
each ðl; mÞ mode. At first glance, one might expect that
ignoring thisOðϵÞ term would introduce an error ofOð1Þ in

the values of tp and ΦðtpÞ, thus diminishing the phase
accuracy of our frequency-domain waveform. However,
these errors perfectly cancel, leading to an OðϵÞ error. This
can be seen by parametrizing the time and phase in terms of
Ω. Then Ωf ¼ ΩðfÞ ¼ Ω0 þ δΩ where Ω0 ¼ 2πf=m and
δΩ ∼OðϵÞ. The induced error in the phasing ΨðfÞ ¼
2πftðΩfÞ þ ψlmðΩfÞ −mΦðΩfÞ for a fixed value of f
is then given by

ΨðfÞ ¼ mΩ0tðΩ0Þ þ ψlmðΩ0Þ −mΦðΩ0Þ
þ �

mΩ0∂ΩtðΩ0Þ þ ∂ΩψlmðΩ0Þ
−m∂ΩΦðΩ0Þ

�
δΩþOðδΩ2Þ; ðA1Þ

¼ mΩ0tðΩ0Þ þ ψlmðΩ0Þ −mΦðΩ0Þ
þ ∂ΩψlmðΩ0ÞδΩþOðδΩ2Þ; ðA2Þ

where we have made use of the fact that Ω∂Ωt ¼ ∂ΩΦ.
Finally, we take into account that ∂Ωψlm ¼ ψ̇lm∂Ωt. Since
M2Ω̇ ∼OðϵÞ, then ∂ΩψlmδΩ ∼OðϵÞ, which sets the over-
all error in the phase at OðϵÞ due to neglecting ψ̇lm.
Furthermore, when calculating B̃lmðfÞ, we neglect any

contribution from ψ̈lm in (22). We expect this approxima-
tion to introduce an OðϵÞ error relative to the leading-order
behavior of B̃lmðfÞ ∼ 1=

ffiffiffi
ϵ

p
and therefore is safe to neglect

in the small mass-ratio limit.

APPENDIX B: VALIDATING FLUXES,
TRAJECTORIES, AND NUMERICAL SPLINES

We describe several validation tests for assessing the
accuracy of our inspiral trajectory data.

1. Numerical precision of fluxes

To confirm the numerical accuracy of our interpolated
data, we perform a series of comparisons and self-
consistency checks. First we assess the accuracy of our flux
interpolant by downsampling the data. Let fIðn;mÞðx; yÞ
denote a bicubic spline that approximates a function
fðx; yÞ by interpolating sampled values of f on a rectilinear
ð2n þ 1Þ × ð2m þ 1Þ grid in ðx; yÞ. Thus, in this notation
our fully sampled interpolant F I

Nðα; χÞ can also be
expressed as F I

Nð8;7Þðα; χÞ, because it is constructed from

a 257 × 128 grid of flux values in ðα; χÞ. We then estimate
the fractional interpolation error for the flux spline
F I

NðN0;M0Þ via

ΔF
ðN0;M0Þðα; χÞ ¼

����1 − F I
NðN0;M0Þðα; χÞ

F I
NðN0þ1;M0þ1Þðα; χÞ

����: ðB1Þ

By downsampling the data, we calculate ΔF
ð7;6Þ, ΔF

ð6;5Þ,
and ΔF

ð5;4Þ. We plot ΔF
ð7;6Þ in Fig. 11, demonstrating that
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ΔF
ð7;6Þ < 10−6 across the entire domain. To estimate the

interpolation error of our fully-sampled spline, ΔF
ð8;7Þ, we

examine the convergence rate of kΔF
ðnþ1;nÞk∞ in Fig. 12. We

find that kΔF
ðnþ1;nÞk∞ ∝ 2−4n, which is consistent with the

standard fourth-order scaling for cubic spline errors (error
∼Δx4 for grid spacing Δx). Provided this scaling holds true
as we increase the sampling rate, we estimate
that ΔF

ð8;7Þ ≲ 5 × 10−8.
We also compare the flux interpolant to Kerr circular flux

values produced by independent codes [19,37]. Tables of
these values are provided within the “Circular Orbit Self-
force Data” repository hosted by the Black Hole Pertur-
bation Toolkit [38]. Figure 13 plots the fractional errors

between the Toolkit dataset and our interpolated fluxes
for the spin values â ¼ ½−0.99;−0.8;−0.5; 0.1; 0.6; 0.9;
0.995; 0.999� as a function of the orbital separation r0.
For r0 ≳ 3.5M the fractional errors in the fluxes are
consistent with the interpolation error estimated in Fig. 11,
indicating that our flux results are reliable to a precision
∼10−9 in this domain. Crucially, we find that our use of the
Eð3Þ boundary condition in our spline interpolation is
essential for achieving these small fractional errors. For
example, in Fig. 14 we plot the fractional errors resulting
from the use of the more common “natural” or “not-a-knot”
spline boundary conditions when interpolating our flux
results. Both boundary conditions degrade the accuracy of
our interpolated flux data, with the natural spline providing

FIG. 11. The fractional interpolation error ΔF
ð7;6Þ of the flux

spline F I
Nð7;6Þ as a function of the grid parameters α and χ.

FIG. 12. Convergence of the maximum fractional interpolation
error kΔF

ðnþ1;nÞk∞ as we increase n. Increasing n by one amounts

to doubling the sampling density in each dimension of our grid.
Thus a power law decay of 2−4n (dashed blue line) indicates
fourth-order convergence of our bicubic spline.

FIG. 13. Fractional error between our interpolated flux data F I
E and the flux data reported within the Circular Orbit Self-force Data

repository in the BHPToolkit. The left panel displays errors across the entire domain covered by our spline. The middle plot focuses on a
region where we find strong disagreement between our model and the repository. The right plot compares our data to flux calculations
from a high-precision (>100 digits) Mathematica code in this problem region, demonstrating that our results are consistent with high-
precision calculations.
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the largest fractional errors. For both the natural and not-a-
knot splines, the fractional errors rise as we approach larger
negative values of the spin (a → −1) and larger orbital
separations (Ω → Ωmin), where our flux data are sparsely
sampled. Therefore, a careful choice of boundary conditions
can significantly improve the accuracy of our splines, thereby
reducing the number of points at which we need to perform
expensive calculations of the gravitational wave fluxes.
Finally, we return the near-ISCO region of Fig. 13. The

fractional errors between our data and the fluxes published
in the Toolkit peak at ∼10−3 near r0 ∼ 3M, as seen in the
middle plot of Fig. 13. To identify the source of this
disagreement, we perform another set of flux calculations
using the Teukolsky Mathematica package [51], which is also
provided in the Black Hole Perturbation Toolkit.9 In the
Mathematica code, we use anywhere from 50 to 400 digits
of precision to guarantee the accuracy of the computed flux

values. The fractional error between our flux interpolant
and the high-precision Teukolsky fluxes are shown in the
right plot of Fig. 13, demonstrating strong agreement
between our data and the Toolkit-generated fluxes. There-
fore, we suspect that the flux values published in the
“Circular Orbit Self-force Data” repository are not accurate
to all reported digits for 2M ≲ r0 ≲ 4M.
Altogether, these tests indicate that the error in our

interpolated flux function is <108 and often matches the
intrinsic error in the underlying flux data, which was
calculated to a requested precision of ∼10 digits. Since
flux errors scale as∼ϵ−1 over an inspiral, we expect that this
level of flux interpolation error will have a subradian
impact on the phase accuracy of our gravitational wave-
forms for astrophysically realistic systems.

2. Numerical accuracy of trajectories

Next we validate the accuracy of our trajectories. For
the evolution of Ωt and Φ, we are concerned with the
absolute error in the splines, since these quantities only
appear directly in the phasing of our frequency- and time-
domain waveforms, respectively. However, we are con-
cerned with the precision of t when evaluating the initial
phase of our waveform based on an initial frequency,
i.e., Φinitial ¼ ΦðtðΩ0ÞÞ.
To verify the numerical convergence of our splines, we

define the convergence measures,

Δt
ðN0;M0Þ ¼

����1 − 1 − ťIðN0;M0Þ
1 − ťIðN0þ1;M0þ1Þ

����; ðB2Þ

ΔΩt
ðN0;M0Þ ¼ Ω̂

���ťIðN0;M0Þ − ťIðN0þ1;M0þ1Þ
���; ðB3Þ

ΔΦ
ðN0;M0Þ ¼

���Φ̌I
ðN0;M0Þ − Φ̌I

ðN0þ1;M0þ1Þ
���; ðB4Þ

and plot kΔt;Ωt;Φ
ðn;nÞ k∞ for n ¼ ð5; 6; 7; 8Þ in Fig. 15. As

before, the error improves as we increase the sampling
density by a factor of 2 in each dimension, though in this
case the maximum absolute error converges slightly faster
than 24n. Thus extrapolating this rate of convergence, we
estimate kΔt;Ωt;Φ

ð9;9Þ k∞ ≲ 3 × 10−8.

Next, we check that the interpolated trajectories satisfy
the equations of motion (29) via the two tests,

δtðΩ̂; âÞ ¼
����1 −

	
1þ 1

F I
N

�
∂E
∂α

�
	
1 −

dťI

dα


−1����; ðB5Þ

δΦðΩ̂; âÞ ¼
����1 −

	
1þ Ω̂

F I
N

�
∂E
∂α

�
	
1 −

dΦ̌I

dα


−1����; ðB6Þ

where, on the right-hand side, all functions and derivatives
are evaluated at αðâ; Ω̂Þ and χðâÞ. We shift the numerators

FIG. 14. The same comparison as the left plot of Fig. 13, only
this time we construct our flux interpolant by imposing not-a-
knot boundary conditions (top panel) or natural boundary condi-
tions (bottom panel), leading to worse agreement with the
pretabulated flux data.

9Note that this package was designed and implemented
independently of the circular flux data published in the “Circular
Orbit Self-force Data” toolkit data repository.
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and denominators by a factor 1, because the α-derivatives
vanish at α ¼ 0. This translation effectively leads to δt and
δΦ measuring absolute error for values of α ≲ 0.05, while
measuring relative error for values α≳ 0.05. Based on this
analysis, we find kδtk∞ ≃ 10−6.7 and kδΦk∞ ≃ 10−6.8 when
maximizing over all values of â and Ω̂.
To assess the precision of Ω̂Iðť; âÞ, we calculate the

fractional error,

ΔΩ
ðN0;M0Þ ¼

����1 − Ω̂I
ðN0;M0Þ

Ω̂I
ðN0þ1;M0þ1Þ

����; ðB7Þ

and plot the maximum values kΔΩ
ðn;nÞk∞ for n ¼ ð5; 6; 7; 8Þ

in Fig. 16. With the convergence slightly better than 24n,

we estimate that kΔΩ
ð9;9Þk∞ < 2 × 10−9. Furthermore, we

can apply the self-consistency check,

δΩðΩ̂0; âÞ ¼
����1 − Ω̂0

Ω̂I½ťIðΩ̂0Þ�

����; ðB8Þ

and we find that the maximum error across all values
is kδΩk∞ ¼ 3 × 10−9.

3. Numerical precision and accuracy
of waveform amplitudes

We look at the numerical precision of the spline for the
magnitude of our complex waveform amplitude, AI

lm, and
the accuracy of the amplitude phase spline ψ I

lm. Since the
grids that we interpolate are already sparsely populated we
do not follow the same analysis as the previous subsections.
Rather than comparing splines from successive iterations
of downsampled data, we instead compute a new set of
complex amplitude values on a 10 × 30 grid in ðχ; αÞ. We
perform this calculation for ðl; mÞ ¼ ½ð2; 2Þ; ð5; 2Þ; ð5; 5Þ;
ð20; 2Þ; ð20; 20Þ� to get a representative sample of small and
large l-values and small and large m values. As a result,
the maximum fractional errors in AI

lm are 2.1 × 10−6,
6.2 × 10−6, 5.2 × 10−6, 5.5 × 10−3, and 2.1 × 10−5 for
the (2,2), (5,2), (5,5), (20,2), and (20,20) modes, respec-
tively. For the maximum absolute errors in ψ I

lm we get
2.3 × 10−6, 2.4 × 10−6, 4.8 × 10−6, 2.3 × 10−3, and 1.9 ×
10−5 for the (2,2), (5,2), (5,5), (20,2), and (20,20) modes,
respectively. Therefore, ψlm achieves subradian phase
accuracy while AI

lm maintains precision to at least three
digits even for the least dominant mode (20,2), which will
only be included in waveforms with very low mode
selection thresholds ϵmode < 10−5.

APPENDIX C: TRANSFORMATIONS FOR
RETROGRADE ORBITS

Consider an orbit with positive spin â > 0, but negative
angular momentum and orbital frequency Ω̂ < 0 andLz < 0
(which is parametrized by the choice x < 0). Under the
transformation ðâ; Ω̂Þ → ð−â;−Ω̂Þ on the waveform, we
must first understand the impact on the mode ampli-
tudes Almðâ; Ω̂Þeiψlmðâ;Ω̂Þ ¼ Almð−â;−Ω̂Þe−iψlmð−â;−Ω̂Þ and
Φðâ; Ω̂Þ ¼ −Φðâ; Ω̂Þ. Consequently, the waveform takes
the form,

hþð−â;−Ω̂Þ ¼
X
lm

Almðâ; Ω̂ÞYþ
lm cosðψlm −m½ϕþΦ�Þ;

ðC1aÞ
h×ð−â;−Ω̂Þ ¼

X
lm

Almðâ; Ω̂ÞY×
lm sinðψlm −m½ϕþΦ�Þ;

ðC1bÞ
or hþ=×ð−â;−Ω̂; θ;ϕÞ ¼ hþ=×ðâ; Ω̂; π − θ;−ϕÞ.

FIG. 15. Convergence of the maximum absolute interpolation
error for the frequency-weighted time and phase splines,
kΔΩt

ðn;nÞk∞ (orange squares) and kΔΦ
ðn;nÞk∞ (green diamonds),

along with the fractional interpolation error for the unweighted
time-spline kΔt

ðn;nÞk∞ (blue diamonds). The dashed lines corre-

spond to a power-law convergence of 24n.

FIG. 16. Convergence of the maximum fractional interpolation
error for the frequency spline, kΔΩ

ðn;nÞk∞.
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APPENDIX D: NUMERICAL METHODS FOR
FISHER CALCULATIONS

To construct the Fisher information matrix in (53) we
first compute derivatives of our waveforms in the time-
domain. We take derivatives with respect to the intrinsic
parameters (e.g., ∂hm=∂ logM) on a mode by mode basis
via (40). Note that we take derivatives with respect to the
logs of the masses, logM and log μ, rather than the masses
themselves. We use a basic finite central difference stencil,

∂ifðθÞ ≈
fðθ þ hÞ − fðθ − hÞ

2h
; ðD1Þ

to differentiate Alm and Φlm ¼ ψlm þmðϕ −ΦÞ at each
time step. We adapt the step-size h until we converge to a
stable numerical approximation of the derivative. However,
very small step-sizes can accentuate numerical noise
inherent in our waveforms. To mitigate this noise, we
apply a Savitzky-Golay filter to suppress this noise in our
numerical derivatives.
Then the waveform derivative is assembled in the source

frame via

∂ihþ ¼ þ
X
lm

�
∂iAlm cosΦlm −Alm∂iΦlm sinΦlm

�
Yþ
lm;

ðD2aÞ

∂ih× ¼ −
X
lm

�
∂iAlm sinΦlm þAlm∂iΦlm cosΦlm

�
Y×
lm;

ðD2bÞ

and then we transform to the SSB frame. For derivatives with
respect to Φϕ0, rather than using numerical derivatives, we
use the analytic solutions ∂Φϕ0

Clm ¼ 0 and ∂Φϕ0
Φlm ¼ −m.

For derivatives with respect to the extrinsic parameters,
we use a higher-order numerical finite central difference
stencil,

∂ifðθÞ ≈ −
1

12h
fðθ þ 2hÞ þ 2

3h
fðθ þ hÞ

−
2

3h
fðθ − hÞ þ 1

12h
fðθ − 2hÞ; ðD3Þ

which we apply to the full time-domain waveform in the
SSB waveform. For derivatives with respect to dL, we
replace numerical derivatives with the analytic solution
∂dLhSSB ¼ −hSSB=dL. Finally, to construct Γij, we apply a
Tukey window to the numerical derivatives prior to
applying the DFT. We then throw away the last 50
frequency bins of the Fourier transform to remove any
residual high-frequency noise. We find that this is essential
for improving the numerical stability of our Fisher matrix
analysis. We then evaluate the inner products to determine
the components of Γij.

Due to high condition numbers of EMRI Fisher matrices,
Γij is very nearly a singular matrix, and thus inverting the
Fisher matrix can also be a numerically unstable process.
Thus, we instead construct the pseudoinverse ½Γ̃−1�ij, which
is well defined for singular matrices and satisfies the relation,

Γai½Γ̃−1�ijΓjb ¼ Γab: ðD4Þ

For nonsingular matrices ½Γ̃−1�ij ¼ ½Γ−1�ij. We numerically
compute ½Γ̃−1� using a singular value decomposition (SVD),

Γ ¼ USVT; ðD5Þ
where U and V are unitary matrices and S is a diagonal
matrix of the form S ¼ diagðs0; s1;…; sN−1Þ where some
of the values si may be zero, which would indicate that Γ is
singular. The pseudoinverse is then given by

Γ̃−1 ¼ VS̃−1UT; ðD6Þ

where S̃−1 ¼ diagðs̃−10 ; s̃−11 ;…; s̃−1N−1Þ is the pseudoinverse
of S. The elements are given by

s̃−1i ¼ s−1i ; jsij > 0; ðD7aÞ

s̃−1i ¼ 0; jsij ¼ 0: ðD7bÞ

To numerically compute S̃−1 we instead replace (D7) with
s̃−1i ¼ 0 for jsij < ϵSVD, for some numerical tolerance ϵSVD.
We then vary ϵSVD until we find a numerical solution Γ̃−1

ϵSVD
that best satisfies (D4).
To check these calculations, we verify that Γ̃−1 presents a

good representation of the covariances between the model
parameters. In the neighborhood of θipeak (where the like-
lihood peaks), the posterior distribution pðθjd ¼ hmðθpeakÞÞ
is described by a multivariate normal distribution,

−
1

2
ðhmðθpeakÞ − hmðθÞjhmðθpeakÞ − hmðθÞÞ

¼ −
1

2
ðθi − θipeakÞ½Σ−1�ijðθj − θjpeakÞ; ðD8Þ

where Σ ≈ Γ̃−1 are the covariances between the model
parameters. To verify the relation Σ ≈ Γ̃−1, we look to
perturb two model parameters θA ¼ θApeak þ ΔθA and θB ¼
θBpeak þ ΔθB so that we move one-σ away from the peak of
our posterior distribution. This amounts to finding values
ΔθA and ΔθB that satisfy

2ΔθAΔθBΓ̃AB þ ΔθAΔθAΓ̃AA þ ΔθBΔθBΓ̃BB ¼ 1; ðD9Þ

where Γ̃ ¼ Γ is the pseudoinverse of Γ̃−1. Picking ΔθA ¼
½Γ̃AA�−1=2 then uniquely determinesΔθB ¼ −2ΔθAΓ̃AB=Γ̃BB.
We then verify that for all values of A and B (e.g., A ¼
logM and B ¼ a),
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ðhmðθpeakÞ−hmðθðABÞÞjhmðθpeakÞ−hmðθðABÞÞÞ≈1; ðD10Þ

where θiðABÞ represents the set of parameters that have been

perturbed away from θipeak by ΔθA and ΔθB. For all of the
Fisher matrix calculations performed in this work, we find
(D10) is satisfied to a precision <10−1 across all combi-
nations of model parameters and to a precision <10−2 for
all intrinsic parameters.
As a final check, we perform a parallel-tempered

Markov chain Monte Carlo (MCMC) sampling of the

posterior distribution for intrinsic the source parameters
ðM;μ; â;p0;Φϕ0Þ ¼ ð106M⊙;105M⊙;0.9;12.55;0.2Þ using
the open-source Eryn sampling tool [52–54].10 To

FIG. 17. Posterior distribution based on an parallel-tempered MCMC sampling (dark blue lines) and a Fisher matrix analysis (lighter
orange lines).

10Note that we choose a very comparable mass ratio to speed-
up waveform evaluation and the calculation of the likelihood.
This allows us to perform the sampling within a day on a laptop.
More realistic EMRI systems are much more computationally
expensive to sample and beyond the scope of this work. MCMC
sampling of astrophysically-realistic EMRIs with bhpwave will
be presented in a following paper.
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simplify the calculation, we only sample over the intrinsic
parameters ðlogM; log μ; a; p0;Φϕ0Þ and hold all other
parameters fixed. We then perform our Fisher analysis
on the same system. In Fig. 17 we plot the two-dimensional
contours of the posterior distribution calculated from our
MCMC sampling (dark blue lines). Each contour line
corresponds to a one-σ deviation from a neighboring

contour. We then use the covariances predicted from our
Fisher analysis to sample a multivariate distribution and
overlay this on top of our MCMC results (lighter orange
lines). As we can see, the two sets of samples lie nearly on
top of one another, indicating that our Fisher matrix
analysis provides a leading-order estimate for the shape
of the posterior.

[1] NASA, LISA Project Office—Laser Interferometer Space
Antenna, http://lisa.nasa.gov (2011).

[2] ESA, LISA, https://sci.esa.int/web/lisa/ (2012).
[3] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta,

C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and
A. Klein, Science with the space-based interferometer
LISA. V. Extreme mass-ratio inspirals, Phys. Rev. D 95,
103012 (2017).

[4] C. Berry, S. Hughes, C. Sopuerta, A. Chua, A. Heffernan, K.
Holley-Bockelmann, D. Mihaylov, C. Miller, and A.
Sesana, The unique potential of extreme mass-ratio inspirals
for gravitational-wave astronomy, Bull. Am. Astron. Soc.
51, 42 (2019), https://baas.aas.org/pub/2020n3i042.

[5] A. Pound and B. Wardell, Black hole perturbation theory
and gravitational self-force, in Handbook of Gravitational
Wave Astronomy, edited by C. Bambi, S. Katsanevas, and
K. D. Kokkotas (Springer Singapore, Singapore, 2020),
pp. 1–119.

[6] T. Hinderer and E. E. Flanagan, Two timescale analysis of
extreme mass ratio inspirals in Kerr. I. Orbital motion, Phys.
Rev. D 78, 064028 (2008).

[7] E. E. Flanagan and T. Hinderer, Transient resonances in the
inspirals of point particles into black holes, Phys. Rev. Lett.
109, 071102 (2012).

[8] J. R. Gair and G. Jones, Detecting extreme mass ratio
inspiral events in LISA data using the hierarchical algorithm
for clusters and ridges (HACR). Classical Quantum Gravity
24, 1145 (2007).

[9] S. A. Hughes, N. Warburton, G. Khanna, A. J. K. Chua, and
M. L. Katz, Adiabatic waveforms for extreme mass-ratio
inspirals via multivoice decomposition in time and fre-
quency, Phys. Rev. D 103, 104014 (2021).

[10] A. J. K. Chua, C. R. Galley, and M. Vallisneri, Reduced-
order modeling with artificial neurons for gravitational-
wave inference, Phys. Rev. Lett. 122, 211101 (2019).

[11] A. J. K. Chua, M. L. Katz, N. Warburton, and S. A. Hughes,
Rapid generation of fully relativistic extreme-mass-ratio-
inspiral waveform templates for LISA data analysis, Phys.
Rev. Lett. 126, 051102 (2021).

[12] M. L. Katz, A. J. K. Chua, N. Warburton, and S. A. Hughes,
Black Hole Perturbation Toolkit/Fast EMRI waveforms:
Official release (2020), 10.5281/zenodo.4005001.

[13] M. L. Katz, A. J. K. Chua, L. Speri, N. Warburton, and S. A.
Hughes, Fast extreme-mass-ratio-inspiral waveforms: New
tools for millihertz gravitational-wave data analysis, Phys.
Rev. D 104, 064047 (2021).

[14] D. Kennefick and A. Ori, Radiation-reaction-induced evo-
lution of circular orbits of particles around Kerr black holes,
Phys. Rev. D 53, 4319 (1996).

[15] D. Kennefick, Stability under radiation reaction of circular
equatorial orbits around Kerr black holes, Phys. Rev. D 58,
064012 (1998).

[16] S. L. Detweiler, Black holes and gravitational waves. I.
Circular orbits about a rotating hole, Astrophys. J. 225, 687
(1978).

[17] L. S. Finn and K. S. Thorne, Gravitational waves from a
compact star in a circular, inspiral orbit, in the equatorial
plane of a massive, spinning black hole, as observed by
LISA, Phys. Rev. D 62, 124021 (2000).

[18] S. A. Hughes, Evolution of circular, nonequatorial orbits of
Kerr black holes due to gravitational-wave emission, Phys.
Rev. D 61, 084004 (2000).

[19] S. E. Gralla, S. A. Hughes, and N. Warburton, Inspiral into
Gargantua, Classical Quantum Gravity 33, 155002 (2016).

[20] R. Fujita and M. Shibata, Extreme mass ratio inspirals on
the equatorial plane in the adiabatic order, Phys. Rev. D 102,
064005 (2020).

[21] V. Skoupý and G. Lukes-Gerakopoulos, Adiabatic equato-
rial inspirals of a spinning body into a Kerr black hole, Phys.
Rev. D 105, 084033 (2022).

[22] L. V. Drummond, P. Lynch, A. G. Hanselman, D. R. Becker,
and S. A. Hughes, Extreme mass-ratio inspiral and wave-
forms for a spinning body into a Kerr black hole via
osculating geodesics and near-identity transformations,
arXiv:2310.08438.

[23] A. Albertini, R. Gamba, A. Nagar, and S. Bernuzzi, Tailoring
an effective-one-body waveform model to extreme-mass-ratio
inspirals: Achieving full consistency with second-order gravi-
tational self-force results and beyond, arXiv:2310.13578.

[24] C. Misner, K. Thorne, and J. Wheeler, Gravitation
(Freeman, San Francisco, CA, USA, 1973).

[25] Y. Mino, Perturbative approach to an orbital evolution around
a supermassive black hole, Phys. Rev. D 67, 084027 (2003).

[26] S. Drasco and S. A. Hughes, Gravitational wave snapshots
of generic extreme mass ratio inspirals, Phys. Rev. D 73,
024027 (2006).

[27] L. C. Stein and N. Warburton, Location of the last stable
orbit in Kerr spacetime, Phys. Rev. D 101, 064007 (2020).

[28] S. Teukolsky, Perturbations of a rotating black hole. I.
Fundamental equations for gravitational, electromagnetic,
and neutrino-field perturbations, Astrophys. J. 185, 635
(1973).

ADIABATIC GRAVITATIONAL WAVEFORM MODEL FOR … PHYS. REV. D 109, 044020 (2024)

044020-23

http://lisa.nasa.gov
http://lisa.nasa.gov
http://lisa.nasa.gov
https://sci.esa.int/web/lisa/
https://sci.esa.int/web/lisa/
https://sci.esa.int/web/lisa/
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1103/PhysRevD.95.103012
https://baas.aas.org/pub/2020n3i042
https://baas.aas.org/pub/2020n3i042
https://baas.aas.org/pub/2020n3i042
https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.1103/PhysRevLett.109.071102
https://doi.org/10.1103/PhysRevLett.109.071102
https://doi.org/10.1088/0264-9381/24/5/007
https://doi.org/10.1088/0264-9381/24/5/007
https://doi.org/10.1103/PhysRevD.103.104014
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1103/PhysRevLett.126.051102
https://doi.org/10.1103/PhysRevLett.126.051102
https://doi.org/10.5281/zenodo.4005001
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevD.53.4319
https://doi.org/10.1103/PhysRevD.58.064012
https://doi.org/10.1103/PhysRevD.58.064012
https://doi.org/10.1086/156529
https://doi.org/10.1086/156529
https://doi.org/10.1103/PhysRevD.62.124021
https://doi.org/10.1103/PhysRevD.61.084004
https://doi.org/10.1103/PhysRevD.61.084004
https://doi.org/10.1088/0264-9381/33/15/155002
https://doi.org/10.1103/PhysRevD.102.064005
https://doi.org/10.1103/PhysRevD.102.064005
https://doi.org/10.1103/PhysRevD.105.084033
https://doi.org/10.1103/PhysRevD.105.084033
https://arXiv.org/abs/2310.08438
https://arXiv.org/abs/2310.13578
https://doi.org/10.1103/PhysRevD.67.084027
https://doi.org/10.1103/PhysRevD.73.024027
https://doi.org/10.1103/PhysRevD.73.024027
https://doi.org/10.1103/PhysRevD.101.064007
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444


[29] M. Sasaki and H. Tagoshi, Analytic black hole perturbation
approach to gravitational radiation, Living Rev. Relativity 6,
6 (2003).

[30] S. A. Teukolsky and W. H. Press, Perturbations of a rotating
black hole. III. Interaction of the hole with gravitational and
electromagnetic radiation, Astrophys. J. 193, 443 (1974).

[31] S. Chandrasekhar, The Mathematical Theory of Black
Holes, The International Series of Monographs on Physics
Vol. 69 (Clarendon, Oxford, 1983).

[32] J. R. Gair, É. É. Flanagan, S. Drasco, T. Hinderer, and S.
Babak, Forced motion near black holes, Phys. Rev. D 83,
044037 (2011).

[33] D. V. Gal’tsov, Radiation reaction in the Kerr gravitational
field, J. Phys. A 15, 3737 (1982).

[34] T. C. Quinn and R. M. Wald, Energy conservation for point
particles undergoing radiation reaction, Phys. Rev. D 60,
064009 (1999).

[35] G. H. Behforooz and N. Papamichael, End conditions for
cubic spline interpolation, IMA J. Appl. Math. 23, 355 (1979).

[36] G. Hossein Behforooz, A comparison of theE(3) and not-a-
knot cubic splines, Appl. Math. Comput. 72, 219 (1995).

[37] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,
D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroué,
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