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In this article, we set up a variational problem to arrive at the equation of the maximal hypersurface in the
interior of a spherically symmetric evolving trapped region. In the first part of the article, we present the
Lagrangian and the corresponding Euler-Lagrange equations that maximize the interior volume of a
trapped region that is formed dynamically due to infalling matter in D-dimensions, with and without the
cosmological constant. In the second part, we explore the properties of special radii, which we call Reinhart
radii, that play a crucial role in approximating the maximal interior volume of a black hole. We derive a
formula to locate these Reinhart radii in terms of coordinate invariants like area radius, principle values of
the energy-momentum tensor, Misner-Sharp mass, and cosmological constant. Based on this formula, we
estimate the location of Reinhart radii in various scenarios: (a) the case of static Bañados Teitelboim Zanelli
black holes in (2þ 1) dimensions and for the Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-
anti–de Sitter black holes inD-dimensions. We plot the location of the Reinhart radii in relation to the event
horizon and cosmological horizon in a static D-dimensional scenario, (b) cosmological case: we prove that
these Reinhart radii do not exist for homogeneous evolving dust for the zero and negative cosmological
constant but exist in the presence of positive cosmological constant when the scale factor is greater than a
critical value. We also show the relation between these Reinhart radii and Kodama vectors.
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I. INTRODUCTION

One of the most intriguing and mysterious objects in the
Universe is the black hole. This area of research is now at
the forefront ever since the black holes have been obser-
vationally identified using gravitational wave astronomy.
The study of black holes is now considered mainstream
and astrophysically relevant. The thermodynamical prop-
erties of the black holes, the singularities inside the black
holes, etc. are yet to be understood fully. The information
loss of the black hole and its resolution are still sought after
mysteries.
One of the intriguing aspects of a black hole is the

volume in the interior of a black hole. This question has
been addressed by various authors using different
approaches. Maulikh Parikh [1] discusses the definition
of volume by constructing an invariant slice of the
spacetime inside the black hole horizon. Cvetic et al. [2]
have discussed the thermodynamical volume, Vth, inside a
black hole in the presence of a varying cosmological
constant Λ. Vth is defined as the conjugate variable to Λ
appearing in the first law of thermodynamics for black
hole, i.e., dE ¼ TdSþ ΩdJ þΦdQþ VthΛ, where E is
the gravitational enthalpy of spacetime. Christodoulou and

Rovelli [3] provided a somewhat different definition of the
black hole volume, in which the volume grows indefinitely
as a function of the advance time.
In this article, we generalize the approach due to

Christodoulou and Rovelli [3] for finding the interior
volume of a black hole in the case of dynamical situations.
They find out the volume inside the black hole via a
variational approach. They define a spacelike curve from
the event horizon to the singularity, in general, and from
among them define an extremal curve or a maximal
hypersurface that yields the maximum volume in the
interior of the black hole thus setting up a Lagrangian
framework to solve the above question. A similar method
is adopted in the following papers [4–12] discussed by
various authors.
In this article, we work on two aspects concerning the

volume of black holes. The first part deals with the
question about the evolution of the interior volume of
the trapped region where the black hole is in the process of
formation. Due to the evolution of the trapped region, the
interior volume of the black hole evolves. We set up a
variational problem where we write down a Lagrangian for
the spacelike curve between the apparent horizon and the
singularity using which we can estimate the maximal
volume. We then obtain the equations for this maximal
hypersurface from the Euler-Lagrange equations for the
obtained Lagrangian. We first solve the problem for the
simple case of (2þ 1) dimensions where the underlying
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equations and analysis are simpler. We then carry out the
analysis for the case of D-dimensional spherically sym-
metric dust evolution that leads to the formation of the
black hole.
It is proved in [3] that the volume generated by maximal

hypersurface has a maximum contribution from a certain
region that we call in this article Reinhart radius, which we
denote as RR (the subscript stands for “Reinhart”). This
region provides an excellent approximation for the interior
volume of the black hole [3]. For a Schwarzschild black
hole with mass M, the event horizon is at R ¼ 2M while
the value of RR ¼ 3M=2. This Reinhart radius RR lies in
the interior of the black hole. This region inside the
Schwarzschild black hole, which is also a maximal hyper-
surface, was first discovered by Reinhart [13] in 1973.
Similar points of interest in the interior of a black hole have
been found in the examples described below in various other
black holes like Bañados Teitelboim Zanelli (BTZ), Kerr,
and Kerr-anti–de Sitter (AdS) black holes [6,10,12]. The
volume of a Schwarzschild black hole is shown to be equal
to V ¼ 3

ffiffiffi
3

p
M2v where v is the advance time [3]. The

special feature of the hypersurface is that the normal to the
surface is divergence-free, i.e., the trace of the extrinsic
curvature vanishes. The Reinhart radii have played a pivotal
role in the approximation of the volume of black holes
in a more general setting. For instance, the asymptotic
volume of a static BTZ black hole is crucially dependent on
a point RR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M=2jΛjp
discussed in [11] withM being the

Arnowitt Deser Misner (ADM) mass of the BTZ black hole,
and Λ is the cosmological constant. Even in the presence
of rotation, the asymptotic formula for the interior volume
of the BTZ black hole crucially depends on the point
RR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M=2jΛjp
as shown in [12]. For the BTZ black hole

with rotation, we found that the maximal interior volume
is VΣ ¼ πv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2=jΛj − J2

p
, where v is advanced time, M

is mass, and J is the angular momentum of the BTZ
black hole.
The paper [9] tackles the problem of time-dependent

metrics. The important result from [9] is the estimation
of volume during the evolution due to Hawking evapora-
tion. They prove that the volume follows a monotonically
increasing trend in spite of Hawking radiation (till the
Planck regime is reached). The volume is given by
VðvÞ ≈ 3

ffiffiffi
3

p
πm2

0vð1 − 9B=2m2
0Þ, where m0 is the original

mass of the black hole, and B is a constant. Though the
result is counterintuitive, the result in [9] can be understood
owing to the presence of Reinhart radius that decreases with
time. The volume therefore continues to increase since it is
proportional to the advanced time v. Though we did not
include the evaporating case in our article, we show that our
results match in all situations where Reinhart radius exists.
When one explores the interesting aspects of black hole

interiors one thinks of the interior as a somewhat trivial
region with the only interesting feature being the spacetime

singularity (and the inner horizon in case of rotating or
charged black holes). The presence of RR between the event
horizon and singularity therefore reveals yet another inter-
esting region in the interior of the black hole. These regions
have not been explored in all its generality. In this article, we
explore the features of the Reinhart radii in various space-
times. We point out the relation of the Reinhart radius with
the Kodama vector. We show that these radii correspond to
the locations in the maximal hypersurface that are tangential
to the Kodama vector. The study of Reinhart radii is
exhaustive where we explore its evolutionary aspects in
D-dimensions with and without a cosmological constant.
We arrive at interesting results for the various cases
discussed. We develop a formula for tracking the evolution
of the RR from which we can deduce its location.
In Sec. II we review the features of spacetime in

D-dimensions and the evolution of dust. In Sec. III A,
we review the evolving dust model in (2þ 1) dimensions.
In Sec. III, we set up the Lagrangian formulation to locate
the maximal hypersurface that maximizes volume for the
homogeneous dust model for ð2þ 1Þ dimensional and
D-dimensional cases. In Sec. IV, we use the extrinsic
curvature method to estimate the Reinhart radius in a
(2þ 1) dimensional case. In the subsections of Sec. IV,
we discuss the vacuum case, static black hole case, and
the cosmological case in (2þ 1) dimensions. In Sec. V, we
discuss the extrinsic curvature method to locate the
Reinhart radius in D-dimensions. In the subsections of
Sec. V, we discuss the vacuum scenario, theD-dimensional
Schwarzschild black hole case, the D-dimensional
Schwarzschild-de Sitter and anti–de Sitter case, and the
cosmological case. In Sec. VI we discuss the estimation of
the volume of evolving black hole in D-dimensions. In
Sec. VII we discuss the relation between the Reinhart radii
and Kodama vector. In Sec. VIII, we discuss the con-
clusions of the work.

II. D-DIMENSIONAL EVOLVING
DUST SCENARIO

In this section, we review the evolving dust model in
D-dimensional spherically symmetric spacetime. The dis-
cussion is inclusive of a cosmological constant. The general
metric for a Dð¼ nþ 2Þ-dimensional spherically symmet-
ric spacetime is of the form

ds2 ¼ −eμðt;rÞdt2 þ eλðt;rÞdr2 þ R2ðt; rÞdΩ2
n; ð1Þ

where dΩ2
n ¼ dθ21 þ sin2 θ1ðdθ22 þ sin2 θ2ðdθ23 þ � � � þ

sin2 θn−1dθ2nÞÞ is the metric on unit n-dimensional sphere,
t is the time coordinate, and r is the comoving radial
coordinate. It is easily shown in [14] that the g00 component
of the metric can be chosen to be minus one, i.e., g00 ¼ −1
when the matter considered is dust. The metric then has a
simpler form given by
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ds2 ¼ −dt2 þ eλðt;rÞdr2 þ R2ðt; rÞdΩn
2: ð2Þ

The Einstein field equations are given below,

Gμν þ Λgμν ¼ Rμν −
1

2
Rgμν þ Λgμν ¼ κTμν: ð3Þ

Here, Gμν is the Einstein tensor, Rμν is the Ricci curvature
tensor, R is the Ricci scalar curvature, gμν is the metric
tensor, Tμν is the stress-energy tensor, and κ is the Einstein
gravitational constant and is related to Newton’s gravita-
tional constant Gn as (κ ¼ 8πGn=c4). The matter we are
considering here is a pressureless dust, hence, the
only nonzero component of the stress-energy tensor (in
the comoving and synchronous coordinate system) is
T00 ¼ ϵðt; rÞ, where ϵðt; rÞ is the energy density of the
dust. With these conditions we get the Einstein equations
which are shown in [14]. These are listed below:

G00 ¼
e−λ

R2

�
nðn − 1Þ

2
½eλð1þ Ṙ2Þ − R02� þ n

2
RR0λ0

− ΛeλR2 þ n
2
ð−2RR00 þ eλRṘ λ̇Þ

�
¼ kϵðt; rÞ ð4Þ

G01 ¼
n
2

ðR0λ̇ − 2Ṙ0Þ
R

¼ 0 ð5Þ

G11 ¼
1

R2

�
nðn− 1Þ

2
ðR02 − eλð1þ Ṙ2ÞÞ þΛeλR2 − neλRR̈

�
¼ 0 ð6Þ

G22 ¼ −
1

4
e−λ½2ðn − 2Þðn − 1Þ½eλð1þ Ṙ2Þ − R02�

− 2ðn − 1Þ½2RR00 − RR0λ0 − eλðRṘ λ̇þ2RR̈Þ�
þ eλR2ð−4Λþ λ̇2 þ 2λ̈Þ� ¼ 0: ð7Þ

The other nonzero relations are given by

Gðjþ1jþ1Þ ¼ sin2θðj−1ÞGðjjÞ; ð8Þ

where j takes values from 2 to nþ 1. The expressions for
the evolution of matter can be obtained by simplifying the
above set of equations. Solving for the G01, we get

eλ ¼ R02

1þ fðrÞ ; ð9Þ

where the integration constant fðrÞ is an arbitrary function
called the energy function. Integration of the G11 equation,
after using the above relation, gives

Ṙ2 ¼ fðrÞ þ 2Λ
nðnþ 1ÞR

2 þ FðrÞ
Rðn−1Þ ; ð10Þ

where FðrÞ is called the mass function. Solving for G00,
we find

κϵðt; rÞ ¼ nF0

2RnR0 : ð11Þ

This gives us the expression for the mass function as

FðrÞ ¼ 2κ

n

Z
ϵð0; rÞrndr; ð12Þ

where ϵð0; rÞ is the initial density of the dust. We make a
choice that when the comoving time t ¼ 0, we set the
comoving radius equal to the area radius, R ¼ r. We work
for the case of marginally bounded shells of dust where we
require that fðrÞ ¼ 0. The result (12) is obtained by
keeping the constant value of fðrÞ ¼ 0, and this holds
true from here on. Throughout the article, we shall assume
that ϵ > 0 (weak energy condition is satisfied).
We consider the scenario where the dust cloud is of finite

extent. We denote the outermost comoving label to be r0.
The region exterior to radius r0 is the vacuum. The metric
element in the exterior of the Dð¼ nþ 2Þ-dimensional
black hole with a cosmological constant given by [14]

ds2 ¼ −
�
1 −

Fðr0Þ
Rn−1 −

2ΛR2

nðnþ 1Þ
�
dT2

þ
�
1 −

Fðr0Þ
Rn−1 −

2ΛR2

nðnþ 1Þ
�

−1
dR2 þ R2dΩ2

n; ð13Þ

where Fðr0Þ is the mass function evaluated at r0. T is like
the Schwarzschild time coordinate, and R is the area
radius. The above metric is obtained by matching the
interior with the exterior metric across the boundary r0. For
n ¼ 2, i.e., the Schwarzschild black hole, Fðr0Þ ¼ 2GM,
where M is the ADM mass. In general D-dimensions, the
relation between mass function FðrÞ and mass of the dust
cloud M in nþ 1 spatial dimensions [14] is defined as

FðrÞ ¼ 2κ

n

MΓ
�
nþ1
2

�
2π

nþ1
2

; ð14Þ

where κ ¼ 8πG=c4 is the Einstein constant, and G is
the Newton’s gravitational constant. Now we track the
evolution of the maximal volume in the next section.
We discuss the solution of the scale parameter aðtÞ for the
homogeneous dust evolution in the Appendix.

III. LAGRANGIAN FORMULATION
FOR THE MAXIMAL VOLUME

OF AN EVOLVING BLACK HOLE

In this section, we derive the Lagrangian and the
corresponding Euler-Lagrange equation that maximizes
the volume inside an evolving black hole. We first discuss
the evolving dust models in (2þ 1) dimensions. The reason
for separating the (2þ 1) dimensional case from the general
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D-dimensional case is that there are unique features in the
(2þ 1) dimensional case that do not generalize to general
D-dimensions.

A. Review of (2 + 1) dimensional evolving dust solution

In this subsection, we study a dynamical situation
corresponding to the formation of the BTZ black hole.
We set the angular momentum of the BTZ black hole to
zero in order to obtain analytically tractable expressions
since we do not yet have an analytical collapsing model that
yields a rotating BTZ black hole. The Einstein equations
for the (2þ 1) dimensions can be explicitly solved. The
black hole in (2þ 1) dimensions occurs only in the case of
the negative cosmological constant. The solution given
in [15,16] is given by

ds2 ¼ −dt2 þ ðcosð ffiffiffiffiffiffijΛjp
tÞ þ B0 sinð ffiffiffiffiffiffijΛjp

tÞÞ2dr2
jΛjr2 þ jΛjB2 − 2κ

R
r
0 ϵiðsÞsdsþ 1

þ ðr cosð
ffiffiffiffiffiffi
jΛj

p
tÞ þ B sinð

ffiffiffiffiffiffi
jΛj

p
tÞÞ2dϕ2: ð15Þ

As the cosmological constant Λ ¼ −1=l2 is negative, the
background space is AdS. The metric is expressed in terms
of two functions of comoving r, [16], BðrÞ, and ϵiðrÞ. Here
Rðr; tÞ ¼ r cosð ffiffiffiffiffiffijΛjp

tÞ þ B sinð ffiffiffiffiffiffijΛjp
tÞ is the area radius

defined geometrically using the Killing vector ∂=∂ϕ such
that the perimeter of the shell of comoving shell r is 2πR.
BðrÞ decides the initial velocity of the dust cloud, and ϵiðrÞ
decides the initial density. As the cloud evolves, the density
evolves, and the area radius of each shell evolves (decreases
if the cloud undergoes a collapse scenario that leads to the
formation of a black hole). In our present context, we focus
on homogeneous dust interior since the model offers simpler
equations without compromising the caveats involved.
We choose the boundary of the homogeneous dust to be

at a comoving coordinate r ¼ r0. Outside this is comoving
radius r0; we assume that there is no more dust and hence is
the vacuum. We further choose the condition that BðrÞ ¼ 0
and ϵi ¼ jΛj=κ so that the metric (15) is in its simplest form
given by

ds2 ¼−dt2þ cos2ð
ffiffiffiffiffiffi
jΛj

p
tÞdr2þ r2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞdϕ2: ð16Þ

We note that FðrÞ is given by the expression FðrÞ ¼
2κ
R
r
0 ϵiðsÞsds in (2þ 1) dimensions. For the parameters

that we consider here, it is equal to jΛjr2. It is easily shown
that the metric (15) can be smoothly matched at the
hypersurface r ¼ r0 by equating the first and second
fundamental form to the exterior BTZ metric [from
Eq (13)], given by

ds2 ¼ −ðjΛjR2 −MÞdT2 þ dR2

ðjΛjR2 −MÞ þ R2dϕ2; ð17Þ

with T as the time coordinate corresponding to Killing time.
HereM is the ADMmass. We note that for the model under
consideration that M ¼ κϵir20 − 1 ¼ jΛjr20 − 1 [16], with r0
the outer comoving radius of the dust cloud. It is more
convenient to switch from Schwarzschild-like coordinate
system ðt; R;ϕÞ to Eddington-Finkelstein coordinates
ðv; R;ϕÞ to avoid the coordinate singularity at the horizons.
The Eddington-Finkelstein coordinates are defined as

v ¼ tþ
Z

R dR
N2ðRÞ ; R ¼ R and ϕ ¼ ϕ; ð18Þ

where N2ðRÞ ¼ ðjΛjR2 −MÞ. The metric (17) can now be
written as

ds2 ¼ −ðjΛjR2 −MÞdv2 þ 2dvdRþ R2dϕ2; ð19Þ

1. Apparent horizon

Our goal in this article is to find out the volume of an
evolving black hole. To track the boundary of the evolving
black hole, we need the location of the apparent horizon. As
given in [15,16], the condition for the expansion parameter
for outgoing null geodesics to become zero for a general
metric (15) is given by [16]. So

2κ
R
r
0 ϵiðsÞsds − 1

jΛjR2
¼ 1: ð20Þ

Physically this means that the apparent horizon occurs
when the Misner-Sharp mass of a given shell gets com-
pressed to a small area radius given by the above equation.
For the specific case we are considering in this article,
we have

jΛjr2 − 1

jΛjr2 cos2ð ffiffiffiffiffiffijΛjp
tÞ > 1: ð21Þ

This implies the curve of the apparent horizon is given by
the relation

r2a ¼
1

jΛj sin2ð ffiffiffiffiffiffijΛjp
tÞ : ð22Þ

We consider the collapsing regime where t goes from 0 to
π=ð2 ffiffiffiffiffiffijΛjp Þ. At time t ¼ 0, we have the apparent horizon at
ra ¼ ∞. This is only true for the cosmological case in
which we take r0 to infinity. We note that in the time interval
considered during the collapsing phase, the apparent hori-
zon ra is a decreasing function of time. This implies the
shell r0 is trapped first, and then the smaller values of r get
trapped. This also implies that since there is no more mass
collapsing beyond the shell r0, the radius R at which r0
becomes trapped is also the event horizon. The physical
radius of the event horizon is given by Rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=jΛjp

,
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where M ¼ jΛjr20 − 1. During the course of evolution, we
therefore have two distinct regions inside the BTZ black
hole as illustrated in Fig. 1. (A) is the region from the event
horizon R ¼ Rh to the area radius of the outer shell R0 ¼
r0 cosð

ffiffiffiffiffiffijΛjp
tÞ of the dust cloud inside the event horizon

Rh. Region (B) consists of the interior region of the dust
cloud. We note that the region (A) is a vacuum, whereas
(B) is evolving dust that eventually becomes singular. The
plan is to track the evolution of the maximal volume where
we take into account both the regions (A) and (B). We
discuss the evolution of maximal volume in the next
subsection.

B. Lagrangian formulation for the maximal volume
of a black hole in (2 + 1) dimensions

In this subsection we use the method given in [3] to
construct a two-dimensional spacelike surface Σ, which is a
direct product of one-sphere parametrized by ϕ and a curve
γ embedded in the two-dimensional space parametrized by
λ in the submanifold ðv; RÞ. We note that this hypersurface
extends across the exterior (vacuum spacetime) and the

interior (dust cloud). It is more convenient to describe this
hypersurface in terms of ðv; RÞ in the exterior spacetime
and in coordinates ðt; rÞ in the interior of the dust cloud. In
Fig. (1), this hypersurface extends from the event horizon in
region (A) to the point R ¼ 0 in region (B). We note the
following relations:

Σ∼ γ×S1; γ∼ ½vðλÞ;RðλÞ� and γ∼ ½tðλÞ; rðλÞ�: ð23Þ

We choose λ ¼ 0 at the event horizon ðRhÞ and call λf (f for
“final”) the value of λ at R ¼ 0. Thus, the initial and final
end points of γ are given by

Rðλ ¼ 0Þ ¼ Rh; Rðλ ¼ λ0Þ ¼ R0;

vðλ ¼ 0Þ ¼ v; vðλ ¼ λ0Þ ¼ v0;

tðλ ¼ λ0Þ ¼ t; rðλ ¼ λ0Þ ¼ r0;

tðλ ¼ λfÞ ¼ π=2
ffiffiffiffiffiffi
jΛj

p
; rðλ ¼ λfÞ ¼ 0: ð24Þ

The surface Σ is coordinated by λ;ϕ. We note that when the
parameter λ ¼ λ0, the curve γ enters from region A to
region B. Thus when Rðλ ¼ λ0Þ ¼ R0, R0 is the area radius
of the outermost shell r0. The element of the induced
metric on Σ in the exterior region (A) is

ds2Σ ¼ ½−ðjΛjR2 −MÞv̇2 þ 2v̇ Ṙ�dλ2 þ R2dϕ2; ð25Þ

where v̇ ¼ dv=dλ and Ṙ ¼ dR=dλ in the above equation.
Similarly, following the same procedure for interior region
(B), the induced metric element is

ds2Σ ¼
h
−ṫ2 þ ṙ2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ
i
dλ2 þ r2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞdϕ2:

ð26Þ

Here ṫ and ṙ are derivatives with respect to the parameter λ.
Now, the maximal surface is the union of both the regions.
So the volume is expressed as

VΣ½γ� ¼ −
Z

λ0

λh

dλ
Z
S1
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2½−ðjΛjR2 −MÞv̇2 þ 2v̇ Ṙ�

q
−
Z

λf

λ0

dλ
Z
S1
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ½−ṫ2 þ ṙ2cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ�

q
: ð27Þ

The minus sign is because the parameter λ is chosen to be
monotonically decreasing with increasing radius. In the first
term, Rðλ ¼ 0Þ ¼ Rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=jΛjp

, which is the event hori-
zon. The above expression is obtained by connecting the
hypersurface across the boundary r ¼ r0. The first term in
the above equation is the volume inside the BTZ black hole

from the event horizon to an area radius Rðλ ¼ λ0Þ ¼
R0 ¼ r0 cosð

ffiffiffiffiffiffijΛjp
tÞ, which is the outer shell of the col-

lapsing dust cloud, inside the BTZ black hole. The solution
to this term where we seek the maximal volume in the
interior of the vacuum part of a nonrotating BTZ black hole
is solved completely in [11].

(a) (b)

FIG. 1. Figure 1(a) shows the homogeneous dust cloud whose
outer boundary labeled with the comoving radial coordinate is
formed at r ¼ r0, and Fig. 1(b) shows that this homogeneous dust
cloud collapses to form a nonrotating BTZ black hole. Here, A
represents the vacuum region that formed during the dust
collapse, has a radius of the outer boundary Rh, and is known
as the event horizon, and B represents the evolving dust that
eventually collapses to a singularity.
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We now focus on the evolution of the maximal surface in
the region (B) as a function of comoving time t. We follow
the same Lagrangian procedure outlined in [3] for the metric
given by Eq. (26). We note here that as far as the comoving
coordinate chart is concerned the location of the apparent
horizon, or the event horizon, does not appear as any
coordinate singularities in the metric. So the Euler-Lagrange
equations remain the same irrespective of the boundary
limits we impose. This is one of the main advantages of
using the comoving coordinates to describe dust evolution.
We have to maximize the following functional after inte-
grating over the angle variable:

VΣ ¼ −2π
Z

λf

λ0

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ½−ṫ2 þ ṙ2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ�

q
:

ð28Þ

Wemay choose the parameter to be r since this coordinate is
monotonic in the domain under consideration. The above
functional then has only one function tðrÞ that needs to be
determined. The volume expression now becomes

VΣ ¼ −2π
Z

0

r0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ½−ṫ2 þ cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ�

q
;

ð29Þ

where ṙ ¼ 1, and ṫ ¼ ∂t=∂r is the derivative of t with
respect to r. This can be viewed as an extremization
problem, and our goal is to find the equations of motion
for the Lagrangian defined as

L ¼ Lðt; ṫ; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ½−ṫ2 þ cos2ð

ffiffiffiffiffiffi
jΛj

p
tÞ�

q
:

ð30Þ

The Euler-Lagrange equation is defined as

d
dr

�
∂L
∂ṫ

�
−
∂L
∂t

¼ 0; ð31Þ

for the Lagrangian, (30), we get

̈t −
�
sec2ð ffiffiffiffiffiffijΛjp

tÞ
r

�
ṫ3 þ 3

ffiffiffiffiffiffi
jΛj

p
½tanð

ffiffiffiffiffiffi
jΛj

p
tÞ�ṫ2 þ ṫ

r

−
ffiffiffiffiffiffi
jΛj

p
sinð2

ffiffiffiffiffiffi
jΛj

p
tÞ ¼ 0; ð32Þ

where ṫ ¼ ∂t=∂r and a0ðtÞ ¼ ∂aðtÞ=∂t. The solution of
Eq. (32) yields the comoving time as a function of r,
i.e., tðrÞ, which corresponds to maximal hypersurface.

C. Lagrangian formulation for the maximal volume
of a black hole in D-dimensions

In this subsection, we consider a spherically symmetric
Dð¼ nþ 2Þ-dimensional evolving dust cloud in the pres-
ence of a cosmological constant. The construction of the
spacelike hypersurface between the event horizon and the
singularity proceeds the same way as the (2þ 1) dimen-
sional case. We again have regions (A) and (B) as shown in
the Fig. 1, with (A) being the exterior of the dust cloud
within the event horizon and (B) the interior of the dust
cloud. We now focus on region (B). From Eqs. (2) and (9)
with fðrÞ ¼ 0, the metric element in the interior of the
black hole is defined as

ds2 ¼ −dt2 þ R02dr2 þ R2ðt; rÞdΩn
2: ð33Þ

The total volume of the black hole is the sum of the interior
of dust and the exterior lying within the event horizon.
Applying the conditions (23) and (24) in the Dð¼ nþ 2Þ-
dimensional case, we get the induced metric element as

ds2Σ ¼ ð−ṫ2 þ ṙ2R02Þdλ2 þ R2ðt; rÞdΩ2
n: ð34Þ

The volume in Dð¼ nþ 2Þ-dimensions is defined as

VðDÞ
Σ ¼

Z
dλdΩn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2nð−ṫ2 þ ṙ2R02Þ

q

¼ 2π
nþ1
2

Γðnþ1
2
Þ
Z

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2nð−ṫ2 þ ṙ2R02Þ

q
: ð35Þ

Hence, the Lagrangian is defined as

Lðt; ṫ; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2nð−ṫ2 þ ṙ2R02Þ

q
: ð36Þ

Now, let the parameter λ ¼ r then ṙ ¼ 1, substitute
Rðt; rÞ ¼ raðtÞ and R0ðt; rÞ ¼ aðtÞ in Eq. (36), where
aðtÞ is the scale parameter, and we get

Lðt; ṫ; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½raðtÞ�2nð−ṫ2 þ ½aðtÞ�2Þ

q
: ð37Þ

Our next goal is to find the equation of motion for the above
Lagrangian from Eq. (31); we get

̈t −
�

n
r½aðtÞ�2

�
ṫ3 −

�ðnþ 2Þa0ðtÞ
aðtÞ

�
ṫ2 þ

�
n
r

�
ṫ

þ ðnþ 1ÞaðtÞa0ðtÞ ¼ 0; ð38Þ

where ṫ ¼ ∂t=∂r and a0ðtÞ ¼ ∂aðtÞ=∂t. This is the differ-
ential equation in D-dimensions, and we can easily recover
the (2þ 1) dimensional case by substituting n ¼ 1 and
aðtÞ ¼ cosð ffiffiffiffiffiffijΛjp

tÞ in Eq. (38). For estimating the maximal
hypersurface in the trapped region, we can choose the
appropriate boundary values. We note that the condition for
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marginal trapping for the model under consideration is
given by ra ¼ −1=ȧ [17], where the ȧ is a derivative of the
scale factor with respect to time t. In a collapsing scenario,
we have ȧ is negative thereby giving a positive value for ra.

IV. REINHART RADIUS IN (2 + 1) DIMENSIONAL
EVOLVING DUST MODEL

In this section, we discuss the existence of Reinhart radii
in various evolving dust models in (2þ 1) dimensions. As
discussed in the Introduction, these are special radii that
have been found in the interior region of black holes. In the
paper [13], Reinhart showed that in the interior of the
Schwarzschild black hole, the hypersurfaceRR ¼ 3M=2 is a
maximal hypersurface. He used the vanishing of the trace
of the extrinsic curvature to arrive at this value for the
radius. As pointed out in the Introduction, this radius has
proved useful in approximating the interior volume of a
black hole in the paper [3]. This radius was found in [3] via
an independent method whereby the volume inside the
Schwarzschild black hole was maximized. Similarly in the
papers [4–6,9–12] the maximization of the internal volume
yielded the Reinhart radius. All these models describe static
or stationary black holes. The Reinhart radii in the more
general setting is a gap in the literature. This is the goal of
the second part of the article. We now track the existence of
the Reinhart radii in various cases in (2þ 1) dimensions.
The location of the Reinhart radius and its correlation with
the evolution of the apparent horizon can provide important
clues toward estimating the volume of the evolving black
hole. To this end, we evaluate the divergence of normal to
Rðt; rÞ ¼ const surface. To find the normal to the surface we
differentiate Rðt; rÞ ¼ const and get

Ṙdtþ R0dr ¼ 0: ð39Þ

The covariant components of normal vector are defined as
nα ¼ ðnt; nrÞ, where nt ¼ Ṙ and nr ¼ R0. We now analyze
the case of (2þ 1) dimensional scenario separately here
owing to the nontrivial nature of gravity in (2þ 1) dimen-
sions. We start with the area radius Rðt; rÞ of the comoving
shell as a function of the comoving time and shell label r.
The normalized contravariant components of normal vector

are Nα ¼ ðNt; NrÞ ¼
�

−Ṙffiffiffiffiffiffiffiffi
Ṙ2−1

p ; 1

R0 ffiffiffiffiffiffiffiffiṘ2−1
p

�
. The condition for

the vanishing trace of extrinsic curvature, which implies that
the normal vector is divergence free, is written as

Nα
;α ¼

1ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p ∂

∂xα

� ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
Nα

�
¼ 0; ð40Þ

where
ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p
¼ R0R, which is obtained from the deter-

minant of metric (33) for n ¼ 1, i.e, (2þ 1) dimensional
case. Equation (40) can be written as

1

R0R

�
∂

∂t
ðR0RNtÞ þ ∂

∂r
ðR0RNrÞ

�
¼ 0 ð41Þ

or

−
∂

∂t

�
ṘR0Rffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 − 1

p
�
þ ∂

∂r

�
Rffiffiffiffiffiffiffiffiffiffiffiffiffi

Ṙ2 − 1
p

�
¼ 0: ð42Þ

After simplifying Eq. (42), we get

ðṘ2 − 1Þ2 þ RṘ3Ṙ0

R0 − RR̈ ¼ 0; ð43Þ

where the expression for Ṙ2 is obtained for the (2þ 1)
dimension by substituting n ¼ 1 into Eq. (10), and we get

Ṙ2 ¼ fðrÞ þ ΛR2 þ FðrÞ: ð44Þ

We take the fðrÞ ¼ 0 for the marginally bounded shell of
the dust cloud. Now differentiating Eq. (44) with respect to t
and r, we get expression for R̈ and Ṙ0 as

R̈ ¼ ΛR ð45Þ

and

Ṙ0 ¼ ΛRR0

Ṙ
þ F0ðrÞ

2Ṙ
: ð46Þ

Substituting the value of Ṙ2; R̈, and Ṙ0 from Eqs. (44)–(46)
into Eq. (43), we get

RF0ðrÞ
2R0 ½ΛR2 þ FðrÞ� þ ½ΛR2 þ FðrÞ − 1�
× ½2ΛR2 þ FðrÞ − 1� ¼ 0: ð47Þ

We now obtain a general formula connecting the comoving
energy density at a point with the area radius Rðt; rÞ,
Misner-Sharp mass FðrÞ, and cosmological constant Λ. Let
ϵ be the energy density of the collapsing dust cloud then we

can define the energy density as ϵ ¼ F0ðrÞ
2RR0. Therefore, from

Eq. (47), we can write ϵ as

ϵ¼ F0ðrÞ
2RR0 ¼ −

½ΛR2 þFðrÞ− 1�½2ΛR2 þFðrÞ− 1�
R2½ΛR2 þFðrÞ� : ð48Þ

This is the condition for R ¼ const hypersurface to have a
vanishing trace of extrinsic curvature. Though this for-
mula is true, in general, we now examine a few simple
cases and gain an understanding of this special point in the
hypersurface.
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A. Vacuum case

When FðrÞ ¼ 0. This situation represents matter content
is zero in the entire spacetime. We see that

½ΛR2 − 1�½2ΛR2 − 1� ¼ 0: ð49Þ

We have two values of area radius where the condition is
met: RCH ¼ 1=

ffiffiffiffi
Λ

p
and RR ¼ 1=

ffiffiffiffiffiffi
2Λ

p ¼ RCH=
ffiffiffi
2

p
. The

former root is the de Sitter cosmological horizon, which
is a null horizon. The normal to the horizon is also the null
generator and has vanishing divergence. We look for
timelike normals (timelike normals for R ¼ const occur
in the interior of a black hole) and spacelike normals, so
this root is not our answer. The other root is the answer,
and we observe that this root lies between the R ¼ 0
and the cosmological horizon RCH. This feature is also
observed in the situations to come. We note that for a
negative cosmological constant, this case does not yield
any solutions.

B. Static black hole case

Suppose we consider the case when the Misner-Sharp
mass FðrÞ is a constant, this is the situation of a black hole
or a naked singularity where all the mass has already
collapsed to a point. We can use the formula derived above
to examine the situation of a black hole using the comoving
chart and not static/stationary coordinates. So we take
the condition that FðrÞ ¼ const ¼ M þ 1, where M is the
ADM mass. Also, we note that automatically F0ðrÞ ¼ 0.
From Eq. (47), we get

½ΛR2 þM�½2ΛR2 þM� ¼ 0; ð50Þ

there are again two roots of the Eq. (50),

R ¼ RCH ¼
ffiffiffiffiffiffiffiffi
−M
Λ

r
and R ¼ RR ¼

ffiffiffiffiffiffiffiffi
−M
2Λ

r
: ð51Þ

Here we have two subcases. For a positive cosmological
constant, we require that the mass function FðrÞ at the
naked singularity (which is a conical singularity) is not
greater than 1 so that M is negative. In this case, we have
the cosmological horizon at RCH, and as can be seen in the
above equation, RR ¼ RCH=

ffiffiffi
2

p
. The fact that M has to be

negative is observed in [15,16]. This scenario is not present
in the four and higher dimensions where the ADM massM
is positive definite. Here RR < RCH, which shows that the
surface is not beyond the cosmological horizon. The second
subcase involves a negative cosmological constant. Here, in
contrast, we requireM to be positive for roots to be real. So
F > 1 for a black hole event horizon to exist. The total
mass that collapses has to be greater than 1 so that an event
horizon forms [15,16]. We then have

R ¼ Re ¼
ffiffiffiffiffiffi
M
jΛj

s
and R ¼ RR ¼

ffiffiffiffiffiffiffiffiffi
M
2jΛj

s
: ð52Þ

As is evident from the above equations, RR occurs in the
interior of the BTZ black hole with zero angular momen-
tum. The radius is RR ¼ Re=

ffiffiffi
2

p
. This is similar to the

situation of the case of four-dimensional black holes as
observed in the works of [3,5,9,10].

C. Cosmological case

We look at cosmological solutions in (2þ 1) dimensions
with and without a cosmological constant. The mass
function for homogeneous collapsing dust in (2þ 1)
dimensions is defined as FðrÞ ¼ gr2, and the area radius
of comoving shells is R ¼ Rðt; rÞ ¼ raðtÞ. Substituting
these parameters into Eq. (47), we get

2ðΛa2 þ gÞ2r4 − ð3Λa2 þ 2gÞr2 þ 1 ¼ 0: ð53Þ

In case (1) when Λ ¼ 0, i.e., without a cosmological
constant, we set Λ ¼ 0 in the above equation then we
obtain g2r4 þ ðgr2 − 1Þ2 ¼ 0. As can be seen readily, this is
a sum of squares and is never zero. So we do not have RR
for real values of the area radius. To analyze the case with a
nonzero cosmological constant, we evaluate the roots of
Eq. (53). This gives Reinhart radius rR as

rR ¼
 
ð3Λa2 þ 2gÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Λa2 þ 2gÞ2 − 8ðΛa2 þ gÞ2

p
4ðΛa2 þ gÞ2

!1
2

:

ð54Þ

In case (2) when Λ > 0, i.e., de Sitter spacetime rR will be
positive only when the terms inside the square root are
positive, i.e.,

ð3Λa2 þ 2gÞ2 − 8ðΛa2 þ gÞ2 > 0

⇒ a2 > −
2gð ffiffiffi

2
p þ 1Þ

Λð3þ 2
ffiffiffi
2

p Þ and a2 >
2gð ffiffiffi

2
p

− 1Þ
Λð3 − 2

ffiffiffi
2

p Þ

⇒ a2 >
2gð ffiffiffi

2
p

− 1Þ
Λð3 − 2

ffiffiffi
2

p Þ or a2 >
2gð ffiffiffi

2
p þ 1Þ
Λ

: ð55Þ

This condition can be seen to be equal to the relation inside;
the square root has to be positive. This inequality implies
that rR is only possible during the evolution if the scale
parameter is greater than a critical value given in the
equation. This is a surprising fact that this point emerges
during the course of evolution provided the scale parameter
crosses a certain threshold value.
In case (3) when Λ < 0, i.e., anti–de Sitter spacetime, we

replace Λ with −Λ in Eq. (54), and we get
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rR ¼
 
ð−3jΛja2 þ 2gÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4 þ 4jΛjga2 − 4g2Þ

p
4ð−jΛja2 þ gÞ2

!1
2

:

ð56Þ

Let us define A¼−3jΛja2þ2g and B¼ ffiffiffi
8

p ð−jΛja2þ2gÞ,
then the terms A2−B2¼ð−3jΛja2þ2gÞ2−8ðΛa2þgÞ2¼
Λ2a4þ4jΛjga2−4g2. There are two possible situations
that arise on A:

(i) Suppose A is negative, i.e., A < 0, then Eq. (56) can
be written as

rR¼
 
−jð−3jΛja2þ2gÞj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

p
4ð−jΛja2þgÞ2

!1
2

:

ð57Þ

Now we check the existence of the above Reinhart
radius rR as follows:

ð−3jΛja2þ2gÞ2> ð−3jΛja2þ2gÞ2−8ðΛa2þgÞ2
⇒ ð−3jΛja2þ2gÞ2>Λ2a4þ4jΛjga2−4g2

⇒ jð−3jΛja2þ2gÞj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

q
⇒−jð−3jΛja2þ2gÞj<−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

q
⇒−jð−3jΛja2þ2gÞjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

q
<0

ð58Þ

and −jð−3jΛja2þ2gÞj−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

p
<0

is also possible. Hence, these conditions show that the
terms −jð−3jΛja2þ2gÞj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4þ4jΛjga2−4g2

p
<0

in the Eq. (57), which means rR becomes imaginary,
and hence there is no any rR exist.

(ii) Suppose A is positive, i.e., A¼ð−3jΛja2þ2gÞ>0,
then it gives the condition on the scale parameter
aðtÞ as a2 < 2g=3jΛj and using this condition inside
the square root term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2a4 þ 4jΛjga2 − 4g2Þ

p
we

get an imaginary value. Hence in both scenarios,
there is no solution for rR, and hence they do not
exist for (2þ 1) dimensional AdS cosmological
spacetimes.

V. REINHART RADII IN D-DIMENSIONAL
EVOLVING DUST IN THE PRESENCE
OF COSMOLOGICAL CONSTANT

We now extend our results in (2þ 1) dimensions to
general D-dimensions. We consider the D-dimensional
metric found in Sec. II. We repeat the analysis done in a
(2þ 1)-dimensional case. We find the normal to the surface
Rðt; rÞ ¼ const and get

Ṙdtþ R0dr ¼ 0: ð59Þ

The normalized contravariant components of normal vector

can be found to be Nα ¼ ðNt; NrÞ ¼
�

−Ṙffiffiffiffiffiffiffiffi
Ṙ2−1

p ; 1

R0 ffiffiffiffiffiffiffiffiṘ2−1
p

�
. The

condition for the vanishing trace of extrinsic curvature in
Dð¼ nþ 2Þ-dimensions is given by

Nα
;α ¼

1ffiffiffiffiffiffiffiffiffiffiffi
−gðDÞp ∂

∂xα

� ffiffiffiffiffiffiffiffiffiffiffi
−gðDÞ

q
Nα

�
¼ 0; ð60Þ

where
ffiffiffiffiffiffiffiffiffiffiffi
−gðDÞp

¼ R0RnΘn, which is obtained from the
determinant of metric (33), where Θn contains the product
of all the angular parts of the determinant of metric (33).
Equation (60) can be written as

1

R0RnΘn

�
∂

∂t
ðR0RnΘnNtÞ þ ∂

∂r
ðR0RnΘnNrÞ

�
¼ 0 ð61Þ

or

−
∂

∂t

�
ṘR0Rnffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 − 1

p
�
þ ∂

∂r

�
Rnffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 − 1

p
�

¼ 0: ð62Þ

After simplifying Eq. (62), we get

nRn−1ðṘ2 − 1Þ2 þ RnṘ3Ṙ0

R0 − RnR̈ ¼ 0: ð63Þ

Now, differentiating Eq. (10) with respect to t and r, we get
the expression for R̈ and Ṙ0 as

R̈ ¼ 2ΛR
nðnþ 1Þ −

ðn − 1ÞFðrÞ
2Rn ð64Þ

and

Ṙ0 ¼ 2ΛRR0

nðnþ 1ÞṘþ F0

2Rn−1Ṙ
−
ðn − 1ÞFR0

2RnṘ
: ð65Þ

Substituting the value of Ṙ2; R̈, and Ṙ0 from Eqs. (10), (64),
and (65) into Eq. (63) and after simplifying, we get

RF0ðrÞ
2R0

�
2ΛR2

nðnþ 1Þ þ
FðrÞ
Rn−1

�
þ
�

2ΛR2

nðnþ 1Þ þ
FðrÞ
Rn−1 − 1

�

×

�
2Λ
n

Rnþ1 þ ðnþ 1Þ
2

FðrÞ − nRn−1
�
¼ 0: ð66Þ

We will see below that the above formula simplifies to
an expression involving coordinate invariant since the
term containing F0 gets related to the energy density.
The formula therefore is an interesting relation between
the principle value of the energy-momentum tensor, the
cosmological constant, and the Misner-Sharp mass.

MAXIMAL HYPERSURFACE IN A D-DIMENSIONAL DYNAMICAL … PHYS. REV. D 109, 044019 (2024)

044019-9



In a general setting, the Misner-Sharp mass is a mono-
tonically increasing function of the comoving radius r.
We take a nonzero value for the mass function FðrÞ ≠ 0
(and F0ðrÞ ≠ 0). Let ϵ be the energy density of collapsing
dust, then we can define the energy density as ϵ ¼ nF0ðrÞ

2RnR0 .
Therefore, from Eq. (66), we can write ϵ as

ϵ ¼ nF0ðrÞ
2RnR0

¼
n
�
1 − 2ΛR2

nðnþ1Þ −
FðrÞ
Rn−1

�h
2Λ
n Rnþ1 þ ðnþ1Þ

2
FðrÞ − nRn−1

i
Rnþ1

�
2ΛR2

nðnþ1Þ þ FðrÞ
Rn−1

� :

ð67Þ
A. Vacuum scenario

When there is no matter in the spacetime we have
FðrÞ ¼ 0. In this case, the above equation yields
Minkowski, de Sitter, or anti–de Sitter spacetime. For
the case of FðrÞ ¼ 0, the formula above gives

�
2ΛR2

nðnþ 1Þ − 1

��
2Λ
n

Rnþ1 − nRn−1
�
¼ 0: ð68Þ

We solve for the RR,

2ΛR2

nðnþ 1Þ − 1 ¼ 0 ð69Þ

and

2Λ
n

Rnþ1 − nRn−1 ¼ 0 ð70Þ

from Eqs. (69) and (70), and we get

RCH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
and RR ¼

ffiffiffiffiffiffi
n2

2Λ

r
ð71Þ

or

RR ¼
ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
RCH: ð72Þ

Here n < nþ 1 so RR < RCH, which means Reinhart
radius occurs before the cosmological horizon. The cos-
mological horizon is the boundary of the antitrapped
region. So RR occurs in the accessible part of spacetime
from the point of view of the interior of the cosmological
horizon. We also note that this surface is possible only in de
Sitter space and not possible in anti–de Sitter space.

B. D-dimensional Schwarzschild black hole

When Λ ¼ 0 and mass function FðrÞ ¼ const then
F0ðrÞ ¼ 0. From Eq. (66) we get

�
FðrÞ
Rn−1 − 1

��
nþ 1

2
FðrÞ − nRn−1

�
¼ 0 ð73Þ

or

R¼Re¼ ½FðrÞ� 1
n−1 and R¼RR¼

�
nþ1

2n
FðrÞ

� 1
n−1
: ð74Þ

From Eq. (74), we can write

RR ¼
�
nþ 1

2n

� 1
n−1
Re: ð75Þ

For Schwarzschild case n ¼ 2 (i.e., 4 dimensions), the mass
function FðrÞ ¼ 2M, then from Eq. (74) we get Re ¼ 2M,
which corresponds to the event horizon and RR ¼ 3

2
M,

which is the Reinhart radius that corresponds to maximal
hypersurface as identified in [3]. From Eq. (75) RR ¼ 3

4
Re,

i.e., RR < Re, which means RR lies inside the event horizon
of a black hole since 2n > nþ 1 for n ¼ 2; 3…. This
means RR always lies inside the event horizon for all n > 1.
For the case n ¼ 1 there is no black hole if there is no
negative cosmological constant.

C. D-dimensional Schwarzschild-de
Sitter/anti–de Sitter spacetime scenario

If the mass function FðrÞ ¼ const, then the change in
mass function of the dust cloud vanishes, i.e., F0ðrÞ ¼ 0,
and the event horizon will be static. Let cosmological
constant Λ ≠ 0, then from Eq. (66), we get

�
2ΛR2

nðnþ 1Þ þ
FðrÞ
Rn−1 − 1

��
2ΛRnþ1

n
þ ðnþ 1ÞFðrÞ

2
− nRn−1

�
¼ 0: ð76Þ

From Eq. (76) the solutions of the first and second bracket
give event horizon Re and Reinhart radius RR as

PðR ¼ ReÞ ¼
2ΛR2

e

nðnþ 1Þ þ
F

Rn−1
e

− 1 ¼ 0 ð77Þ

and

PðR ¼ RRÞ ¼
2ΛR2

R

nðnþ 1Þ þ
F

2Rn−1
R

−
n

nþ 1
¼ 0: ð78Þ

Both of the Eqs. (77) and (78) are nþ 1 dimensional
polynomials and finding analytical roots is in general
difficult. We obtain good insight into the relative locations
of the event horizons Re and the RR by plotting the graphs
of the polynomials explicitly. We observe that RR usually
lies in the interior of a black hole. In the presence of a
positive cosmological constant, we get another root for RR,
which is at a radius smaller than the cosmological horizon
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(a) (b) (c)

(d) (e) (f)

FIG. 3. The graph (a) shows the location of all the event horizons Re and cosmological horizons RCH corresponding to the polynomial
PðR ¼ ReÞ of Eq. (77). The graph (b) shows the location of all the inner and outer Reinhart radius RR corresponding to the polynomial
PðR ¼ RRÞ of Eq. (78) for D ¼ 4, 5, 6, and 7 dimensions in de Sitter spacetime. The graphs (d), (e), and (f) show that the inner RR
always lies inside the Re and outer RR lies between Re and RCH. Here we take the cosmological constant Λ ¼ 0.05 and mass function
FðrÞ ¼ 1 for all the graphs.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The graph (a) shows the location of all the event horizons corresponding to the polynomial PðR ¼ ReÞ of Eq. (77), and
graph (b) shows the location of all the Reinhart radii corresponding to the polynomial PðR ¼ RRÞ of Eq. (78) for D ¼ 4, 5, 6, and 7
dimensions in AdS spacetime. Graphs (d), (e), and (f) show that the Reinhart radius RR always lies inside the event horizon Re. Here we
take the cosmological constant Λ ¼ −0.05 and mass function FðrÞ ¼ 1 for all the graphs.
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RCH. These facts are illustrated in the plots given in the
Figs. 2 and 3.

D. D-dimensional cosmological scenario

We now explore the presence and evolution of the
Reinhart radius for the cosmological solutions in
D-dimensions. We can think of the cosmological solutions
as being valid for the entire Universe, or we can think of

the solutions as a homogeneous interior of an evolving star.
If we assume the latter, we need to define an outer
comoving shell r0 beyond which there is the vacuum.
The mass function for homogeneous dust in Dð¼ nþ 2Þ-
dimension is defined as FðrÞ ¼ 2g

nðnþ1Þ r
nþ1, where g ¼

kϵð0; rÞ > 0 and R ¼ Rðt; rÞ ¼ raðtÞ. The dynamics of
various cases are given in the Appendix. Substituting these
values in Eq. (66), we get

�
4ðΛa2 þ ga1−nÞ2

n3ðnþ 1Þ
�
r4 −

�
2Λa2ð2nþ 1Þ þ gð3nþ 1Þa1−n

n2ðnþ 1Þ
�
r2 þ 1 ¼ 0: ð79Þ

In case (1) when Λ ¼ 0, i.e., without a cosmological constant, the solution of Eq. (79) gives Reinhart radius rR as

rR ¼
ffiffiffi
n

p
2

 
ð3nþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3nþ 1Þ2 − 16nðnþ 1Þ

p
2ga1−n

!
1=2

¼
	
0 ; if n ¼ 0 i:e: ð2 − dimensionsÞ
Im ; if n ≥ 1 i:e: ð≥ 3 − dimensionsÞ: ð80Þ

Equation (80) shows that the Reinhart radius does not exist in any number of dimensions when the cosmological constant
is zero.
In case (2), for a general case (when Λ ≠ 0), the solution of Eq. (79) gives Reinhart radius rR as

rR¼
ffiffiffi
n

p
2

 
½2Λa2ð2nþ1Þþgð3nþ1Þa1−n��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2Λa2ð2nþ1Þþgð3nþ1Þa1−n�2−16nðnþ1ÞðΛa2þga1−nÞ2

p
2ðΛa2þga1−nÞ2

!
1=2

: ð81Þ

There are two possible situations that arise from Eq. (81) for the validity of Reinhart radius and which we discuss as follows:
(a) WhenΛ < 0, i.e., anti–de Sitter spacetime, we replace the cosmological constantΛwith −Λ in Eq. (81), and we get the

Reinhart radius rR as

rR¼
ffiffiffi
n

p
2

 
½−2jΛja2ð2nþ1Þþgð3nþ1Þa1−n��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½−2jΛja2ð2nþ1Þþgð3nþ1Þa1−n�2−16nðnþ1ÞðjΛja2þga1−nÞ2

p
2ð−jΛja2þga1−nÞ2

!
1=2

:

ð82Þ
Now, let us define x ¼ ½−2jΛja2ð2nþ 1Þ þ gð3nþ 1Þa1−n�, y ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp ð−jΛja2 þ ga1−nÞ, and z ¼ffiffiffi

2
p ð−jΛja2 þ ga1−nÞ. There are two possible cases that arise on x.

(i) Suppose x is negative, i.e., x < 0, then Eq. (82) gives
Reinhart radius rR as follows:

rR ¼
ffiffiffi
n

p
2

 
−jxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
z2

!
: ð83Þ

Now we check the existence of Reinhart radius rR
defined in Eq. (83) as follows:

x2 > x2 − y2

⇒ jxj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

q
⇒ −jxj < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

q
⇒ −jxj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

q
< 0

and also; − jxj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

q
< 0: ð84Þ

Equation (84) shows that the terms −jxj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
< 0, which means rR becomes imaginary

and hence does not exist.
(ii) Suppose x is positive, i.e., x > 0, then Eq. (82) gives

Reinhart radius rR as

rR ¼
ffiffiffi
n

p
2

 
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
z2

!
: ð85Þ

Now, if x > 0, then we get a condition on scale
parameter aðtÞ as anþ1 < gð3nþ 1Þ=2jΛjð2nþ 1Þ.
Using this condition for any value of n (i.e.,
n ¼ 1; 2; 3; 4;…) the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y2

p
in Eq. (85)

becomes imaginary. Hence, rR does not exist for
positive x also. Therefore, these two cases prove
that the Reinhart radius rR does not exist in
D-dimensional cosmological AdS spacetime.
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(b) When Λ > 0, i.e., de Sitter spacetime, from Eq. (81)
the Reinhart radius rR is positive only when the terms
inside the square root are positive, i.e.,

½2Λa2ð2nþ 1Þ þ gð3nþ 1Þa1−n�2 − 16nðnþ 1Þ
× ðΛa2 þ ga1−nÞ2 > 0: ð86Þ

The inequality in Eq. (86) gives the condition on the
scale parameter aðtÞ as

anþ1 > −
g
2Λ

"
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp þ ð3nþ 1Þ

ð2nþ 1Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

#

and anþ1 >
g
2Λ

"
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

− ð3nþ 1Þ
ð2nþ 1Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

#
: ð87Þ

From the inequalities in Eq. (87), the general condition
on scale parameter aðtÞ in de Sitter spacetime is

anþ1 >
g
2Λ

"
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

− ð3nþ 1Þ
ð2nþ 1Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

#
; ð88Þ

where 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

> 3nþ 1 and 2nþ 1 >
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

, which shows that the terms in the
square bracket of Eq. (88) are positive. Hence, in
the above inequality, the scale parameter aðtÞ is
positive, which means there exists Reinhart radius
rR in the de Sitter spacetime cosmological solution in
D-dimensions.

VI. ESTIMATION OF THE VOLUME
OF EVOLVING BLACK HOLE

IN D-DIMENSIONS

In the cases discussed in the previous section, we note
the following. The nonexistence of Reinhart radius is
shown for the case of homogeneous and isotropic scenarios
like Friedmann–Lemaître–Robertson–Walker spacetime or
Oppenheimer-Snyder collapse. In other generic circum-
stances, the Reinhart radius can form. In a realistic
scenario, the dust density reduces continuously to zero
as one moves outwards. In such models, the Reinhart radius
does form and can evolve continuously. The evolving
Reinhart radius finally asymptotes to the Reinhart radius
of the Schwarzschild black hole (or other relevant exterior
spacetime). The result in the paper implies that if we
take the Oppenheimer-Snyder collapsing dust, then the
Reinhart radius is never inside the dust cloud but can be
there in the exterior part of the spacetime. In the cases
where the Reinhart radius does not exist, a closed-form
expression along the lines of the work done in [3] is not
possible and the volume estimation has to be done
numerically.

Based on the work done in the article and also the
work in [9], the collapsing matter solutions come in two
categories in the context of the article. In one category,
like the cases discussed in [9], the Reinhart radius exists
within the interior solution, in which case, the maximal
volume can be estimated using the Reinhart radius. In this
case, one can estimate the volume of the black hole using
the Reinhart radius. This is presented below right after the
discussion of the second case.
In the second case, the Reinhart radius is not present in

the interior of the dust cloud (for example Oppenheimer-
Snyder dust collapse or cosmological solution with negative
cosmological constant as shown in the article). In such
cases, the volume in the interior of the cloud cannot be
simplified using the Reinhart radius but, as pointed out
earlier, needs to be numerically evaluated. This also implies
that the Reinhart radius is present in the region outside of the
matter cloud (usually within the event horizon). The volume
in the exterior part, though, can then be estimated using the
Reinhart radius.
We now show how one can estimate the volume of

collapsing matter scenarios that have Reinhart radius using
a closed form expression. An example we consider is a
collapsing scenario consisting of shell-by-shell collapse of
matter without cosmological constant in Dð¼ nþ 2Þ
dimensions. In such a scenario, the Reinhart radius under-
goes a series of jumps given by RR ¼ ðnþ1

2n FðriÞÞ 1
n−1, where

FðriÞ is the Misner-Sharp mass of the black hole formed by
the collapse of the first i shells. As is easily seen, the
Reinhart is a monotonically increasing function of the
Misner-Sharp mass. This fact can be used to set a lower
bound on the volume of the black hole. We show this
below. The metric between the shells is Schwarzschild and
is defined as

ds2 ¼ −
�
1 −

FðriÞ
Rn−1 −

2ΛR2

nðnþ 1Þ
�
dt2

þ
�
1 −

FðriÞ
Rn−1 −

2ΛR2

nðnþ 1Þ
�

−1
dR2 þ R2dΩ2

n: ð89Þ

We first note that the interior of the matter cloud can be
matched to the Eddington-Finkelstein spacetime. The mass
function FðriÞ gets related to the combined ADM massMi
of the first ith shells using the Eq. (14). In the Eddington-
Finkelstein coordinates ðv; R; θ;ϕÞ the metric (89) exterior
to the shell of radius ri becomes (this metric is valid
between the shells ri to riþ1)

ds2 ¼ −N2ðriÞdv2 þ 2dvdRþ R2dΩ2
n; ð90Þ

where the lapse function N2ðriÞ ¼
�
1 − FðriÞ

Rn−1 − 2ΛR2

nðnþ1Þ
�
. For

R ¼ const hypersurface the volume of the metric (90) is
defined as
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VðDÞ ¼
Z ffiffiffiffiffiffi

−g
p

dvdΩn

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2n

�
1−

FðriÞ
Rn−1 −

2ΛR2

nðnþ 1Þ
�s
dv
Z

dΩn

¼ 2π
nþ1
2

Γðnþ1
2
Þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2n

�
1−

FðriÞ
Rn−1 −

2ΛR2

nðnþ 1Þ
�s
dv: ð91Þ

Now, from the Eqs. (14) and (91) we can calculate the
volume of black holes using the Reinhart radius after the
shell of radius ri has collapsed.
We estimate the volume for the easier case of Λ ¼ 0 and

Dð¼ nþ 2Þ-dimensional Schwarzschild black hole. Here

Reinhart radius is obtained as RR ¼
�
nþ1
2n FðriÞ

� 1
n−1, where

FðriÞ is given in Eq. (14). The volume of the black hole
after the shell with label i has collapsed is given from
Eq. (91) as

VðDÞ ¼ 2π
nþ1
2

Γðnþ1
2
Þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2n
R

�
1−

FðriÞ
Rn−1
R

�s
dv

¼ 2π
nþ1
2

Γðnþ1
2
Þ
�
nþ 1

2n
FðriÞ

� n
n−1
�



1− 2n

nþ 1






�

1=2
v: ð92Þ

Now the Misner-Sharp mass FðrÞ is a monotonically
increasing function of r (unless we consider the rf, beyond
which there is no further matter that will collapse, in which
case, FðrÞ will be a constant or the case of Hawking
radiation for which FðrÞ decreases with time). The
Reinhart radius too is a monotonically increasing function
of r as more shells collapse. Therefore, the asymptotic
volume of the black hole is always greater than or equal to
(when the shell is the outermost one) the volume found in
Eq. (92). So during the collapse, if we find that there is a
Reinhart radius available for a shell of radius ri, then the
eventual asymptotic volume is greater than or equal to that
of Eq. (92). So we can use the Reinhart radius to get lower
bounds on the asymptotic volume of the black hole formed
during the collapse.

VII. KODAMA VECTOR FOR SPACELIKE
HYPERSURFACES IN SPHERICALLY

SYMMETRIC SPACETIME

We now show that the Kodama vector is tangential
to the maximal hypersurface at these Reinhart radii. The
trace of the extrinsic curvature vanishes at Reinhart radius
by definition [13,18]. Kodama vector in a spherically
symmetric spacetime is defined in [19,20]. We consider
the metric for the Dð¼ nþ 2Þ-dimensional spherically
symmetric dust cloud, defined as

ds2 ¼ −dt2 þ R02ðt; rÞdr2 þ R2ðt; rÞdΩ2
n: ð93Þ

The 2-metric in the coordinate chart ðt; rÞ is given by

ds22 ¼ −dt2 þ R02dr2: ð94Þ

The two-dimensional volume form in ðt; rÞ coordinates is
expressed as

ϵ ¼ R0dt ∧ dr: ð95Þ

Using the standard definition of Kodama vector [19,20],
Ka ¼ ϵab∂bR, where ða; bÞ ¼ ðt; rÞ, Rðt; rÞ is the area
radius, ϵab is the volume form of the 2-metric of
Eq. (94), and we evaluate the components to be

Kt ¼ −1 and Kr ¼ Ṙ
R0 : ð96Þ

Now, evaluating the dot product with the normal vector
nα ¼ ðnt; nrÞ ¼ ðṘ; R0Þ obtained from Eq. (39), we find that

Kαnα ¼KtntþKrnr ¼ ð−1Þ× Ṙþ
�
Ṙ
R0

�
×R0 ¼ 0: ð97Þ

This shows that the Kodama vector is tangential to the
maximal hypersurface at the Reinhart radius. We note that
the above result is independent of whether the Kodama
vector is spacelike or timelike. In fact for the cases that were
discovered in [3,6–10], the Kodama vector is spacelike and
is tangential to the maximal hypersurface at the Reinhart
radius. Another interesting observation is that at the
Reinhart radius, both the normal vector to the hypersurface
and the Kodama vector, have vanishing divergence.

VIII. CONCLUSIONS

In this work, we address a few aspects concerning the
maximal hypersurface of a black hole in a dynamically
evolving scenario. We considered the spherically symmetric
collapse of dust clouds, generalized to D-dimensions since
the model is analytically tractable. We have carried out the
analysis separately for (2þ 1) dimensions and grouped
the other dimensions together. This is due to the fact that
(2þ 1) dimensional gravity is fundamentally different from
other dimensions owing to the topological nature of gravity
in (2þ 1) dimensions. The dimensions D > 3 are qualita-
tively similar to each other. For the evolving setting, we
choose the Lemaitre-Tolman-Bondi model generalized to
D-dimensions since the model has simplicity in terms of
analytical expressions while capturing the core essence of
the problem.
We obtain the differential equation for the maximal

hypersurface using the variational technique developed
in [3]. We set up a Lagrangian whose solution to the
Euler-Lagrange equation yields the maximal hypersurface
in an evolving setting. By choosing the appropriate
boundary values for the solutions one can arrive at the
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maximal volume inside a trapped region which is in the
process of evolving. The same procedure is generalized to
D-dimensions. We present the equations by considering a
subclass of Lemaitre-Tolman-Bondi models, the homo-
geneous dust evolution where the expressions greatly
simplify.
We analyze an interesting region of the maximal hyper-

surfaces, which we denote as “Reinhart radius” (RR). The
reason for this nomenclature is due to the role these points
play in the estimation of the maximal volume inside a black
hole. Identified first by Reinhart [13] 1973, these Reinhart
points were found in various other black holes. In this
article, we explored the existence and evolution of these
points during the course of the formation of black holes. We
have identified an interesting property of these points in
relation to the maximal hypersurfaces. These points are
located where the Kodama vector becomes tangential to the
maximal hypersurface. The geometrical meaning and con-
sequence of this observation are left for future consider-
ations. The Kodama vector works as a substitute for a
timelike Killing vector in scenarios that do not have a
timelike Killing vector. Kodama vector, when it is timelike,
has been used to define surface gravity in a dynamically
evolving setting. In this article, we find another role of the
Kodama vector, viz., it is used to pinpoint the Reinhart radii
of a maximal hypersurface. We note that inside the black
holes, the Kodama vector is spacelike.
We develop a formula to find the location of RR in terms

of coordinate invariants like area radius, cosmological
constants, the principle value of the energy-momentum
tensor, and Misner-Sharp mass. Using the formula one can
locate the Reinhart radius in various situations. We have
explicitly evaluated the location of RR for the vacuum case
and black hole case with and without the cosmological
constant. We have presented our analysis and compared the
RR with the position of the event horizon and cosmological
horizon. We showed that in the black hole scenario, the RR
is located within the event horizon. If there is a positive
cosmological constant, then we showed that RR lies at an
area radius smaller than the cosmological horizon. When we
consider an evolving situation, we use the collapse of a
homogeneous dust cloud. This can be viewed as a cosmo-
logical solution or the collapse of a star with a homogeneous
distribution of dust. We showed that for the case of the
Oppenheimer-Snyder scenario and the collapse with a
negative cosmological horizon, there is no real solution
for RR, and therefore, RR does not exist. For the dust
evolution in the presence of a positive cosmological con-
stant, we showed that RR exists provided the evolving scale
factor crosses a certain critical value. We show that during a
collapsing scenario, we can use the Reinhart radius, when-
ever available, to get lower bounds on the asymptotic
volume of the black hole formed during the collapse.
The analysis raises many questions that are left for future

consideration. Does the relation between the Kodama

vector and the maximal hypersurface continue to hold in
a nonspherically symmetric situation, like the Kerr family
of solutions? A timelike Kodama vector has been used to
define various quantities that have thermodynamic inter-
pretation like surface gravity, etc., in dynamical situations.
Does a spacelike Kodama vector also have a geometric
interpretation? The Lagrangian formulation for the maxi-
mal hypersurface in Kerr/Kerr-AdS/Kerr-Newman/Kerr-de
Sitter has not been formulated though there are many
interesting papers estimating the volume of the interior of
the Kerr family of black holes [6,10]. We also note that the
radius used to estimate the maximum volume in these
papers does not obey the property of the trace of extrinsic
curvature vanishing and hence is not Reinhart radii. The
Lagrangian formulation of the Kerr family is a work in
progress.
We note that at RR both the normal vector and its tangent

have zero divergence. Is there a special geometric meaning
associated with RR owing to the above property? These
questions are left open.
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APPENDIX: SOLUTION OF THE SCALE
PARAMETER aðtÞ FOR THE HOMOGENEOUS

DUST EVOLUTION

As we know the area radius Rðt; rÞ and mass function
FðrÞ of homogeneous dust are defined as

Rðt; rÞ ¼ raðtÞ and FðrÞ ¼ 2g
nðnþ 1Þ r

nþ1; ðA1Þ

and also

Ṙ2 ¼ 2Λ
nðnþ 1ÞR

2 þ 2g
nðnþ 1ÞRn−1 r

nþ1: ðA2Þ

From Eqs. (A1) and (A2) we get

½ȧðtÞ�2 ¼ 2Λ
nðnþ 1Þ ½aðtÞ�

2 þ 2g
nðnþ 1Þ½aðtÞ�n−1 ; ðA3Þ

and the solution of Eq. (A3) gives the scale parameter aðtÞ
for different regions of spacetime based on cosmological
constant (Λ).
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1. For zero cosmological constant

For zero cosmological constant Λ ¼ 0, Eq. (A3)
becomes

½ȧðtÞ�2 ¼ 2g
nðnþ 1Þ½aðtÞ�n−1 ⇒

daðtÞ
dt

¼ � 1

a
n−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

nðnþ 1Þ

s
;

ðA4Þ

and the solution of Eq. (A4) with initial scale parameter
að0Þ ¼ 1 gives

aðtÞ ¼
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

!nþ1
2

and

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

!nþ1
2

:

ðA5Þ

2. For de Sitter spacetime

For negative cosmological constant ðΛ < 0Þ, the change
in scale parameter is defined as

½ȧðtÞ�2¼−
2Λ

nðnþ1Þ½aðtÞ�
2þ 2g

nðnþ1Þ½aðtÞ�n−1

⇒
daðtÞ
dt

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

2Λ
nðnþ1Þ½aðtÞ�

2þ 2g
nðnþ1Þ½aðtÞ�n−1

s
:

ðA6Þ
The solutions of Eq. (A6) with initial condition
að0Þ ¼ 1 are

aðtÞ ¼
" ffiffiffiffi

g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsin

ffiffiffiffi
Λ
g

s !# 2
nþ1

and

"
−

ffiffiffiffi
g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsin

ffiffiffiffi
Λ
g

s !# 2
nþ1

:

ðA7Þ

3. For anti–de Sitter spacetime

For positive cosmological constant ðΛ > 0Þ, the change
in scale parameter is defined as

½ȧðtÞ�2¼ 2Λ
nðnþ1Þ ½aðtÞ�

2þ 2g
nðnþ1Þ½aðtÞ�n−1

⇒
daðtÞ
dt

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λ
nðnþ1Þ ½aðtÞ�

2þ 2g
nðnþ1Þ½aðtÞ�n−1

s
:

ðA8Þ

The solutions of Eq. (A8) with initial condition að0Þ ¼ 1
are

aðtÞ ¼
" ffiffiffiffi

g
Λ

r
sin h

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsinh

ffiffiffiffi
Λ
g

s !# 2
nþ1

and

"
−

ffiffiffiffi
g
Λ

r
sin h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsinh

ffiffiffiffi
Λ
g

s !# 2
nþ1

:

ðA9Þ
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Pope, Black hole enthalpy and an entropy inequality for
the thermodynamic volume, Phys. Rev. D 84, 024037
(2011).

[3] M. Christodoulou and C. Rovelli, How big is a black hole?,
Phys. Rev. D 91, 064046 (2015).

[4] N. Bhaumik and B. R. Majhi, Interior volume of (1 + d)-
dimensional schwarzschild black hole, Int. J. Mod. Phys. A
33, 1850011 (2018).

[5] B. Zhang, Entropy in the interior of a black hole and
thermodynamics, Phys. Rev. D 92, 081501 (2015).

[6] I. Bengtsson and E. Jakobsson, Black holes: Their large
interiors, Mod. Phys. Lett. A 30, 1550103 (2015).

[7] Y. C. Ong, Never judge a black hole by its area, J. Cosmol.
Astropart. Phys. 04 (2015) 003.

[8] Y. C. Ong, The persistence of the large volumes in black
holes, Gen. Relativ. Gravit. 47, 88 (2015).

[9] M. Christodoulou and T. De Lorenzo, Volume inside old
black holes, Phys. Rev. D 94, 104002 (2016).

[10] X. Y. Chew and Y. C. Ong, Interior volume of Kerr-AdS
black holes, Phys. Rev. D 102, 064055 (2020).

[11] M. Zhang, Interior volume of Banados-Teitelboim-Zanelli
black hole, Phys. Lett. B 790, 205 (2019).

[12] S. Maurya, S. Gutti, and R. Nigam, Volume of a rotating
black hole in 2þ 1 dimensions, Phys. Lett. B 833, 137381
(2022).

[13] B. L. Reinhart, Maximal foliations of extended Schwarzs-
child space, J. Math. Phys. (N.Y.) 14, 719 (1973).

[14] R. Tibrewala, S. Gutti, T. P. Singh, and C. Vaz, Classical
and quantum gravitational collapse in d-dimensional AdS
spacetime: Classical solutions, Phys. Rev. D 77, 064012
(2008).

MAURYA, NIGAM, and GUTTI PHYS. REV. D 109, 044019 (2024)

044019-16

https://doi.org/10.1103/PhysRevD.73.124021
https://doi.org/10.1103/PhysRevD.73.124021
https://doi.org/10.1103/PhysRevD.84.024037
https://doi.org/10.1103/PhysRevD.84.024037
https://doi.org/10.1103/PhysRevD.91.064046
https://doi.org/10.1142/S0217751X18500112
https://doi.org/10.1142/S0217751X18500112
https://doi.org/10.1103/PhysRevD.92.081501
https://doi.org/10.1142/S0217732315501035
https://doi.org/10.1088/1475-7516/2015/04/003
https://doi.org/10.1088/1475-7516/2015/04/003
https://doi.org/10.1007/s10714-015-1929-x
https://doi.org/10.1103/PhysRevD.94.104002
https://doi.org/10.1103/PhysRevD.102.064055
https://doi.org/10.1016/j.physletb.2019.01.032
https://doi.org/10.1016/j.physletb.2022.137381
https://doi.org/10.1016/j.physletb.2022.137381
https://doi.org/10.1063/1.1666384
https://doi.org/10.1103/PhysRevD.77.064012
https://doi.org/10.1103/PhysRevD.77.064012


[15] R. B. Mann and S. F. Ross, Gravitationally collapsing dust
in 2þ 1 dimensions, Phys. Rev. D 47, 3319 (1993).

[16] S. Gutti, Gravitational collapse of inhomogeneous dust in
(2þ 1) dimensions, Classical Quantum Gravity 22, 3223
(2005).

[17] K. Raviteja and S. Gutti, Aspects of marginally trapped
and antitrapped surfaces in a d-dimensional evolving dust
model, Phys. Rev. D 102, 024072 (2020).

[18] F. Estabrook, H. Wahlquist, S. Christensen, B. DeWitt,
L. Smarr, and E. Tsiang, Maximally slicing a black hole,
Phys. Rev. D 7, 2814 (1973).

[19] H. Kodama, Conserved energy flux for the spherically
symmetric system and the backreaction problem in the
black hole evaporation, Prog. Theor. Phys. 63, 1217 (1980).

[20] V. Faraoni, Cosmological and black hole apparent horizons,
Lect. Notes Phys. 907, 1 (2015).

MAXIMAL HYPERSURFACE IN A D-DIMENSIONAL DYNAMICAL … PHYS. REV. D 109, 044019 (2024)

044019-17

https://doi.org/10.1103/PhysRevD.47.3319
https://doi.org/10.1088/0264-9381/22/16/007
https://doi.org/10.1088/0264-9381/22/16/007
https://doi.org/10.1103/PhysRevD.102.024072
https://doi.org/10.1103/PhysRevD.7.2814
https://doi.org/10.1143/PTP.63.1217
https://doi.org/10.1007/978-3-319-19240-6

