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Early dark energy (EDE), introduced at the epoch of matter-radiation equality to alleviate the Hubble
tension, has posed a new coincidence problem: why does EDE appear at matter-radiation equality when
their physics are completely unrelated? To solve this coincidence problem, we propose a new EDE model
based on scalar-tensor gravity with the idea that EDE is triggered by spacetime dynamics that encodes the
cosmic radiation-matter transition. Our model can induce EDE naturally at matter-radiation equality
without unnatural parameter tuning. Compared with other EDE models, a distinguishing feature of ours is
that it can also induce a new energy component during cosmic matter-dark energy transition. This is
testable with low-redshift observations.
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I. INTRODUCTION

The tension betweenHubble constantH0measured at low
redshifts and that derived by fitting the Λ cold dark matter
(ΛCDM) model to cosmic microwave background (CMB)
data has acquiredwild attention [1,2]. The best-fit ofΛCDM
to the CMB isH0 ¼ 67.36� 0.6 km=s=Mpc [3]. However,
the measurement from the local Cepheid calibrated SNe Ia
observations gives H0 ¼ 74.03� 1.42 km=s=Mpc [4].
Now the gap between those two measurements has reached
5σ [5]. As systematic errors in observations are unlikely to
be responsible for such inconsistency [6–9], Hubble tension
indicates the existence of new physics beyond the standard
cosmology model (ΛCDM).
Early dark energy (EDE) is a possible solution for Hubble

tension [10–18]. Determination of H0 with CMB data
requires fitting the integral expression D�

A ¼ 1
H0

R z�
0

dz
EðzÞ ¼

r�s=θ�s , where EðzÞ ¼ HðzÞ=H0, and z� is the redshift when
radiation decoupling, rs is sound horizon, θ�s is precisely
determined by CMB peak spacing, and D�

A is the angular
diameter distance to last scattering. The sound horizon rs is
given by

rs ¼
Z

∞

z�

cs
HðzÞ dz; ð1Þ

where cs is the sound speed. EDE increases H near matter-
radiation equality, resulting in a decrease of rs relative to the
ΛCDMmodel. This leads a smallerD�

A, which in turn results
in a higher H0 due to H0 ∝ D�

A
−1.

The widely studied canonical EDE model introduces the
EDE component of Universe with a classical scalar field ψ
with a potential such as VðψÞ ¼ m2ð1 − cos½ψ=f�Þn, where
f is an energy scale [10,17,19]. Before the equality, the
scalar field is frozen because of the Hubble friction term
and acts as a cosmological constant. Around the equality, ψ
becomes dynamic and contributes a non-negligible energy
component, i.e., the desired EDE. After that, the field
dynamics become damped oscillation, and its relative
energy density can decay rapidly.
However, there is a coincidence problem in early dark

energy approach, which was first recognized by Sakstein and
Trodden [20]:whydoes theEDEappear nearmatter-radiation
equality when they do not have a direct physical connection?
If EDE becomes active too early, it cannot provide sufficient
modification on the sound horizon. If EDE decays too slowly
after the equality, it would be disfavored by the data [2,20].
The time window in which EDE appears is very narrow and
coincides with matter-radiation equality.
For the canonical EDE model, this means that the energy

scale f must be fine-tuned. Many works attempt to explain
this coincidence. In this way, Refs. [20,21] construct a
model that introduces EDE through nonminimal coupling
of OðeVÞ neutrinos and a scalar field. The key to solving
the EDE coincidence problem is to find a suitable EDE
trigger around matter-radiation equality. Other triggers
include fluid equation of state (EOS) that encodes cosmic
radiation-matter transition [22,23] and the moment that
dark matter is dominated [24,25].
This paper proposes a new EDE trigger—spacetime

dynamics that encodes cosmic radiation-matter transition.
Inspired by the neutrino-assisted EDE model (νEDE) [20],
we also introduce a scalar field. Instead of introducing the
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coupling of the scalar field with neutrinos, we couple it
with a geometric quantity P that is a function of Ricci
scalar R and Gauss-Bonnet scalar G [26]. The quantity P
equals zero in both the radiation and matter-dominated era
but nonzero at the transition. The geometry dynamics
at the transition inject energy into the scalar field, which
produces the desired evolution of EDE. The model can be
formulated in the framework of the scalar-tensor theory of
gravitation [27–29]. Compared with the canonical EDE
model, our model eliminates the necessity of introducing a
specialized energy scale to regulate the onset of EDE,
thereby overcoming the coincidence associated with it.
Another significant implication of our model is that

it may lead to an additional energy component when
the Universe transits from the matter-dominated epoch to
the dark energy-dominated epoch. For a subclass within the
model, it can generate an energy component persisting
from around the equality to very low redshifts. This feature
sets our model apart from other EDE models, as previous
EDE models typically do not play a role in the cosmic
evolution stages beyond the matter-radiation equality.
The structure of this paper is as follows. Section II

presents our model. In Sec. III, we quantitatively study the
evolution of the Universe with special parameters. In
Sec. IV, we study the model in the late-time Universe.
Section V presents elementary observational constraints.
Conclusions are presented in Sec. VI.

II. THE MODEL

In this study, our investigation spans from the radiation-
dominated era to matter-radiation equality and extends to
the present epoch. The Universe contains radiation, matter,
cosmological constant, and scalar field ϕ associated with
EDE. Our model is described by the action,

S ¼ 1

2κ

Z
dx4

ffiffiffiffiffiffi
−g

p �
R − 2Λ=c2 −∇αϕ∇αϕ

þαPðR;GÞϕ − βRϕ2
�þ Sm; ð2Þ

where R represents Ricci scalar, G is Gauss-Bonnet scalar,
PðR;GÞ is a function of R and G, α and β are dimensionless
constants, κ ¼ 8πG=c4, and c is the speed of light. The
function P needs to be constructed to be 0 in both radiation
and matter-dominated periods and cannot be ignored
during the cosmic radiation-matter transition. The role of
the potential term βRϕ2 is to pull the scalar field ϕ back to
the zero point during the matter-dominated period [30].
Additionally, we introduce the cosmological constant Λ to
account for the influence of dark energy in the late
Universe.
A previously unsuccessful attempt is replacing Rϕ2

with the conventional potential m2ϕ2 in Eq. (2). In the
model with m2ϕ2, our calculations show that the time
when EDE appears strongly depends on the value of m.
Consequently, the model fails to address the EDE
coincidence problem. By switching to Rϕ2, which
links the mass of the scalar field to the spacetime
geometry, this problem was resolved. The parameter β
does not require fine-tuning and typically assumes values
of order unity, as demonstrated in Sec. III. Furthermore,
with potential term βRϕ2, EDE can decay faster than
radiation, whereas normally, a scalar field with a quad-
ratic potential can only decay as fast as the pressureless
fluid [31]. All the following discussions are based on the
potential Rϕ2.

A. Evolution equations

We can obtain the scalar field equation by varying the
action (2) with respect to ϕ, and the result is

∇α∇αϕ − βRϕþ αPðR;GÞ=2 ¼ 0: ð3Þ

Varying the action (2) with respect to guv gives the
gravitational field equations,

�
Rab −

1

2
gabR

�
ð4αPGϕ

;c
;c þ 8αϕ;cPG

;c þ βϕ2 − 1Þ þ 2αPR
;ðaϕ;bÞ þ ϕ;aϕ;bð1 − 2βÞ þ αPRðϕ;a;b − gabϕ;c

;cÞ

þ 4αRϕ;ðaPG
;bÞ − 8αRða

cϕ
;bÞPG

;c − 8αRða
cPG

;bÞϕ;c þ 1

2
gab

�
−
2Λ
c2

− ϕ;cð4αPR
;c þ ϕ;c − 4βϕ;cÞ

�

− 4αðRa
c
b
d þ Ra

d
b
c − 8αgabRcdÞPG

;cϕ;d þ PG½2αRϕ;a;b − 8αRða
cϕ

;bÞ;c þ 4αgabRcdϕ
;c;d − 4αRa

c
b
dϕ

;c;d�

þ ϕ

�
−αPRRab þ PGð4αRacRb

c − 2αRabRþ 4αRcdRa
c
b
d − 2αRacdeRb

cdeÞ þ αPR
;a;b − 2βϕ;a;b þ 4αRabPG

;c
;c

þ2αRðPG
;a;b − gabPG

;c
;cÞ þ

1

2
gabðPα − 2αPR

;c
;c þ 4βϕ;c

;c þ 8αRcdPG
;c;dÞ − 8αRða

cPG
;bÞ;c − 4αRa

d
b
cPG

;c;d

�

þ κTab ¼ 0; ð4Þ
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where the parenthesis in the upper and lower subscripts
represent symmetry operator, e.g., IðabÞ ¼ ðIab þ IbaÞ=2,
and the semicolon represents covariant derivative for
simplicity. This result is obtained based on the xAct package
[32]. In Eq. (3), PðR;GÞ acts as the source of scalar field ϕ,
which is similar to the trace of the neutrino energy-
momentum tensor in Ref. [20]. The function P needs to
be constructed to fulfill the following requirements: it
equals zero during both radiation and matter-dominated
era and possesses a sufficiently large value during the
transition. This will drive the scalar field away from the
zero point and thereby induce EDE.
The Universe is assumed to be described by the flat

Friedmann-Lemaître-Robertson-Walker metric. Substituting
ds2 ¼ −γ2dt2 þ a2dx2 (γ and a are functions of time t) into
action (2), variationwith respect to γ andϕ, replacing γwith c
(choosing a gauge), we obtain the following equations of
motion [33]:

H2−
ϕ̇2

6
−βðϕ2H2þ2Hϕϕ̇ÞþαHϕ̇

�
4H2PG

c4
þPR

�

þαϕ

�
4H3ṖG−ðH2þḢÞð4H2PGþc2PRÞ

c2
þPc2

6
þHṖR

�

¼8πG
3

ðρrþρmþρΛÞ; ð5Þ

ϕ̈þ 3Hϕ̇þ 6βϕð2H2 þ ḢÞ ¼ αPc2=2; ð6Þ

where ˙≡ d=dt, H ≡ ȧ=a, PG ≡ ∂P=∂G, PR ≡ ∂P=∂R, and
the subscripts fr;m;Λg denote radiation, pressurelessmatter,
and the cosmological constant, respectively. Note that
ρΛ ¼ Λ=8πG in our conventions. We also obtain the second
Friedmann equation by varying action (2) with respect
to a. We checked that this equation is not independent of
Eqs. (5) and (6). The right side of Eq. (5) corresponds
to the current standard model of cosmology [3]. To
characterize the dynamics of EDE and the Universe, we
define the relative energy densityΩi ¼ 8πGρi=ð3H2Þ, where
i∈ fr;m;Λ;EDEg and the effective quantities for EDE could
be directly read fromEq. (5).Ourmodel goes back to standard
ΛCDM when ϕ → 0.
We require ΩEDE ≈ 10% ≪ 1 during the cosmic radia-

tion-matter transition. Consequently, the coupling between
the scalar field ϕ and the geometric quantity P should be
weak (α ≪ 1). This enables us to employ a perturbation
method to solve Eqs. (5) and (6). Specifically, we consider
α as a small quantity of first order and define
H ¼ Hstd þHEDE. In this expression, the first term corre-
sponds to the background value of H derived from the
standard ΛCDM model, while the second term represents
the correction induced by the EDE field. In the perturbation
framework, Eq. (6) indicates that both α and ϕ are small
quantities of the same order. Consequently, we need only
consider the background valueHstd when solving Eq. (6) to

give ϕ. Furthermore, Eq. (5) definesΩEDE, whose value can
be approximately calculated based on ϕ and Hstd. The
difference between this and the exact solution appears at
higher order and hence is small.

B. Choice of function P

For our purpose, P should be equal to zero in both the
radiation and matter-dominated era and become nonzero
around the matter-radiation equality. On the other hand, to
avoid the fine-tuning problem, we aim for P to be of the
same order as R. We choose to construct Pwith Ricci scalar
R and Gauss-Bonnet scalar G, where R ¼ 6ð2H2 þ
ḢÞ=c2 ¼ 3H2ð1 − 3wÞ=c2 and G ¼ 24H2ðH2 þ ḢÞ=c4 ¼
−12H4ð1þ 3wÞ=c4 in general relativity, with w represent-
ing the EOS of perfect fluid. It is shown that R ¼ 0 for
w ¼ 1=3 (radiation era), and 4R2 þ 3G ¼ 0 for w ¼ 0
(matter era). Therefore, P can be chosen as

PðR;GÞ≡
�
4R2 þ 3G

G

�
n
R; ð7Þ

where n is a positive integer. The denominator G is
introduced to ensure that P has the same dimension
with R. In general relativity, we show the value of
Pc2=H2 as a function of w for different n in Fig. 1. As
expected, it equals 0 at w ¼ 0 and 1=3. With an increasing
value of n, the peak of the function Pc2=H2 moves to
w ¼ 1=3 (radiation-dominated period), and the correspond-
ing peak of the EDE relative density ΩEDE appears earlier
(see Sec. III).
However, when considering the late-time Universe, G

transports from a negative value to a positive value as our
Universe shifts from a matter-dominated epoch to a dark
energy-dominated one. This introduces a singularity in the

FIG. 1. The quantity Pc2=H2 is examined as a function of the
equation of state (EOS) parameter w within the context of the
ΛCDM model. The red line is for n ¼ 1, the blue line for n ¼ 2,
and the green line for n ¼ 3. The parameter n is crucial in our
model: the peak of ΩEDE appears earlier for a larger n.
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PðR;GÞ function. To circumvent this issue, we modify the
function PðR;GÞ as follows:

PðR;GÞ≡
�

4R2 þ 3G
G − ðγΛ=c2Þ2

�
n

R; ð8Þ

where γ is a dimensionless constant. When cosmological
constant Λ is negligible, Eq. (8) backs to (7). A nonzero
value of γ should be chosen to ensure the absence of the
singularity. Calculating the values of G and P for the de
Sitter Universe gives γ >

ffiffiffi
3

p
. This modification does not

impact our previous discussion concerning EDE because
during the matter-radiation equality, G ∼ 1019ðΛ=c2Þ2,
where ðγΛ=c2Þ2 is negligible as long as γ is not excessively
large.

III. EDE DYNAMICS

The initial conditions of the scalar field at deep radiation
era are assumed to be ϕ ¼ 0 and ϕ̇ ¼ 0. In the radiation-
dominated era, the evolution of ϕ is dominated by Hubble
friction due to R ¼ 0. Consequently, ϕ stays around 0
throughout the radiation era. Then, in the process of
radiation-matter transition, the scalar field ϕ is kicked
away from the origin by the geometric term P and leads to
the emergence of EDE. This process is similar to the νEDE
model when neutrinos become nonrelativistic [20], in
which a similar scalar field kicked away from its initial
position by a term related to the massive neutrinos.
Subsequently, during the matter-dominated epoch, Eq. (6)
transforms into a damped oscillatory equation, causing ϕ to
evolve towards zero.
In this section, we study our theory with different

parameters. Here, we set the cosmological constant Λ to
0 because it was negligible in the early universe. A
successful EDE must become active shortly before mat-
ter-radiation equality and rapidly decay soon after [20].
Numerical results show our theory can match those require-
ments with suitable parameters.

A. Evolution of ΩEDE at matter-dominated epoch

A successful EDE model should decay soon after matter-
radiation equality [20]. Models proposed in Refs. [34,35]
achieve a decay of EDE as fast as or faster than radiation,
but suffer from the coincidence problem. Here, we show
that our model can rapidly decay in the matter-dominated
epoch. For this case, utilizing Eqs. (5), (6) and w ¼ 0, we
attain

ϕ00 þ 3

2
ϕ0 þ 3βϕ ¼ 0; ð9Þ

and

ΩEDE ¼

8>><
>>:

βϕ2 þ ðϕ0Þ2=6þ 2βϕϕ0; n ≥ 2;

βϕ2 þ ðϕ0Þ2=6þ 2βϕϕ0

þαð27ϕ0 þ 18ϕÞ=2; n ¼ 1;

ð10Þ

where 0≡ d=dN, N ≡ ln a. The motion equation of ϕ
transforms into a damped oscillation equation [36], which
have an analytical solution,

ϕðNÞ ¼ e−3N=4ðA1eω
þN þ A2e−ω

þNÞ; ð11Þ

where A1 and A2 are constants, and ω� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�9 ∓ 48β
p

=4.
For n ≥ 2, if β < 3=16, the last term on the right-hand

side of Eq. (11) decays faster than the first one, so
ϕðNÞ¼A1exp½ð4ωþ−3ÞN=4�. Then, we can attain ΩEDE ∝
exp½ð4ωþ − 3ÞN=2� ¼ að4ωþ−3Þ=2. On the other hand, we
know the relative energy density Ωr ¼ ρr=ρm ∝ a−1, so
the requirement that EDE decay faster than radiation
is satisfied for β > 1=6 in this case. If β ¼ 3=16,
ΩEDE ∝ a−3=2, at which point ϕ is critically damped. If
β > 3=16, A1 ¼ A2 must be satisfied in order to guarantee
that the solution is meaningful, which leads ϕðNÞ ¼
Ae−3N=4 cosðω−NÞ, where A ¼ 2A1. Together with Eq. (10),
we can attain

ΩEDE ¼ A2

32
e−3N=2

�ð3 − 16βÞ cosð2ω−NÞ
þð1 − 8βÞ4ω− sinð2ω−NÞ�; ð12Þ

which is oscillating and decaying. It is decay as a−3=2, that is
faster than radiation too.
For n ¼ 1, since the scalar field ϕ decays exponentially,

ΩEDE ¼ α½27ϕ0 þ 18ϕ�=2. If β < 3=16, ΩEDE ∝ exp
½ð4ωþ − 3ÞN=4� ¼ að4ωþ−3Þ=4, which cannot decay as fast
as radiation. If β ≥ 3=16, ΩEDE decay as a−3=4, which is
slower than radiation.
In summary, the viable parameter space that can achieve

a faster decay of EDE than radiation during the matter-
dominated period is fn ≥ 2; β > 1=6g.

B. Numerical solution for the transition

This section aims to demonstrate that our model can
indeed achieve the desired evolution of EDE, which
appears near the matter-radiation equality and decays
rapidly. Specifically, in the perturbation framework (see
the discussions at the end of Sec. II A), for a given Hstd,
we numerically solve Eq. (6) to obtain ϕ, and then calculate
ΩEDE based on the solution of ϕ and Hstd with Eq. (5).
We set the initial conditions at the deep radiation era,
and the scalar field evolves from ϕ ¼ 0 and ϕ̇ ¼ 0. The
density of matter ρm and radiation ρr satisfy ρm ¼ ρm0e−3N,
ρr ¼ ρr0e−4N , where ρm0 and ρr0 represent the correspond-
ing values today.
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The left panel of Fig. 2 shows the evolution of EDE
relative energy density ΩEDE. For n ¼ 1, since the peak
appears much late to matter-radiation equality, the field
cannot provide sufficient modification to the sound horizon
formed before last scatting [1,2]. Therefore, this case
cannot solve the Hubble tension.
For the cases n ¼ 2 and 5, the peaks appear near matter-

radiation equality. Increasing n can make the peak of ΩEDE
move to left. On the other hand, EDE can decay rapidly
after the equality. For n ¼ 5, α ¼ 0.14 × 10−2, and
β ¼ 1=3, ΩEDE decays to 0.05% at last scattering.
Different from Ref. [20], there appear negative values in
ΩEDE, which is normal in modified gravity theory [29]. In
our model, the energy density of EDE is an effective energy
density composed of specific geometric quantities and the
scalar field ϕ. Consequently, it allows for the possibility of
a negative value of ΩEDE. Negative ΩEDE indicates that the
Hubble parameter H is smaller than its counterpart in the
ΛCDM model. In this scenario, the comoving sound
horizon increases faster than the standard ΛCDM model.
Due to this characteristic, our model requires a higher peak
value of ΩEDE compared to other EDE models.
To compare the decay rate of EDE and radiation in the

matter-dominated era, we plot ρEDE=ρr as a function of N in
the right panel of Fig. 2. It exhibits different properties
according to different β and n. For n ¼ 1, as we have
discussed before, EDE decays slower than radiation. For
n ≥ 2, EDE can decay as fast as or faster than radiation
after the peak. When β ¼ 1=6, ρEDE=ρr evolves towards a
nonzero constant. When β ¼ 1=3 or 1, ρEDE=ρr oscillates
and decays as the redshifts decrease, which is consistent

with our expectation, indicating that ϕ evolves in an
underdamped oscillation and that EDE decays faster than
radiation.

IV. LOW-REDSHIFT DYNAMICS

Our model uses spacetime dynamics to trigger EDE.
Similar to the radiation-matter transition, the matter-dark
energy transition in the late Universe may also trigger
a new energy component. This property is an important
feature that distinguishes our model from other EDE
models with different triggers (see Sec. I for the discussions
about [20–25]). In this section, we study the cosmic
evolution at low redshifts (compared with matter-radiation
equality). Dark energy is assumed to be described by the
cosmological constant Λ for simplicity, and we adopt
Eq. (8) for the function P. Note that the Λ that appears
in Eq. (8) is used to avoid the denominator being equal
to zero.
When dark energy starts to be dominated, P deviates

from zero, and ϕ is driven away from the zero point. This
leads to a new energy component in the late-time Universe.
Figure 3 shows the evolution of ΩEDE, ΩΛ, Ωm, Ωr, and ϕ
with n ¼ 5, α ¼ 0.14 × 10−2, β ¼ 1, γ ¼ 10 (upper left)
and 100 (upper right). For the case of γ ¼ 10, ϕ was
obviously triggered by not only radiation-matter transition
but also matter-dark energy transition. The case of γ ¼ 100
shows that a large γ can suppress the late-time dynamics of
ϕ and result in a negligible Ωϕ. Current observations hint at
the possibility of dynamical dark energy [37,38], which
may be interpreted as the transition-induced energy

FIG. 2. Evolution of ΩEDE (left) and ρEDE=ρr (right) as a function of N and redshift z for different parameters.
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component in our model. In addition, as we expected,
comparing the two plots confirms that γ does not affect the
EDE dynamics around the matter-radiation equality.
Ourmodelmay be able to generate rich properties beyond

the cosmic transitions. The bottom part of Fig. 3 shows the
cosmic evolution for n ¼ 1. In the case of β ¼ 1=6 (left), the
EDE is considerable from mater-radiation equality to low
redshifts. If we take a slightly larger β, we can make EDE
disappear completely at a higher redshift. For example, if we

take β ¼ 1=3, EDE will disappear earlier (z ≈ 10, see the
bottom right part of Fig. 3). Therefore, in the case of n ¼ 1,
althoughour theory cannot resolve theHubble tension, it can
produce a long-lasting dark energy component during the
dark ages of the Universe. An extra energy component
beyond the ΛCDM model is allowed to appear in the dark
ages of the Universe. This possibility has been discussed
by [39,40], and our model with n ¼ 1 provides a theoretical
realization.

FIG. 3. Evolution of matter (black), radiation (red), EDE (blue), and scalar field ϕ (black). Model parameters can be found in the
figure.
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V. OBSERVATIONAL CONSTRAINTS

In this section, we perform elementary parameter con-
straints related only to cosmic background evolution.

A. Constraints on EDE

Constraints on EDE require cosmic microwave back-
ground (CMB) data. Given the absence of the evolution
equation for cosmological perturbations, we could not utilize
the complete CMB power spectrum for parameter fitting.
Instead, we computed the CMB shift parameters [41,42],

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
r�; la ≡ πr�=r�s ; ð13Þ

and employed them, along with Ωbh2, for testing cosmo-
logical parameters, where r� represent the comoving distance
of CMB. Reference [43] generated the data points and a
covariance matrix for ½R; la;Ωbh2� by fitting Planck 2018
results. Additionally, we incorporated data from the SH0ES
data [44] and Pantheon plus data [45].
To reconcile our model with cosmological observations,

we performed Markov Chain Monte Carlo (MCMC)
analysis using the publicly available code CosmoSIS [46].
We adopted flat priors for the cosmological parameters
log α, β, h, Ωm, Ωbh2 in the range of ð−3.5;−1Þ, (0,1),
(0.6,0.8), (0.2,0.4), and (0.021,0.023), respectively. In
addition to our model parameters, here Ωm and Ωb denote
the present-day relative energy densities of matter and
baryons, respectively, and h represents the Hubble constant
in units of 100 km=s=Mpc. Additionally, we fixed the value
γ ¼ 100 because it has little effect on the acoustic horizon
formed in the early Universe. Separate MCMC analyses
were conducted to compare models with n ¼ f2; 3; 4; 5g.
In Fig. 4, we show the marginalized 1D and 2D posterior

distribution of log α, β, and fEDE in our EDE model with
n ¼ 2, 3, 4, 5, where fEDE represent the peak value of
ΩEDE. Note that fEDE is not a parameter but a derived
quantity of our model. As we have discussed in Sec. III,
the peak value of our EDE model should be higher than
the previous model to solve the Hubble tension (see the
marginalized 1D posterior distribution of fEDE in Fig. 4). In
addition, Fig. 4 shows that CMB shift parameters and SNe
Ia data have weak constraints on β. The best-fit points with
β ¼ 1=3 and Ωbh2 ¼ 0.022383 are marked in the α − β
counter diagram, and the corresponding evolution of ΩEDE
is plotted in Fig. 5.
One thing should be emphasized here. In our fitting,

there are three parameters fα; β;Ωbh2g that are strongly
correlated with the CMB shift parameters and almost
unrelated to the low-redshift SN Ia data. Meanwhile,
CMB has only three data points, and supernovae have
more than 1000 data points. Therefore, our EDE model
may be overfitting to CMB but does not contribute to the
posterior distribution of H0. In other words, the posterior
H0 comes almost entirely from supernovae. In view of this,

our result presented in Fig. 4 does not mean strong evidence
for the existence of EDE even though fEDE > 0 in high
confidence level. Instead, Fig. 4 demonstrates the ability of
our model to decrease the acoustic horizon formed in the
early Universe, which is widely used to explain how EDE
solves the Hubble tension (see Sec. I and references
therein). In the future, we need global parameter constraints
including the CMB angular power spectrum to determine
whether our EDE model gives a better fit than the standard

FIG. 4. The marginalized 1D and 2D posterior distributions
of log α, β and fEDE (peak value of ΩEDE) for the EDE model
with n ¼ 5, 4, 3, 2. We highlight the best-fit parameter points
with fixed values of β ¼ 1=3 and Ωbh2 ¼ 0.022383 in the
log α − β panel.

FIG. 5. Evolution of ΩEDE for the marked parameter points in
Fig. 4.
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ΛCDM model, and whether our model can actually solve
the Hubble tension.

B. Constraints on the induced
dynamical dark energy

Figure 3 shows that our model can introduce a compo-
nent of dynamical dark energy at low z. The low-redshift
dynamics depend on γ. Here, we present constraints on this
parameter based on SH0ES and Pantheon plus data. In this
analysis, parameters except γ, h, and Ωm are fixed. We
assume β ¼ 1=3, logα ¼ −2.631;−2.229;−1.838;−1.401
for n ¼ 5, 4, 3, 2, respectively. Figure 6 gives the result.
As we expected, γ must exceed a threshold value for each
model under consideration. For the model with fixed β
and α studied here, we observed at a 95% confidence level
that log γ is greater than 1.02 for n ¼ 5, 1.00 for n ¼ 4, 0.96
for n ¼ 3, and 0.98 for n ¼ 2. This lower limit result
indicates that supernovae together with our model do not
show any evidence for the dynamical dark energy at low
redshifts.
In Fig. 7, we show the evolution of H for some special

parameters. As we discussed in Sec. III, when γ is large
(here, significantly greater than 10 [47]), our model has
almost no impact on the late-time evolution of the
Universe. However, when the value of γ approaches a
lower limit, the evolution of the Hubble parameter
strongly depends on the value of γ and deviates from
the ΛCDM model.

VI. DISCUSSION AND CONCLUSION

A novel model designed to address the coincidence
problem of EDE was presented in this paper. The new EDE
theory is based on the fact that we can design geometric
quantities that remain zero during the mater and radiation-
dominated epoch but nonzero during the radiation-matter
transition, as shown in Fig. 1. We construct such quantities
P and use it as a source of the scalar field ϕ to realize the
EDE. Since this EDE is triggered by the spacetime
dynamics during the radiation-matter transition, it can
appear naturally near the matter-radiation equality and
thus solve the coincidence problem.
The new EDE model has four key parameters: α, n, β,

and γ. Here, n plays a pivotal role in determining when the
EDE becomes active, and larger n corresponds to earlier
EDE activation. For models with n ¼ 1, EDE lags the
matter-radiation equality and can persist until low redshift
(see Fig. 3). This case cannot solve the Hubble tension
but may provide interesting dynamics in the dark ages
of the Universe. For models with n ≥ 2, the peak of EDE
appears near matter-radiation equality, which can solve the
coincidence problem of EDE. The parameter space with
fn ≥ 2; β > 1=6g can make EDE decay faster than radi-
ation during the matter-dominated era.
When dark energy begins to replace dark matter to

dominate the Universe, the scalar field ϕ again becomes
active and leads to an extra energy component. This
provides a new theoretical motivation for the dynamical
dark energy. However, it should be noted that a large γ can
suppress this possibility. Constraints from supernovae give
a lower limit on γ.
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[28] G. Esposito-Farèse and D. Polarski, Phys. Rev. D 63, 063504
(2001).

[29] L. Amendola and S. Tsujikawa, Dark Energy: Theory and
Observations (Cambridge University Press, Cambridge,
England, 2010), pp. 234–284.

[30] In general relativity, R ¼ 0 in the radiation-dominated era,
and R ≠ 0 in the matter-dominated era.

[31] M. S. Turner, Phys. Rev. D 28, 1243 (1983).
[32] http://xact.es.
[33] The details are integrated into a public Mathematica code,

which is available at GitHub, https://github.com/JingChang-
cheng/MG.

[34] T. Karwal and M. Kamionkowski, Phys. Rev. D 94, 103523
(2016).

[35] S. Alexander and E. McDonough, Phys. Lett. B 797,
134830 (2019).

[36] L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-
Heinemann, Oxford, 1976), pp. 74–77.

[37] G.-B. Zhao, M. Raveri, L. Pogosian, Y. Wang, R. G.
Crittenden, W. J. Handley, W. J. Percival, F. Beutler, J.
Brinkmann, C.-H. Chuang et al., Nat. Astron. 1, 627 (2017).

[38] D. Wang, Phys. Rev. D 106, 063515 (2022).
[39] C. Wetterich, Phys. Lett. B 594, 17 (2004).
[40] V. Pettorino, L. Amendola, and C. Wetterich, Phys. Rev. D

87, 083009 (2013).
[41] Y. Wang and P. Mukherjee, Phys. Rev. D 76, 103533

(2007).
[42] Y. Wang and S. Wang, Phys. Rev. D 88, 043522 (2013).
[43] Z. Zhai and Y. Wang, J. Cosmol. Astropart. Phys. 07 (2019)

005.
[44] A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S.

Casertano, D. O. Jones, Y. Murakami, G. S. Anand, L.
Breuval et al., Astrophys. J. Lett. 934, L7 (2022).

[45] D. Brout, D. Scolnic, B. Popovic, A. G. Riess, A. Carr, J.
Zuntz, R. Kessler, T. M. Davis, S. Hinton, D. Jones et al.,
Astrophys. J. 938, 110 (2022).

[46] J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Manzotti, S.
Dodelson, S. Bridle, S. Sehrish, and J. Kowalkowski,
Astron. Comput. 12, 45 (2015).

[47] The base of log is 10 in our conventions.

EARLY DARK ENERGY TRIGGERED BY SPACETIME DYNAMICS … PHYS. REV. D 109, 044016 (2024)

044016-9

https://doi.org/10.3847/1538-4357/ab0898
https://doi.org/10.1103/PhysRevD.101.043533
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1103/PhysRevD.91.023518
https://doi.org/10.1103/PhysRevD.91.023518
https://doi.org/10.1088/0004-637X/802/1/20
https://doi.org/10.3847/0004-637X/818/2/132
https://doi.org/10.3847/0004-637X/818/2/132
https://doi.org/10.3847/1538-4357/aae2b9
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevD.102.083513
https://doi.org/10.1103/PhysRevD.102.083513
https://doi.org/10.1103/PhysRevD.102.083513
https://doi.org/10.1103/PhysRevD.101.063523
https://doi.org/10.1103/PhysRevD.101.063523
https://doi.org/10.1103/PhysRevD.102.023523
https://doi.org/10.1103/PhysRevD.103.043528
https://doi.org/10.1103/PhysRevD.103.043528
https://doi.org/10.1103/PhysRevD.103.043529
https://doi.org/10.1103/PhysRevD.103.043529
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1103/PhysRevD.106.063540
https://doi.org/10.1103/PhysRevLett.113.251302
https://doi.org/10.1103/PhysRevLett.113.251302
https://doi.org/10.1103/PhysRevLett.124.161301
https://doi.org/10.1103/PhysRevLett.124.161301
https://doi.org/10.1088/1475-7516/2021/04/063
https://doi.org/10.1088/1475-7516/2021/04/063
https://doi.org/10.1103/PhysRevD.103.043518
https://doi.org/10.1103/PhysRevD.107.103507
https://doi.org/10.1103/PhysRevD.105.063535
https://doi.org/10.1103/PhysRevD.107.103523
https://doi.org/10.1103/PhysRevD.107.103523
https://doi.org/10.1103/PhysRevD.74.046004
https://doi.org/10.1103/PhysRevD.74.046004
https://doi.org/10.1103/PhysRevD.61.023518
https://doi.org/10.1103/PhysRevD.61.023518
https://doi.org/10.1103/PhysRevD.63.063504
https://doi.org/10.1103/PhysRevD.63.063504
https://doi.org/10.1103/PhysRevD.28.1243
http://xact.es
http://xact.es
https://github.com/JingChang-cheng/MG
https://github.com/JingChang-cheng/MG
https://github.com/JingChang-cheng/MG
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1016/j.physletb.2019.134830
https://doi.org/10.1016/j.physletb.2019.134830
https://doi.org/10.1038/s41550-017-0216-z
https://doi.org/10.1103/PhysRevD.106.063515
https://doi.org/10.1016/j.physletb.2004.05.008
https://doi.org/10.1103/PhysRevD.87.083009
https://doi.org/10.1103/PhysRevD.87.083009
https://doi.org/10.1103/PhysRevD.76.103533
https://doi.org/10.1103/PhysRevD.76.103533
https://doi.org/10.1103/PhysRevD.88.043522
https://doi.org/10.1088/1475-7516/2019/07/005
https://doi.org/10.1088/1475-7516/2019/07/005
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.3847/1538-4357/ac8e04
https://doi.org/10.1016/j.ascom.2015.05.005

