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This work concerns the dynamics of the conformal cubic scalar field on a Schwarzschild–anti–de Sitter
background. The main focus is on understanding how it depends on the size of the black hole and the Robin
boundary condition. We identify a critical curve in the parameter space that separates regions with distinct
asymptotic behaviors. For defocusing nonlinearity, the global attractor undergoes a pitchfork bifurcation,
whereas for the focusing case, we identify a region of the phase space where all solutions blow up in finite
time. In the course of this study we observe an interplay between black hole geometry, boundary
conditions, and the nonlinear dynamics of scalar fields in asymptotically anti–de Sitter spacetime.
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I. INTRODUCTION

Consider the 3þ 1 dimensional Schwarzschild–anti–
de Sitter (SAdS) black hole, also known as the Kottler-
Birmingham solution of the vacuum Einstein equation
with negative cosmological constant Λ < 0 [1,2]. In the
Schwarzschild-like coordinate system ðt; r; θ;φÞ the SAdS
metric takes the following form:

g ¼ −Vdt2 þ V−1dr2 þ r2dΩ2;

VðrÞ ¼ 1 −
2M
r

þ r2

l2
; ð1:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the line element on the
unit two-sphere,M > 0 is the black hole (BH) mass, and l
is the length scale parameter, which is related to the
cosmological constant Λ ¼ −3=l2. The BH radius rH is
the simple real root of VðrHÞ ¼ 0. It is convenient to
rewrite V in terms of rH,

VðrÞ ¼ 1þ r2 −
rH
r
ð1þ r2HÞ; ð1:2Þ

where we set the units so that l ¼ 1, and rH becomes a
dimensionless parameter.
We study the dynamics of a self-interacting spherically

symmetric scalar field ϕ ¼ ϕðt; rÞ propagating on the
SAdS background (1.1),

□gϕ −m2ϕ − λϕ3 ¼ 0; λ ¼ �1; ð1:3Þ

where λ ¼ −1 corresponds to focusing and λ ¼ 1 to
defocusing nonlinearity. The lack of global hyperbolicity
of asymptotically anti–de Sitter (AdS) spacetimes, and in
particular of the SAdS, necessarily raises the issue of
boundary conditions (BC). In order to have a well-defined
problem, one has to prescribe proper data at the conformal
infinity r → ∞, also referred to as Scri. A close inspection
of solutions to (1.3) gives the following asymptotics for
large distances [3]:

ϕðt; rÞ ∼ cþðtÞr−ð3=2þνÞ þ c−ðtÞr−ð3=2−νÞ;

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þm2

p
. For the massless m2 ¼ 0 scalar

field the Dirichlet boundary condition c− ¼ 0 is enforced if
we require square integrability; thus ϕðt; rÞ ∼ cþðtÞr−3. For
m2 ¼ −2, which corresponds to the conformal coupling,
and which is above the Breitenlohner-Freedman mass
bound [4], we have

ϕðt; rÞ ∼ cþðtÞr−2 þ c−ðtÞr−1;

and so there is a freedom in making the problem well
defined. In this work we intend to explore this flexibility.
Thus, we study Eq. (1.3) with m2 ¼ −2 subject to the
Robin boundary condition

−cþ þ bc− ¼ lim
r→∞

ðr2∂rðrϕÞ þ bðrϕÞÞ ¼ 0; ð1:4Þ

which is a simple one-parameter (b∈R) generalization of
the Dirichlet (c− ¼ 0 equivalently b ¼ ∞) and Neumann
(cþ ¼ 0 or b ¼ 0) conditions.
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To desingularize (1.1) we introduce the null coordinate v
defined by

dv ¼ dtþ dr
V
; ð1:5Þ

which brings (1.1) into the ingoing Eddington-Finkelstein
form

g ¼ −Vdv2 þ 2dvdrþ r2dΩ2;

which is manifestly regular at the black hole horizon r ¼ rH.
In this coordinate system the conformal (m2 ¼ −2) wave
equation (1.3) for the rescaled scalar variable and the
compactified radial coordinate

Φ ¼ rϕ; y ¼ 1

r
ð1:6Þ

becomes

2∂y∂vΦ−∂yðy2V∂yΦÞ−
�
y∂yVþ 2

y2

�
Φþ λΦ3¼ 0; ð1:7Þ

where, with a slight abuse of notation, we write

VðyÞ ¼ 1þ y−2 −
y
yH

ð1þ y−2H Þ; yH ¼ r−1H :

Now, y ¼ yH denotes the location of the horizonwhile y ¼ 0
corresponds to the conformal infinity. Note that in the new
coordinate system the Robin BC (1.4) is

ð−∂vΦþ ∂yΦ − bΦÞjy¼0
¼ 0: ð1:8Þ

It is instructive to look how the boundary condition
affects the energy of the solution. Multiplying (1.7) by ∂vΦ
we get the local conservation law

∂v

�
y2

2
VðyÞð∂yΦÞ2 − 1

2

�
y∂yVðyÞ þ

2

y2

�
Φ2 þ λ

4
Φ4

�

¼ ∂yðy2VðyÞ∂yΦ∂vΦ − ð∂vΦÞ2Þ: ð1:9Þ

Integrating (1.9) over y we obtain the energy loss formula

dE
dv

¼ −ð∂vΦÞ2
���
y¼yH

þ ∂vΦð∂vΦ − ∂yΦÞ
���
y¼0

; ð1:10Þ

where we define the energy integral as

E ¼
Z

yH

0

�
y2

2
VðyÞð∂yΦÞ2

−
1

2

�
y∂yVðyÞ þ

2

y2

�
Φ2 þ λ

4
Φ4

�
dy: ð1:11Þ

Finally, using (1.8) we rewrite (1.10) as

dE
dv

¼ −ð∂vΦÞ2
����
y¼yH

−
b
2
∂vðΦ2Þ

����
y¼0

: ð1:12Þ

Observe that additionally to the negative energy flux
through the horizon (the first term), there could be a
positive or negative flow through the Scri if one chooses
boundary data with ∂vΦjy¼0 ≠ 0 and b ≠ 0. In other words,
dissipation or generation of energy at the boundary is
absent only for the Dirichlet and Neumann BC.
This work is an extension of [5] to a spacetime containing

a black hole. As a first step in analyzing the dynamics of
asymptotically AdS black hole solutions, we study the cubic
wave equation (1.3) on a fixed SAdS spacetime. This
substantial simplification allows us to comprehensively
describe the nonlinear dynamics of scalar waves in a model
with two parameters: the size of the black hole yH and the
Robin boundary parameter b. In addition, we consider both
the focusing and defocusing nonlinearities. We are mainly
interested in how the nonlinear evolution changes with
ðyH; bÞ, specifically, if there is a global-in-time existence or
if solutions can develop a singularity in finite time. Besides
finding a classical pitchfork bifurcation in the defocusing
case, for the opposite sign of the nonlinearity we discover a
region of the phase space ðyH; bÞwhere all solutions blowup
in finite time.
Although the main emphasis of this work is on the

nonlinear dynamics, a substantial part of the analysis is
devoted to the study of static solutions and their linear
stability. This is a prerequisite to studying time-dependent
solutions, as some static configurations play an essential role
in the dynamics as global attractors or threshold solutions.
This information allows us to provide a precise asymptotic
description of global-in-time solutions and solutions near
the threshold between blowup and dispersion.
A study of a scalar field in asymptoticallyAdS spacetimes

with horizons has a rather long history. Extensive literature
considers the hairy black holes in AdS; see [6,7] and
references therein. Much effort went into studying the
quasinormal mode (QNM) spectrum of linear fields on
the SAdS background, mainly with Dirichlet boundary
conditions, e.g., [8–13]. Crucially, some works noted the
presence of the unstablemode for certainvalues of theRobin
parameter [14–16]. The well-posedness for the massive
linear and nonlinear wave equation on asymptotically AdS
with Dirichlet BC at Scri has been proven in [17–19],
respectively. Dynamical studies of conformal scalar field on
SAdS background with Dirichlet and Neumann boundary
conditions were already performed in [20]. However, to our
knowledge, there are no works concerning the dynamics of
the conformal cubic wave equation subject to the Robin
boundary condition. In particular, the study of dichotomy
between dispersion and blowup in SAdS and the nonlinear
instability results is new. This work aims to fill that gap and
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provide a better understanding of the dynamics of the scalar
field on SAdS with more general boundary conditions.
The paper is structured as follows. The first part

extensively studies static solutions and their linear stability.
We start with horizonless case yH → 0, i.e., the equation in
AdS, and only after that we consider solutions in SAdS.
Subsequently, we discuss the extreme case of a black hole
filling the whole space yH → ∞. The second part concerns
the nonlinear dynamics, where we separately discuss the
focusing and defocusing nonlinearities. The last section
contains conclusions and future directions.

II. STATIC SOLUTIONS IN AdS (yH =∞)

Before analyzing Eq. (1.7) we discuss static solutions
and their linear stability in the limiting case of yH ¼ ∞.
This allows for a better understanding of the limit yH → ∞.
When studying the regular case, obtained formally by

setting rH ¼ 0 in (1.1) and (1.2), it is convenient to use the
compactified radial coordinate x, defined by r ¼ tan x.
Then, the AdS metric takes the form [5]

gAdS ¼
1

cos2x
ð−dt2 þ dx2 þ sin2xdΩ2Þ;

(recall l ¼ 1). For this metric the conformal wave equa-
tion (1.3) is

∂
2
tϕ ¼ 1

tan2x
∂xðtan2x∂xϕÞ þ

2

cos2x
ϕ −

λ

cos2x
ϕ3: ð2:1Þ

We introduce the rescaled scalar field, cf. (1.6):

Φ ¼ tan xϕ; ð2:2Þ

then (2.1) becomes

∂
2
tΦ ¼ ∂

2
xΦ −

λ

sin2x
Φ3: ð2:3Þ

This form of the wave equation is manifestly regular at
x ¼ π=2, a consequence of the conformal mass. Smooth
solutions at the origin behave as

Φðt; xÞ ¼ OðxÞ: ð2:4Þ

At x ¼ π=2 we have the following expansion:

Φðt; xÞ ¼ Φ1ðtÞ
�
π

2
− x

�
þΦ2ðtÞ

�
π

2
− x

�
2

þΦ3ðtÞ
�
π

2
− x

�
3

þ � � � ;

with coefficients ΦjðtÞ, j > 2, uniquely determined by the
free functions Φ1ðtÞ and Φ2ðtÞ, in agreement with the
discussion above. Consequently we impose

ð∂xΦþ bΦÞjx¼π=2 ¼ 0; ð2:5Þ

which follows from the change of variables tan x ¼ 1=y in
(1.8). Note that, this sign convention agrees with [15] and is
opposite to [5].
Before continuing let us comment on the consequences

of the BC on conservation of energy. Multiplying the
Eq. (2.3) by ∂tΦ and integrating over the radial coordinate
we obtain the energy loss formula

d
dt
E ¼ ∂xΦ∂tΦ

���
x¼π=2

; ð2:6Þ

where

E ¼
Z

π=2

0

�
1

2
ð∂tΦÞ2 þ 1

2
ð∂xΦÞ2 þ λ

4sin2x
Φ4

�
dx

is the energy integral. Alternatively, using (2.5) we can
rewrite (2.6) as

d
dt
E ¼ −

b
2
∂tðΦ2Þ

����
x¼π=2

: ð2:7Þ

Therefore, except for the Dirichlet and Neumann BC, the
energy of the solution is not conserved due to the boundary
contribution. Note that, by a simple rewriting of (2.7) we
can get a conserved quantity Ẽ,

Ẽ≡ Eþ b
2
ðΦ2Þ

����
x¼π=2

;
d
dt
Ẽ ¼ 0;

which can be interpreted as the total energy of the system:
energy in the “bulk” plus the energy concentrated at the
boundary.
We focus here on static solutions Φðt; xÞ ¼ sðxÞ that

satisfy

s00 −
λ

sin2 x
s3 ¼ 0; ð2:8Þ

and (2.5) at x ¼ π=2. The regularity condition (2.4)
imposed on s is simply sð0Þ ¼ 0.

A. Linear equation

The linear stability analysis of the conformal scalar field
on the AdS background subject to the Robin BC was
discussed in [5]. For the reader’s convenience here we
reproduce the main parts of this analysis. Substituting

Φðt; xÞ ¼ eiωtψðxÞ;
into (2.3) and neglecting the nonlinear term we obtain the
eigenvalue problem

−ω2ψ ¼ ψ 00:
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For ω2 > 0 the regular solution is ψðxÞ ¼ C sinωx,
C ¼ const. The boundary condition (2.5) introduces quan-
tization for the eigenfrequencies

ω ¼ −b tan
�
ω
π

2

�
: ð2:9Þ

An elementary analysis shows that out of the infinitely
many non-negative solutions to (2.9) ω2

n, n ¼ 0; 1;…, the
lowest eigenvalue ω2

0 vanishes at b ¼ b� ≡ −2=π, and for
b < b� it becomes an exponentially growing mode with the
exponent

ffiffiffiffiffiffiffiffiffi
−ω2

0

p
satisfying

ffiffiffiffiffiffiffiffiffi
−ω2

0

q
¼ −b tanh

� ffiffiffiffiffiffiffiffiffi
−ω2

0

q
π

2

�
.

Therefore, for b > b� the trivial solution is linearly stable,
while for b < b� the single growing mode renders it
linearly unstable.

B. Focusing case

To find static solutions we solve the two point boundary
value problem (2.8) using the shooting method. For a given
slope at the origin s0ð0Þ we integrate (2.8) outward. For
small s0ð0Þ the solution is monotonic, and it smoothly
extends beyond x ¼ π=2, a regular point of the equation.
For larger values of the initial slope the solution crosses
zero finitely many times before it reaches the conformal
boundary. Adjusting s0ð0Þ such that the boundary condition
(2.5) is satisfied, for a given b, provides a criterion which
selects a particular solution. In this way, we find countably
many solutions, sðnÞ, where n is the nodal index, which
enumerates the number of nodes in the solution; see Fig. 1.
The solution sð0Þ does not exist for b < b�.
For small s0ð0Þ a nodeless solution (with b > b�) can be

constructed perturbatively. We write

sð0ÞðxÞ¼ εf1ðxÞþ ε3f3ðxÞþ…; 0< jεj≪ 1; ð2:10Þ

where sð0Þ0ð0Þ ¼ ε in addition to the regularity condition
sð0Þð0Þ ¼ 0. Plugging this into (2.8) and expanding in ε we
obtain perturbative equations, which can be solved order by
order. The leading equations are

f001ðxÞ ¼ 0; f003ðxÞ ¼ −
f31

sin2x
:

Those are solved by

f1ðxÞ ¼ x;

and

f3ðxÞ ¼ 3x2
�X∞

k¼1

sinð2kxÞ
k2

�
þ3

2
x

�
ζð3Þþ3

X∞
k¼1

cosð2kxÞ
k3

�

−3
X∞
k¼1

sinð2kxÞ
k4

þx3 logð2sinxÞ;

which, alternatively, can be expressed as

f3ðxÞ¼ 3ix2Li2ðe−2ixÞþ
3

2
xðζð3Þþ3Li3ðe−2ixÞÞ

−3iLi4ðe−2ixÞþx3 logð1−e−2ixÞþ iπ4

30
; ð2:11Þ

where LinðzÞ is the polylogarithm function [21] and ζðzÞ
is the Riemann zeta function [21]. Note that from this
calculation immediately follows that b� ¼ −2=π. Having
this perturbative solution one can express ε by the distance
to the bifurcation point, b − b�, and compare with the
numerical data. Results of this test are presented in Fig. 2,
where we plot the slope of sð0Þ at the origin as a function of
the Robin parameter.
To examine the linear stability of static solutions we

substitute the ansatz

Φðt; xÞ ¼ sðxÞ þ eiσtχðxÞ; ð2:12Þ

FIG. 1. Profiles of the lowest static solutions sð0ÞðxÞ and sð1ÞðxÞ satisfying Robin BC for the focusing case (light gray). Left: the
nodeless solution bifurcates from zero (dark gray) for b ¼ b� and as b increases to infinity it converges to (2.16) (black). For b ¼ 0 this
solution is given by (2.18) (dashed). Right: as b increases from −∞ to ∞ the first excited state sð1Þ smoothly interpolates between two
static solutions satisfying Dirichlet BC (dark gray and black for b ¼ −∞ and b ¼ ∞ respectively).
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into (2.3) and linearize around sðxÞ. This yields the
eigenvalue problem

−σ2χ ¼ χ00 þ 3
s2

sin2x
χ; ð2:13Þ

and the boundary condition

χ0ðπ=2Þ þ bχðπ=2Þ ¼ 0; ð2:14Þ

which we also solve using the shooting technique. Starting
with ðχð0Þ; χ0ð0ÞÞ ¼ ð0; 1Þ and some σ2 we integrate (2.13)
outward and read off the solution at x ¼ π=2 (as there are
no singularities within the integration domain the solution
remains smooth for at least x ≤ π=2). Adjusting σ2 so that
the condition (2.14) is satisfied we find the desired solution.
Using this numerical procedure we find for sðnÞ exactly

nþ 1 negative eigenmodes1

�
σðnÞ−n

�
2
<

�
σðnÞ−ðn−1Þ

�
2
< � � � <

�
σðnÞ0

�
2
< 0; ð2:15Þ

and infinitely many positive modes. Thus, all static
solutions sðnÞ are linearly unstable.
Additionally, the spectrum of linear perturbations of sð0Þ

close to b� can be determined perturbatively using the
expansion [5]. The main idea of this rather lengthy
calculation, which we skip and refer the reader to [5], is
to use (2.10) and (2.11) and a similar expansion for the
perturbation χ at b ¼ b� in order to find a correction to the

linear spectrum ω� ≡ ωðb�Þ (2.9) from which ðσð0Þj Þ2
bifurcate. For the lowest eigenvalue we obtain

�
σð0Þ0

�
2
≈ −

12

π
δ; b ¼ b� þ δ; 0 < δ ≪ 1

(for higher modes the expressions are much longer, so we
omit them). These results compare very well with the data

presented in Table I, with the difference decreasing when

b → b�. The dependence of the lowest eigenvalues ðσð0Þj Þ2
on the boundary parameter is also shown in Fig. 3, which
illustrates the behavior of the spectra for b close to b� and
shows the convergence of the eigenspectrum for b → ∞ to
the problem with Dirichlet BC.
Below, we analyze two special cases for which the

fundamental static solutions are explicit. This provides a
cross-check of our numerical procedure for finding static
solutions and the spectrum of linear perturbations. We start
by considering the Dirichlet BC, which corresponds to
taking the limit b → ∞ in (2.5). We find that the nodeless
solution takes a simple form,

sð0ÞðxÞ ¼ 2 sin 2x
2 − cos 2x

: ð2:16Þ

This profile is included in Fig. 1 (left plot, solid black line).
The eigenvalues of (2.16) can be computed using a
Leaver’s-type method [22]. In this case linear perturbations
χ (2.12) satisfy

−σ2χ ¼ χ00ðxÞ þ 48

�
cos x

2 − cos 2x

�
2

χðxÞ: ð2:17Þ

FIG. 2. The slope at the origin of the static solution sð0Þ for the focusing case as a function of the Robin parameter b. This solution
exists only for b > b�. When b → ∞ the slope asymptotes the value 4, the slope of the solution (2.16). On the right plot the dashed line is
the perturbative expansion (2.10) and (2.11), which agrees with numerical data for b − b� ≪ 1.

FIG. 3. The dependence of the lowest eigenvalues (color coded)
of sð0Þ on the Robin parameter b for the focusing case. The
eigenvalues bifurcate from the linear spectrum (2.9) at b ¼ b�,
and for b − b� ≪ 1 they are well approximated by the perturba-
tive expansion (dashed lines). When b → ∞ the spectrum
converges to the eigenvalues of (2.17) satisfying Dirichlet BC
(horizontal dashed lines).

1We use the convention where the superindex refers to the
nodal index of the static solution and subindex numbers the
mode. For unstable modes we use nonpositive indices.
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Since poles of this equation are located at �0.658479…iþ
nπ, n∈Z, the power series at x ¼ π=2will be convergent at
the origin. Imposing the condition χð0Þ ¼ 0 on truncations
of such a expansion gives us polynomials in σ2, roots of
which correspond to the eigenvalues. The results of these
calculations are listed in Table I. They agree with the
numbers obtained from the shooting method.
For Neumann BC (b ¼ 0) the fundamental solution is

sð0ÞðxÞ ¼ sin x: ð2:18Þ

In that case the eigenvalue problem (2.13) yields

�
σð0Þ0

�
2 ¼ −2;

�
σð0Þj

�
2 ¼ ð2jþ 1Þ2 − 3; ð2:19Þ

j ¼ 1; 2;…, where the corresponding eigenfunctions are
sin x; sin 3x; sin 5x;…. Thus, we explicitly verify the linear
instability of sð0Þ with a single unstable direction.

C. Defocusing case

We begin the discussion of the defocusing case with the
following simple nonexistence result. Let s be a nontrivial
solution to (2.8) with λ ¼ 1. We can multiply this equation
by s and integrate the resulting expression over the domain
ð0; π=2Þ getting

sðπ=2Þs0ðπ=2Þ −
Z

π=2

0

s0ðxÞ2dx −
Z

π=2

0

s4ðxÞ
sin2x

dx ¼ 0;

where one of the boundary terms vanishes due to the
regularity condition. If s satisfies the Dirichlet or Neumann
condition at x ¼ π=2, then the first term in this expression
vanishes. The remaining integral terms are all positive
leading to the contradiction. The same reasoning also
holds for the Robin boundary condition as long as
sðπ=2Þs0ðπ=2Þ ≤ 0, which relates to b being non-negative.

The numerical indication shows that this nonexistence
result can be extended to all b > b�.
The construction and stability analysis of static solutions

for the defocusing nonlinearity follows the steps used in
previous section. Thus we restrict the discussion to the
presentation of the main results. Static solutions satisfy-
ing the Robin boundary condition (2.5) exist only for
b < b� ¼ −2=π. In such a case there exists only a nodeless
solution, which for consistency with notation used before
we denote as sð0Þ. Its profile is a monotonically increasing
function of x; see Fig. 4. Analogously to the λ ¼ −1 case
when b� − b ≪ 1 the solution sð0Þ can be constructed
perturbatively, and the result is given by (2.10) and
(2.11) with the minus sign in front of the f3 term. In
Fig. 4 we plot the slope of sð0Þ at the origin as a function of
the Robin parameter and compare it with the perturbative
solution. As b → −∞ the solution approaches the exact
singular solution,

sð0Þ−∞ðxÞ ¼
ffiffiffi
2

p
tan x: ð2:20Þ

Studying the linear perturbations of sð0Þ we find only
oscillatory modes (σ2 > 0) (see Fig. 5), implying linear
stability. Interestingly in the limit b → −∞ the spectrum
approaches the sequence ð4þ 2jÞ2, j ¼ 0; 1;… This could
be understood when we consider the linear problem around
the singular solution (2.20). For the following analysis it is
convenient to work with the original scalar field ϕ variable,
cf. (2.2). Note that ϕ ¼ ffiffiffi

2
p

is an exact solution to (2.1) with
λ ¼ −1. A linear perturbation of this formal solution,2

ϕðt; xÞ ¼
ffiffiffi
2

p
þ eiσtχðxÞ;

TABLE I. Lowest eigenvalues of linear perturbation of the static solution sð0Þ for some values of the Robin
parameter b. Note that the static solution exists only for b ≥ b�. The b ¼ ∞ case corresponds to the Dirichlet BC.
For the Neumann BC, b ¼ 0, the spectrum is known explicitly (2.19). At b ¼ b� the static solution becomes zero,
and the eigenvalues are solutions of (2.9). For b − b� ≪ 1 the spectrum can be computed using the perturbative
expansion (see the text).

b ðσð0Þ0 Þ2 ðσð0Þ1 Þ2 ðσð0Þ2 Þ2 ðσð0Þ3 Þ2 ðσð0Þ4 Þ2 ðσð0Þ5 Þ2

∞ −13.7711 5.29633 23.6731 51.0478 86.7383 130.563
20 −12.8183 4.97254 22.2906 48.1070 81.8407 123.373
10 −11.9496 4.68576 21.1624 45.9244 78.5630 119.049
1 −4.59103 3.58044 19.0428 42.9008 74.8435 114.815
0 −2 6 22 46 78 118
−1=2 −0.501391 7.72719 23.7326 47.7341 79.7348 119.735
−2=π þ 10−2 −0.0380887 8.14991 24.1542 48.1553 80.1558 120.156
−2=π þ 10−3 −0.00381863 8.17969 24.1839 48.1850 80.1855 120.186
−2=π þ 10−4 −0.000381961 8.18266 24.1869 48.1880 80.1884 120.189
−2=π 0 8.18299 24.1872 48.1883 80.1888 120.189

2We call it formal as it does not decay for x → π=2; thus it
becomes singular after the rescaling (2.2).

FILIP FICEK and MACIEJ MALIBORSKI PHYS. REV. D 109, 044015 (2024)

044015-6



satisfies

−σ2χ ¼ 1

tan2x
ðtan2xχ0Þ0 − 4

cos2x
χ: ð2:21Þ

A solution of (2.21) which is smooth at x ¼ π=2 is given in
terms of the hypergeometric function [21]

χðxÞ¼Ccos4x2F1

�
2−

σ

2
;
σ

2
þ2;

7

2
;cos2x

�
; C¼ const;

the other solution diverges as ðπ=2 − xÞ−1 for x → π=2.
Enforcing the regularity condition at the origin gives a
condition for the eigenvalues

σ2 ¼ ð4þ 2jÞ2; j ¼ 0; 1;…;

which correspond to the limit of the spectrum of sð0Þ
when b → −∞.

III. STATIC SOLUTIONS IN SAdS (0 < yH < ∞)

A. Linear equation (λ = 0)

We begin the study of static solutions in SAdS with the
linear problem for Eq. (1.7). Let

Φðv; yÞ ¼ eiωvψðyÞ:

Under this separation of variables for λ ¼ 0 Eq. (1.7)
becomes

2iω∂yψ ¼ Lψ ; ð3:1Þ
where

Lψ ¼ ∂yðy2V∂yψÞ þ y∂yVψ þ 2

y2
ψ ;

while the Robin boundary condition (1.8) is now given by

ψ 0ð0Þ − ðbþ iωÞψð0Þ ¼ 0: ð3:2Þ

Regular solutions of (3.1) can be written explicitly using
the Heun function3 HeunG [21]:

ψðyÞ ¼ CHeunG

�
ξ̄

ξ
;
2ð1þ y2HÞ

ξ
; 1; 1; 1þ 2iyHω

3þ y2H
;

1þ ð3þ 2y2H − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4y2H

p
ÞyHω

ð3þ y2HÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4y2H

p ;

2ðyH − yÞð1þ y2HÞ
yHξ

�
;

where ξ ¼ 3þ 2y2H þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4y2H

p
and C is any constant.

This solution can be plugged into (3.2) to get a relation
between yH, b, and ω. Then, for any fixed parameters yH
and b one can find numerically values of ω that can be
interpreted as quasinormal frequencies of a zero solution.
On the complex plane they form a set symmetric with
respect to the imaginary axis, but their locations, and as a
consequence long term behavior of perturbations of the

FIG. 5. The dependence of the lowest eigenvalues (color coded)
of sð0Þ on the Robin parameter b for the defocusing case. The
analog of Fig. 3. In the limit b → −∞ we observe convergence
toward the eigenspectrum of the singular solution (2.20).

FIG. 4. The static solution sð0Þ for the defocusing case exists only for b < b�. Left: the solution bifurcates from zero (dark gray line) for
b ¼ b� and as b decreases to minus infinity it converges to (2.20) (black line). Right: the slope at the origin as a function of the Robin
parameter b. Dashed line demonstrates agreement of the numerical results with the perturbative expansion, analogous to (2.10) and
(2.11), in the regime b� − b ≪ 1.

3We use Wolfram Mathematica notation: HeunGða; q; α; β; γ;
δ; zÞ satisfies the general Heun equation, zðz−1Þðz−aÞy00ðzÞþ
ðγðz−1Þðz−aÞþ δzðz−aÞþ ðz−1Þzðαþβ− γ− δþ1ÞÞy0ðzÞ þ
ðαβz−qÞyðzÞ ¼ 0.
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zero solution, strongly depend on yH and b. For positive
values of b all quasinormal frequencies have a nonzero real
part and positive imaginary part, meaning that zero is a
linearly stable solution. As b decreases this situation
changes, as can be seen in Fig. 6. At some point a pair
of eigenvalues meets at the imaginary axis. The value of b
for which this takes place depends on yH, and its depend-
ence is shown in Fig. 7 by the dotted line. As b decreases
further they separate again but remain at the imaginary axis.
As these quasinormal frequencies move along the axis,
eventually one of them crosses zero, meaning that there
exists a solution with ω ¼ 0, i.e., a zero mode. The value of
b for which this takes place will be denoted by b�ðyHÞ, and
it is given by

b�ðyHÞ ¼−
2ð1þ y2HÞHeunG0

�
ξ̄
ξ ;

2ð1þy2HÞ
ξ ;1;1;1;1; 2ð1þy2HÞ

ξ

�

yHξHeunG
�
ξ̄
ξ ;

2ð1þy2HÞ
ξ ;1;1;1;1; 2ð1þy2HÞ

ξ

� ;

ð3:3Þ

where HeunG0 is a derivative of the Heun function with
respect to its last variable. For smaller values of b, one of
the eigenvalues has a negative imaginary part, implying

instability, cf. [15]. This change of behavior takes place at
the critical curve b�ðyHÞ plotted in Fig. 7 as a solid line. The
function b�ðyHÞ is strictly negative, it attains a maximum
value of −0.603341 at yH ≈ 2.08026, for yH → 0 it
diverges to −∞ as jb�ðyHÞj ∼ y−1H , while for yH → ∞ it
converges to−2=π. Since this curve separates regions of the
phase space where the zero solution is stable and unstable,
it lets us conclude that for large positive values of b zero is
stable, while for large negative it is generically unstable.
Additionally, large black holes tend to posses a stable zero
solution since for any b taking yH small enough lands us in
the basin of stability.
The behavior of b�ðyHÞ as yH → 0 is a straightforward

implication of (3.3) so let us now focus on the case
yH → ∞. Here, the explicit formula for b�ðyHÞ seems to
be of little help since the asymptotic behavior of HeunG
and its derivative is, to our best knowledge, not well known
in this limit. Instead, we can use the fact that (2.1) for static
solutions comes not only as a result of assuming an AdS
background but can also be obtained as the yH → ∞ limit
of the equation Lψ ¼ 0. To see this, it is convenient to work
with the original radial coordinate r defined in ½rH;∞Þ. Let
us compactify this interval by introducing x such that
tan x ¼ r − rH with x∈ ½0; π=2Þ. In this new coordinate
static solutions of the nonlinear problem must satisfy

1

μ̃ðxÞ
d
dx

�
μ̃ðxÞ dϕ

dx

�
þ ν̃ðxÞð2ϕ − λϕ3Þ ¼ 0;

where

μ̃ðxÞ ¼
�
1þ 3

2
rH sin 2xþ 3r2Hcos

2x

	
ðrH þ tan xÞ tan x;

ν̃ðxÞ ¼ rH þ tan x

sin x cos x
h
1þ 3

2
rH sin 2xþ 3r2Hcos

2x
i :

This equation is regular under the limit rH → 0 and leads to

1

tan2x
d
dx

�
tan2x

dϕ
dx

�
þ 1

cos2x
ð2ϕ − λϕ3Þ ¼ 0:

For λ ¼ 0 we get the desired result; however, this argument
gives us also a correspondence between static solutions of
nonlinear Eq. (1.7) with large yH and Eq. (2.1).
Our description above regards a change of behavior as

yH is fixed and one varies b. In the opposite situation, when
b is fixed and yH changes, the behavior is more compli-
cated and strongly depends on b, as can be seen in Fig. 8.
When the line of constant b lies entirely above the
bifurcation curve in Fig. 7, the imaginary part of the lowest
quasinormal frequency is positive and decreases monoton-
ically as yH increases. If this line crosses the bifurcation
curve, the imaginary part of the frequency bifurcates at
some yH. When the line additionally crosses the critical

FIG. 6. Plot of the behavior of the two lowest quasinormal
frequencies for yH ¼ 1 as b varies. The solid and dashed lines
present real and imaginary parts, respectively.

FIG. 7. Plot of the phase space ðyH; bÞ. The solid line denotes
the critical curve while the dotted one is the bifurcation curve.
The horizontal dashed line shows the asymptotic convergence to
−2=π as yH → ∞.
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curve, one of the emerging branches becomes at some point
negative. The further behavior of the imaginary part of the
lowest frequency depends on whether b > −2=π or
b < −2=π. In the first case, two branches eventually merge
and converge to some positive values as yH → ∞.
Otherwise, they stay separated and one of them remains
negative.

B. Focusing case (λ = − 1)
1. Existence

Since the shooting method is one of the main tools that
we use in the investigations of static solutions to (1.7)
we begin by showing that it is well posed. By putting
Φðv; yÞ ¼ sðyÞ in (1.7) we get

d
dy

�
μðyÞdsðyÞ

dy

�
−yð1þy2HÞsðyÞ−λy3HsðyÞ3¼ 0; ð3:4Þ

where

μðyÞ ¼ y3H þ x2y3H − y3ð1þ y2HÞ

is a non-negative function. Since μ behaves near y ¼ yH
like OðyH − yÞ, this equation is singular there. Hence, one
needs to impose the appropriate regularity conditions: if
sðyHÞ ¼ c, then

s0ðyHÞ ¼ −
1þ y2Hð1þ λc2Þ
yHð3þ y2HÞ

c: ð3:5Þ

This condition ensures local existence of the solution.
Lemma 1. Equation (3.4) with sðyHÞ ¼ c and s0ðyHÞ

given by (3.5) constitutes a well defined initial value
problem: for every c∈R it has a unique local solution
on some interval ðyH − ε; yHÞ, and this solution depends
continuously on c and yH.
Proof. Let us introduce new variables:

t ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

y
yH

r
; wðtÞ ≔ sðyÞffiffiffiffiffiffiffiffiffi

pðtÞp ;

where

pðtÞ ¼ 3þ y2H − t2ð3þ 2y2HÞ þ t4ð1þ y2HÞ;

is strictly positive for t∈ ½0; 1�. Now (3.4) can be written as

1

t
d
dt

�
t
dw
dt

�
−

1

pðtÞ2
�
qðtÞwþ 4λy2Hw

3

	
¼ 0; ð3:6Þ

where

qðtÞ ¼ 2ð3þ y2HÞ − ð9þ 8y2HÞt2 þ 2ð1þ y2HÞt4

is a polynomial with qð0Þ ¼ 2ð3þ y2HÞ > 0, qð1Þ ¼
−ð1þ 4y2HÞ < 0 and a single zero in between. In these
variables the differential operator present in our equation
becomes a radially symmetric two-dimensional Laplacian
with t ¼ 0 being the singular point. The regularity con-
dition now transforms to simple w0ð0Þ ¼ 0 while the
relation between s and w leads to wð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ y2H

p
c for

sðyHÞ ¼ c. The lemma follows from standard results
regarding this type of problem [23–25]. ▪
In the focusing case the global existence is also ensured.

It implies that to every value of c we can assign some b. It
can be either finite or infinite, in the case of a solution
satisfying Dirichlet BC at y ¼ 0.
Lemma 2. For λ ¼ −1 solutions given by Lemma 1 can

be extended to the whole interval ð0; yHÞ.
Proof. By Lemma 1 we know that w exists in some

interval ð0; 2εÞ so let us focus here on the interval
I ¼ ðε; 1Þ. Equation (3.6) can be reformulated by intro-
ducing a new variable,

uðtÞ ¼ t1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 3ð1 − t2Þ þ ð1 − t2Þ2y2H

p wðtÞ;

so it becomes

d
dt

�
aðtÞ du

dt

�
þ rðtÞuþ 4y2Hu

3 ¼ 0; ð3:7Þ

FIG. 8. Plot of the behavior of the imaginary part of lowest quasinormal frequencies for various b (b ¼ −0.59, −0.6, −0.62, and −π=2)
as yH varies.
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where

aðtÞ ¼ ffiffi
t

p �
t4 þ 3ð1 − t2Þ þ ð1 − t2Þ2y2H

�

is positive and r is continuous in I. For any solution vðtÞwe
can define the following functional:

VðtÞ ¼ aðtÞu02 þ 2u2 þ 2y2Hu
4:

It is non-negative, and its derivative is

V 0ðtÞ ¼ a0ðtÞu02 þ 2aðtÞu00u0 þ 4uu0 þ 8y2Hu
3u0

¼ −a0ðtÞu02 þ ½4 − 2rðtÞ�uu0;

where we have used the equation of motion (3.7). Let us fix
M and m such that ja0ðtÞj < M and 0 < m < aðtÞ for t∈ I;
then we can bound V 0ðtÞ as follows:

V 0ðtÞ ≤ Mu02 þ ½2 − rðtÞ�ðu2 þ u02Þ
≤ ðM þ 2þ jrðtÞjÞu02 þ ð2þ jrðtÞjÞu2

≤
M þ 2þ jrðtÞj

m
aðtÞu02 þ

�
1þ jrðtÞj

2

�
2u2

≤
�
1þ jrðtÞj

2
þM þ 2þ jrðtÞj

m

�
ðaðtÞu02 þ 2u2Þ

≤
�
1þ jrðtÞj

2
þM þ 2þ jrðtÞj

m

�
VðtÞ:

Since rðtÞ is bounded in I, it gives us an upper bound on the
rate of increase of V implying the existence of V bounded
by some K in the whole interval. Since

mu02 þ 2u2 ≤ aðtÞu02 þ 2u2 ≤ VðtÞ ≤ K;

we get

u ≤
ffiffiffiffi
K
2

r
; u0 ≤

ffiffiffiffi
K
m

r
:

By going back to the original variable s, together with
Lemma 1 we conclude the existence of the solution in the
interval ð0; yHÞ. ▪

2. Construction

We construct static solutions numerically using the
shooting technique which proceeds as follows. For
Φðv; yÞ ¼ sðyÞ Eq. (1.7) (with λ ¼ −1) becomes

−∂yðy2V∂ysÞ −
�
y∂yV þ 1

2y2

�
s − s3 ¼ 0: ð3:8Þ

A regular local solution at the horizon y ¼ yH satisfies

sðyÞ ¼ c − c
1þ y2Hð1 − c2Þ
yHð3þ y2HÞ

ðy − yHÞ þOððy − yHÞ2Þ;

ð3:9Þ

where c is a free parameter which uniquely determines the
solution. As proved above local solutions extend smoothly
to y∈ ½0; yH�. Choosing c we integrate (3.8) starting at
y ¼ yH toward y ¼ 0 with data which follows from (3.9).
As y ¼ 0 is a regular point of the equation, for any c we get
a solution satisfying the Robin BC ð∂ys − bsÞjy¼0 ¼ 0 with
some b ¼ bðcÞ. For small c the solution is monotonic, but
as we increase c the solution becomes oscillatory,
and it oscillates a finite number of times in the interval
y∈ ½0; yH�.
By adjusting c we can construct solutions with pre-

scribed b. It turns out that using this procedure we find that,
for a given value of the Robin parameter b, there exist
infinitely many solutions sðnÞ, where n is a non-negative
integer (nodal index) which enumerates the number of
nodes in the solution. However, the nodeless solution n ¼ 0
exists only for b > b�ðyHÞ.
Small nodeless solutions can be also constructed per-

turbatively, analogously to the regular case; see Sec. II B.
Since the linear problem with finite yH has solutions
expressed by the Heun function, this time we are not able
to write explicitly a formula for f3 in expansion (2.10).
However, this function and solutions in higher orders can
be found numerically.
Figure 9 illustrates the lowest static solutions, sð0Þ and sð1Þ,

for yH fixed when b changes. By increasing b, solutions
approach the zero value at the conformal boundary (y ¼ 0),
and in the limit b → ∞ they converge to the respective
solutions satisfying the Dirichlet BC. Alternatively, keeping
b fixed and increasing yH (small BH), the solutions start to
resemble the respective solutions of the horizonless case, and
in fact approach them in the limit yH → ∞ (cf. the regular
case in Sec. II), whereas for yH → 0 (large BH) the solutions
grow in magnitude as 1=yH such that yHs approaches the
limiting solution on the appropriately scaled interval. This
limit is discussed in Sec. IV.

3. Linear stability

Next, to determine the role of static solutions sðnÞðyÞ in
dynamics we study their linear stability. Therefore we write

Φðv; yÞ ¼ sðyÞ þ eiσvχðyÞ: ð3:10Þ

Plugging this into Eq. (1.7) and neglecting nonlinear terms
in χ we obtain the eigenvalue problem

2iσχ¼ ∂yðy2V∂yχÞþ
�
y∂yV−

1

2y2

�
χþ3s2χ¼ 0; ð3:11Þ

subject to the boundary condition
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ð−iσχ þ ∂yχ − bχÞjy¼0
¼ 0; ð3:12Þ

which follows from (1.8).
Local solutions of (3.11) at y ¼ yH behave as

χðyÞ ¼ hþ h
ð3f2 − 1ÞyH − y−1H
y2H þ 2iσyH þ 3

ðy − yHÞ

þOððy − yHÞ2Þ; h ¼ χðyHÞ; ð3:13Þ

with h ¼ χðyHÞ an arbitrary complex constant, and since at
y ¼ 0 the equation is regular the solution is smooth there.
To find a solution of (3.11) satisfying (3.12) one could
again use the shooting technique, this time on a complex
plane. Given a guess for σ one can start the integration from
y ¼ yH with regularity conditions (3.13). It is clear that the
condition (3.12) with a fixed value of b can be satisfied
only for a discrete set of σ. Such a solution, a QNM, by
definition is an outgoing solution at the black hole horizon.
Although this procedure can be made semiautomatic, we
have found that it is increasingly difficult to accurately
determine modes with large jℑσj (both higher overtones
and unstable modes). Thus, as an alternative approach to
find QNMs we use the method of [26], which after a
suitable discretization turns (3.11) and (3.12) into an
algebraic eigenvalue problem. Another advantage of this
approach is that it gives us the whole spectrum of QNMs
without the need to provide a guess as with the shooting
method. We have checked that the two approaches provide
consistent results.
The linear stability analysis strongly suggests that

solution sðnÞ has exactly nþ 1 unstable modes,4

ℑσðnÞ−n < ℑσðnÞ−ðn−1Þ;…; < ℑσðnÞ0 < 0: ð3:14Þ

This implies that all nontrivial static solutions are linearly
unstable. Beside the negative modes (3.14) the solution sðnÞ
has nþ 1 purely damped modes ℑσ > 0, ℜσ ¼ 0 and an
infinite number of (stable) oscillatory modes ℑσ > 0,
ℜσ ≠ 0.
Convergence of the solution profiles when yH → ∞ and

b → ∞ (independently) to the horizonless solutions and
solutions satisfying Dirichlet BC respectively, is transferred
to the convergence of the QNM spectrum. Also, the
behavior of the spectrum when yH → 0 can be understood
by considering the linear perturbations of the limiting
solutions SðnÞðzÞ; see Sec. IV. Anticipating the results of
the nonlinear evolution we discuss in some detail the
dependence of the QNM spectrum of the nodeless solution
sð0Þ on the parameters ðyH; bÞ.
First consider fixed b above the critical line, where sð0Þ

does exist. As yH → ∞ we observe convergence of the
spectrum σð0Þ to the modes of the horizonless solution.
When yH → 0 the modes grow in magnitude as y−1H . Close
inspection of the rescaled spectrum, yHσðnÞ, reveals that it
converges in the limit yH → 0 to the linear spectrum of the
solutions (4.3), and that this limit is universal for Robin BC
with b < ∞ but it differs from the Dirichlet BC, i.e., the
b ¼ ∞ case. Next, taking the limit b → ∞ with yH fixed
the spectrum converges to the respective spectrum with the
Dirichlet BC. On the other extreme, when we approach
the critical curve b�ðyHÞ from above, we observe that the
spectrum of sð0Þ approaches the spectrum of Φ ¼ 0, from
which sð0Þ bifurcates. This behavior of the QNMs of sð0Þ is
illustrated in Figs. 10–12.
In the regime where Φ ¼ 0 is linearly stable b > b�ðyHÞ

it is expected that for small initial data this solution will act
as an attractor, whereas large data will blow up. In Sec. V
we provide numerical evidence that sð0Þ separates these two
scenarios. Interestingly, in the b < b�ðyHÞ case none of the
static solutions is linearly stable, including the trivial
solution Φ ¼ 0. Therefore, it is natural to expect that
arbitrarily small generic initial data will end up blowing

FIG. 9. Profiles of static solutions sð0ÞðyÞ and sð1ÞðyÞ with horizon radius yH ¼ 1 and focusing nonlinearity for different values of the
Robin parameter, cf. Fig. 1 for the horizonless case. Left: the solution sð0Þ bifurcates from zero for b ¼ b�ðyHÞ and tends to the solution
satisfying Dirichlet BC (black line) as b → ∞. Note the nodeless solution does not exist in the region b < b�ðyHÞ (see the text). Right:
the first excited state interpolates between two static solutions satisfying the Dirichlet BC (dark gray and black lines) as b goes from
minus to plus infinity.

4We use the convention consistent with (2.15).
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up. Details of this unstable dynamics are presented in
Sec. VA 2.

C. Defocusing case (λ= 1)

Using the same method as in Sec. II, one can show that
for defocusing nonlinearity there are no static solutions
with b ≥ 0. Multiplying (3.4) by s and integrating over the
interval ½0; xH� here leads to

− sð0Þs0ð0Þx3H −
Z

xH

0

μðxÞs0ðxÞ2dx

−
Z

xH

0

xð1þ x2HÞsðxÞ2dx − x3H

Z
xH

0

sðxÞ4dx ¼ 0;

where we have used the fact that μðxHÞ ¼ 0 and μð0Þ ¼ x3H.
As before, this identity cannot hold for b ≥ 0 leading to
nonexistence. Similarly as in the regular case, it is only a
partial result: the nonexistence of static solutions seems to
hold for all b > b�ðyHÞ.

For each b < b�ðyHÞ there exists a single static solution
sð0ÞðyÞ, which is a monotonically increasing nodeless
function. The profile of that solution, and in particular
its dependence on yH and b is presented in Fig. 13. In the
two extreme cases, yH fixed and b → −∞ and b fixed and
yH → ∞ the solutions converge, respectively, to the sin-
gular solution

ffiffiffi
2

p
=y (irrespectively of yH) and the regular

solution sð0ÞðxÞ studied in detail in Sec. II C. Analogously
to the focusing case, close to the critical curve b ¼
b�ðyHÞ − ε (0 < ε ≪ 1), one can compute the solution
sð0Þ and study its linear stability perturbatively in ε. For the
same reasons as before, we skip presenting this calculation.
The linear stability analysis of sð0ÞðyÞ is analogous to the

procedure for the focusing case presented in Sec. III B 3.We
find that the spectrum σð0Þ consists of stablemodes only, i.e.,
ℑσð0Þ > 0, which implies linear stability of sð0ÞðyÞ. Recall
that in the region b < b�ðyHÞ the zero solution is linearly
unstable ℑω < 0. Thus, we have a classical pitchfork
bifurcation at b ¼ b�ðyHÞ, an analog of the self-gravitating

FIG. 10. The lowest QNMs of sð0Þ (focusing case) as a function of yH for fixed b: −1=2 (left plot) and 1 (right plot). When yH increases
(indicated by arrows) oscillatory modes approach the real axis, and in the limit yH → ∞ they converge to the corresponding QNMs of
the horizonless solution (squares). The modes on the imaginary axis also approach the corresponding modes of the horizonless solution,

though this approach is not monotonic; see Fig. 11 for details for the unstable mode σð0Þ0 .

FIG. 11. The unstable mode σð0Þ0 as a function of yH for fixed b ¼ −1=2, 0, 1, 2, 3 and ∞ (Dirichlet BC). Left: as yH → ∞ we see
convergence to the unstable mode of the corresponding horizonless solution (horizontal dashed lines). Right: for yH → 0 the product

yHσ
ð0Þ
0 approaches the eigenmodes of the solution Sð0ÞðzÞ of (4.3), with either Robin or Dirichlet BC for b < ∞ and b ¼ ∞ respectively;

see discussion in Sec. IV.
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FIG. 12. The lowest QNMs of sð0Þ (focusing case) for fixed yH ¼ 1=2, 1, 3, and 5 (from left to right and from top to bottom) as a
function of b. As b increases from b�ðyHÞ to infinity (indicated by arrows) we observe convergence toward the QNMs spectrum of the

problem with Dirichlet BC (squares), whereas when b approaches b�ðyHÞ from above the spectrum σð0Þj converges to the
eigenfrequencies ωj of the trivial solution Φ ¼ 0 (circles).

FIG. 13. The static solution sð0Þ for the defocusing case exists only for b < b�ðyHÞ. Left: solution bifurcates from zero (dark gray line)
for b ¼ b�ðyHÞ and as b decreases to minus infinity it converges to

ffiffiffi
2

p
=y (black line) independently of yH (here yH ¼ 1); cf. Fig. 4 for

the regular case. Right: for fixed b and yH going to infinity the solution approaches the corresponding solution of the regular problem
(dashed line). Here we plot the results for b ¼ −2 and yH ¼ 1=2, 1, 10 (color coded) with respect to the global coordinate x introduced in
Sec. II. Note that for finite yH the range of x is ½arctanð1=yHÞ; π=2�.
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case [5]. Although the structure of QNMs depends in a
nontrivialwayon bothyH andb, e.g., see Figs. 14 and 15, the
behavior for fixed yH and b → −∞ and also for fixed bwith
yH → ∞ can be readily understood based on the behavior of
the static solution itself.
For ðyH; bÞ close to the critical curve b�ðyHÞ the

quasinormal frequencies σð0Þ are close to the spectrum of
the trivial solution ω. In particular, one of the two modes on
the imaginary axis starts at the origin for b ¼ b�ðyHÞ. For
fixed b < −2=π and yH increasing from y−1H ðb� ¼ bÞ to
infinity we see a smooth transition from ω to the spectrum
of the regular solution with the same Robin parameter. For
−2=π < b < b�ðyHÞ we obtain ω (different for different
yH) on both ends of the interval allowed for yH.
Alternatively, with yH fixed the QNMs move smoothly
from ω for b ¼ b�ðyHÞ toward the spectrum of the singular
solution

ffiffiffi
2

p
=y as b goes to −∞; cf. Fig. 15. The linear

perturbation of this solution is described by the equation

2iy3Hσχ
0 ¼ ðyH − yÞ½ð1þ y2HÞy2 þ yHyþ y2H�χ00

þ ½2y3Hy − 3ð1þ y2HÞy2�χ0

−
�
ð1þ y2HÞyþ

6y2H
y2

	
χ: ð3:15Þ

The spectrum ω can be then found numerically with the
help of the Leaver’s-type method, similarly as for (2.17), by
expanding χ into a series around y ¼ yH and demanding
that the coefficients of the expansion converge to zero.
However the rate of convergence of this method degrades
when yH increases. This follows from the fact that the
singularities in the equation approach �i, which become
close the disc of convergence jw − yHj ≤ yH, w∈C.

Therefore for large yH we employ the algebraic method;
see [26].

IV. STATIC SOLUTIONS IN SAdS (yH → 0)

In this section we discuss the limit yH → 0. Since static
solutions with b fixed and yH → 0 do not exist in the
defocusing case (see Sec. III C), here we consider only
the focusing nonlinearity λ ¼ −1. First, we introduce the
rescaled radial coordinate

z ¼ 1 −
2

yH
y; z∈ ½−1; 1�; ð4:1Þ

and a new dependent variable

SðzÞ ≔ yHs

�
yH
2
ð1 − zÞ

�
: ð4:2Þ

Then, making this change of variable in (3.8) and expand-
ing around yH ¼ 0 we get in the leading order

− ð1þ zÞðz2 − 4zþ 7ÞS00ðzÞ − 3ðz − 1Þ2S0ðzÞ
þ ð1 − zÞSðzÞ − 2SðzÞ3 ¼ 0: ð4:3Þ

Note that under (4.1) and (4.2) the Robin BC with finite b
becomes the Neumann BC when yH → 0:

∂zS
S

����
z¼1

¼ −
yH
2
b⟶
yH→0

0; for b < ∞:

Thus, we look for regular solutions of (4.3) with either the
Dirichlet BC (Sð1Þ ¼ 0) or the Neumann BC (S0ð1Þ ¼ 0).
The shooting procedure is analogous to the yH > 0 case.

FIG. 14. The lowest QNMs of sð0Þ (defocusing case) for fixed b ¼ −1 (left plot) and b ¼ −2 (right plot) as a function of
yH ∈ ½y−1H ðb� ¼ bÞ;∞Þ. Modes start at the critical line from the modes of the trivial solution (circles). As yH increases (indicated by
arrows) the QNMs approach the real axis, and in the limit yH → ∞ they converge to the corresponding QNMs of the horizonless
solution (squares).
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It turns out that Eq. (4.3) has a countable family of solutions
SðnÞ, n ¼ 0; 1;…, both for Sð1Þ ¼ 0 and S0ð1Þ ¼ 0 (see
Fig. 16), and each member of these families is a limiting
solution for the rescaled solutions with yH > 0 as yH → 0

with respective boundary conditions. This fact is visualized
in Fig. 17.
When investigating the linear stability of these solutions

with the standard ansatz of the type (3.10) one encounters a

FIG. 15. The lowest QNMs of sð0Þ (defocusing case) for fixed yH ¼ 1=2, 2, 3, and 5 (from left to right and from top to bottom) as a
function of b. When b decreases (indicated by arrows) from b�ðyHÞ to −∞modes go from the spectrum of the trivial solution ω (circles)
toward the spectrum of the singular solution

ffiffiffi
2

p
=y (squares); see (3.15).

FIG. 16. First four solutions SðnÞ of the limiting Eq. (4.3). Shown are solutions satisfying the Neumann (left plot) and Dirichlet (right
plot) boundary conditions.
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problem when taking the limit yH → 0, namely, the term
with supposed frequency σ vanishes. This is consistent with
the fact that for small yH the calculated values of σ become
very large, as can be seen in Fig. 10. To deal with this
problem, one can rescale the frequency Σ ¼ yHσ used in
the ansatz. Then the linear perturbation of (4.3) is described
by the equation

8iΣχ0 ¼ −ð1þ zÞðz2 − 4zþ 7Þχ00 − 3ð1 − zÞ2χ0
þ ð1 − z − 6S2Þχ:

Its spectrum can be found with the shooting method as
before, this time by constructing solutions starting at the
singular point z ¼ −1 and looking for Σ for which they
satisfy Dirichlet or Neumann BC at z ¼ 1. First of the BC is
given as usual, by χð1Þ ¼ 0, while the second one is
2χ0ð1Þ þ iσχð1Þ ¼ 0. The resulting values of Σ for the
nodeless solution Sð0Þ are presented in Table II.

V. DYNAMICS (0 < yH < ∞)

A. Focusing case ðλ = − 1Þ
As anticipated from the linear stability analysis the time

evolution will depend on the values of ðyH; bÞ, in particu-
lar whether, for a given yH, we take b < b�ðyHÞ or
b > b�ðyHÞ. However, within the respective regimes
demarcated by the critical curve b�ðyHÞ the dynamics is
qualitatively the same. Below, we discuss the two cases
b < b�ðyHÞ and b > b�ðyHÞ separately.

Before presenting the results, we describe the procedure
used to solve the initial-boundary value problem (1.7) and
(1.8) numerically. For numerical convenience, we use the
rescaling (4.1) of the independent variable, which trans-
forms (1.7) into

∂z∂vΦ −
yH
4
ð1 − zÞ∂zVðzÞΦþ yH

4
∂zðð1 − zÞ2VðzÞ∂zΦÞ

þ 2

yHð1 − zÞ2Φ − λ
yH
4
Φ3 ¼ 0; ð5:1Þ

where

VðzÞ ¼ 1þ 4

y2Hð1 − zÞ2 −
1

2

�
1þ 1

y2H

�
ð1 − zÞ;

and the Robin BC (1.8) becomes

�
−∂vΦ −

2

yH
∂zΦ − bΦ

�����
z¼1

¼ 0: ð5:2Þ

To integrate Eqs. (5.1) and (5.2) we use the method of lines
with standard fourth order Runge-Kutta time stepping and
the Chebyshev pseudospectral discretization in space. To
get an explicit form of the evolution equations we solve
(5.1) for ∂vΦ by inverting the z derivative subject to the
boundary condition (5.2). In practice, we use a Chebyshev
grid of the second kind (Chebyshev-Gauss-Lobatto points),
including boundary points z¼�1, and replace the equation

FIG. 17. The convergence of rescaled solutions sðyH
2
ð1 − zÞÞyH toward the respective solutions SðnÞðzÞ of (4.3) (dashed black line) in

the limit yH → 0 (large BH). We show both the case with the Robin BC b ¼ −2 (left plot) and the Dirichlet BC (right plot). The color
encodes the value of yH .
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at the z ¼ 1 grid point by the discrete version of (5.2).
The inversion of the resulting square matrix is done by the
LU decomposition algorithm. The very same approach can
be used when dealing with the Dirichlet BC Φjz¼1 ¼ 0.
To get better results parts of the calculations are carried

out with extended numerical precision (typically 32–64
decimal digits).
We have experimented with several classes of initial

conditions, but for all of them we got qualitatively the same
outcomes. Below, we present numerical results which use

Φð0; zÞ ¼ a exp

�
−

16

ð1 − z2Þ2 þ 16

�
; ð5:3Þ

where a∈R is an adjustable parameter.

1. b > b�ðyHÞ
For small initial perturbations [small a in (5.3)] we

observe convergence toward the zero solution. Depending
on the combination of ðyH; bÞ the exponential decay of the
solution can be oscillatory or not. The late time behavior is
governed by the dominant QNM of Φ ¼ 0 (these were
discussed in Sec. III A). This behavior is illustrated in
Fig. 18, which also provides an independent verification of
the computed QNMs in the linear stability analysis.
For large a’s, we see the solution blowing up in finite

time. Growth is the fastest on the horizon, located at
z ¼ −1 on the numerical grid (5.1). The behavior of
solution as v approaches the blowup time v� can be
characterized by the following growth rates:

Φðv; z ¼ −1Þ ∼ C0

v� − v
;

∂zΦðv; z ¼ −1Þ ∼ C1

ðv� − vÞ2 ; ð5:4Þ

where numbers C0; C1 ∈R are initial data dependent
constants. Those scalings are shown in Fig. 19.
Performing a bisection between decay to zero and

blowup we find that the static solution sð0Þ (possessing a
single unstable mode) acts as an intermediate attractor.
Snapshots from the evolution of marginally super- and
subcritical data are shown in Fig. 20 for a representative
case yH ¼ 1, b ¼ −0.55. Solutions differing by ∼10−64 in
the amplitude of (5.3) approach the static solution along its
least damped QNM. For early and intermediate times the
two curves are indistinguishable. Since the data are not

exactly critical the unstable mode of sð0Þ with ℑσð0Þ0 < 0

becomes non-negligible, and the solutions diverge along it.
This stage of the evolution can be described by the
linearized solution:

Φðv; zÞ ≈ sð0ÞðzÞ þ ða − a�Þeiσ
ð0Þ
0
vχ0ðzÞ þ

X
j>0

αje
iσð0Þj vχjðzÞ;

αj ¼ const;

where the sum is over all damped QNMs, and a� denotes
the critical value of the parameter of a chosen family of
initial data (5.3). Later, the supercritical data move toward
the finite-time blowup, which proceeds according to (5.4),

TABLE II. Lowest eigenvalues of linear perturbation of the static solution Sð0Þ for Neumann and Dirichlet BC after
rescaling by yH. Frequencies of the unstable modes can be compared with Fig. 11.

BC Σð0Þ
0 Σð0Þ

1 Σð0Þ
2 Σð0Þ

3

Neumann −0.67864i 1.64333i �1.23933þ 2.71982i �2.81564þ 4.94251i
Dirichlet −1.11063i 2.89057i �2.28453þ 2.77389i �4.11190þ 4.93960i

FIG. 18. Evolution of small initial data, with amplitude a ¼ 1=10 in (5.3), for yH ¼ 1 and b ¼ −0.55 (left plot) and b ¼ −0.61 (right
plot), for which we observe asymptotic decay to zero (we plot pointwise decay at the horizon z ¼ −1). The late time dynamics is
dominated by the lowest damped QNM; see Sec. III A. Fits agree with the linear stability analysis of up to 10–12 significant digits. For
b ¼ −0.61, which is below the bifurcation curve (see discussion in Sec. III A), it was necessary to fit both purely imaginary modes
which have similar exponents, while fitting just one exponential that failed to produce correct results for the considered time interval.
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while the subcritical data decay to zero following the
QNMs of the trivial solution

Φðv; zÞ≈ β0eiω0vψ0ðzÞ þ
X
j>0

βjeiωjvψ jðzÞ; βj ¼ const;

with the dominant contribution coming from the lowest
damped mode ω0. The details of this near-critical behavior
are illustrated in Fig. 21.
This picture holds for any 0 < yH < ∞with b > b�ðyHÞ.

However, the quantitative behavior of the nearly critical
evolution will depend on the precise values of the param-
eters. The type of the decay is determined by the mode with
the smallest imaginary part, precisely whether it is a purely
imaginary mode or a mode with nonzero real part. So in
particular, for b below the bifurcation curve the evolution of
subcritical data is dominated by the nonoscillatory mode,
see Fig. 22. As b → b�ðyHÞ the critical amplitude, a�,
tends to zero as well as the critical solution sð0Þ. Thus, at
b ¼ b�ðyHÞ we observe blowup for any data; see the
discussion below.

2. b ≤ b�ðyHÞ
In this case we observe blowup for any nonzero initial

data. Starting with a very small perturbation of the trivial
solution we observe that solution quickly approaches the
spatial profile of the unstable mode ψ0 of the zero solution
(see Sec. III A), and at the same time it exponentially grows

FIG. 19. Finite-time blowup of large initial data [a ¼ 3 in (5.3)]
observed at the horizon z ¼ −1 (the yH ¼ 1, b ¼ −0.55 case).
Plotted are the scalar field and its gradient as a function of the
distance to the singularity v� ≈ 0.944358. These quantities grow
as ðv� − vÞ−1 and ðv� − vÞ−2 respectively (dashed lines).

FIG. 20. Time evolution of marginally sub- and supercritical data. The static solution (black) is an attractor for the finely tuned data for
intermediate times. Subcritical (blue) and supercritical (red) data are indistinguishable up to v ≈ 350, but later, they either converge
toward zero or blow up to infinity, respectively. Here, we show the yH ¼ 1, b ¼ −0.55 case. The nearly critical evolution looks
qualitatively the same for other parameters with b > b�ðyHÞ.
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with the exponent of that mode. Thus, during this phase of
the evolution the solution is well approximated by the
linearized solution:

Φðv; zÞ ≈ ψ0ðzÞeiω0v: ð5:5Þ

However, when the solution reaches a certain threshold the
nonlinearity becomes non-negligible and the nonlinear
dynamics takes over. Consequently we observe a finite-time
blowup (5.4). To further confirm that at early times the
dynamics is indeed determined by the linear evolution (5.5),

FIG. 21. Time evolution of jΦj and j∂vΦj at the horizon for marginally sub- and supercritical data shown in Fig. 20 (the yH ¼ 1,

b ¼ −0.55 case). At intermediate times the solution is well approximated by the leading stable mode (σð0Þ1 ¼ �1.26556þ 0.55092i) and

the unstable mode (σð0Þ−1 ¼ −0.413592i) of the static solution sð0Þ. For late times the subcritical data follow the stable mode of the zero
solution ω−1 ¼ �0.331294þ 0.317663i.

FIG. 22. Analog of Fig. 21 with yH ¼ 1 for different values of b (from top to bottom b ¼ −0.62;−0.55, 0, 0.25). Depending on the
values of ðyH; b > b�ðyHÞÞ the decay toward the static solutions is oscillatory or not.
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we show data with different amplitudes a in (5.4); see
Fig. 23. The evolution looks qualitatively the same for any
ð0 < yH < ∞; b < b�ðyHÞÞ including points on the critical
line b�ðyHÞ.

B. Defocusing case (λ= 1)

For defocusing nonlinearity solutions exist for all times
irrespective of the size of initial data and for any choice of
ðyH; bÞ. However, there is a qualitative change in the late
time behavior depending on whether we are above or below
the critical curve b�ðyHÞ, at which we have a pitchfork
bifurcation, with sð0Þ bifurcating from zero.
In the region b ≥ b�ðyHÞ of the parameter space all

solutions converge toward Φ ¼ 0, as it is the only attractor;
cf. Sec. III C.After a series of nonlinear oscillations, thedecay
is dominated by the lowest damped QNM, whose frequency
and damping rate depend on ðyH; bÞ; see Sec. III A. Thus, the
late time behavior does not differ significantly from the small
data case with focusing nonlinearity λ ¼ −1.

FIG. 23. Typical evolution of small initial data for b < b�ðyHÞ
(pointwise behavior of Φ at the black hole horizon z ¼ −1).
Data with different amplitudes a of (5.4) (color coded) illus-
trate that before blow up, the solution is well approximated
by the linearized solution (5.5). This is indicated by the slope
of the curves, their relative vertical shift, and the moment of
onset of the nonlinear evolution. The initial growth rate agrees
with the exponent of the unstable mode ω0 ¼ −0.247504i
of the zero solution. Shown is the ðyH; bÞ ¼ ð1;−0.75Þ
case.

FIG. 24. Illustration of qualitatively different behavior for the cases b > b�ðyHÞ (left plot) and b < b�ðyHÞ (right plot) with yH ¼ 1.
For b > b�ðyHÞ, after a series of rapid nonlinear oscillations, an effect of large initial data, the solution converges to Φ ¼ 0 via the
dominant QNM. For b < b�ðyHÞ even the tiniest perturbation of zero begins to grow exponentially (Φ ¼ 0 is linearly unstable) before
the solution settles on the static profile sð0Þ. For data comparison we plot jΦðv; z ¼ −1Þj for b ¼ 1 (left plot) and j∂vΦðv; z ¼ −1Þj for
b ¼ −1 (right plot).

FIG. 25. The energy (1.11) and fluxes (1.12) through the BH horizon and Scri for solutions shown in Fig. 24; ðyH; bÞ ¼ ð1; 1Þ and
ðyH; bÞ ¼ ð1;−1Þ on left and right plots respectively.
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However, if b < b�ðyHÞ the zero solution is linearly
unstable (Sec. III A), and the linearly stable static solution
sð0Þ acts as a global attractor. Thus, for any initial data the
solution settles on sð0Þ, and this approach is governed by the
leading QNM σð0Þ. Details of the dynamics of small initial
data around zero are illustrated in Fig. 24. Interestingly,
although the energy of the initial data is a fraction of the
energy of the static solution sð0Þ, the perturbation grows in
magnitude while being sourced from the boundary. In
general, depending on the magnitude of initial data and the
values of ðyH; bÞ, the energy falls into the horizon but can
also be pumped into the domain by or radiated away
through the conformal boundary; see Fig. 25.

VI. CONCLUSIONS

The main goal of this work was to understand the
dynamics of a nonlinear scalar field on SAdS background
with Robin BC. We were in particular interested in how the
behavior of the field depends on the parameters of the
model: the size of the black hole yH and the boundary
condition b. It turns out that it is determined by the location
of these parameters in the phase space with respect to the
critical curve b�ðyHÞ; see Fig. 26.
In the defocusing case for ðyH; bÞ lying above the critical

curve the zero solution plays the role of a global attractor:
any initial data converge to it asymptotically. For ðyH; bÞ
below the critical curve this role is taken by two (up to the
sign) static nodeless solutions. These solutions bifurcate
from zero, via pitchfork bifurcation, at the critical curve.
The shape of this curve also leads to the conclusion that
for sufficiently large black holes the zero solution is the
attractor, which can be interpreted as the black hole
absorbing the whole perturbation.
For focusing nonlinearity when parameters ðyH; bÞ are

below the critical curve one observes a nonlinear instability:
all solutions eventually blow up at the horizon. On the other
hand, for ðyH; bÞ above this curve there exists a threshold:
field configurations below it converge to zero, while above it
one observes the blowup. In between this dichotomy lies sð0Þ
being a codimension-one attractor, as can be seen in Fig. 22.
As one gets closer to the critical curve in the parameter

space this threshold decreases, eventually reaching zero.
Additionally, for fixed b sufficiently large black holes are
stable for small initial data, as can be concluded from the
behavior of the critical curve for small yH.
Let us briefly mention here that analogous behaviors can

be observed in the massless case, i.e., when m2 ¼ 0 in
(1.3). Then, as discussed in Sec. I, one is forced to assume
the Dirichlet BC, and the dynamics is qualitatively identical
to the one observed for the conformal equation with the
same condition. In case of the defocusing nonlinearity,
there are no static solutions and any field configuration
converges to zero. For focusing nonlinearity, there exists a
threshold separating initial data leading to a finite-time
blowup and converging to zero.
To understand the dynamics of the considered system we

also needed to study the static solutions, in particular their
existence and linear stability (including the stability of zero
solutions). It led us to a rather comprehensive grasp on their
properties, as we discuss above, including limiting cases as
yH → 0 and yH → ∞. The latter will lay a foundation for
our further research regarding dynamics of nonlinear scalar
field on AdS background with Robin BC. In this case, due
to the lack of the black hole, there is no simple mechanism
of the energy loss for the system. It is possible that one
observes there more complicated behavior of the field, e.g.,
weak turbulence [27].
Another potential direction that we would like to follow

regards solutions that are axially symmetric. In this case, one
can expect the logarithmic decay of the field [28], suggesting
the possibility of aweak turbulence in the presence of a black
hole horizon. Finally, a natural continuationof this research is
to investigate the dynamics for the self-gravitating case [5],
either with or without the self-interaction. We also plan to
pursue this matter in the future.
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FIG. 26. Distinct asymptotic behaviors separated by the critical curve b�ðyHÞ on the phase diagram ðyH; bÞ for focusing (left plot) and
defocusing (right plot) nonlinearities.
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