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Canonical gravity is a formulation of general relativity where an evolving space reproduces the usual
spacetime theory, and, unlike other formulations, it requires fewer assumptions—in particular, in the
relationship between the gravitational field and the metric field. This freedom in the assumptions is the key
to emergent modified gravity, a canonical theory in which the spacetime metric is not fundamental, but
rather it is an emergent object composed of the truly fundamental fields. This peculiar feature of emergent
modified gravity compared to other approaches can be used to model new effects, such as those provided
by quantum gravity in an effective description. We discuss how matter fields can be coupled to emergent
modified gravity, we realize the coupling of the (isentropic) perfect fluid, and we explicitly obtain the
Hamiltonian of spherically symmetric systems and identify the symmetries of the coupled system. We
formulate the Oppenheimer-Snyder collapse model in canonical terms as an adaptation of the fluid frame to
the canonical foliation, permitting us to easily extend the conditions of the model to emergent modified
gravity and obtain an exact solution to the dust collapsing from spatial infinity, including some effects
suggested by quantum gravity in spherical symmetry. In this solution, the collapsing dust forms a black
hole, and then reaches a minimum radius inside the black hole. While the geometry on this minimum-radius
surface is regular in the vacuum, it turns out to be singular in the presence of dust. However, the fact that the
geometry is merely emergent in this picture, and all the fundamental fields that compose the phase space are
regular on such a surface, allows us to continue the canonical solution past it in a meaningful way, obtaining
the global structure for the interior of the star. Thus, the matter reaches the minimum-radius surface with
vanishing velocity and finite positive acceleration, and it proceeds to emerge outward, now behaving as a
white hole. This star-interior solution can then be complemented by the vacuum solution describing the
star-exterior region by a continuous junction at the star’s radius. This gluing process can be viewed as the
imposition of boundary conditions, which is nonunique and does not follow from solving the equations of
motion alone. This ambiguity in the gluing of the two regions can give rise to different physical outcomes
of the collapse compatible with the canonical dynamics. We discuss two such phenomena: the formation of
a wormhole characterized by two distinct asymptotic regions, and the transition from a black hole to a white
hole characterized by a single asymptotic region.
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I. INTRODUCTION

General relativity (GR), in its canonical formulation, is a
constrained gauge field theory where the gauge transforma-
tions, which are generated by the Hamiltonian constraint and
the diffeomorphism constraint, are equivalent to spacetime
coordinate transformations only on shell—that is, when the
gauge generators vanish. The spacetime is foliated by
spacelike hypersurfaces, and the field content is given by
a set of spatial tensors on these hypersurfaces, with flow
equations generated by the same constraints determining the
evolution of these fields between adjacent hypersurfaces.
These evolving spatial tensors can then reproduce the usual
spacetime tensors of GR. The action of the gauge generators

can also be understood geometrically: the Hamiltonian
constraint H½N�, smeared by a scalar lapse function N,
generates a normal, infinitesimal hypersurface deformation
with length N, while the diffeomorphism constraint H⃗½N⃗�,
smeared by the spatial shift vector N⃗, generates a tangential
hypersurface deformation with length N⃗.
In ADM notation [1,2], the diffeomorphism constraint

H⃗½N⃗� and the Hamiltonian constraint have Poisson brackets

fH⃗½N⃗1�; H⃗½N⃗2�g ¼ −H⃗½LN⃗2
N⃗1�; ð1Þ

fH½N�; H⃗½N⃗�g ¼ −H½Nb
∂bN�; ð2Þ

fH½N1�;H½N2�g ¼−H⃗½qabðN2∂bN1−N1∂bN2Þ� ð3Þ*eqd5272@psu.edu
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that depend not only on N⃗ and N, but also on the inverse of
the spatial metric qab on a spatial hypersurface. When a
phase-space function, such as qab, appears in the argument
of the constraint algebra, it is called a structure function, in
contrast to the structure constants of usual Lie algebras.
This constraint algebra, also known as the hypersurface
deformation algebra, is central to canonical GR, and it lies
at the heart of general covariance, the principle on which
GR is built. The early results of [3], where the vacuum was
considered with the spatial metric being the only configu-
ration variable, state that the Hamiltonian constraint,
at second-derivative order, is uniquely determined by the
hypersurface deformation algebra (1)–(3), and given by that
of GR, up to the choice of Newton’s and the cosmological
constants [3,4], implying that no modifications are allowed.
A crucial loophole to this conclusion lies in the common
assumption that the spatial metric qab must be a configu-
ration variable. Physically, this is the assumption that the
metric is gravity itself—that it is a fundamental field. This
is the lesson we learned from GR: spacetime is a field itself,
and it is the gravitational field. But the recent detailed study
of [5] shows that this assumption is not necessary to obtain
a field theory describing spacetime. A fully consistent
spacetime theory can be obtained by instead assuming a set
of fundamental fields composing the phase space, and
considering nonclassical constraints that still respect the
form of the hypersurface deformation algebra (1)–(3) up to
the structure function qab differing from the classical one.
This new structure function, composed by the fundamental
variables of the phase space but not identical to any one of
them, is interpreted as the inverse of the spatial metric. This
is an emergent spatial metric, and when embedded into a
four-dimensional manifold, it gives rise to an emergent
spacetime that is not gravity, but is made of gravity. This is
the theory of emergent modified gravity (EMG).
We learned two key lessons on the nature of spacetime

in [5]: (1) the hypersurface deformation algebra can be used
as a mechanism to obtain the spacetime metric in terms of
the truly fundamental fields, and (2) the anomaly freedom
of the constraint algebra does not imply general covariance.
These two lessons gave birth to EMG. Lesson 1 tells us that
spacetime is not gravity, but rather it is made of gravity,
which can be used to weaken the assumptions that lead to
the uniqueness results of [3], and it allows for modified
gravity theories different from GR; we refer to the resulting
spacetime metric as the emergent spacetime. Lesson 2 tells
us that not all modifications allowed by the anomaly
freedom of the constraint algebra are indeed covariant;
rather, further covariance conditions must be demanded to
obtain a covariant modified gravity theory.
An explicit realization of EMG theories have so far

been obtained only in the spherically symmetric reduced
model [5]. An earlier, special case of EMG in spherical
symmetry was studied in [6,7] where holonomy corrections
were introduced, motivated by loop quantum gravity

(LQG) [8–10], and shown to have a nonsingular black
hole solution. The global structure of such a solution is an
interuniversal wormhole joining a black hole to a white
hole through their interiors. Another application of spheri-
cally symmetric EMG is the covariant realization of
modified Newtonian dynamics (MOND) as a solution
to the dark matter puzzle [11–13]. Earlier attempts to
obtain modified gravity theories in spherical symmetry
include [14–16] modeling inverse-triad corrections and
holonomy corrections both motivated by LQG; however,
only the former corrections are special cases of the EMG
Hamiltonian, while the holonomy corrections of these last
three references were found not to be covariant in [5].
EMG differs from other theories of emergent gravity in

that the former does not consider the gravitational field
as emergent. Instead, in EMG the gravitational field is
indeed fundamental—it is the spacetime that is emergent,
such that the degrees of freedom of GRmay be preserved in
EMG. One of the better-known emergent gravity theories is
entropic gravity [17]—which is in turn inspired by the
holographic principle and the AdS=CFT correspondence
[18–20]—where the gravitational force is a consequence of
the temperature and change of entropy due to the change in
the amount of information associated with the displacement
of matter. A similar stance is taken in [21], which focuses
on the thermodynamic nature of GR and argues that the
Einstein equations are in some sense an equation of state
derived from the proportionality of entropy and the horizon
area together with the fundamental thermodynamic relation
δQ ¼ TdS. It is, however, not clear what the degrees of
freedom in entropic gravity and related theories really are,
for instance, in the vacuum.
The explicit applications of EMG have so far been all in

the vacuum—that is, where gravity is the only fundamental
field. Matter coupling in EMG is the extension of the
vacuum theory to that of a larger phase space including
matter fields. Just as covariance conditions had to be placed
on the emergent spacetime metric, covariance conditions
have to be identified for the physical, possibly emergent
manifestations of the introduced matter fields. Such
detailed study would allow us to ensure that the matter
coupling and possible modifications are indeed covariant.
This paper aims to address some of these subtleties on
matter coupling in EMG, and it will be focused on the
perfect fluid.
Despite being the “simplest” form of a matter field, the

perfect fluid couples in a simple, intuitive way only in the
conventional geometric approach to general relativity
through the stress-energy tensor, but its extension to a
Hamiltonian or even Lagrangian formalism quickly becomes
difficult. Dust was introduced into canonical general rela-
tivity in [22] as timelike dust and in [23] as null dust; the
inclusion of pressure for a timelike perfect fluid was
introduced in [24] starting from the Lagrangian formulation
followed by the ADM decomposition to obtain its canonical
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counterpart. Because EMG has been formulated only in its
canonical form, and no action principle is available for the
regaining process of the emergent spacetime, the introduc-
tion of the perfect fluid in purely canonical terms with no
reliance on Lagrangians is paramount. We do this explicitly
in the present paper for both the timelike and null fluids by
retaining the picture of the fluid as a collection of particles.
In particular, unlike [24], where pressure Pðn; sÞ enters as
a function of the particle number density n and entropy
density s, our analysis here shows that pressure can arise,
not as Pðn; sÞ, but as a function of the phase-space momenta
in a nontrivial way with no reliance on the introduction of
entropy as an independent phase-space variable. The perfect
fluid we derive here is therefore an example of an isentropic
fluid in this context.
The main application of spherically symmetric EMG is

to black holes and to gravitational collapse. In GR, once
a star exceeds the Tolman-Oppenheimer-Volkoff (TOV)
limit [25], its pressure is insufficient to stop the collapse of
matter, and a black hole is formed, inevitably leading to the
formation of a spacetime singularity at its center [26,27],
which is commonly interpreted as a breakdown of GR
as a valid description of spacetime in the high-curvature
regions. On the other hand, the astrophysical observations
indicate much of the black hole’s exterior seems well
described by GR, which predicts the formation of horizons
and their well-known properties, implying that a black hole
can grow by absorbing the collapsing matter, but it cannot
shrink because nothing comes out of it.
One clue for the black hole’s fate came with the

discovery of Hawking radiation [28]. This radiation carries
some of the black hole’s energy away, and therefore it
shrinks or evaporates until it exhausts its mass. Black hole
evaporation then leads to the information loss paradox,
because the Hawking radiation has a thermal spectrum and
does not carry any additional information about the matter
that formed the black hole: the information is lost, violating
the unitarity of quantum mechanics [29–31]. Thus, pure
evaporation of the black hole via Hawking radiation cannot
be the full story unless we accept the information loss.
This paradox seems to be a pathological consequence of

the assumptions for black hole evaporation: (1) Using
classical gravity (specifically, GR), (2) neglecting back-
reaction, and (3) the Hawking-radiated matter is different
from the collapsingmatter [32]. Away out of the information
loss paradox is thus to consider a deviation from these
assumptions—for instance, by using a nonclassical gravity
theory or introducing quantum gravity effects. Furthermore,
quantum gravity effects are expected to play a significant
role in the resolution of the classical singularities of black
holes. Under the assumption that these divergences are
indeed resolved, new paradigms to the black hole’s fate
can be provided. We will use EMG as the underlying theory
replacing GR. Furthermore, as will be explained in more
detail later, there is a specific parameter in the general EMG

spherically symmetric Hamiltonian that can be interpreted as
effective elements of quantum gravity—referring, in par-
ticular, to the holonomy variables used in LQG.While such a
parameter belongs to a more general result of EMG, and we
use LQG only as an interpretational tool, we may refer to it
as a holonomy or quantum parameter. The effects of this
parameter are the ones responsible for the nonsingular
behavior of the black hole solution in [7] and will also
play a central role in the new dynamics of the dust collapse
solution we present here. Also, note that the general
conclusions of singularity formation [27] can potentially
be circumvented in EMG because some assumptions of GR,
including the positive energy theorem [33], need not apply to
the equations of EMG, since these are different from
Einstein’s equations.
In the present paper, we obtain an exact solution to the

collapse of dust in spherically symmetric EMG with a
nontrivial “holonomy” parameter with the expectation that
it will reveal new important properties to the above puzzles.
The resulting scenario is that of the matter falling in and
producing a black hole. The radius of the star then reaches a
minimum value and “bounces” back, emerging outward
with the properties of a white hole. To complete the global
structure of the spacetime, this solution must be continu-
ously glued to the exterior region, which must be a solution
to the vacuum equations, by the shared boundary given by
the star’s radius. The gluing process does not follow
uniquely from solving the equations of motion, and differ-
ent consistent gluings can lead to different physical
phenomena. The two proposals for the outcome of the
collapse that we will focus on are the formation of worm-
holes rather than simple black holes as the result of the
collapse [34,35], and the transition from a collapsing black
hole to an exploding white hole as a result of quantum
gravity effects [32,36].
Within GR, traversable wormhole solutions can be

obtained only by including matter with exotic properties
such as negative energy density, but they are possible
without exotic matter when deviations from GR are
considered. This is the case of modified GR with an R2

action [37], as well as the example given above of spheri-
cally symmetric EMG [7]. Furthermore, both examples
show a wormhole solution in the vacuum.
The black-to-white-hole transition proposal we will

focus on is based on the work in [32,36], which can be
described in a semiclassical treatment as follows: At the
start of the collapse of matter, we may trust the classical
theory, and the black hole is formed provided the critical
mass is exceeded. At semiclassical regions characterized
by higher curvature, the motion of matter and the gravi-
tational field is modified due to quantum effects, possibly
slowing down the collapse. At the highest-curvature
regions, quantum effects are strong, and the semiclassical
treatment might break down so that full quantum gravity
may be needed for a detailed result. However, under the
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assumption that no physical divergences occur at the
maximum-curvature regions, the collapsing matter will
cross the would-be classical singularity surface and bounce,
continuing its journey outwards. The matter that has
crossed the would-be singularity is no longer collapsing,
but expanding away from the black hole’s center: this
region then behaves as a white hole. The matter will then
exit the horizon, and the black hole shrinks as it does so
until the horizon disappears. In the full quantum gravity
context, this process can be understood as a quantum
transition from a black hole to a white hole with a transition
amplitude associated to it that will depend on the quantum
gravity model used. For an effort to compute this transition
amplitude in the LQG approach, see Refs. [38–40]. Here,
we will focus on the semiclassical treatment using spheri-
cally symmetric EMG as the theory providing the effective
quantum gravity equations. Notice that this paradigm does
not even require Hawking radiation, and the only major
effects of its introduction would be to speed up the
transition, and turn the collapsing and explosion phases
asymmetric.
Previous results compatible with this paradigm include

spherical models of null shells coupled to gravity where the
classical solution collapsing into a black hole is connected
to the (time-reversed) expanding solution emerging from a
white hole via quantization [41] (see Ref. [42] for a
canonical treatment of spherical null shells). The classical
metric describing the exterior of such null shells was
explicitly obtained in [36]. More recent work [43] studies
the black-to-white-hole transition with the interior of the
star described by an Oppenheimer-Snyder model modified
by loop quantum cosmology (LQC) techniques [44]. While
such a model can be useful to give us insights on what LQG
may predict about this process, one cannot rely on the LQC
equations being covariant, since homogeneity makes it
impossible to address such a question. In this paper, we use
the equations of EMG instead, which are covariant by
construction, and several technical features of the resulting
process differ significantly from those of [43].
In the last two examples, information falling into the

black hole is not lost, because in the wormhole proposal it
would simply emerge out in the next universe, while in the
black-to-white transition proposal it would emerge out of
the white hole after the transition. These two examples are
therefore resolutions of the information loss paradox.
In this paper, we attempt to address all of the above

issues in the context of EMG coupled to the perfect fluid.
The organization of this paper is as follows: In Sec. II, we
review canonical gravity and EMG, and we examine how
the covariance conditions play a central role in defining
the latter. In Sec. III, we briefly review how dust enters
canonical gravity and identify the symmetries of the system
associated with the dust that we will require to be preserved
in EMG as additional conditions. In Sec. IV, we proceed to
couple the perfect fluid to EMG by applying the covariance

conditions in canonical form. We then obtain the explicit
expression for the spherically symmetric Hamiltonian
constraint for EMG in Sec. V. In Sec. VI, we formulate
the Oppenheimer-Snyder model in canonical terms and
then focus on the gravitational collapse of dust in EMG,
obtaining an exact solution. Finally, in Sec. VII, we discuss
the possible physical outcomes of the collapse compatible
with this solution. We summarize the conclusions of this
work in Sec. VIII.

II. EMERGENT MODIFIED GRAVITY

As usual in canonical theories, we assume that the
spacetime, or the region of interest, is globally hyperbolic:
M ¼ Σ × R with a three-dimensional “spatial” manifold Σ.
Different choices of the embedding of Σ in M are para-
metrized by working with foliations of M into smooth
families of spacelike hypersurfaces Σt, t∈R, each of which
is homeomorphic to Σ. For a given foliation, Σ can be
embedded inM as a constant-time hypersurface: Σ ≅ Σt0 ≅
ðΣt0 ; t0Þ ↪ M for any fixed t0.
Given a foliation into spacelike hypersurfaces Σt, a

metric gμν on M defines the unit normal vector field nμ

on Σt0 , and it induces a unique spacelike metric qabðt0Þ on
Σt0 by restricting the spacetime tensor qμν ¼ gμν þ nμnν to
vector fields tangential to Σt0 , while qμνnν ¼ 0. (We use
greek letters for indices of spacetime tensors, and latin
letters for indices of spatial tensors.) Time evolution then
provides a family of spatial metrics, one for each hyper-
surface. Unambiguous evolution requires an additional
structure that relates points between infinitesimally adja-
cent hypersurfaces, and this is provided by a time-evolution
vector field

tμ ¼ Nnμ þ Nasμa ð4Þ

in spacetime, with the lapse function N and shift vector
field Na [2]. The three vector fields sμaðt0Þ inject TΣt0 into
TM such that gμνnμs

μ
a ¼ 0, playing the role of the spatial

basis vectors on the spatial hypersurfaces. The lapse and
shift describe, via (4), the frame of an observer in curved
spacetime who measures the physical fields evolving on the
hypersurfaces. The resulting spacetime metric or line
element is then given by [2]

ds2 ¼ −N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ: ð5Þ

Time-evolution and gauge transformations are described
by the same flow via Poisson brackets, generated by the
Hamiltonian constraint H and the diffeomorphism con-
straint Ha, differing only by their smearing function.
Our notation here denotes H and Ha as the local versions
of the constraints, and we use the square brackets to
denote smearing by the function in the argument—i.e.,
H½N� ¼ R dx3HðxÞNðxÞ. Given a phase-space function O,
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its infinitesimal gauge transformation is given by
δϵO ¼ fO; H½ϵ0; ϵa�g, where H½ϵ0; ϵa� ¼ H½ϵ0� þHa½ϵa�,
and ϵ0 and ϵa are infinitesimal gauge parameters. The
infinitesimal time evolution, on the other hand, is given by
Ȯ ¼ δtO ¼ fO; H½N;Na�g—that is, lapse and shift play
the role of gauge parameters in the time flow. In its role as
the gauge flow generator, H½ϵ0; ϵa� must be a constraint:
H½ϵ0; ϵa� ¼ 0 for all ϵ0 and ϵa. Therefore, the dynamics is
constrained too: H½N;Na� ¼ 0. We say that the physical
solutions of the theory are “on shell,”—that is, the phase-
space variables on each hypersurface that solve the
equations of motion are such that the constraints vanish:
H½N� ¼ 0 and Ha½Na� ¼ 0.
The Poisson brackets do not directly provide the gauge

transformations of N and Na, because they do not have
momenta; physically, this means that they do not evolve
dynamically, but rather they specify the frame with respect
to which evolution is defined. Instead, the gauge trans-
formations of the lapse and shift are derived from the
condition that the forms of the equations of motion of the
phase space are gauge invariant. The gauge transformations
obeying this condition are given by [45–47]

δϵN ¼ ϵ̇0 þ ϵa∂aN − Na
∂aϵ

0; ð6Þ

δϵNa¼ ϵ̇aþϵb∂bNa−Nb
∂bϵ

aþqabðϵ0∂bN−N∂bϵ
0Þ: ð7Þ

We say that the spacetime (5) is covariant if and only if

δϵgμνjO:S: ¼ LξgμνjO:S:; ð8Þ

where “O.S.” means that we evaluate the expression on
shell. The content of (8) is the condition that the canonical
gauge transformations with the gauge parameters ðϵ0; ϵaÞ
reproduce diffeomorphisms of the spacetime metric with
the 4-vector generator ξμ related by

ξμ ¼ ϵ0nμ þ ϵasμa ¼ ξttμ þ ξasμa; ð9Þ

ξt ¼ ϵ0

N
; ξa ¼ ϵa −

ϵ0

N
Na: ð10Þ

The timelike components (tt and ta) of the spacetime-
covariance condition (8) are automatically satisfied by the
gauge transformations of the lapse and shift, (6) and (7),
provided the covariance condition of the 3-metric,
δϵqabjO:S: ¼ LξqabjO:S:, is satisfied too. The latter, contrary
to what is commonly stated, is not automatically satisfied
just by virtue of the hypersurface deformation algebra; it
can be simplified to the following series of conditions [5]:

∂ðδϵ0qabÞ
∂ð∂cϵ0Þ

����
O:S:

¼ ∂ðδϵ0qabÞ
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0; ð11Þ

where the series terminates on the highest-derivative order
considered in the Hamiltonian constraint, which here we
assume to be finite—that is, we assume a local theory.
If the phase space is composed of the spatial metric qab

(the inverse of the structure function) as a configuration
variable and its conjugate momenta pab, then the
covariance condition (11) implies, from fqab; H½ϵ0�g ¼
δH½ϵ0�=δpab, that the Hamiltonian constraint must not
contain spatial derivatives of pab. If we use only up to
second-order spatial derivatives of qab, the Hamiltonian
constraint is uniquely determined by the hypersurface
deformation algebra (1)–(3) up to the choice of
Newton’s constant and the cosmological constant [3,4].
It must therefore be the classical constraint of GR, and
generally covariant modifications are ruled out under the
stated conditions.
Here is where EMG differs from traditional canonical

gravity. The assumption that the spatial metric qab is a
configuration variable of the phase space is not necessary to
obtain a field theory describing spacetime, and we may
drop it altogether, except when trying to recover GR.
Instead, we assume that the phase space is composed of
certain fundamental fields different from the metric, and the
metric is an emergent object to be regained by the following
process. Leaving the diffeomorphism constraint unmodi-
fied, we allow for the Hamiltonian constraint to deviate
from its classical expression, and we say it is modified.
In vacuum, the only fundamental field is gravity. The
Hamiltonian constraint in vacuum is then restricted to
satisfy a hypersurface deformation algebra (1)–(3) where
the structure function is allowed to be different (and not just
related by a simple canonical transformation) from its
classical expression. The inverse of the structure function
obtained from such a procedure now plays the role of the
emergent spatial metric, and it is used in (5) to define the
emergent spacetime metric. The last step is to demand that
this emergent metric and the modified constraint satisfy the
covariance condition (11). This is EMG: a covariant theory
of an emergent spacetime.
If one considers additional matter fields in the theory that

present manifestations independently from the spacetime
metric, then one has to make sure that such manifestations
of the matter fields are covariant too. For example, if the
matter field in consideration is described by some space-
time tensor f, then one has to apply the matter covariance
condition on this field too:

δϵfjO:S: ¼ LξfjO:S:: ð12Þ

Because the spacetime metric is emergent, it is allowed to
depend not only on gravity, but also on the matter fields, as
long as the anomaly freedom of the constraint algebra and
all the covariance conditions are satisfied. Here, we will
be interested in the perfect fluid by envisioning it as a
collection of particles in the (emergent) spacetime; thus,
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it is fundamentally described by its 4-velocity uμ (or
covelocity uμ). The matter covariance condition must then
be applied to this quantity. For completeness, we will also
place the covariance condition on the energy density, such
that it transforms as a spacetime scalar.

III. CLASSICAL DUST IN CANONICAL GRAVITY

A. Pressureless dust

Unlike other matter fields, it is challenging to treat the
perfect fluid—a model for collective particles—in both the
Lagrangian and canonical formulations of general relativity
due to the ambiguities related to the equation of state. This
ambiguity stems from the pressure function not having a
clear dependence on the generalized coordinates or the
phase-space variables of the Lagrangian or canonical
formulations, respectively. In [24], for instance, the pres-
sure Pðn; sÞ is postulated as a function of the particle
number density n and a new phase-space variable s they
called entropy density. Our analysis here shows that
pressure can be derived rather than postulated without
introducing the entropy density s, and it is therefore an
example of an isentropic perfect fluid in this context.
Furthermore, as we will see below, the pressure function
we derived here does not depend solely on the number
density n, but rather on the “ratio” between the fluid’s radial
and time momenta, as will become clear in Sec. IV. If one
neglects the pressure, however, the fluid is called dust, and
it is relatively easy to treat in both formulations, so this will
be our starting point.
In the canonical formulation, the dust field is described

by the coordinate fields TðxÞ and ZiðxÞ (with i ¼ 1, 2, 3) of
its collective particles of rest mass μ as the configuration
variables—note that these are different from the coordi-
nates x of the manifold—and their respective conjugate

momenta are denoted by PðTÞðxÞ and PðZÞ
i ðxÞ, representing

the usual (densitized) energy and linear momentum
(density) of the particles. The resulting Poisson brackets
are therefore

fTðx⃗Þ; PðTÞðy⃗Þg ¼ δ3ðx⃗ − y⃗Þ;
fZiðx⃗Þ; PðZÞ

j ðy⃗Þg ¼ δijδ
3ðx⃗ − y⃗Þ: ð13Þ

When coupled to gravity, the four canonical pairs ðT; PðTÞÞ,
ðZi; PðZÞ

i Þ add four degrees of freedom to the theory.
The configuration variables define a 1-form du, describ-

ing the covelocity field of the dust particles with compo-

nents uμ ≡ −∂μT −Wi∂μZi, where Wi ¼ PðZÞ
i =PðTÞ is the

(internal) 3-velocity. The covelocity field satisfies the
normalization gμνuμuν ¼ −s, where one picks s ¼ 1 for
timelike dust and s ¼ 0 for null dust.
The classical diffeomorphism and Hamiltonian con-

straints contributions of the dust are [22,23]

Hmatter
a ¼ PðTÞ

∂aT þ PðZÞ
i ∂aZi; ð14Þ

Hdust
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðPðTÞÞ2 þ qabHmatter

a Hmatter
b

q
; ð15Þ

respectively, where qab is the structure function of the
constraint algebra (3). Energy quantities as observed in the
Eulerian frame adapted to the foliation (observers with
4-velocity nμ) can be obtained directly from the constraints.

The Eulerian energy density ρðEÞs is given by

ffiffiffiffiffiffiffiffiffiffi
det q

p
ρðEÞs ≡ δHdust

s ½N�
δN

¼ Hdust
s ¼ PðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
;

ð16Þ

and the Eulerian dust current JðEÞa by

ffiffiffiffiffiffiffiffiffiffi
det q

p
JðEÞa ≡ −

δH⃗matter½N⃗�
δNa ¼ −Hmatter

a ¼ PðTÞua; ð17Þ

which can be extended to the 4-current
ffiffiffiffiffiffiffiffiffiffi
det q

p
JðEÞμ ¼

PðTÞuμ, where the normal component yields the mass
density of the dust. Using the particle rest mass μ, we
can then obtain the Eulerian particle number density,

μnðEÞs ≡ −nνJν ¼
PðTÞffiffiffiffiffiffiffiffiffiffi
det q

p : ð18Þ

This result confirms our interpretation of PðTÞ as the
(densitized) mass density. The Eulerian spatial stress tensor
is given by

ffiffiffiffiffiffiffiffiffiffi
det q

p
SðEÞab ≡ 2

N
δHdust

s ½N�
δqab

¼ ðPðTÞÞ2
Hdust

s
uaub; ð19Þ

and the Eulerian pressure by

PðEÞ ≡ qabSab
3

¼ 1

3

ðPðTÞÞ2
Hdust

s
qabuaub: ð20Þ

The dust has a relative velocity with respect to Eulerian
observers, such that it is boosted with respect to them by the
Lorentz factor

γðEÞ ¼ −nμuμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðPðTÞÞ2 þ qabHmatter

a Hmatter
b

q
PðTÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
; ð21Þ

where we have used the equations of motion for Ṫ and Żi.
We can use this boost factor to obtain the energy density in
the dust frame:

ρdusts ¼ ðγðEÞÞ−2ρðEÞs ¼ 1ffiffiffiffiffiffiffiffiffiffi
det q

p ðPðTÞÞ2
Hdust

s
: ð22Þ
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B. Classical symmetries

The dust constraints (14) and (15) have the following
important symmetry generators:
The phase-space function

Q0½α� ¼
Z

d3x αPðTÞ ¼
Z

d3x α
ffiffiffiffiffiffiffiffiffiffi
det q

p
μnðEÞs ; ð23Þ

where α is a constant, and we used (18) to write the
second equality, commutes with the dust constraints:
fQ0½α�; Hdust½N�g ¼ fQ0½α�; H⃗matter½N⃗�g ¼ 0. This implies
that Q̇0½α� ¼ 0, which in turn implies that (23) is a
conserved global charge. Taking α ¼ 1, we identify this
charge as the total mass of the collective particles in the
Eulerian frame, implying the conservation of Eulerian mass
and particle number.
A second symmetry generator of the dust constraints is

given by the three global charges

Qi½βi� ¼
Z

d3x βiPðZÞ
i ¼

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
det q

p
βiWiμn

ðEÞ
s ; ð24Þ

where βi ¼ ðβ1; β2; β3Þ are constants. Choosing a unit
internal vector βj ¼ β̂j, we identify this quantity as the
total linear mass-flux component in the direction β̂j.
The third symmetry generator of the dust constraints is

related to its SO(3) global symmetry, corresponding to the
internal rotation of the dust variables. In particular, this
infinitesimal transformation takes the form

Zi → Zi þ ϵijkθ
jZk; ð25Þ

PðZÞ
i → PðZÞ

i þ ϵij
kθjPðZÞ

k ; ð26Þ

where θi ¼ ðθ1; θ2; θ3Þ are constant parameters denoting
the angle of rotation along an internal axis with direction θ̂i,
the totally antisymmetric tensor ϵijk (where ϵ123 ¼ 1) is the
Lie algebra generator τi ∈ soð3Þ in the defining represen-
tation, and we raise (and lower) internal indices with
the Kronecker delta δij (and δij). This transformation is
generated by the phase-space function

Gj½θj� ¼
Z

d3x θjϵjkiZkPðZÞ
i

¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
det q

p
ðθjϵjkiZkμWin

ðEÞ
s Þ

¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
det q

p
ðθ⃗ · Z⃗ × ðW⃗μnðEÞs ÞÞ: ð27Þ

Choosing a unit internal vector θj ¼ θ̂j, we identify this
quantity as the total angular mass-flux component in the
direction θ̂j.

While the dust constraints (14) and (15) contain even
more symmetries, the three global charges (23), (24),
and (27) are basic conserved quantities that must hold in
the generalization to the perfect fluid (at least for pressure
functions that arise from conservative interactions between
the fluid particles) and, furthermore, in EMG too, since we
want to retain the picture of the perfect fluid as a collection
of particles.
In the following, we will rederive the dust Hamiltonian

constraint Hdust
s from its basic properties such as normali-

zation and covariance conditions, and we will then general-
ize it to that of the perfect fluid, which includes the pressure
in the form of an equation of state even in the context
of EMG. We will refer to this more general constraint
contribution as Hmatter

s . The steps of this procedure are the
following: We demand that the full (modified) constraints
H ¼ Hgrav þHmatter

s and Ha ¼ Hgrav
a þHmatter

a form an
anomaly-free hypersurface deformation algebra with
(emergent) structure function qab; we demand that the
(emergent) spacetime metric gμν be covariant, as well as the
covelocity of the fluid uμ, for which a further covariance
condition will be formulated in the next section; we
demand that the fluid’s velocity be normalized; and, finally,
we demand that the phase-space functions (23), (24),
and (27) remain as symmetry generators in the modified
theory, thus preserving the conserved quantities and their
physical meaning. It is easier to consistently realize all of
these demands in reverse order due to their increasing
difficulty, and this is the approach we will take in the
following sections. After imposing these conditions, we
will solve them exactly, starting with the most general
constraint ansatz with arbitrary dependence on the fluid’s
phase-space variables and the first-order derivatives of its
configuration variables, while also allowing the structure
function and the gravitational constraint contribution to
depend on the fluid’s configuration variables. Lastly, we
will place a covariance condition on the energy density ρs
such that it transforms as a spacetime scalar. We will also
show that the pressure P will appear as an emergent
property of the fluid, and its covariant transformation as
a scalar will be implied by those of gμν, uμ, and ρs. We will
do all of this in purely canonical grounds so that an
underlying action is not necessary for the existence of
the covariant Hamiltonian and, furthermore, so that the
results hold for EMG too.

IV. THE PERFECT FLUID COUPLING

Throughout the first half of this section, we assume that
the spacetime-covariance condition is already satisfied,
because it simplifies the analysis of the other conditions.
There is no loss of generality in making this assumption,
because one must still implement it when deriving the
explicit Hamiltonian constraint. We return to this condition
in Sec. IV D.
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A. Symmetry conditions

We start by defining our Hamiltonian constraint ansatz in
such a way that we can split the constraint in the form
H ¼ Hgrav þHmatter

s , where they have the dependence

HgravðT; ZiÞ;
Hmatter

s ðT; Zi; PðTÞ; PðZÞ
i ; ∂aT; ∂aZiÞ; ð28Þ

where we have suppressed the possible dependence on the
gravitational variables to ease the notation. We also assume

that in the vacuum limit defined by T; Zi; PðTÞ; PðZÞ
i → 0,

we obtainH → Hgrav, with the latter depending only on the
gravitational variables—therefore, Hgrav has a more com-
plicated dependence on the gravitational variables than
Hmatter

s does.
We now demand that the constraint ansatz (28) commute

with the symmetry generators (23), (24), and (27). Due to
the common complexity of Hgrav, and in view that it
depends on the gravitational variables much more heavily
than Hmatter

s does, we will assume that the symmetry
generators (23), (24), and (27) must commute with Hgrav

and Hmatter
s independently.

We obtain

fQ0½α�; H½ϵ0�g ¼ −
Z

d3x αϵ0
∂H
∂T

; ð29Þ

fQi½βi�; H½ϵ0�g ¼ −
Z

d3x βiϵ0
∂H
∂Zi ; ð30Þ

where we have integrated out the first-order derivative term
and neglected boundary terms. Thus, fQ0½α�;Hgrav½ϵ0�g¼0

and fQi½βi�; Hmatter
s ½ϵ0�g ¼ 0, for arbitrary α, βi, and ϵ0,

reduce the phase-space dependence of the constraint
ansatz (28) to

Hmatter
s ðPðTÞ; PðZÞ

i ; ∂aT; ∂aZiÞ; ð31Þ

with Hgrav now completely independent of the fluid’s
variables. Therefore, Hgrav is identical to the vacuum
Hamiltonian constraint.
Similarly, the implementation of the symmetry generator

(27) further reduces the phase-space dependence of the
constraint ansatz to

Hmatter
s ðPðTÞ; ∂aT; P

ðZÞ
i ∂aZi; ðP⃗ðZÞÞ2; ð∂Z⃗Þ2Þ; ð32Þ

where ðP⃗ðZÞÞ2 ¼ δijPðZÞ
i PðZÞ

j and ð∂Z⃗Þ2 ¼ δij∂aZi
∂bZj.

B. Normalization condition

The ADM decomposition of the normalization
gαβuαuβ ¼ −s, where we use the emergent inverse metric
for this expression, can be rewritten as

ut ¼ Nbub − N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
; ð33Þ

where the sign of the square root was chosen to preserve
a negative (that is, future-pointing) ut even in the case
Nb ¼ 0. Here, qab is the structure function of the resulting
hypersurface deformation algebra—that is, the emer-
gent one.
Using the expressions

ut ¼ −Ṫ −
PðZÞ
i

PðTÞ Ż
i; ð34Þ

ua ¼ −Hmatter
a =PðTÞ; ð35Þ

the normalization places a restriction on the equations of
motion of the dust: Taking Hamilton’s equations of motion
Ṫ ¼ fT;H½N; N⃗�g—and similarly for Zi—with unmodi-
fied diffeomorphism constraint, the normalization expres-
sion (33) can be written as

PðTÞfT;H½N�g þ PðZÞ
i fZi; H½N�g

¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðPðTÞÞ2 þ qabHmatter

a Hmatter
b

q
≕NHdust

s ; ð36Þ

where Hdust
s differs from the classical expression (15), in

that the classical structure function qab may be replaced by
the emergent one. We shall use Hdust

s in this context in the
following.
Using the constraint ansatz compatible with the sym-

metry conditions given by (32), the Eq. (36), which must be
satisfied for arbitrary N, simplifies into the condition

PðTÞ dH

dPðTÞ þ PðZÞ
i

dH

dPðZÞ
i

¼ Hdust
s ; ð37Þ

where “d” stands for total derivative. The solution to the
normalization condition then reduces the phase-space
dependence of the ansatz (32) to

Hmatter
s ¼ Hdust

s − f̄ððPðZÞÞ2=ðPðTÞÞ2; ∂aT; ð∂Z⃗Þ2Þ ð38Þ

for some undetermined function f̄.

C. Matter covariance conditions I

We now impose the covariance condition on the fluid’s
covelocity field:

δϵuμjO:S: ¼ LξuμjO:S:: ð39Þ
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To this end, we perform the ADM decomposition of its infinitesimal coordinate transformation:

Lξuμ ¼
ϵ0

N
u̇μ þ

�
ϵa −

ϵ0

N
Na

�
∂auμ þ ut∂μ

�
ϵ0

N

�
þ ua∂μ

�
ϵa −

ϵ0

N
Na

�
: ð40Þ

Explicitly, the components are

Lξua ¼
ϵ0

N

�
u̇a −

ut − Nbub
N

∂aN − ðNb
∂bua þ ub∂aNbÞ

�
þ ut − Nbub

N
∂aϵ

0 þ ϵb∂bua þ ub∂aϵb

¼ ϵ0

N

�
u̇a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
∂aN − ðNb

∂bua þ ub∂aNbÞ
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
∂aϵ

0 þ ϵb∂bua þ ub∂aϵb; ð41Þ

Lξut ¼
ϵ0

N
∂tðut − uaNaÞ þ

�
ϵa −

ϵ0

N
Na

�
∂aut þ

ut − Naua
N

�
ϵ̇0 −

ϵ0

N
Ṅ

�
þ uaϵ̇a þ

ϵ0

N
Nau̇a

¼ −ϵ0∂t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
þ
�
ϵa −

ϵ0

N
Na

�
∂aut −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabuaub

q
ϵ̇0 þ uaϵ̇a; ð42Þ

where we use the normalization expression (33) to simplify these components into their second lines.
Also, the following calculation will be useful:

fua;H½N�g ¼ −∂aðfT;H½N�gÞ − PðZÞ
i

PðTÞ ∂aðfZi; H½N�gÞ −
�
PðZÞ
i

PðTÞ ; H½N�
�
∂aZi

¼ −∂a
�
fT;H½N�g þ PðZÞ

i

PðTÞ fZi; H½N�g
�
þ fZi; H½N�g∂a

�
PðZÞ
i

PðTÞ

�
−
�
PðZÞ
i

PðTÞ ; H½N�
�
∂aZi

¼ −∂a
�
NHdust

s

PðTÞ

�
þ fZi; H½N�g∂a

�
PðZÞ
i

PðTÞ

�
−
�
PðZÞ
i

PðTÞ ; H½N�
�
∂aZi; ð43Þ

where we use the normalization condition (36) in the last line.

We will now focus on the spatial component of the
covariance condition (41). Using Hamilton’s equations of
motion u̇a ¼ fua;H½N� þHb½Nb�g, (41) becomes

1

ϵ0

�
PðTÞ

Hdust
s

fua;H½ϵ0�g þ ∂aϵ
0

�����
O:S:

¼ 1

N

�
PðTÞ

Hdust
s

fua;H½N�g þ ∂aN
�����

O:S:
: ð44Þ

Using (43), it can be rewritten into

1

ϵ0
ðfZi;H½ϵ0�g∂aWi − fWi;H½ϵ0�g∂aZiÞjO:S:

¼ 1

N
ðfZi; H½N�g∂aWi − fWi;H½N�g∂aZiÞjO:S::

Upon substitution of the ansatz (32), this condition implies,
for arbitrary ϵ0 and N, the equation

PðTÞ dH
matter

dð∂bZiÞ − PðZÞ
i

dHmatter

dð∂bTÞ
����
O:S:

¼ 0; ð45Þ

where “d” stands for total derivative. The solution to this
equation implies that the phase-space dependence on
the configuration variables’ derivatives of the constraint

ansatz is of the form Hmatter
s ðPðTÞ

∂aT þ PðZÞ
i ∂aZiÞ.

Consistency between this solution to the covariance
condition and the solution to the normalization condition
(38) yields

Hmatter ¼ Hdust
s − f̄ððPðZÞÞ2=ðPðTÞÞ2Þ: ð46Þ

We now focus on the time component of the covariance
condition δϵutjO:S: ¼ LξutjO:S:, which, using (6), (7), (33),
(42), and (44), becomes

1

ϵ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabubuc

q
; H½ϵ0�

�
− uaqab

∂bϵ
0

ϵ0

����
O:S:

¼ 1

N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ qabubuc

q
; H½N�

�
− uaqab

∂bN
N

����
O:S:

: ð47Þ
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Using the spacetime-covariance condition (11), this further
simplifies to

uaqab

ϵ0

�
PðTÞ

Hdust
s

fua;H½ϵ0�g − ∂bϵ
0

�����
O:S:

¼ uaqab

N

�
PðTÞ

Hdust
s

fua;H½N�g − ∂bN

�����
O:S:

: ð48Þ

If the spatial covariance condition (44) is satisifed, then
(48) is automatically satisfied too; thus, it does not imply an
independent equation.

D. Anomaly freedom and spacetime covariance

Note that the undetermined function f̄ in (46) can still
depend on the structure function, which we have sup-
pressed so far for notational ease. This dependence can be
fully addressed by the requirement of anomaly freedom.
Anomaly freedom is realized if the Hamiltonian con-

straint satisfies the brackets (1)–(3). The bracket (1) is
trivially satisfied because we have assumed the classical
form of the diffeomorphism constraint. For the bracket (2)
to be satisfied, the Hamiltonian constraint must be a
density-weight-one function. We assume this is the case
for the gravitational contribution. On the other hand,
imposing that the matter contribution of the form (46) is
a density-weight-one function fixes its dependence on the
structure function,

f̄ ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
PððPðZÞÞ2=ðPðTÞÞ2Þ; ð49Þ

where P is an undetermined function of δijWiWj, and it
may also depend on the gravitational variables as long as it
remains a density-weight-zero. We will discuss the physical
meaning of the function P below and conclude that it in fact
plays the role of pressure. For now, we simply note that P is
a function of W2 ¼ ðPðZÞÞ2=ðPðTÞÞ2, the magnitude of the
internal velocity of the fluid’s particles. This is precisely
one of the basic ways to understand pressure, as an effect of
particle flow.
We now focus on the spacetime-covariance condition

(11) and the last bracket (3), which is the most complicated
one. We first note that since Hgrav is independent of
the fluid’s variables as found in the previous conditions,
it follows that the gravitational contribution must already
satisfy fHgrav½N1�; Hgrav½N2�g ¼ −H⃗grav½qabðN2∂bN1 −
N1∂bN2Þ� by itself, and this in turn implies that qab is
independent of the fluid’s variables. Since the covariance
condition for the structure function (11) involves the full
constraint H ¼ Hgrav þHmatter

s , but both qab and Hgrav are
independent of the fluid’s variables, it follows that Eq. (11)
must hold if one replaces H with either of the two
contributions independently. We assume that the gravita-
tional contribution already satisfies this covariance

condition. On the other hand, the fluid’s contribution to
this condition becomes

∂fqab; P½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�ggrav
∂ð∂cϵ0Þ

����
O:S:

¼ ∂fqab; P½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�ggrav
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0; ð50Þ

where we use the subscript “grav” to restrict the action of
the Poisson brackets to the gravitational variables.
Coming back to the bracket (3), a direct evaluation

shows that

fHmatter
s ½N1�; Hmatter

s ½N2�gmatter

¼ −H⃗matter½qabðN2∂bN1 − N1∂bN2Þ�; ð51Þ

where the subscript “matter” restricts the action of the
Poisson brackets to the matter variables. Furthermore,
using the spacetime-covariance condition, we find that
fHgrav½N1�;Hmatter

s ½N2�g ¼ −fHgrav½N1�; P½
ffiffiffiffiffiffiffiffiffiffi
detq

p
N2�ggrav.

Therefore, for the bracket (3) to hold for the full
Hamiltonian constraint, we obtain the following condition
on the modified pressure function:

fP½
ffiffiffiffiffiffiffiffiffiffi
det q

p
N1�; H½N2�g − fP½

ffiffiffiffiffiffiffiffiffiffi
det q

p
N2�; H½N1�g

¼ fP½
ffiffiffiffiffiffiffiffiffiffi
det q

p
N2�; P½

ffiffiffiffiffiffiffiffiffiffi
det q

p
N1�g: ð52Þ

The two conditions (50) and (52) are nontrivial, and there
may be room for the pressure function to receive mod-
ifications—note that the action of the Poisson brackets on
the structure function in (52) always vanishes because
the spacetime-covariance condition requires that its bracket
with Hgrav and P not generate spatial derivatives of N1

and N2, while the nonderivative terms cancel due to the
antisymmetry of the bracket.

E. Pressure regained

Generally, in EMG, the metric no longer enters the
Hamiltonian directly as a phase-space variable, and there-
fore, Einstein’s equations no longer hold in the sense that a
reconstructed Lagrangian is not necessarily minimized with
respect to variations of the metric, and one does not recover
Einstein’s equations except in the classical limit. However,
when the matter Hamiltonian resembles the classical one,
then the same classical stress-energy components are
obtained—up to the emergent metric. This is the case
for the constraint (68) when the P function is independent
of the gravitational variables (which we assume in this
subsection to extract its physical meaning), and this will
help us in interpreting the variables of the modified theory
with the more familiar stress-energy components. The
following canonical stress-energy components are the
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values that Eulerian observers would measure—that is, in
the foliation basis, for which we will use the components

u0 ≡ nμuμ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðPðTÞÞ2 þ qabHmatter

a Hmatter
b

q
PðTÞ ; ð53Þ

ua ¼ −
Hmatter

a

PðTÞ ; ð54Þ

g00 ≡ nμnνgμν ¼ −1: ð55Þ

The energy density is

ρðEÞ ≡ 1ffiffiffiffiffiffiffiffiffiffi
det q

p δHmatter
s ½N�
δN

¼ ρdusts u0u0 − P; ð56Þ

where the expression for ρdusts is given by (22) by replacing
the classical structure function with the emergent one. The
mass current density is

JðEÞa ≡ 1ffiffiffiffiffiffiffiffiffiffi
det q

p δH⃗matter½N⃗�
δNa ¼ −ρdusts u0ua; ð57Þ

and the spatial stress tensor is

SðEÞab ≡ 2

N
ffiffiffiffiffiffiffiffiffiffi
det q

p δHmatter
s ½N�
δqab

¼ ρdusts uaub þ qabP: ð58Þ

The pressure is

PðEÞ ≡ 1

3
qabSab ¼

1

3
ρdusts qabuaub þ P: ð59Þ

We now compare the canonical energy results to the
respective components of the stress-energy tensor Tμν ¼
ρsuμuν þ Pðgμν þ uμuνÞ. The normal component is

T00 ≡ nμnνTμν ¼ ðρs þ PÞu0u0 − P: ð60Þ

A comparison with the canonical energy density, equating

T00 ¼ ρðEÞs , then establishes

ρs ¼ ρdusts − P ð61Þ

and confirms P as the pressure function. This result shows
that the energy has a kinetic contribution ρdusts from the
fluid particles and an interaction contribution P from the
pressure. The normal-spatial components,

T0a ≡ nμsνaTμν ¼ −ðρs þ PÞu0ua ¼ −ρdusts u0ua; ð62Þ

then agree with the Eulerian mass current upon equating

T0a ¼ JðEÞa . Finally, the spatial components

Tab ¼ ðρs þ PÞuaub þ qabP ¼ ρdusts uaub þ qabP ð63Þ

also agree with the canonical stress Tab ¼ SðEÞab . The
pressure and the freedom of the equation of state have
been, thus, regained.

F. Matter covariance conditions II

As a final consistency check, we want to make sure that
the energy density (61) is a spacetime scalar, which is
equivalent to the statement that ρdusts and P are spacetime
scalars—that is, that their gauge transformations corre-
spond to the infinitesimal coordinate transformation of a
scalar field. This is the case if and only if the equation
δϵρ

dust
s jO:S: ¼ Lξρ

dust
s jO:S:, and similarly for P, is satisfied.

Performing the ADM decomposition of this equation,
and using Hamilton’s equations of motion, it can be
simplified to

1

ϵ0
fρdusts ; H½ϵ0�gjO:S: ¼

1

N
fρdusts ; H½N�gjO:S:: ð64Þ

Using the spacetime and matter covariance conditions, (11)
and (44), and the fact that ρdusts is independent of the
gravitational variables, this can be written as

1

ϵ0

�
fPðTÞ; Hmatter

s ½ϵ0�g − PðTÞ

Hdust
s

qabHmatter
a ∂bϵ

0

�����
O:S:

¼ 1

N

�
fPðTÞ; Hmatter

s ½N�g − PðTÞ

Hdust
s

qabHmatter
a ∂bN

�����
O:S:

:

This equation is automatically satisfied by the constraint
(68). Similarly, the covariance condition for the pressure P
to transform as a spacetime scalar is obtained from (64) by
replacing ρdusts with P. This condition then reduces to

∂ðfP;H½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�gÞ
∂ð∂cϵ0Þ

����
O:S:

¼ ∂fP;H½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�g
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0; ð65Þ

where we have used (50). The anomaly-freedom condition
(52) and the pressure-covariance condition (65) can be
combined and respectively simplified to

fP½
ffiffiffiffiffiffiffiffiffiffi
det q

p
N2�; P½

ffiffiffiffiffiffiffiffiffiffi
det q

p
N1�g ¼ 0; ð66Þ

∂fP;Hgrav½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�g
∂ð∂cϵ0Þ

����
O:S:

¼ ∂fP;Hgrav½ ffiffiffiffiffiffiffiffiffiffidet q
p

ϵ0�g
∂ð∂c∂dϵ0Þ

����
O:S:

¼ � � � ¼ 0: ð67Þ

Therefore, the conditions for symmetry, normalization,
anomaly freedom, and covariance of the 4-velocity imply
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the covariance of the energy density, but the pressure
requires the additional condition (65) to transform as a
spacetime scalar. When the pressure function is indepen-
dent of the gravitational variables, this condition is auto-
matically satisfied.
This completes the implementation of all the symmetry,

anomaly-freedom, and covariance conditions on the
fluid’s Hamiltonian constraint contribution, which acquires
the form

Hmatter
s ¼ Hdust

s −
ffiffiffiffiffiffiffiffiffiffi
det q

p
P; ð68Þ

where P is an undetermined function of δijWiWj and the
gravitational variables, such that it preserves its density-
weight-zero and satisfies the conditions (50), (66), and (67).
An evaluation of these conditions requires specifying the
gravitational phase space and constraint contribution, which
we cannot do in the general case, but we will be able to
evaluate them in the spherically symmetric case.
The timelike case s ¼ 1 of the Hamiltonian constraint

for the perfect fluid (68) is the same constraint—up to the
emergent metric and the pressure’s dependence on the
gravitational variables—obtained via the ADM decompo-
sition of the action of the perfect fluid [24], but it does not
require the introduction of entropy as an extra phase-space
variable, and unlike in this reference, the P function we
derived does not depend solely on the number density (18).

V. EMERGENT MODIFIED GRAVITY:
SPHERICAL SYMMETRY

A. Vacuum

In the spherically symmetric theory in vacuum, the
spacetime metric takes the general form

ds2 ¼ −N2dt2 þ qxxðdxþ NxdtÞ2 þ qϑϑdΩ2: ð69Þ

The classical spatial metric components can be written in
terms of the classical radial and angular densitized triads Ex

and Eφ, respectively: qxx ¼ ðEφÞ2=Ex and qϑϑ ¼ Ex.
The symplectic structure of the canonical theory is

fKxðxÞ; ExðyÞg ¼ fKφðxÞ; EφðyÞg ¼ δðx − yÞ; ð70Þ

where Kx and Kφ are the radial and angular components of
the extrinsic curvature. Within spherical symmetry, only the
Hamiltonian constraint and the radial diffeomorphism
constraint are nontrivial. Consequently, the hypersurface
deformation algebra (1)–(3) simplifies to

fHx½Nx
1�; Hx½Nx

2�g ¼ −Hx½LNx
2
Nx

1�; ð71Þ

fH½N�; Hx½Nx�g ¼ −H½NxN0�; ð72Þ

fH½N1�; H½N2�g ¼ −Hx½qxxðN2N0
1 − N1N0

2Þ�; ð73Þ

where the prime denotes a derivative with respect to
the radial coordinate x, and qxx ¼ Ex=ðEφÞ2 is simply
the inverse of the classical spatial metric component qxx.
The algebra of (71)–(73) holds even in the presence of
matter—when gauge fields are present, typically the third
bracket receives a contribution from the respective Gauss
constraint, but we shall neglect this in the following, since
the perfect fluid is not a gauge field. We denote the
constraints in vacuum by Hgrav and Hgrav

x .
In emergent modified gravity, we keep Hgrav

x in its
classical form,

Hgrav
x ¼ EφK0

φ − KxðExÞ0; ð74Þ

such that the bracket (71) is unmodified. However, we
allow for the Hamiltonian constraint Hgrav to be non-
classical. According to the regaining procedure of EMG,
we demand that the modified Hgrav be anomaly free, such
that it reproduces the brackets (72) and (73) up to a
modified qxx such that its phase-space dependence differs
from the classical one. In practice, we start with a general
ansatz for Hgrav as a function of the phase-space variables
and their derivatives up to second order [5,6]. Imposing the
anomaly freedom of the hypersurface deformation algebra
[Eqs. (71)–(73)] restricts this ansatz severely by providing a
set of differential equations it must satisfy, and it determines
the expression for qxx. The inverse of this modified structure
function is then replaced in the line element (69). Unlike qxx,
the angular component qϑϑ cannot be recovered from the
hypersurface deformation algebra, because the underlying
spherical symmetry trivializes the angular diffeomorphism
constraints. Therefore, we simply take the classical value
qϑϑ ¼ 1=Ex and use its inverse in (69). This determines the
emergent metric.
Once the emergent metric has been identified by impos-

ing anomaly freedom, we must impose the covariance
condition (11), which in spherical symmetry reduces to the
simpler conditions

∂ðδϵ0qxxÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðδϵ0qxxÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0;

∂ðδϵ0qϑϑÞ
∂ðϵ0Þ0

����
O:S:

¼ ∂ðδϵ0qϑϑÞ
∂ðϵ0Þ00

����
O:S:

¼ � � � ¼ 0: ð75Þ

The resulting equations of the anomaly-freedom and
covariance conditions are restrictive enough that they can
all be solved exactly in the vacuum for the most general
constraint ansatz, where the phase-space dependence
involves up to second-order derivatives; the most general
vacuum Hamiltonian constraint in spherical symmetry is
given by [5]
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Hgrav ¼ −λ0

ffiffiffiffiffiffi
Ex

p

2

�
Eφ

�
−Λ0 þ

α0
Ex þ

�
cf

α2
Ex þ 2

∂cf
∂Ex

�
sin2ðλ̄KφÞ

λ̄2

þ 2

�
q
α2
Ex þ 2

∂q
∂Ex

�
sin ð2λ̄KφÞ

2λ̄

�
þ 4Kx

�
cf

sinð2λ̄KφÞ
2λ̄

þ q cosð2λ̄KφÞ
�

þ ððExÞ0Þ2
Eφ

�
−

α2
4Ex cos

2ðλ̄KφÞ þ
Kx

Eφ λ̄
2
sin ð2λ̄KφÞ

2λ̄

�
þ
�ðExÞ0ðEφÞ0

ðEφÞ2 −
ðExÞ00
Eφ

�
cos2ðλ̄KφÞ

	
; ð76Þ

with the structure function

qxx ¼
��

cf þ
�
λ̄ðExÞ0
2Eφ

�
2
�
cos2ðλKφÞ − 2qλ̄2

sin ð2λ̄KφÞ
2λ̄

�
λ20

Ex

ðEφÞ2 : ð77Þ

Furthermore, it can be shown that the constraint (76) has the weak observable

M ¼ d0 þ
d2
2

�
exp

Z
dEx α2

2Ex

��
cf

sin2ðλ̄KφÞ
λ̄2

þ 2q
sin ð2λ̄KφÞ

2λ̄
− cos2ðλ̄KφÞ

�ðExÞ0
2Eφ

�
2
�

þ d2
4

Z
dEx

��
cf0 þ

α0
Ex

�
exp

Z
dEx α2

2Ex

�
; ð78Þ

such that Ṁ ¼ DHH þDxHxjO:S: ¼ 0, where DH and Dx
are functions of the phase space, meaning that M is a
constant of the motion. The parameters λ̄, d0, and d2 are
constants, while the rest of the parameters are functions of
Ex, all undetermined by the covariance conditions, repre-
senting allowed covariant modifications. The classical
constraint and structure functions are recovered in the limit
λ0; cf; α0; α2 → 1 and λ̄; q → 0, and Λ0 → −Λ if there is a
cosmological constant.1 In the classical limit, and further
taking d0 → 0 and d2 → 1, the observable (78) becomes
the classical mass function. The parameters cf, q, λ0, and λ̄
are characteristic of EMG, because they appear directly in
the structure function—hence, the emergent metric. On the
other hand, the parameters Λ0, α0, and α2 are modification
functions allowed even for a nonemergent metric, and
hence may be studied in the context of 2D dilaton gravity;
these modifications have been treated before in the
Hamiltonian formalism—for instance, in [14–16,49], and
a Lagrangian approach with similar modifications can be
found in [50].
The parameter λ̄ is special, as it is responsible for the

nonsingular black hole solution obtained [7] that we
previously discussed. Furthermore, it has an interpretation
within LQG as a quantum parameter, as we now briefly
explain. The starting point of the loop quantization is
carried out not by quantizing the classical phase space

directly, but instead by working in the holonomy-flux
representation. In spherically symmetric LQG [10,51],
the holonomies are given by

hxe½Kx� ¼ exp

�
i
Z
e
dxKx

�
; ð79Þ

hφv;λ½Kφ� ¼ exp

�
i
Z
λ
dθKφ

�
¼ exp ðiλKφðvÞÞ; ð80Þ

where e stands for an arbitrary radial curve of finite
coordinate length, while v stands for an arbitrary point
in the radial line, and λ is the coordinate length of an
arbitrary angular curve on the 2-sphere intersecting
the point v. The explicit integration in the angular
holonomy (80) is possible due to spherical symmetry,
but the radial holonomy integration must remain formal.
Similarly, the fluxes are given by direct integration of the
densitized triads Ex and Eφ over finite, two-dimensional
surfaces with normals in the radial and angular directions,
respectively. For the following argument, we need only
the expression of the holonomies.
Because the loop quantization is based on the holonomy-

flux variables, the Hamiltonian constraint must be rewritten
in terms of them, rather than the bare curvaturesKx andKφ,
leading to a modified constraint in the spirit of EMG.
However, the radial holonomy (79) is essentially nonlocal,
and it cannot be studied within EMG, which has only been
formulated locally. On the other hand, the angular holon-
omies (80) are indeed local when restricting the state
space to spherically symmetric states. Therefore, angular

1An equivalent constraint was recently obtained in [48] starting
with a simpler ansatz, and hence it is a special case of the one
in [5].
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holonomy effects have a chance to appear in the local
equations of EMG. Furthermore, since the angular holon-
omies can be integrated, they become simple complex
exponentials of the angular curvature (80). Because the
Hamiltonian constraint must be Hermitian as an operator in
the quantum theory, or simply real prior to quantization, the
holonomy modifications in the Hamiltonian constraint will
appear as trigonometric functions of Kφ. This is indeed the
case for the EMG constraint (76). Therefore, the parameter
λ can be given the interpretation of an angular holonomy
length within the LQG theory, and hence acquire the status
of a quantum parameter.
The holonomy parameter in (80) may depend on the

scale, here given by a dependence on Ex. While the
parameter λ̄ in the EMG constraint (76) is constant, a
detailed analysis of canonical transformations done in [5]
shows that a nonconstant λ does arise in EMG, but
through a canonical transformation, it can be traded in
for the constant λ̄, provided that the other undetermined
functions acquire nonclassical expressions in the case
where λ is nonconstant. In the following sections, how-
ever, we will only consider a constant holonomy param-
eter for simplicity, and we drop the bar in λ̄ and write this
constant parameter as λ for notational ease. We will
sometimes refer to the effects of λ as quantum effects due
to its interpretation in LQG, but note that the appearance
of λ ≠ 0 is allowed by the covariance conditions regard-
less of LQG.

B. The perfect fluid

The angular components of the momentum variables of
the perfect fluid would imply via (27) that it has an angular
mass flux or angular momentum, which breaks the spheri-
cal symmetry. Therefore, these angular components must
vanish, and the perfect fluid is left with only two nontrivial
canonical pairs:

fTðxÞ; PTðyÞg ¼ fXðxÞ; PXðyÞg ¼ δðx − yÞ: ð81Þ

The covariance condition for the pressure function (50)
involving the angular component of the structure
function qϑϑ ¼ 1=Ex immediately requires that P not
depend on spatial derivatives of Kx. Taking the ansatz
PðEx; Kφ;W2Þ, the anomaly-freedom condition (66) and
the spacetime-covariance condition (50) are automatically
satisfied, while the pressure-covariance condition (67)
simplifies to

∂P
∂Kφ

����
O:S:

¼ 0: ð82Þ

Therefore, the dependence of the modified pressure on the
gravitational variables reduces to only Ex.

The Hamiltonian constraint contribution of the perfect
fluid is given by2

Hmatter
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sP2

T þ qxxðPTT 0 þ PXX0Þ2
q
−

ffiffiffiffiffiffiffiffiffiffi
det q

p
P

�
Ex;

P2
X

P2
T

�
; ð83Þ

and the diffeomorphism constraint contribution by

Hmatter
x ¼ PTT 0 þ PXX0; ð84Þ

where the determinant is understood to be integrated in the
angular coordinates,

ffiffiffiffiffiffiffiffiffiffi
det q

p ¼ 4π
ffiffiffiffiffiffiffi
qxx

p
Ex, and qxx is the

emergent structure function (77).
The associated Eulerian energy density is

ρðEÞs ¼ 1ffiffiffiffiffiffiffiffiffiffi
det q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sP2

T þ qxxðPTT 0 þ PXX0Þ2
q

; ð85Þ

and the energy density in the dust frame is

ρdusts ¼ 1ffiffiffiffiffiffiffiffiffiffi
det q

p P2
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sP2
T þ qxxðPTT 0 þ PXX0Þ2

p : ð86Þ

The full Hamiltonian constraint in the presence of a
perfect fluid is given by H ¼ Hgrav þHmatter

s , and the full
diffeomorphism constraint by Hx ¼ Hgrav

x þHmatter
x .

C. Reflection symmetry surface

A particular characteristic of the constraints coupled to
the perfect fluid that will be relevant for our discussion
is the following: When taking the classical value q ¼ 0

in (76), the full constraints H ¼ Hgrav þHmatter
s and Hx ¼

Hgrav
x þHmatter

x are symmetric under the time-reversal
operation Kφ → −Kφ, Kx → −Kx, T → −T, PX → −PX.
Furthermore, it possesses an additional reflection-sym-
metry surface at Kφ ¼ −π=ð2λÞ in the sense that, defining
Kφ ¼ −π=ð2λÞ − δ, the Hamiltonian is symmetric under
the operation δ → −δ, Kx → −Kx, T → −T, PX → −PX,
which is almost identical to time reversal. The meaning of
this symmetry is the following: Given a solution to the
equations of motion in the region δ < 0, the solution in
region δ > 0 will be a perfect reflection of the solution in
δ < 0, with the only difference being the flow of time.
Thus, the solution in the region δ > 0 will look like the

2In [48], it was suggested that the constraint contribution
of timelike dust in spherical symmetry could be given by
Hdust ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þ qxxP2

TðT 0Þ2
p

using the emergent structure func-
tion, but no underlying theory for the dust was presented. While
our procedure shows that this version is indeed anomaly free and
covariant, it overlooks the radial phase-space variables of the dust
which are necessary for the rise of the (modified) pressure
function of the perfect fluid.
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time-reversed solution in the region δ < 0. We will exploit
this symmetry in obtaining the global structure of the
collapse solution.

VI. GRAVITATIONAL COLLAPSE
OF TIMELIKE DUST

A. Frame transformations and gauge fixing

Consider a coordinate transformation to a frame
described by a one-form field vμdxμ ¼ vtdtþ vxdx and
normalized gμνvμvν ¼ −s, where we take s ¼ 1; 0;−1 for
timelike, null, and spacelike frames, respectively. Using the
inverse metric in the ADM decomposition,

gμν ¼ qabsμasνa −
1

N2
ðtμ − NasμaÞðtν − NbsνbÞ; ð87Þ

the normalization can be written as

−
ðvtÞ2
N2

þ 2
Nx

N2
vtvx þ

�
qxx −

ðNxÞ2
N2

�
ðvxÞ2 ¼ −s; ð88Þ

which can be solved for vt in terms of vx or vice versa—for
example,

vt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðsþ qxxðvxÞ2Þ

q
þ Nxvx; ð89Þ

where the sign choice corresponds to either an ingoing
or an outgoing frame. It will also be convenient to use the
components of the velocity vμ ≡ gμνvν:

vt ¼ −
vt − Nxvx

N2
;

vx ¼ vt − Nxvx
N2

Nx: ð90Þ

The covelocity is a one-form, and thus defines a
parameter γ along its integral curve via dγ ≡ vμdxμ. If
the curve is timelike (or null), we can replace the time
coordinate in the metric for the parameter γ as the new time
coordinate as follows. The infinitesimal time along the
integral curve is

dt ¼ 1

vt
dγ −

vx
vt

dx: ð91Þ

Substituting this into a metric of the general form (69) and
rearranging terms, we obtain

ds2 ¼ −N2 þ qxxðNxÞ2
ðvtÞ2

dγ2 þ 2N2qxx
ðvtÞ2vx

�
Nx

N2
vtvx þ

�
qxx −

ðNxÞ2
N2

�
ðvxÞ2

�
dγdx

−
N2qxx
ðvtÞ2

�
−
ðvtÞ2
N2

þ 2
Nx

N2
vtvx þ

�
qxx −

ðNxÞ2
N2

�
ðvxÞ2

�
dx2

¼ −N2 þ qxxðNxÞ2
ðvtÞ2

dγ2 −
2N2qxx
ðvtÞ2vx

�
s −

ðvtÞ2
N2

þ Nx

N2
vtvx

�
dγdxþ s

N2qxx
ðvtÞ2

dx2; ð92Þ

where we use (88) to obtain the last line, and we have
suppressed the angular part of the metric. If this frame is
timelike, s ¼ 1, the parameter γ is the proper time along the
integral curve, and we denote it as γ ¼ −τ (the sign is due to
the Lorentzian signature); we can then redefine the metric
variables compatible with the new coordinates:

ds2 ≕ − N2
ðτÞdτ

2 þ qðτÞxx ðdxþ Nx
ðτÞdτÞ2; ð93Þ

where

qðτÞxx ¼ N2qxx
ðvtÞ2

; Nx
ðτÞ ¼ −vx; NðτÞ ¼ 1: ð94Þ

Furthermore, in the new coordinates, the covelocity has the
components vμdxμ ¼ −dτ, and hence, the velocity compo-
nents are

vτðnewÞ ¼ gτμvμ ¼ −gττ ¼ 1;

vxðnewÞ ¼ gxμvμ ¼ −gxτ ¼ −Nx
τ : ð95Þ

Therefore, the frame of an observer characterized by its
normalized timelike covector field vμ will, in the canonical
context, always be given by a unit lapse N ¼ 1, while a
residual gauge freedom rests on the undetermined shift,
which is the observer’s (negative) radial velocityNx ¼ −vx.
We will exploit this fact in the following sections to obtain
the spacetime solutions associated with free-falling observ-
ers directly from the canonical equations of motion.
On the other hand, if the frame is null, s ¼ 0, the

parameter γ is an affine parameter, and we denote it as
γ ¼ u. In this case, the metric (92) becomes of the
Eddington-Finkelstein form:

ds2 ¼ −
N2 − qxxðNxÞ2

ðvtÞ2
du2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N2qxx

p
vt

dudx: ð96Þ

This cannot be expressed in the ADM decomposition,
which is based on spatial foliations; hence, there is no
gauge choice in the canonical formalism to reproduce these
coordinates, but they are still useful to extend coordinate
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charts once the spacetime solution is known in other
coordinates.
For completion, similar coordinate transformations can

be done for spacelike and null frames that replace the
spatial coordinate. In particular, starting from a metric of
the general form (69), two null transformations described

by the one-forms du ¼ vð1Þμ dxμ and dv ¼ vð2Þμ dxμ replacing
the time and spatial coordinates with the null coordinates u
and v, respectively, renders the metric into a Kruskal-
Szekeres form:

ds2 ¼ −
N2 − qxxðNxÞ2

vð1Þt vð2Þt

dudv: ð97Þ

The coordinates ðu; vÞ can be more easily related to the
original coordinates ðt; xÞ by using (89) together with
vtvt þ vxvx ¼ 0 to obtain

vðiÞt
vðiÞx

¼ sðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
N2qxx

q
þ Nx; ð98Þ

where sð1Þ ¼ þ1 and sð2Þ ¼ −1. Then,

dγðiÞ ¼ vðiÞt dtþ vðiÞx dx

¼ vðiÞt

�
dtþ

�
sðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
N2qxx

q
þ Nx

�
−1
dx

�
; ð99Þ

where γð1Þ ¼ u and γð2Þ ¼ v. If the spacetime in the original
coordinates is static, then we can choose null geodesics

which have constant vðiÞt (they are Killing-conserved
quantities) and can be absorbed into u and v, and the
expression (99) can be directly integrated.

B. The fluid frame and the Gullstrand-Painlevé gauge

We start by choosing a space foliation compatible with
the fluid frame. This means that the covelocity of the fluid
has the components uμ ¼ nμ ¼ gμνnν, or ut ¼ −N and
ux ¼ 0. The vanishing of the spatial component then
implies that Hmatter

x ¼ 0. Furthermore, since the velocity
of the fluid has been adapted to the foliation, the fluid
variable T can parametrize time—that is, Ṫ ¼ 1. Using the
equations of motion for this, combined with Hmatter

x ¼ 0,
ut ¼ −N, and uX ¼ 0, implies the equations

N ¼ 1; PX ¼ 0: ð100Þ

The unit lapse is consistent with our previous discussions,
such that this gauge is indeed associated with the fluid
frame. We will see later that the choice of adapting the
space foliation to the fluid frame leads to the Oppenheimer-
Snyder model of uniformly distributed dust in the classical
case with vanishing pressure [26,52], but unlike the
uniformity conditions, the adaptation of the foliation to

the fluid frame can be easily extended to EMG. Finally,
the on-shell conditions Hx ¼ 0 and H ¼ 0, respectively,
simplify to

Kx ¼
EφK0

φ

ðExÞ0 ; ð101aÞ

Hgrav ¼ −PT −
ffiffiffiffiffiffiffiffiffiffi
det q

p
P: ð101bÞ

We now define the Gullstrand-Painlevé (GP) gauge as

N ¼ 1; Ex ¼ x2; ð102Þ
which is compatible with the fluid frame due to the unit
lapse. This choice must satisfy the consistency equation
Ėx ¼ 0, which implies the value of the shift:

Nx ¼ −λ0
sin ð2λKφÞ

2λ

�
cf þ λ2

x2

ðEφÞ2
�
: ð103Þ

Following our previous discussion on frame transforma-
tions involving unit lapse, we conclude that the shift (103)
provides the negative observer’s radial velocity, and
since this is the fluid frame itself, it is the fluid velocity.
The general equation of motion for the remaining fluid
variable is

Ẋ ¼ NxX0: ð104Þ
The remaining nontrivial equations are given by the

equations of motion K̇φ and Ėφ. We will solve these
equations for two special cases below: the classical case,
and the case with holonomy modifications.

C. Classical collapse

An exact solution of the classical collapse of dust is
known [26,52]. We will reproduce this result with our
canonical methods, because it will be useful as a guide to
later solve the modified equations and to check the classical
limit. To this end, we will take the full classical limit given
by cf; λ0; αi → 1, λ; q → 0, with vanishing cosmological
constant and pressure Λ0 ¼ P ¼ 0.

1. Star exterior

The classical GP equations of motion for dust are

Nx ¼ −Kφ; ð105aÞ

Kφ
PT

Eφ þ
1

2
∂tGPðK2

φÞ þ
x2

ðEφÞ2 ∂tGP lnE
φ ¼ 0; ð105bÞ

K̇φ ¼ −
1

2x

�
1 −

x2

ðEφÞ2 þ ðxK2
φÞ0
	
; ð105cÞ

∂tGP

�
Eφ

x

�
¼ −Kφ

�
Eφ

x

�0
: ð105dÞ
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As is well known, the exterior Schwarzschild metric in
vacuum,

ds2¼−
�
1−

2M
x

�
dt2þ

�
1−

2M
x

�
−1
dx2þx2dΩ2; ð106Þ

is the solution to the equations of motion in the
Schwarzschild gauge given by

Nx ¼ 0; Ex ¼ x2: ð107Þ

The (generalized) Gullstrand-Painlevé metric,

ds2 ¼ −dt2GP þ
1

ε2

 
dx − s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
x

−
2M
R0

s
dtGP

!
2

þ x2dΩ2;

ð108Þ

with constant ε, s ¼ �1, and x < R0 ¼ 2M=ð1 − ε2Þ, is
obtained either by direct coordinate transformation of the
Schwarzschild metric (106) associated with a frame as
explained in Sec. VI Awhose 4-velocity is that of timelike
geodesics with Killing-conserved energy ε—that is,
vt ¼ −ε (i.e., the geodesics are at rest at x ¼ R0)—or by
solving the equations of motion in the GP gauge (105)
for vacuum—that is, for PT ¼ 0. The signs s ¼ −1 and
s ¼ þ1 are associated with ingoing or outgoing frames,
respectively.
For future use, the classical solution to each phase-space

variable in the GP gauge is

Eφ ¼ x
ε
; ð109Þ

Kφ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
x

−
2M
R0

s
; ð110Þ

Kx ¼ −
s
2ε

�
2M
x

−
2M
R0

�
−1=2M

x2
: ð111Þ

Substituting these expressions into the vacuum observ-
able (78), with d0 ¼ 1 and d2, yieldsM ¼ M, as expected.

2. Star interior

We will now obtain the solution for the interior of a star
of dust. Let us assume that the dust at some initial time t0 is
at rest confined to the region x < R0; i.e., the star has an
initial radius R0. The radius of the star at other times, RðtÞ,
follows a geodesic motion, and because the interior metric
must match the exterior one at x ¼ RðtÞ, the radius RðtÞ
follows the geodesic equation of the exterior metric; this
equation is easily obtained by recalling that in GP coor-
dinates, the shift is the negative velocity of the frame
Nx ¼ −dx=dtGP:

dR
dtGP

¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R

−
2M
R0

s
; ð112Þ

whose general solution is the inversion of

tGP − t0 ¼
sR

ε2 − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R

−
2M
R0

s

−
sM

ðε2 − 1Þ3=2 ln

0
BB@

ffiffiffiffiffi
2M
R0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R − 2M

R0

q
ffiffiffiffiffi
2M
R0

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R − 2M

R0

q
1
CCA; ð113Þ

and the constant ε is the Killing-conserved energy of the
free-falling frame at rest at the radius R0. The case ε → 1,
s ¼ −1 corresponds to collapsing dust from rest at infinity
such that

RðtGPÞ ¼
�
9M
2

t2GP

�
1=3

: ð114Þ

Substituting RðtGPÞ into the metric (108) then gives the
boundary metric that joins the star’s exterior and interior
metrics. The latter is obtained by solving the GP gauge
equations of motion (105). To this end, based on the
vacuum solution, we take the ansatz

Eφ ¼ x
εðtGP; xÞ

;

Kφ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðtGP; xÞ

x
þ εðtGP; xÞ2 − 1

r
; ð115Þ

with s ¼ �1. The intuition behind this ansatz is that at
any given time tGP, there will be a total mass mðtGP; xÞ
contained within the radius x, which will be experienced by
the observers parametrized by ε, which is no longer a
Killing-conserved quantity. Defining ε2 ¼ 1 − E and using
the ansatz (115), the last two equations of (105) become

ṁ ¼ −Kφm0; ð116Þ

Ė ¼ −KφE0: ð117Þ

Using the method of separation of variables—i.e., assum-
ing the forms E ¼ λEEtðtGPÞExðxÞ and m ¼ λmmtðtGPÞ×
mxðxÞ with λE and λm constants—and imposing the
boundary conditionsmðtGP; x ¼ RðtGPÞÞ ¼ M and Eðt0Þ ¼
1 − ε2 ¼ 2M=R0, one can solve these equations exactly,
obtaining

m ¼ M
x3

R3
; ð118Þ
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E ¼ 2M
R0

x2

R2
¼ 2m

x
R
R0

; ð119Þ

PT ¼ m0

ε
; ð120Þ

with only (104), the equation for X, being difficult to
solve exactly, except in the limit ε → 1, R0 → ∞. In this
limit, and imposing the boundary condition XðtGP; x ¼
RðtGPÞÞ ¼ RðtGPÞ, the solution is given by

X ¼
�ð9Mt2GP=2Þ1=2 þ x3=2

2

�
2=3

: ð121Þ

This solution describes a uniformly distributed dust with
energy density ρdustðRÞ and therefore corresponds to the
Oppenheimer-Snyder collapse model [26]: The associated
energy density is

ρdust ¼ ε

4πx2
PT ¼ m

4πx3=3
; ð122Þ

and the global conserved charge (23) with α ¼ ε gives the
total mass

Q½ε� ¼
Z

dx εPT ¼ M: ð123Þ

The resulting metric for the star interior is given by [52]

ds2¼−dt2GPþ
�
1−

2m
x

R
R0

�
−1
 
dx−s

ffiffiffiffiffiffiffi
2m
x

r ffiffiffiffiffiffiffiffiffiffiffiffi
1−

R
R0

s
dtGP

!
2

þx2dΩ2: ð124Þ

The physical singularity at tGP → 0 persists, where R → 0:
all of the dust collapses into the coordinate point ðtGP → 0;
x → 0Þ, and the usual spacelike singularity of the vacuum
black hole appears from then on.
If the star falls from infinity, then R0 → ∞, and RðtGPÞ is

given by (114); the metric (124) in this case can be
rewritten as

ds2 ¼ −dt2GP þ ðdx − KφdtGPÞ2 þ x2dΩ2; ð125Þ

where the curvature is simply Kφ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
with range

Kφ ∈ ½0;−∞Þ—corresponding to tGP < 0. However, the
range Kφ ∈ ð∞; 0�—corresponding to tGP > 0—is a sol-
ution too, describing the time-reversed process: an explod-
ing star with the dust coming out of the singularity.
The spacetime diagram of the collapse in GP coordinates

is shown in Fig. 1.

D. Holonomy model collapse

Having solved the classical system, we are now in the
position to solve the modified equations with finite hol-
onomy parameter λ. For simplicity, we take the limit
cf; α0; α2 → 1 and consider constant λ0 as an aid to rescale
the resulting metric. We also take vanishing cosmological
constant and pressure, Λ0 ¼ P ¼ 0.

1. Star exterior

Similarly to the classical system, the vacuum equations
of motion in the Schwarzschild gauge,

Nx ¼ 0; Ex ¼ x2; ð126Þ

can be solved exactly, yielding the emergent metric [7]

ds2 ¼ −
�
1 −

2M
x

�
dt2

μ2λ20
þ
�
1þ λ2

�
1 −

2M
x

��
−1

×

�
1 −

2M
x

�
−1 dx2

λ20
þ x2dΩ2; ð127Þ

FIG. 1. Classical collapse of a dust star with infinite initial
radius R0 → ∞ in (a) GP coordinates and (b) its conformal
diagram. Some light cones have been represented with arrows in
(a) for reference on the causal structure. The solid line labeled by
R is the star’s radius. It crosses its own horizon at the time
tGP ¼ −4M=3. The causal horizon, labeled as CH, is defined by
the vanishing velocity of outgoing null rays in GP coordinates,
and beyond which it changes sign, becoming ingoing null rays,
and constant x curves become spacelike. This surface is given by
the solution to 2m ¼ x, or tGP ¼ −2x=3. The trapping horizon,
labeled as TH, is the surface beyond which light cannot escape
the event horizon x ¼ 2M in vacuum. The trapping horizon is
obtained by solving the outgoing null geodesic that intersects the
star’s radius at the event horizon. Unlike in the vacuum solution,
in the presence of dust, the trapping and causal horizons are not
identical, and neither of them is a constant x curve. The faint gray
lines in (b) denote constant x curves.
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where μ is a constant of the equations of motion that,
together with λ0, may rescale the metric, and M is a
constant that can be related to the classical mass, as we will
show. Demanding asymptotic flatness fixes μ ¼ 1=λ0 and
λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
. Unlike the classical Schwarzschild metric,

this has a second coordinate singularity at

xλ ¼
2Mλ2

1þ λ2
; ð128Þ

which is not a geometric singularity, but a minimum radius
placed at the maximum-curvature surface.
The spacetime metric in the GP coordinates can again be

obtained either by direct coordinate transformation of (127)
using a free-falling timelike frame or by solving the
vacuum equations of motion in the GP gauge (102); the
resulting phase-space variables in this gauge are given by

Nx ¼ −s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
x

−
2M
R0

s ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
x

r
; ð129Þ

Eφ ¼ x
ε
; ð130Þ

sin2ðλKφÞ
λ2

¼ 2M=xþ ε2 − 1

1þ λ2ε2
; ð131Þ

Kx ¼
K0

φ

2ε
: ð132Þ

Plugging these expressions into the weak observable (78),
with d0 ¼ 0 and d2 ¼ 1, yields M ¼ M, reinforcing the
interpretation ofM as that of the mass even in the modified
theory. The emergent GP metric is

ds2 ¼ −dt2GP þ
1

ε2

�
1 −

xλ
x

�
−1
 
dx − s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
x

−
2M
R0

s ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
x

r
dtGP

!
2

þ x2dΩ2; ð133Þ

where the constant ε is the Killing-conserved energy of the free-falling frame, s ¼ sgnðsinð2λKφÞÞ, and R0 ¼ 2M=ð1 − ε2Þ.
The Schwarzschild time t and the GP time tGP are related by the coordinate transformation

dtGP ¼ εdt − s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
x

−
2M
R0

s �
1 −

2M
x

�
−1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
x

r
dx ð134Þ

or

tGP ¼ εtþ s

ffiffiffiffiffiffiffi
2M
R0

s �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − x

p ffiffiffiffiffiffiffiffiffiffiffiffi
x − xλ

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − 2M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − xλ

p
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − 2M

p ffiffiffiffiffiffiffiffiffiffiffiffi
x − xλ

pffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − xλ

p
�

− ðR0 − 4M þ xλÞ arctan
� ffiffiffiffiffiffiffiffiffiffiffiffi

x − xλ
pffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − x

p
��

; ð135Þ

where the integration constant has been chosen such that tGP ¼ 0 coincides with t ¼ 0 at x ¼ xλ.
Using the fact that the shift in the GP gauge is the negative radial velocity of the observers, Nx ¼ −dx=dtGP, the radial

coordinate x ¼ R of the timelike geodesics then follows the equation

dR
dtGP

¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
R

−
2M
R0

s ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
R

r
; ð136Þ

and we see that s ¼ −1 corresponds to an infalling frame; the acceleration is

d2R
dt2GP

¼ M
R2

�
−
�
2M
R

−
2M
R0

�
−1

þ λ2

1þ λ2

�
1 −

xλ
R

�
−1
��

dR
dtGP

�
2

: ð137Þ

The velocity equation (136) has the general solution

tGP − t0 ¼
sffiffiffiffiffiffiffi
2M

p
 
R

ffiffiffiffiffiffi
R0

R

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

R
− 1

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
R

r
þ R0

�
1 −

xλ
R0

� ffiffiffiffiffiffi
R0

R

r
arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xλ=x
R0=R − 1

s !
−
π

2

!!
; ð138Þ
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so that the observer is at rest at the radial coordinate x ¼ R0

at time t0. The geodesic then reaches R ¼ xλ at time

tGP ¼ t0 þ
sffiffiffiffiffiffiffi
2M

p π

2
ðR0 þ xλÞ; ð139Þ

and at this minimum radius the velocity (136) vanishes,
while the acceleration (137) is finite and positive:

d2R
dt2GP

⟶
R→xλ

1

2xλ

�
2M
xλ

−
2M
R0

�
: ð140Þ

If the observer falls from infinity, R0 → ∞ at tGP → −∞,
the time coordinates are instead related by

tGP ¼ t − s
ffiffiffiffiffiffiffi
2M

p �
2
ffiffiffiffiffiffiffiffiffiffiffiffi
x − xλ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − xλ

p
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − xλ

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
x − xλ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M − xλ

p
− ffiffiffiffiffiffiffiffiffiffiffiffi

x − xλ
p

��
; ð141Þ

where again the integration constant has been chosen such that tGP ¼ 0 coincides with t ¼ 0 at x ¼ xλ. The expression for
the geodesic, which we relabel as RðtGPÞ, is instead the solution to

tGP ¼
2s
3
R

ffiffiffiffiffiffiffi
R
2M

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xλ
R

r �
1þ 2

xλ
R

�
; ð142Þ

where the integration constant has been chosen such that tGP ¼ 0 at R ¼ xλ. The explicit inversion of (142) is given by

RðtGPÞ ¼ −xλ þ
 
9M
4

t2GP þ x3λ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
9M
4

t2GP

�
2

þ 9M
2

t2GPx
3
λ

s !1=3

þ x2λ

 
9M
4

t2GP þ x3λ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
9M
4

t2GP

�
2

þ 9M
2

t2GPx
3
λ

s !−1=3

:

ð143Þ

This geodesic coordinate reaches the minimum radius
xλ ¼ 2Mλ2=ð1þ λ2Þ at tGP ¼ 0 (and t ¼ 0) with vanishing
velocity Ṙðx ¼ xλÞ ¼ 0, and finite, positive acceleration

d2R
dt2GP

⟶
R→xλ

M
x2λ

: ð144Þ

2. Star interior

We now focus on the star-interior region in the GP
gauge (102). Based on the classical solution for the star
interior and on the vacuum solution in the holonomy
model, we take the ansatz

Eφ ¼ x
εðtGP; xÞ

;

sinðλKφÞ
λ

¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2ε2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðtGP; xÞ

x
þ E

r
; ð145Þ

where s ¼ �1 is the sign of sinðλKφÞ, and we define
ε2≕ 1 − E. Using this ansatz, the relevant equations of
motion in the GP gauge become

Nx ¼ −
sin ð2λKφÞ

2λ

1þ λ2ε2

1þ λ2
; ð146Þ

ε

x
PT þ K̇φ þ

λ

2
cotðλKφÞ

Ė
1þ λ2ε2

¼ 0; ð147Þ

ṁ
1þ λ2ε2

¼ −
sinð2λKφÞ

2λ

m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ; ð148Þ

Ė
1þ λ2ε2

¼ −
sinð2λKφÞ

2λ

E0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p : ð149Þ

Unfortunately, these equations are too complicated to
obtain an exact general solution. However, we can solve
exactly for the special case of the dust collapsing from rest
at infinity. Thus, restricting ourselves to the case E → 0,
R0 → ∞, and defining mðtGP; xÞ ¼ x

2
m1ðx=tGPÞ, Eq. (149)

is trivially satisfied, while Eq. (148) becomes

z2
∂m1

∂z
¼ s2

ffiffiffiffiffiffi
m1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ2m1

1þ λ2

s �
m1 þ z

∂m1

∂z

�
; ð150Þ

where z ¼ x=tGP and s2 is the sign of sinð2λKφÞ; thus, we
shall take s2 ¼ −1 for the collapsing region and s2 ¼ þ1
for the time-reversed version. This equation has a general
solution with one constant of integration, which, however,
is an extremely long expression. Imposing the boundary
condition mðx ¼ RðtÞÞ ¼ M determines the integration
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constant of the solution, which simplifies considerably and now reads

m ¼ jtGPj
8
ffiffiffi
3

p 1þ λ2

λ3

2
64−3 − λ2

�
3 − 4

�
x
tGP

�
2
�

þ 3

 
8λ3ffiffiffiffiffi
27

p
�

x
jtGPj

�
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

�
2 − 4

�
x
tGP

�
2
�
þ λ4

�
1 − 4

�
x
tGP

�
2

þ 16

3

�
x
tGP

�
4
�s !2=3

3
75

×

 
8λ3ffiffiffiffiffi
27

p
�

x
jtGPj

�
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

�
2 − 4

�
x
tGP

�
2
�
þ λ4

�
1 − 4

�
x
tGP

�
2

þ 16

3

�
x
tGP

�
4
�s !−1=3

ð151Þ

and also satisfiesmðx → 0Þ → 0; more on this below. In the limit λ → 0, the mass function recovers its classical form (118).

From Eq. (147), we obtain the dust momentum

PT ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p : ð152Þ

The global conserved charge (23) with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
is

precisely the total mass of the star,

Q0½α� ¼
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
PT ¼ mðxÞjR0 ¼ M; ð153Þ

and the associated dust energy density is

ρdust ¼ j cosðλKφÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p m0

4πx2
; ð154Þ

which shows that the dust is not uniformly distributed as in
the classical solution.
Only the equation of motion of the dust variable X given

by (104) is too complicated to be solved exactly. However,
the solution to this variable is not relevant for most
purposes, including ours. We will only need an approxi-
mate solution near the maximum-curvature surface dis-
cussed below.
Using (77) to compute the structure function, we obtain

the star-interior spacetime metric,

ds2¼−dt2GPþsec2ðλKφÞ
�
dx−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

p sinð2λKφÞ
2λ

dtGP

�
2

þx2dΩ; ð155Þ

where the Kφ expressions are obtained from inverting

sin2ðλKφÞ ¼
λ2

1þ λ2
2m
x

ð156Þ

with the mass function (151). Taking the range
Kφ ∈ ð0;−π=2λÞ—corresponding to tGP < 0—the signs

s ¼ s2 ¼ −1 of (145) and (150) are recovered, and thus,
it describes the collapsing region of the star.
Two regions are of interest: near the x ¼ 0 axis and the

tGP ¼ 0 axis. To analyze them, we perform a Taylor
expansion around x=tGP ¼ 0 for the former,

2m
x

¼ 4

9

�
x
tGP

�
2

þ 16

27

λ2

1þ λ2

�
x
tGP

�
4

þO

�
x
tGP

�
6

; ð157Þ

and an expansion around tGP=x ¼ 0 for the latter,

2m
x

¼ 1þ λ2

λ2

�
1−

1

4

1þ λ2

λ2

�
tGP
x

�
2

−
1

48

ð1þ λ2Þ2
λ4

�
tGP
x

�
4
�

þO

�
tGP
x

�
6

: ð158Þ

This shows that in the limit x → 0, with nonzero tGP, the
mass function vanishes and one obtains a flat spacetime. On
the other hand, the spacetime metric diverges in the limit
tGP=x → 0; thus, this coordinate chart is strictly valid only
for the region ½tGP < 0; 0 < x < RðtGPÞ�. Using (156), we
find that this divergent surface corresponds precisely to a
maximum-curvature surface. As explained in Sec. V, this is
also a reflection-symmetry surface. Thus, the range
Kφ ∈ ð−π=2λ;−π=λÞ—corresponding to tGP > 0 and the
sign s2 ¼ −1, which is a solution too—describes the time-
reversed process of an exploding star.

3. Near maximum-curvature surface
and causal structure

We now analyze the causal structure. Null rays follow
ds2 ¼ 0, or

dx
dtGP

����
null

¼ sðiÞj cosðλKφÞj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p sin ð2λKφÞ
2λ

; ð159Þ
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where sðinÞ ¼ −1 for ingoing rays and sðoutÞ ¼ þ1 for
outgoing ones. The causal structure then changes at
x ¼ 2m [that is, sin ðλKφÞ ¼ −λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
], just as in the

classical case, defining a causal horizon where the outgoing
null rays become ingoing. While exactly solving the line
tGPðxÞ for the causal horizon is too complicated, near the
maximum-curvature surface we can use the expansion
(158), such that the causal horizon is approximately given
by the line

tGP ¼ −2
λ

1þ λ2
x: ð160Þ

There are two important characteristics of the maximum-
curvature surface given by Kφ → −π=ð2λÞ—the would-be
classical singularity. First, using the expansion (158), we
find that the velocities of both ingoing and outgoing null
rays do not diverge at this surface, but vanish; second, the
acceleration of null rays remains finite,

d2x
dt2GP

����
null

→
1

2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

λ

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

λ

�
; ð161Þ

and positive, since λ ≪ 1.
While the previous analysis of null rays suggests that this

surface can be crossed, in this expansion the Ricci scalar is
given by

R ¼ 4

t2GP

�
1þ 1þ 13λ2

24λ2

�
tGP
x

�
2

−
ð8 − λ2Þð1þ λ2Þ

72λ4

�
tGP
x

�
4

þO

�
tGP
x

�
6
�
: ð162Þ

Therefore, the singularity at the maximum-curvature sur-
face is a true geometric singularity, and no coordinate
transformation can remove it.
Finally, using the expansion (158), we can solve (104) to

the lowest order to obtain the remaining dust variable,

X ≈ fXðxÞ; ð163Þ

with arbitrary fX, which can be fixed by demanding
compatibility (replacing boundary conditions) with the
local spatial coordinate, fX ¼ x.
The spacetime diagram of the resulting collapse with

holonomy effects in the GP coordinate system developed
above is shown in Fig. 2.

4. Nonsingular canonical dynamics

While at the maximum-curvature surface the Ricci scalar
diverges, implying a true geometric singularity, the canoni-
cal formulation of EMG does not assume the spacetime to
be a fundamental entity; it is rather an emergent one, and
furthermore, it is not the spacetime, but the structure

function, the lapse, and shift, that are canonically defined.
Indeed, all of the canonical variables are finite on the
maximum-curvature surface:

m →
1þ λ2

λ2
x
2
; Nx → 0;

PT →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p

λ2
1

2
; qxx → 0: ð164Þ

This differs from the classical canonical values at Kφ→−∞
(and necessarily x → R → 0), where m → M, Nx → ∞,
PT → ∞, and Kx → −∞. The nonsingular canonical
dynamics of the phase-space variables, which does not rely
on the spatial metric, allows us to extend the solution
past this surface to complete the full range of the
curvature Kφ ∈ ð0;−π=λÞ, corresponding to the whole
tGP ∈ ð−∞;∞Þ. The first term in the null rays’ velocity
expression (159) shows that ingoing (outgoing) rays remain
ingoing (outgoing) after crossing the maximum-curvature
surface as determined by the sign sðiÞ; however, since the
second term differs by a sign when crossing the surface, the
causal structure past the maximum-curvature surface is
instead that of a white hole. The resulting spacetime,

x
tGP

2Mxx

TH

CH

R

FIG. 2. Holonomy collapse of a dust star with infinite initial
radius R0 → ∞ in GP coordinates. The star radius R crosses its
own horizon at the time tGP¼−4M

3
ð1þ2λ2=ð1þλ2ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

p
.

Unlike the classical case, the star’s radius does not collapse all the
way to x ¼ 0, but rather to xλ with vanishing velocity and finite
positive acceleration. This is similarly the case for the trapping
horizon TH. The spacelike singularity of the spacetime lies on the
surface ðtGP ¼ 0; x ≤ xλÞ. Some light cones have been repre-
sented with arrows for reference on the causal structure.
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up to the divergent surface, can then be pictured by the
region 0 < x < R in Fig. 3, which describes a collapsing
star of dust followed by its explosion after it crosses the
maximum-curvature surface. The star-exterior region x > R
of Fig. 3, however, is not uniquely determined by the
canonical dynamics, since the star-interior solution can be
glued to a vacuum solution in different ways, leading to
different physical phenomena. We will explore two such
possibilities, one corresponding to the formation of a worm-
hole, and the other to a black-to-white-hole transition. To this
end, we will make use of the Kruskal maximal extension
adapted to the modified theory.

5. Vacuum maximal extension

Starting with either the modified Schwarzschild metric
(127) or the modified Gullstrand-Painlevé metric (133)—
giving both the exact same result—we perform the frame

transformation to null coordinates (97) to put it in the
Kruskal-Szekeres form:

ds2 ¼ −
�
1 −

2M
x

�
dudv; ð165Þ

where the Schwarzschild coordinates are related to the null
ones, using (99), by

u ¼ t − x�; v ¼ tþ x�; ð166Þ

with

x� ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
ln

 
c
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xλ=x
p

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xλ=x

p �1þxλ=ð4MÞffiffiffiffiffiffi
1þλ2

p

×

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xλ=x

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xλ=x
p þ 1

����e x
2M

ffiffiffiffiffiffiffiffi
1−xλ=x

p ffiffiffiffiffiffi
1þλ2

p
!

≕ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
lnΓðxÞ; ð167Þ

where we have absorbed the coefficients vðiÞt into the null
coordinates, as we have chosen them to be the constant
Killing quantities of null geodesics, and c is a constant.
In the limit x → 2M, the null coordinates take the values
u → ∞ and v → −∞, as the defined function takes the
value Γ → 0. We overcome this by the usual coordinate
transformation

U ¼ −e−u=ð4M
ffiffiffiffiffiffiffiffi
1þλ2

p
Þ; V ¼ ev=ð4M

ffiffiffiffiffiffiffiffi
1þλ2

p
Þ; ð168Þ

so that the region r > 2M corresponds to U∈ ð−∞; 0Þ,
V ∈ ð0;∞Þ. The metric becomes

ds2 ¼ −FEðxÞdUdV; ð169Þ

with

FEðxÞ ¼ 16M2ð1þ λ2Þ
�
1 −

2M
x

�
=ΓðxÞ; ð170Þ

and x ¼ xðU;VÞ given by the solution to

UV ¼ −ΓðxÞ: ð171Þ

In the limit x → 2M, we obtain U;V → 0 and finite FE:

FE ⟶
x→2M

64M2

c
1þλ2

λ2
e−1=ð1þλ2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

p
−1ffiffiffiffiffiffiffiffiffiffiffiffi

1þλ2
p

þ1

�ð1þ1
2

λ2

1þλ2
Þ=
ffiffiffiffiffiffiffiffi
1þλ2

p
:

ð172Þ

Therefore, we can extend the null coordinates to x < 2M
by taking negative values for U, V, achieving the modified

x

tGPt P
2M2Mxx

THTH

CHCH++

RR
CHCH

THTH++

FIG. 3. Extension of the star-interior holonomy collapse in GP
coordinates. The dashed line ðtGP ¼ 0; x < xλÞ is the maximum-
curvature surface containing the spacetime singularity. The
arrows represent light cones for reference on the causal structure.
The surface THþ is an antitrapping horizon. The surface CHþ is
an anticausal horizon, beyond which the ingoing null ray’s
velocity becomes negative once again, and the constant x curves
become timelike again.
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Kruskal extension. Finally, performing the conformal
transformation

Ū ¼ arctanðUÞ; V̄ ¼ arctanðVÞ; ð173Þ

we obtain the metric

ds2 ¼ −F̄EðxÞdŪdV̄; ð174Þ

and the usual Penrose diagram follows (see Fig. 4), which
was first obtained in [7]. Unlike the classical solution, this
one is singularity free in the vacuum. The maximum-
curvature surface at x ¼ xλ is regular and can be crossed.
This surface is one of reflection symmetry, as explained in
Sec. V; thus, on the other side of xλ, we simply have the
reflected solution of the black hole with the only difference
being the flow of time, which gives this region the
properties of a white hole. The global structure is then
that of an interuniversal wormhole connecting two different
asymptotic regions belonging to the exteriors Ein and Eout
via an interior I ¼ Iin ∪ Iout. Furthermore, the maximal
extension allows for the periodic behavior seen in Fig. 4
such that not only two, but four asymptotic regions can be
joined by the same interior I of the wormhole. The curve
Rin (or R−) is precisely the trajectory that the star’s radius
follows in its collapse stage, while Rout (or Rþ) is the
trajectory it follows in its exploding stage.

VII. ON THE POSSIBLE PHYSICAL OUTCOMES
OF THE COLLAPSE

A. Formation of an interuniversal wormhole

Consider the vacuum solution shaded in gray in Fig. 4
corresponding to the region Ein ∪ I ∪ Eout, restricted to
xin > Rin and xþ > Rþ, with boundary R ¼ Rin ∪ Rþ. One
can then continuously glue this solution to that of the dust
collapse, given by the star interior of Fig. 3, by their mutual
boundary R. The resulting spacetime can then be repre-
sented in a conformal diagram (see Fig. 5). The global
structure is well defined everywhere, except at the tGP ¼ 0
surface joining x ¼ 0 to E where the spacetime curvature
diverges. The gluing of the boundary R is everywhere
continuous. This is the spacetime of an interuniversal
wormhole joining only two asymptotic regions, rather than
the four of the vacuum solution. The time flow and the

=

ℰ

=

=

+

−

−

+

FIG. 4. Maximal extension of the wormhole solution in
vacuum. The faint gray lines denote constant-x curves. The solid
line Rin represents a timelike geodesic at rest at spatial infinity in
the remote past of the exterior Ein. The corresponding geodesics
for the other regions are also shown, all intersecting at the point E
on the minimum-radius surface.

ℰ

=
0

=
0

=
0

+

FIG. 5. Formation of a wormhole from the collapse. For
reference, the faint gray lines represent constant-x curves, except
for x ¼ xλ, which is the dotted line. The dashed line at the center is
the tGP ¼ 0maximum-curvature surface. The curveR ¼ Rin ∪ Rþ
is the full trajectory of the star’s radius.
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causal structure allows an observer in Ein to communicate
with another observer in Eþ by sending signals that traverse
the wormhole, but an observer in Eþ cannot send a signal
back to Ein.

B. Black-to-white-hole transition:
Progress in an effective description

Following [36,43], one can obtain a spacetime describ-
ing a black-to-white-hole transition by slicing a wormhole
spacetime of the form of Fig. 5 such that a single
asymptotic region remains. This slicing can be done as
shown in Fig. 6. The shaded area is a valid solution to the
vacuum equations of motion with two boundaries: one
given by the star’s radius R, and the other given by S. The
two surfaces TOþ and TOin can then be smoothly joined,

because the spacetime surrounding them is locally identi-
cal. The resulting conformal diagram is shown in Fig. 7.
The details on the surface TS and the precise positions of

the points ∇ and Δ are not provided by the canonical
equations of EMG, and they must be provided by consid-
erations of a particular quantum gravity approach (or
whatever underlying theory is being modeled), so we leave
them as undetermined in our effective approach—for
instance, the construction of [36] estimates the coordinates
of the point Δ to be ðt ¼ 0; x ¼ 7M=6Þ in classical
Schwarzschild coordinates.
The effective theory thus provides a picture compatible

with the black-to-white-hole transition proposal as a
quantum gravity phenomenon in this particular gluing of

ℰ=
0

∆+

∆

∇

+

FIG. 6. Star exterior of a black-to-white-hole transition space-
time diagram. The shaded region is a solution to the star-exterior
modified equations with the two boundaries R and S ¼ TOin ∪
TS ∪ TOþ. The point where TS intersects the minimum-radius
surface is denoted by ∇.

ℰ

=
0

+

∆∇

FIG. 7. Black-to-white-hole transition conformal diagram. The
dashed line ðtGP ¼ 0; x < xλ) at the center is the maximum-
curvature surface containing the spacetime singularity. We refer
to the region TR as the transition region, bounded by the surface
TS. The point Δ is chosen close to the horizon at the coordinates
ðtGP ¼ 0; x ¼ 2M þ δÞ, with small, positive δ, but otherwise
undetermined. While the transition region has an undetermined
geometry, one can schematically extrapolate the trajectories of
constant-x curves.
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the dust and vacuum regions. However, the region TR
bounded by the surface TS is still unsolved, and more work
is needed to determine whether it can be described by EMG
as the effective theory, or if more details of quantum gravity
are needed.
If we take the divergence on the maximum-curvature

surface as a sign of the breakdown of EMG as an effective
theory, then we can insert a second transition region
surrounding the surface joining x ¼ 0 to E, or simply
extend the single-transition region to surround the maxi-
mum-curvature surface by placing ∇ at x ¼ 0.

VIII. CONCLUSIONS

We have outlined a procedure to couple matter to EMG
on purely canonical terms, ensuring general covariance of
both the spacetime and matter fields. We have explicitly
done so for the perfect fluid, obtaining the general form of
the perfect fluid contribution to the constraint, and found
that no modifications are allowed except for the use of an
emergent metric and a nontrivial gravitational dependence
of the pressure function. Finally, we have also outlined a
procedure to study gravitational collapse in spherically
symmetric EMG using a comoving coordinate system
corresponding to the canonical formulation of the
Oppenheimer-Snyder model, and we have explicitly com-
puted the collapse of dust.
The dynamical solution to the gravitational collapse of

dust in EMG, modeling certain effects of quantum gravity,
predicts that a spacetime singularity is formed at the
maximum-curvature surface. However, despite such a
singularity, and unlike the classical case, the (ingoing
and outgoing) null geodesics acquire a vanishing velocity
and positive, finite acceleration at the maximum-curvature
surface. Furthermore, all the canonical variables remain
finite too, suggesting that the canonical solution can be
extended past this surface and “bounce.” Consequently,
we have obtained a spacetime metric that describes the
entire region below the star’s radius. However, since a

consistent gluing of the star-interior solution to the star-
exterior one describing the vacuum does not follow
uniquely from solving the equations of motion, the
physical result of the collapse will depend on the specific
choice of the gluing process.
The most straightforward gluing leads to an interuniversal

wormhole spacetime with two distinct asymptotic regions
that can be crossed in a single direction. This wormhole
connects a nascent black hole as the result of the collapse in
the first universe to an evaporating white hole as a result of
the matter emerging out of it in the second universe. The
second gluing, which results from slicing out part of the
wormhole spacetime, consists of a single asymptotic region
that fits with the black-to-white-hole transition proposal
suggested by some quantum gravity approaches. As a
compromise of such slicing, a finite transition region TR
becomes undefined, which, together with the divergent
geometry of the maximum-curvature surface, presents an
ongoing challenge to this proposal in an effective descrip-
tion. The resolution of this transition region might be
available only in a full quantum gravity treatment or, at
least, with more input to the effective approach. Instabilities
of the black-to-white-hole transition when perturbations
are present studied with a classical geometry can be tamed
by a time-asymmetric scenario [53]; thus, futurework will be
devoted to ensure the EMG model cures these instabilities
too.
Though more work is needed to resolve the above issues,

and to determine whether they appear in the collapse of
different forms of matter, it is encouraging to learn that new
properties of gravitational collapse and the ultimate fate of
black holes can be found in covariant modified gravity
theories such as emergent modified gravity.
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