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In this paper, we establish a unified parametrized framework for analyzing the polarization modes of
gravitational waves in the general metric theory (where gravity is only described by the metric) and the
general scalar-tensor theory (where gravity is described by the metric and an additional scalar field).
Specifically, we study the polarization modes of gravitational waves in the most general metric theory and
general scalar-tensor theory that satisfy the following conditions: (1) Spacetime is four-dimensional;
(2) The theory satisfies the principle of least action; (3) The theory is generally covariant; (4) The action
describing a free particle is

R
ds. We find that the polarization modes of gravitational waves in the theory

satisfying the above conditions depend on the selection of parameters in the framework, and the theory
allows for up to all six polarization modes. Once we have established our framework, the analysis of the
polarizations of gravitational waves in specific theories will depend on determining the corresponding
parameters within our framework. We also find that the polarization modes of gravitational waves in the
general metric theory and the general scalar-tensor theory that satisfy the conditions also have some
interesting universal properties.
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I. INTRODUCTION

Polarization is a fundamental property of gravitational
waves. General relativity only allows two independent
polarization modes of gravitational waves [1]. They are
two tensor modes, namely, the þ mode and the × mode.
However, gravitational waves in the four-dimensional
modified gravity theory have up to six independent polari-
zation modes [2]. For a specific modified gravity, the field
equation will constrain the number of polarization modes.
Therefore, it usually only allows a subset of six modes.
Different modified gravity theories have different predic-
tions for polarization modes of gravitational waves.
Moreover, these theories also have different predictions
for the speed of the corresponding polarized gravitational
waves. Therefore, the detection of polarization modes of
gravitational waves is crucial for testing various modified
gravity theories.
Gravitational waves have been successfully detected

[3–7]. Various gravitational wave detection projects are

also continuously planned and executed worldwide. This
makes it possible to detect the polarization modes of
gravitational waves. For instance, ground-based gravita-
tional wave detectors, such as Laser Interferometer
Gravitational Wave Observatory, VIRGO, and Kamioka
Gravitational Wave Detector, can detect gravitational waves
in different two-dimensional spatial planes. Consequently,
they can collaborate to detect gravitational wave polarization
modes [6–20]. Furthermore, in addition to ground-based
gravitational wave detectors, there are expectations to
use space-borne gravitational wave detectors like Laser
Interferometer Space Antenna, Taiji, and TianQin [21–26]
in the future to detect gravitational wave polarization modes.
These space-borne gravitational wave detectors are already
in organized preparation and are scheduled to commence
operations around 2035 [27]. Finally, there is a potential to
utilize pulsar timing arrays [28] for the detection of gravi-
tational wave polarization modes [29–31].
Currently, numerous studies have explored the polariza-

tion modes of gravitational waves within specific modified
gravity theories, such asfðRÞ, Horndeski, generalized Proca,
dynamical Chern-Simons, Palatini-Horndeski, Einstein-
dilaton-Gauss-Bonnet, fðTÞ, teleparallel Horndeski,
Bumblebee, Horava, Palatini generalized Brans-Dicke,
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Einstein-aether, tensor-vector-scalar, Chern-Simons Axion
fðRÞ, and scalar-tensor-vector theories [32–45]. There are
also studies on methods for analyzing polarization modes of
gravitational waves [2,46–49]. In addition, Ref. [50] studied
the polarization modes of gravitational waves with extra
spatial dimensions. References [51,52] studied the produc-
tion and propagation of gravitational waves in modified
gravity in the context of cosmology. References [53,54]
studied gravitational radiation in modified gravity. Upon
reviewing existing studies on the polarization modes of
gravitational waves in specific gravity theories, one can
observe that while different theories yield various quantita-
tive predictions for the polarization modes of gravitational
waves, they share some commonalities in certain aspects. For
example, there are tensor modes propagating at the speed of
light and there are novectormodes infðRÞ theory,Horndeski
theory, and Palatini-Horndeski theory [32,34,40]. In addi-
tion, when the mass of a scalar mode in these theories is not
zero, thismode is amixedmode of the longitudinalmode and
breathing mode. And when the mass of the scalar mode is
zero, it becomes a breathing mode. Another example is
Einstein-aether theory and generalized Proca theory [35,45].
They all do not allow vector gravitational waves only when
tensor gravitational waves propagate at the speed of light.
These shared characteristics among polarization modes of
gravitational waves in different theories naturally lead to
the following questions. What are the premises and reasons
for the establishment of these commonalities? And how can
we accurately express these commonalities in the form of
theorems?
We hope to answer the above questions by establishing a

unified parametrized framework for analyzing the polari-
zation modes of gravitational waves. This framework can
encompass various modified gravity theories that satisfy
certain predetermined conditions. The most direct way to
establish this framework seems to be to write the most
general action that satisfies the given conditions and then to
study the polarization modes of gravitational waves with
this action. We can obtain the general properties of the
polarization mode of gravitational waves under these
conditions. It can be imagined that the polarization modes
of gravitational waves obtained in this manner will depend
on the selection of certain parameters. These parameters are
essentially derived from the most general action, and the
determination of the polarization modes of gravitational
waves in a specific theory satisfying these conditions is now
completely equivalent to determining these parameters.
However, writing the most general action is often very

difficult. This road seems impassable. But it does not mean
that we cannot establish a unified framework. In fact, we
notice that since gravitational waves are very weak, we only
need to analyze the linearized field equations. That is to say,
in order to study the polarization modes of gravitational
waves, it is only necessary to know the second-order term
of the perturbation expansion of the action. Therefore, in
order to establish a unified parametrization framework, we

do not need to write the complete action, but just need the
most general second-order action for perturbations. Writing
the most general second-order action that satisfies certain
conditions is relatively easy and generally possible. This is
also the method by which we establish a unified framework
in this paper.
The general metric theory and the general scalar-tensor

theory are two main types of modified gravity theories. In
the general metric theory, gravity is only described by the
metric gμν. While in the general scalar-tensor theory,
gravity is described by the metric gμν and an additional
scalar fieldΨ. The goal of this paper is to establish a unified
parametrized framework for analyzing the polarization
modes of gravitational waves in the general metric theory
and the general scalar-tensor theory that satisfy the follow-
ing conditions: (1) Spacetime is four-dimensional; (2) The
theory satisfies the principle of least action; (3) The theory
is generally covariant; and (4) The action describing a free
particle is given by

R
ds. Therefore, in Sec. II, we construct

the most general second-order action of general metric
theory that satisfies the above conditions. In Sec. III, we
analyze the polarization modes of gravitational waves for
the most general second-order action of the general metric
theory. In Sec. IV, we obtain some universal properties of
the polarization modes of gravitational waves in the general
metric theory. Similarly, in Sec. V, we construct the most
general second-order action of the general scalar-tensor
theory that satisfies the above conditions. In Sec. VI, we
analyze the polarization modes of gravitational waves for
the most general second-order action of the general scalar-
tensor theory and obtain some universal properties of the
polarization modes. Finally, Sec. VII is the Conclusion.
We use c ¼ G ¼ 1 and the metric signature ð−;þ;þ;þÞ.

The indices ðμ; ν; λ; ρÞ range over four-dimensional space-
time indices (0, 1, 2, 3), and the indices ði; j; k; lÞ range over
three-dimensional spatial indices (1, 2, 3), which correspond
to (þx;þy;þz) directions, respectively.

II. SECOND-ORDER ACTION OF THE GENERAL
METRIC THEORY

Asmentioned in the previous section, to establish a unified
framework for studying the polarization modes of gravita-
tional waves in the most general four-dimensional metric
theory, there is noneed towrite down themost general action.
We just need to construct the most general action of second-
order perturbations, which will be done in this section.
We assume that the Minkowski metric ημν is a solution of

the general metric theory and consider a perturbation hμν on
the background metric ημν:

gμν ¼ ημν þ hμν; jhμνj ≪ 1: ð1Þ

In this manner, the second-order action of the general
metric theory will only be a functional of hμν. In the
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following, ημν and ημν are used to lower and raise the four-
dimensional spacetime index, and h is defined as ημνhμν.
The conditions from the previous section that we apply

to the general metric theory will impose the following
requirements on the second-order action:
(1) Each term in the action is a second order of hμν.
(2) The second-order action is invariant under the gauge

transformation xμ → xμ þ ξμðxÞ.
In the previous section, the condition that the theory
satisfies the principle of least action tells us to only study
the general metric theory whose action can be given. Since
we only have the metric perturbation hμν as a variable, each
term of the second-order action must only have two hμν,
and we call it in the form of hh. This is the requirement of
the condition (2) here. Finally, the condition (3) is a
requirement for generally covariant. If a theory is generally
covariant, then the linearized version of the theory will
satisfy gauge symmetry [55].
In this paper, we consider that spacetime is described by

Riemannian geometry. For Riemannian geometry, the only
intrinsic quantities in its algebraic structure are the back-
ground metric ημν and the perturbation hμν given by the
inner product structure of the tangent space, the four-
dimensional Levi-Civita totally antisymmetric tensor Eμνλρ

given by the exterior product structure of the tangent space,
and the partial derivative ∂μ given by the differential
structure. (Reference [56] provides a physical introduction
to various structures on manifolds.) The action should be
represented by the intrinsic quantities mentioned above. If
another tensor appears in the action, we need to explain the
physics of the new tensor. Guided by the concept that
classical gravity is described by geometry, this new tensor
requires us to add a new algebraic structure to the current
manifold. For the above considerations, we also require
(4) Each term in the second-order action can be repre-

sented as a combination of ημν, ∂μ, Eμνλρ, hμν and the
coupling parameters of the theory.

It should be pointed out that the most general second-order
action does not actually include Eμνλρ. This can be seen
from the following analysis. Firstly, we can always con-
sider only the case where the term in the action contains
only one Eμνλρ without losing generality. This is because we
have [57]

EαβγσEμνλρ ¼ −

����������

δαμ δαν δαλ δαρ

δβμ δβν δβλ δβρ

δγμ δγν δγλ δγρ

δσμ δσν δσλ δσρ

����������
: ð2Þ

Here, δμν is the Kronecker delta. Therefore, terms with odd
numbers of Eμνλρ can always be written in the form of only
one Eμνλρ, while terms with even numbers of Eμνλρ can
always be written without any Eμνλρ. The problem now

boils down to the case where there is only one Eμνλρ. Just
note that ημν and hμν are symmetric with respect to indices
ðμ; νÞ, and it can be found that terms containing only one
Eμνλρ in the action must be equal to 0. This completes our
analysis. Therefore, the term in the action will only be a
combination of ημν, ∂μ, hμν and the coupling parameters.
Using the condition (4), we can obtain an important

result: terms of the field equation in the general metric
theory only has an even number of derivatives. This is
because ημν and hμν are second-order tensors, so a tensor
formed by combining ημν and hμν must have an even
number of indices. And we cannot form a scalar with an
odd number of ∂μ and the two tensors ημν and hμν.
Therefore, we only need to consider the most general

second-order action that can derive the field equation with
up to 2Nth derivative terms. In order for the second-order
action to satisfy the conditions (1), (2), and (4) in this
section, it should have the following form:

S ¼
XN
I¼0

SI; ð3Þ

where SI is the most general action that can derive all 2Ith
derivative terms in the field equation. When I ≥ 2, it has the
specific form

SI ¼
Z

d4x½aðIÞ1 ð□I−2
∂μ∂ν∂

λ
∂
ρhλρÞhμν

þ aðIÞ2 ð□I−1
∂ν∂

λhμλÞhμν þ aðIÞ3 ð□IhμνÞhμν

þ aðIÞ4 ð□I−1
∂μ∂νhÞhμν þ aðIÞ5 ð□IhÞh�: ð4Þ

When I ¼ 1, it has the form

S1 ¼
Z

d4x½að1Þ2 ð∂ν∂λhμλÞhμν þ að1Þ3 ð□hμνÞhμν

þ að1Þ4 ð∂μ∂νhÞhμν þ að1Þ5 ð□hÞh�: ð5Þ

And when I ¼ 0, it has the form

S0 ¼
Z

d4x½að0Þ3 hμνhμν þ að0Þ5 h2�: ð6Þ

Here,□ ¼ ∂
μ
∂μ and□I is the Ith power of□, aðIÞi (i ¼ 1, 2,

3, 4, 5) are constants. For convenience, we also define

að0Þ1 ¼ að0Þ2 ¼ að0Þ4 ¼ að1Þ1 ¼ 0: ð7Þ

In order for our action to meet the condition (3) of this
section, we also need to further constrain the parameters

aðIÞi (where i ¼ 1, 2, 3, 4, 5) to ensure that the action
satisfies the gauge invariance. Therefore, we consider the
gauge transformation
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xμ → xμ þ ξμðxÞ: ð8Þ

Here, ξμ is an arbitrary function of spacetime coordinates.
∂μξν and hμν are of the same order of magnitude. Under
transformation (8), hμν transforms as follows:

hμν → hμν − ∂μξν − ∂νξμ: ð9Þ

Therefore, the terms in the SI action (4) should satisfy the
following transformation:

aðIÞ1 ð□I−2
∂μ∂ν∂

λ
∂
ρhλρÞhμν → aðIÞ1 ð□I−2

∂μ∂ν∂
λ
∂
ρhλρÞhμν

þ 4aðIÞ1 ð□I−1
∂ν∂

λ
∂
ρhλρÞξν

− 4aðIÞ1 ð□I
∂ν∂

ρξρÞξν; ð10Þ

aðIÞ2 ð□I−1
∂ν∂

λhμλÞhμν → aðIÞ2 ð□I−1
∂ν∂

λhμλÞhμν

þ 2aðIÞ2 ð□I−1
∂ν∂

μ
∂
λhμλÞξν

þ 2aðIÞ2 ð□I
∂
λhμλÞξμ

− 3aðIÞ2 ð□I
∂ν∂

λξλÞξν

− aðIÞ2 ð□Iþ1ξμÞξμ; ð11Þ

aðIÞ3 ð□IhμνÞhμν → aðIÞ3 ð□IhμνÞhμν þ 4aðIÞ3 ð□I
∂
μhμνÞξν

− 2aðIÞ3 ð□Iþ1ξνÞξν − 2aðIÞ3 ð□I
∂μ∂

νξνÞξμ;
ð12Þ

aðIÞ4 ð□I−1
∂μ∂νhÞhμν → aðIÞ4 ð□I−1

∂μ∂νhÞhμν

þ 2aðIÞ4 ð□I
∂νhÞξν

− 2aðIÞ4 ð□I−1
∂μ∂ν∂

λξλÞhμν

− 4aðIÞ4 ð□I
∂ν∂

λξλÞξν; ð13Þ

aðIÞ5 ð□IhÞh → aðIÞ5 ð□IhÞhþ 4aðIÞ5 ð□I
∂ρhÞξρ

− 4aðIÞ5 ð□I
∂
λ
∂ρξλÞξρ: ð14Þ

Note that there can be a partial integration difference
since a partial integration does not change the value of the
action. The gauge invariance requires that the action
remains unchanged under transformations (10)–(14) [55].
Therefore, the following quantity should be zero:

2ð2aðIÞ1 þ aðIÞ2 þ aðIÞ4 Þð□I−1
∂ν∂

λ
∂
ρhλρÞξν

þ ð−4aðIÞ1 − 3aðIÞ2 − 2aðIÞ3 − 4aðIÞ4 − 4aðIÞ5 Þð□I
∂ν∂

ρξρÞξν

þ 2ðaðIÞ2 þ 2aðIÞ3 Þð□I
∂
λhμλÞξμ − 2ðaðIÞ2 þ aðIÞ3 Þð□Iþ1ξμÞξμ

þ 2ðaðIÞ4 þ 2aðIÞ5 Þð□I
∂ρhÞξρ ¼ 0: ð15Þ

Equation (15) requires that the parameters in the action (4)
should satisfy

8>>>>><
>>>>>:

2aðIÞ1 þ aðIÞ2 þ aðIÞ4 ¼ 0

4aðIÞ1 þ 3aðIÞ2 þ 2aðIÞ3 þ 4aðIÞ4 þ 4aðIÞ5 ¼ 0

aðIÞ2 þ 2aðIÞ3 ¼ 0

aðIÞ4 þ 2aðIÞ5 ¼ 0:

ð16Þ

Therefore, for I ¼ 0, it can be inferred from Eq. (7) that

að0Þ1 ¼ að0Þ2 ¼ að0Þ3 ¼ að0Þ4 ¼ að0Þ5 ¼ 0: ð17Þ

For I ¼ 1, we have

að1Þ1 ¼ 0; að1Þ2 ¼ 2að1Þ5 ; að1Þ3 ¼ −að1Þ5 ; að1Þ4 ¼ −2að1Þ5 ;

ð18Þ

which shows that there is only one free parameter. For
I ≥ 2, we have two free parameters:

aðIÞ1 ¼ aðIÞ3 þ aðIÞ5 ; aðIÞ2 ¼ −2aðIÞ3 ; aðIÞ4 ¼ −2aðIÞ5 : ð19Þ

We redefine aðIÞ5 as aI and aðIÞ3 as bI . In this way,
considering the gauge symmetry, the most general second-
order action that can derive the field equation with up to
2Nth derivative terms can be written as

S ¼ S1 þ
XN
I≥2

SI; ð20Þ

where

S1 ¼
Z

d4xa1hμν½2∂ν∂λhμλ −□hμν − 2∂μ∂νhþ ημν□h�;

ð21Þ

SI ¼
Z

d4xhμν½ðaIþbIÞ□I−2
∂μ∂ν∂

λ
∂
ρhλρ−2bI□I−1

∂ν∂
λhμλ

þbI□Ihμν−2aI□I−1
∂μ∂νhþaIημν□Ih�: ð22Þ

It can be seen that if there is no derivative term higher
than the second order in the field equation, then this
action will degenerate into the Pauli-Fierz action, and this
is the Einstein-Hilbert action of linearized theory [55].
Specifically, due to the gauge invariance, we have the
relationship (17). This implies that S0, as given by Eq. (6),
is zero. Therefore, in the case where the equation only has
the highest second-order derivative term, the gauge invari-
ance requires that there is no mass term in the action,
thus only describing massless gravitons. It should also be
pointed out that when only a1 and a2 are nonzero, the
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action returns to the case of fðRÞ theory. And when only a1,
a2 and b2 are nonzero, the action returns to the case of the
four-dimensional critical gravity [58].
Varying the action (21) with respect to hμν, we can obtain

the linearized field equation of general metric theory:

2a1∂ν∂λhμλ þ 2a1∂μ∂λhνλ − 2a1□hμν

− 2a1∂μ∂νh − 2a1ημν∂λ∂ρhλρ þ 2a1ημν□h

þ
XN
I≥2

½2ðaI þ bIÞð□I−2
∂μ∂ν∂

λ
∂
ρhλρÞ − 2bI□I−1

∂ν∂
λhμλ

− 2bI□I−1
∂μ∂

λhνλ þ 2bI□Ihμν − 2aI□I−1
∂μ∂νh

− 2aIημν□I−1
∂λ∂ρhλρ þ 2aIημν□Ih� ¼ 0: ð23Þ

We hope that the theory we study includes the structure of
general relativity, implying that it should be an extension of
general relativity. This requires

a1 ≠ 0: ð24Þ
In fact, we can always make the normalization a1 sat-
isfy a1 ¼ − 1

2
.

III. POLARIZATION MODES
OF GRAVITATIONAL WAVES

IN THE GENERAL METRIC THEORY

In this section, we will study the polarizations in the
general metric theory. We first introduce a gauge invariant
method to simplify Eq. (23).
We can uniquely decompose the four-dimensional tensor

hμν as follows [59–61]:

h00 ¼ h00;

h0i ¼ ∂iγ þ βi;

hij ¼ hTTij þ ∂iϵj þ ∂jϵi þ
1

3
δijH þ

�
∂i∂j −

1

3
δijΔ

�
ζ;

ð25Þ
where βi and ϵi are transverse, and hTTij is transverse and
traceless:

∂iβ
i ¼ ∂iϵ

i ¼ 0; ð26Þ

δijhTTij ¼ 0; ∂
ihTTij ¼ 0: ð27Þ

Here and below, δij and δij are used to lower and raise the
three-dimensional space indices, respectively.
These perturbations can be combined into gauge invar-

iants. Under the gauge transformation (9), one can show
that gauge invariants include [61] one spatial tensor,

hTTij ; ð28Þ

one spatial vector,

Ξi ¼ βi − ∂0ϵi; ð29Þ

and two spatial scalars,

ϕ ¼ −
1

2
h00 þ ∂0γ −

1

2
∂0∂0ζ;

Θ ¼ 1

3
ðH − ΔζÞ: ð30Þ

The linearized field equation (23) can be represented by
these gauge invariants.
Similar to Eq. (25), by decomposing the linearized field

equation (23), one can obtain a series of decoupled scalar,
vector, and tensor equations [62]. These equations simplify
the analysis of the polarizationmodes of gravitationalwaves.
Now, we review some basic knowledge about the polari-

zation modes of gravitational waves. To detect gravitational
waves, we need to detect the relative displacement between
free test particles [1]. As mentioned in the Introduction, the
theoryweare studyingneeds to satisfy the condition (4) given
in Sec. I, where the action of a free particle is

S ¼
Z

ds: ð31Þ

Therefore, the relative motion between two test particles
satisfies the geodesic deviation equation [1]:

d2ηi
dt2

¼ −R
ð1Þ

i0j0η
j: ð32Þ

Here, ηi represents the relative displacement of the two test
particles, and the notation “(1)” above Ri0j0 means that we
only take the linear order of the i0j0 component of the
Riemannian tensor.
We define the polarization modes of gravitational waves

based on the relative motion of particles [1]. From Eq. (32),
we can see that as long as we know Ri0j0, we can obtain the
relative motion of the test particles. Therefore, Ri0j0 can be
utilized to define the polarization modes of gravitational
waves [2].
In this paper, we consider plane gravitational waves. For

a monochromatic plane gravitational wave, Ri0j0 can be
written as

R
ð1Þ

i0j0 ¼ AEijeikx: ð33Þ

Here, kμ is a four-wave vector, A represents the intensity of
the wave, and Eij is a symmetric matrix that contains all
polarization information of this plane wave and satisfies

EijEij ¼ 1: ð34Þ
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In four-dimensional spacetime, Eij has only six indepen-
dent components. Therefore, the gravitational waves in the
four-dimensional modified gravity theory have up to six
independent polarization modes. Any plane gravitational
wave can be written as a linear combination of these six
polarization modes.
In this paper, without loss of generality, we take the wave

vector direction as þz direction. We choose to write the
components of Ri0j0 in the following way to define the six
polarization modes of gravitational waves [2]:

R
ð1Þ

i0j0 ¼

0
B@

P4 þ P6 P5 P2

P5 −P4 þ P6 P3

P2 P3 P1

1
CA: ð35Þ

Here, P1;…; P6 correspond to the six independent polari-
zation modes of gravitational waves. We show the six
polarization modes in Fig. 1.
Using Eqs. (25) and (28)–(30), we can write Ri0j0 as

R
ð1Þ

i0j0 ¼ −
1

2
∂0∂0hTTij þ 1

2
∂0∂iΞj þ

1

2
∂0∂jΞi þ ∂i∂jϕ

−
1

2
δij∂0∂0Θ: ð36Þ

Thus, with Eqs. (35) and (36), we can obtain [45]

P1 ¼ ∂3∂3ϕ −
1

2
∂0∂0Θ; P2 ¼

1

2
∂0∂3Ξ1;

P3 ¼
1

2
∂0∂3Ξ2; P4 ¼ −

1

2
∂0∂0hTT11 ;

P5 ¼ −
1

2
∂0∂0hTT12 ; P6 ¼ −

1

2
∂0∂0Θ: ð37Þ

It can be seen that tensor modes only depend on hTTij and
vector modes only depend on Ξi. For scalar modes, ϕ andΘ
contribute to the longitudinal mode, and in addition, Θ also
contributes to the breathing mode.
Now, we will analyze the polarization modes of gravi-

tational waves allowed by the field equation (23).

A. Tensor modes

The equation of the tensor is

−a1□hTTij þ
XN
I≥2

bI□IhTTij ¼ 0: ð38Þ

Inspired by the analysis in Refs. [58,63], we can use the
method of solving an equation of degree N − 1 with one
unknown to express the operator

P
N
I≥2 bI□

I−1 − a1 as

Λ1

YM
k¼1

ð□ −mk
2Þnk : ð39Þ

Here, mk ðk ¼ 1; 2;…;MÞ are all roots of the following
equation:

XN
I≥2

bIxI−1 − a1 ¼ 0; ð40Þ

nk is the multiplicity corresponding to the root mk, Λ1 ≠ 0
is the coefficient of the highest order term in Eq. (40), and
M is the total number of different roots.
From Eqs. (39) and (38) can be rewritten as

□

YM
k¼1

ð□ −mk
2ÞnkhTTij ¼ 0: ð41Þ

FIG. 1. Six polarization modes of gravitational waves [2].
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We study the solution with the following plane gravita-
tional wave form:

hTTij ¼ Aijeikx; ð42Þ

where Aij is a constant tensor. At this point, due to a
separate operator □ on the left side of Eq. (41), the general
metric theory must have tensor mode gravitational waves
propagating at the speed of light.
If each mk is nonzero, then tensor gravitational waves

have a total ofM þ 1 different masses f0; m1; m2;…; mMg.
Otherwise, tensor gravitational waves have M different
masses fm1; m2;…; mMg. At each mass, tensor gravita-
tional waves have two polarization modes: the þ mode and
the × mode. Furthermore, we expect each mk

2 to be a non-
negative real number. This is because taking the imaginary
value of mk

2 would lead to exponential divergence of
solution (42), thereby rendering the theory linearly unsta-
ble. And when mk

2 is less than 0, the group speed of
gravitational waves exceeds the speed of light.

B. Vector modes

The equations of the two vectors are given by

−a1ΔΞi þ
XN
I≥2

bI□I−1ΔΞi ¼ 0; ð43Þ

−a1∂0Ξi þ
XN
I≥2

bI□I−1
∂0Ξi ¼ 0: ð44Þ

We study the solution with the following plane gravi-
tational wave form:

Ξi ¼ Aieikx; ð45Þ

where Ai is a constant vector. In the case of waves we are
studying, Eqs. (43) and (44) are equivalent to the following
equation:

−a1Ξi þ
XN
I≥2

bI□I−1Ξi ¼ 0: ð46Þ

Therefore, only Eq. (46) needs to be considered. Using
Eq. (39), vector equation (46) can be rewritten as

YM
k¼1

ð□ −mk
2ÞnkΞi ¼ 0: ð47Þ

It can be seen that in the general metric theory,
vector gravitational waves have M different masses
fm1; m2;…; mMg. At each mass, vector gravitational
waves have two polarization modes: the vector-x mode
and the vector-y mode.

C. Scalar modes

We can derive four equations for the four scalars from
Eq. (23):

− 2a1ΔΘþ
XN
I≥2

½−2aI□I−2Δ2ϕ − 2aI□I−2Δ2Θ

þ 3aI□I−2
∂
2
0ΔΘ − 2bI□I−2Δ2ϕþ bI□I−2

∂
2
0ΔΘ� ¼ 0:

ð48Þ

− 2a1∂0Θþ
XN
I≥2

½−2aI□I−2
∂0Δϕ − 2aI□I−2

∂0ΔΘ

þ 3aI□I−2
∂
3
0Θ − 2bI□I−2

∂0Δϕþ bI□I−2
∂
3
0Θ� ¼ 0:

ð49Þ

− 2a1ϕ − a1Θþ
XN
I≥2

½−2aI□I−2Δϕ

− 2aI□I−2ΔΘþ 3aI□I−2
∂
2
0Θ − 2bI□I−2

∂
2
0ϕ

− bI□I−2ΔΘþ 2bI□I−2
∂
2
0Θ� ¼ 0; ð50Þ

− a1□Θþ 2a1Δϕ − 3a1∂20Θ

þ 2a1ΔΘþ
XN
I≥2

½bI□IΘþ 2aI□I−1Δϕ

− 3aI□I−1
∂
2
0Θþ 2aI□I−1ΔΘ� ¼ 0: ð51Þ

We study the solution with the following plane gravi-
tational wave form:

Θ ¼ Beikx; ϕ ¼ Ceikx; kμkμ ¼ −m2; ð52Þ

where B, C are constants and m is the mass of the plane
gravitational wave. In the case of waves we are studying,
there are only two independent equations describing scalar
mode gravitational waves obtained from Eqs. (48)–(51):

−a1ð2ϕ − ΘÞ þ
XN
I≥2

bI□I−1ð2ϕ − ΘÞ ¼ 0; ð53Þ

− 2a1Θþ
XN
I≥2

½−ð3aI þ bIÞ□I−1Θ�

¼
XN
I≥2

ðaI þ bIÞ□I−2Δð2ϕ − ΘÞ: ð54Þ

Similar to Eq. (39), we can rewrite the following
operators in Eqs. (53) and (54) as

XN
I≥2

bI□I−1 − a1 ¼ Λ1

YM
k¼1

ð□ −mk
2Þnk ; ð55Þ
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XN
I≥2

½−ð3aI þ bIÞ□I−1� − 2a1 ¼ Λ2

YP
k¼1

ð□ − m̃k
2Þpk ; ð56Þ

XN
I≥2

ðaI þ bIÞ□I−2 ¼ Λ3

YQ
k¼1

ð□ −m02
k Þqk : ð57Þ

Thus, Eqs. (53) and (54) have the form

YM
k¼1

ð□ −mk
2Þnkð2ϕ − ΘÞ ¼ 0; ð58Þ

Λ2

YP
k¼1

ð□ − m̃k
2ÞpkΘ ¼ Λ3Δ

YQ
k¼1

ð□ −m02
k Þqkð2ϕ − ΘÞ:

ð59Þ
By substituting the plane wave form (52) into the above

equations, we find that

YM
k¼1

ðm2 −mk
2Þnkð2C − BÞ ¼ 0; ð60Þ

Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkB ¼ −k23Λ3

YQ
k¼1

ðm2 −m02
k Þqkð2C − BÞ:

ð61Þ
Now, the problem is reduced to solve the above two linear
equations. We denote the set of elementsm2

k, m̃
2
k, andm

02
k as

fm2
kg, fm̃2

kg, and fm02
k g, respectively. The scalar mode

gravitational wave at this time can be divided into the
following cases for discussion.
Case 1.1. m2 ∉ fm2

kg; m2 ∉ fm̃2
kg. In this case, from

Eq. (60), it can be inferred that 2C − B ¼ 0. Furthermore,
from Eq. (61), it can be inferred that B ¼ 0. Therefore,
B ¼ C ¼ 0. In this case, there is no scalar gravitational
wave with a mass of m.
Case 1.2. m2 ∉ fm2

kg; m2 ∈ fm̃2
kg. In this case, we still

have 2C − B ¼ 0. In addition, Eq. (61) is naturally sat-
isfied. Therefore, there is a scalar gravitational wave with a
mass of m that satisfies the relationship C ¼ B

2
.

Case 2.1. m2 ∈ fm2
kg; m2 ∉ fm̃2

kg; m2 ∉ fm02
k g. In this

case, Eq. (60) is naturally satisfied and Eq. (61) reduces to

C ¼ 1

2

�
1 −

Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk

k23Λ3

QQ
k¼1 ðm2 −m02

k Þqk
�
B: ð62Þ

Therefore, in this case, there is a scalar gravitational wave
with a mass of m that satisfies the relationship (62).
Case 2.2. m2 ∈ fm2

kg; m2 ∉ fm̃2
kg; m2 ∈ fm02

k g. In this
case, the solution is B ¼ 0 and there is a scalar gravitational
wave with mass m and B ¼ 0.

Case 2.3. m2 ∈ fm2
kg; m2 ∈ fm̃2

kg; m2 ∉ fm02
k g. The sol-

ution for this case is C ¼ B
2
. Therefore, there is a scalar

gravitational wave with mass m and C ¼ B
2
.

Case 2.4. m2 ∈ fm2
kg; m2 ∈ fm̃2

kg; m2 ∈ fm02
k g. In this

case, Eqs. (60) and (61) are naturally satisfied.
Therefore, there is a scalar gravitational wave with mass
m and independent B and C.
As can be seen, as long as m2 ∈ fm2

kg ∪ fm̃2
kg, there

exists a nonzero solution that satisfies the form of (52). To
avoid superluminal speed and linear instability, we also
expect each m̃2

k to be a non-negative real number.
Now, we study the polarization modes of the scalar

gravitational wave. Substituting the plane gravitational
wave solution (52) into Eq. (37), it can be seen that the
corresponding amplitudes of the longitudinal mode and the
breathing mode are

P1 ¼
����ðm2 − ω2ÞCþ 1

2
ω2B

����;
P6 ¼

���� 12ω2B

����: ð63Þ

Here, ω ¼ k0 is the frequency of the scalar gravita-
tional wave.
For case 1.2 and case 2.3, we have 2C − B ¼ 0. The

corresponding scalar gravitational wave is a mixture of the
longitudinal mode to the breathing mode, and the amplitude
ratio R of the longitudinal mode to the breathing mode is

R ¼
����P1

P6

���� ¼ m2

ω2
: ð64Þ

When R ¼ 0, i.e., m ¼ 0, the scalar gravitational wave
degenerates into a breathing mode.
For case 2.1, we have the relationship (62). The scalar

gravitational wave is a mixture of the longitudinal mode to
the breathing mode, and the amplitude ratio R of the
longitudinal mode to the breathing mode is

R ¼
����P1

P6

����
¼
����m2Λ3

QQ
k¼1 ðm2 −m02

k Þqk þ Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk

ω2Λ3

QQ
k¼1 ðm2 −m02

k Þqk
����:

ð65Þ
For case 2.2, the constraint is B ¼ 0. Thus, we have

P6 ¼ 0 and P1 ¼ jðm2 − ω2ÞCj. The scalar gravitational
wave is a longitudinal mode.
Finally, for case 2.4, there is no equation limiting the

values of B and C. Therefore, the scalar gravitational wave
could be a breathing mode, a longitudinal mode, or a mixed
mode of the two.
We summarize the results of scalar gravitational waves in

Table I:
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IV. SOME PROPOSITIONS ON POLARIZATIONS
OF GRAVITATIONAL WAVES

IN THE GENERAL METRIC THEORY

In the previous section, we studied the polarizations in
the general metric theory. It can be seen that starting from
the results in the previous section, we can derive some
universal properties of the polarization modes of gravita-
tional waves in the general metric theory. In this section, we
will list these universal properties and provide the corre-
sponding proofs.
Proposition 1. If the general metric theory allows vector

gravitational waves with a mass of m, then there must be
tensor gravitational waves with a mass of m in the theory.
Correspondingly, if the theory allows tensor gravitational
waves with a mass of m ≠ 0, then there must be vector
gravitational waves with a mass of m in the theory.
Proof. The above proposition can be easily observed

from Eqs. (41) and (47). According to Eq. (47), the theory
allows vector gravitational waves with a mass of m to be
equivalent to m∈ fmkg. Therefore, according to Eq. (41),
this theory also allows for tensor gravitational waves with a
mass of m. This completes the proof of the first sentence of
the proposition. The proof in the latter sentence is entirely
similar. ▪
Proposition 2. If the general metric theory allows tensor

gravitational waves propagating only at the speed of light,
then theremust be novector gravitationalwaves in the theory.
Proof. At present, we have not found any evidence that

tensor gravitational waves do not propagate at the speed of
light. Therefore, it is necessary to study the case where the
theory only allows tensor gravitational waves propagating
at the speed of light, which shows that the linear perturba-
tion equation describing them will inevitably have the
following form:

□
nhTTij ¼ 0: ð66Þ

Here, n∈ f1; 2;…; Ng. Comparing Eq. (66) with Eq. (38),
and considering the condition (24), it can be seen that the

general metric theory with tensor gravitational waves
propagating only at the speed of light requires

bI ¼ 0; I∈ f2; 3;…; Ng: ð67Þ

Thus, Eq. (46) will become −2a1Ξi ¼ 0. This requires
Ξi ¼ 0, and the theory does not allow vector gravitational
waves. ▪
Proposition 3. If the theory allows tensor gravitational

waves propagating only at the speed of light, then for a
scalar gravitational wave with mass m and frequency ω, it
must be a mixed mode of the longitudinal mode and
breathing mode. And the amplitude ratio of the longi-
tudinal mode to the breathing mode must be m2=ω2

(therefore, when m ¼ 0, it degenerates into a breath-
ing mode).
Proof. The general metric theory with tensor gravita-

tional waves propagating only at the speed of light is
equivalent to satisfying the condition (67), from which we
know that Eq. (53) requires 2ϕ − Θ ¼ 0. According to
Eq. (64), this requires that for a scalar gravitational wave
with mass m and frequency ω, the amplitude ratio of the
longitudinal mode to the breathing one is m2=ω2. ▪
Proposition 4. If the amplitude ratio of the longitudinal

mode to the breathing one of a scalar gravitational wave
with massm and frequency ω is notm2=ω2, then the theory
must have a field equation higher than the second derivative
and must have tensor and vector gravitational waves with
speed less than the speed of light.
Proof. If the amplitude ratio of the longitudinal mode to

the breathing one of a scalar gravitational wave with mass
m and frequency ω is not m2=ω2, then there must exist
J∈ f2; 3;…; Ng, such that bJ ≠ 0. In this case, there
must be a 2Jth order derivative term in Eq. (38).
Therefore, the theory must have a field equation higher
than the second derivative. In addition, according to
the proof of Proposition 2, bJ ≠ 0 means that the theory
allows a tensor gravitational wave with a mass m ≠ 0.

TABLE I. Scalar mode gravitational waves in various cases in the most general metric theory. In this table, the “✓” and “✗” in the third/
fourth column indicate, respectively, the existence and nonexistence of a breathing/longitudinal mode for the considered case. The ✓
and ✗ in the fifth column indicate, respectively, that the breathing mode and longitudinal mode are not independent and are independent.
The✓ and ✗ in the sixth column indicate, respectively, that the amplitude ratio of the longitudinal mode and the breathing mode is and is
not R ¼ m2=ω2.

Cases Conditions Breathing mode Longitudinal mode Dependent or not R ¼ m2=ω2

Case 1.1 m2 ∉ fm2
kg; m2 ∉ fm̃2

kg ✗ ✗ � � � � � �
Case 1.2 m2 ∉ fm2

kg; m2 ∈ fm̃2
kg ✓ ✓ ✓ ✓

Case 2.1 m2 ∈ fm2
kg; m2 ∉ fm̃2

kg; m2 ∉ fm02
k g ✓ ✓ ✓ ✗

Case 2.2 m2 ∈ fm2
kg; m2 ∉ fm̃2

kg; m2 ∈ fm02
k g ✗ ✓ � � � � � �

Case 2.3 m2 ∈ fm2
kg; m2 ∈ fm̃2

kg; m2 ∉ fm02
k g ✓ ✓ ✓ ✓

Case 2.4 m2 ∈ fm2
kg; m2 ∈ fm̃2

kg; m2 ∈ fm02
k g ✓ ✓ ✗ � � �
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By Proposition 1, the theory also allows for massive vector
gravitational waves. ▪

V. SECOND-ORDER ACTION OF THE GENERAL
SCALAR-TENSOR THEORY

We have completed the study of the polarizations in the
most general metric theory. In this section, we will turn to
construct the most general second-order action of the
general scalar-tensor theory.
For the general scalar-tensor gravity, in addition to the

metric gμν, there is an additional scalar field Ψ used to
describe gravity. We assume that the general scalar-tensor
theory has a flat spacetime background solution. Thus, we
can consider a perturbation on the background:

gμν ¼ ημν þ hμν; Ψ ¼ Ψ0 þ ψ : ð68Þ

Here, ημν is the Minkowski background metric, Ψ0 is the
constant background scalar field, and hμν and ψ are
perturbations of the background metric and the background
scalar field, respectively. In this way, the second-order
action of the general scalar-tensor theory will be a func-
tional of hμν and ψ .
Just like the general metric theory, when applying the

conditions given in Sec. I to the second-order action of
the most general four-dimensional scalar-tensor theory, we
have the following requirements:
(1) Each term in the action is a second-order term of hμν

and ψ , and it is a combination of ημν, ∂μ, hμν, ψ , and
the coupling parameters of the theory.

(2) The action is invariant under the gauge transforma-
tion xμ → xμ þ ξμðxÞ.

Note that the action is also independent of Eμνλρ, and each
term in the action has an even number of derivatives.
Here, we consider the most general second-order action

that can derive the field equations with terms up to 2Nth
derivative terms. This action consists of three parts. The
first part is constructed from h, the second part is from ψ ,
and the third part is from both h and ψ .
The most general form of the first part is exactly the same

as that of the most general metric theory, that is, it has the
same form as Eq. (3). The most general forms of the second
and third parts are

Z
d4x

XN
I¼0

cðIÞ1 ð□IψÞψ ; ð69Þ

and

Z
d4x

�XN
I¼1

ðdðIÞ1 □
I−1

∂μ∂νhμν þ dðIÞ2 □
IhÞψ þ dð0Þ2 hψ

�
;

ð70Þ

respectively. For convenience, we also define,

dð0Þ1 ¼ 0: ð71Þ
Under the transformation (8), ψ is invariant. Therefore,

the action (69) is naturally gauge invariant. The terms in the
action (70) transform as follows:

dðIÞ1 ð□I−1
∂μ∂νhμνÞψ → dðIÞ1 ð□I−1

∂μ∂νhμνÞψ
− 2dðIÞ1 ð□I

∂μξ
μÞψ ;

dðIÞ2 ð□IhÞψ → dðIÞ2 ð□IhÞψ − 2dðIÞ2 ð□I
∂μξ

μÞψ :
ð72Þ

It can be seen that the condition of gauge invariance for the
second-order action of the general scalar-tensor theory
reduces to

dðIÞ1 þ dðIÞ2 ¼ 0: ð73Þ
We redefine cðIÞ1 as cI and dðIÞ1 as dI. In this way,

considering the gauge symmetry, the most general second-
order action that can derive the field equations with up to
2Nth derivative terms can be written as

S ¼ S1 þ
XN
I≥2

SI; ð74Þ

where

S1 ¼
Z

d4xa1hμν½2∂ν∂λhμλ −□hμν − 2∂μ∂νhþ ημν□h�

þ
Z

d4xψ ½c0ψ þ c1□ψ þ d1∂μ∂νhμν − d1□h�; ð75Þ

SI ¼
Z

d4xhμν½ðaIþbIÞ□I−2
∂μ∂ν∂

λ
∂
ρhλρ−2bI□I−1

∂ν∂
λhμλ

þbI□Ihμν−2aI□I−1
∂μ∂νhþaIημν□Ih�

þ
Z

d4xψ ½cI□IψþdI□I−1
∂μ∂νhμν−dI□Ih�: ð76Þ

It should be pointed out that only when a1, c0, c1 and d1 are
not zero, the action (75) is just the case of Horndeski theory.
Varying the action (74) with respect to hμν, we can obtain

2a1∂ν∂λhμλ þ 2a1∂μ∂λhνλ − 2a1□hμν − 2a1∂μ∂νh

− 2a1ημν∂λ∂ρhλρ þ 2a1ημν□hþ d1∂μ∂νψ − d1ημν□ψ

þ
XN
I≥2

½2ðaI þ bIÞð□I−2
∂μ∂ν∂

λ
∂
ρhλρÞ − 2bI□I−1

∂ν∂
λhμλ

− 2bI□I−1
∂μ∂

λhνλ þ 2bI□Ihμν − 2aI□I−1
∂μ∂νh

− 2aIημν□I−1
∂λ∂ρhλρ þ 2aIημν□Ih

þ dI□I−1
∂μ∂νψ − dIημν□Iψ � ¼ 0: ð77Þ
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For the same reason as the general metric theory, the
condition (24) is still required here. And varying the action
(74) with respect to ψ , we can obtain

2c0ψ þ 2c1□ψ þ d1∂μ∂νhμν − d1□h

þ
XN
I≥2

½2cI□Iψ þ dI□I−1
∂μ∂νhμν − dI□Ih� ¼ 0: ð78Þ

VI. POLARIZATION MODES
OF GRAVITATIONAL WAVES IN THE MOST

GENERAL SCALAR-TENSOR THEORY

In this section, we will analyze the polarizations in the
most general scalar-tensor theory. Similar to themost general
metric theory, we will use the gauge invariant method.
For the most general scalar-tensor theory, it is easy to see

from Eqs. (77) and (78) that the additional scalar pertur-
bation ψ does not contribute to the decoupled tensor and
vector equations. So, the equations describing tensor and
vector gravitational waves are still Eqs. (38) and (46),
respectively. Therefore, the speed and polarization proper-
ties of tensor and vector modes in the most general scalar-
tensor theory are identical to those in the most general
metric theory. The results for tensor and vector modes in
Sec. IV are still fully valid.
Now, we only need to study the scalar modes of

gravitational waves. We can derive equations of the five
scalars from Eqs. (77) and (78):

− 4a1ΔΘþ d1Δψ þ
XN
I≥2

½−4aI□I−2Δ2ϕ − 4aI□I−2Δ2Θ

þ 6aI□I−2
∂
2
0ΔΘ − 4bI□I−2Δ2ϕþ 2bI□I−2

∂
2
0ΔΘ

þ dI□I−1Δψ � ¼ 0; ð79Þ

− 4a1∂0Θþ d1∂0ψ þ
XN
I≥2

½−4aI□I−2
∂0Δϕ

− 4aI□I−2
∂0ΔΘþ 6aI□I−2

∂
3
0Θ − 4bI□I−2

∂0Δϕ

þ 2bI□I−2
∂
3
0Θþ dI□I−1

∂0ψ � ¼ 0; ð80Þ

− 4a1ϕ − 2a1Θþ d1ψ þ
XN
I≥2

½−4aI□I−2Δϕ

− 4aI□I−2ΔΘþ 6aI□I−2
∂
2
0Θ − 4bI□I−2

∂
2
0ϕ

− 2bI□I−2ΔΘþ 4bI□I−2
∂
2
0Θþ dI□I−1ψ � ¼ 0; ð81Þ

− 2a1□Θþ 4a1Δϕ − 6a1∂20Θþ 4a1ΔΘ

− d1□ψ þ
XN
I≥2

½2bI□IΘþ 4aI□I−1Δϕ

− 6aI□I−1
∂
2
0Θþ 4aI□I−1ΔΘ − dI□Iψ � ¼ 0; ð82Þ

2c0ψ þ 2c1□ψ þ d1ð−2Δϕþ ΔΘ − 3□ΘÞ

þ
XN
I≥2

½2cI□Iψ þ dI□I−1ð−2Δϕþ ΔΘ − 3□ΘÞ� ¼ 0:

ð83Þ
We study the solution with the following plane gravi-

tational wave form:

Θ ¼ Beikx; ϕ ¼ Ceikx; ψ ¼ Deikx; kμkμ ¼ −m2;

ð84Þ
where B, C, D are constants and m is the mass of the plane
gravitational wave. In the case of the waves we are studying,
there are only three independent equations describing scalar
mode gravitational waves, obtained from Eqs. (79)–(83):

−a1ð2ϕ − ΘÞ þ
XN
I≥2

bI□I−1ð2ϕ − ΘÞ ¼ 0; ð85Þ

− 4a1Θþ
XN
I≥2

½−ð6aI þ 2bIÞ□I−1Θ�

−
XN
I≥2

ð2aI þ 2bIÞ□I−2Δð2ϕ − ΘÞ

þ d1ψ þ
XN
I≥2

dI□I−1ψ ¼ 0; ð86Þ

2c0ψ þ 2c1□ψ þ
XN
I≥2

2cI□Iψ

− d1Δð2ϕ − ΘÞ −
XN
I≥2

dI□I−1Δð2ϕ − ΘÞ

− 3d1□Θ −
XN
I≥2

3dI□IΘ ¼ 0: ð87Þ

We can rewrite the following operators in Eqs. (85), (86)
and (87) as

XN
I≥2

bI□I−1 − a1 ¼ Λ1

YM
k¼1

ð□ −mk
2Þnk ; ð88Þ

XN
I≥2

½−ð3aI þ bIÞ□I−1� − 2a1 ¼ Λ2

YP
k¼1

ð□ − m̃k
2Þpk ; ð89Þ

XN
I≥2

ðaI þ bIÞ□I−2 ¼ Λ3

YQ
k¼1

ð□ −m02
k Þqk ; ð90Þ

XN
I≥2

dI□I−1 þ d1 ¼ Λ4

YR
k¼1

ð□ − m̂k
2Þrk ; ð91Þ

XN
I≥2

2cI□I þ 2c1□þ 2c0 ¼ Λ5

YS
k¼1

ð□ − m̄k
2Þsk : ð92Þ
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Thus, Eqs. (85), (86) and (87) take the form

YM
k¼1

ð□ −mk
2Þnkð2ϕ − ΘÞ ¼ 0; ð93Þ

2Λ2

YP
k¼1

ð□ − m̃k
2ÞpkΘþ Λ4

YR
k¼1

ð□ − m̂k
2Þrkψ ¼ 2Λ3

YQ
k¼1

ð□ −m02
k ÞqkΔð2ϕ − ΘÞ; ð94Þ

Λ5

YS
k¼1

ð□ − m̄k
2Þskψ − 3Λ4

YR
k¼1

ð□ − m̂k
2Þrk□Θ ¼ Λ4

YR
k¼1

ð□ − m̂k
2ÞrkΔð2ϕ − ΘÞ: ð95Þ

By substituting the plane wave form (84) into the equations above, we find that

YM
k¼1

ðm2 −mk
2Þnkð2C − BÞ ¼ 0; ð96Þ

2Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkBþ Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkD ¼ −2k23Λ3

YQ
k¼1

ðm2 −m02
k Þqkð2C − BÞ; ð97Þ

Λ5

YS
k¼1

ðm2 − m̄k
2ÞskD − 3m2Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkB ¼ −k23Λ4

YR
k¼1

ðm2 − m̂k
2Þrkð2C − BÞ: ð98Þ

It is useful to write Eqs. (97) and (98) in matrix form,

AX ¼ B; ð99Þ

where

A ¼
�

2Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk
−3m2Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk Λ5

Q
S
k¼1 ðm2 − m̄k

2Þsk
�
;

X ¼
�
B

D

�
; B ¼ −k23ð2C − BÞ

�
2Λ3

QQ
k¼1 ðm2 −m02

k Þqk
Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk
�
: ð100Þ

We still denote the set of elementsm2
k as fm2

kg, the set of
elements m̃2

k as fm̃2
kg, etc. The scalar mode gravitational

waves can be divided into the following cases for
discussion.

A. Case 1: m2 ∉ fm2
kg

In this case, Eq. (96) requires 2C − B ¼ 0 and Eq. (99)
becomes

AX ¼ 0: ð101Þ

This can be further divided into more detailed cases for
discussion.
Case 1.1. m2 ∉ fm2

kg; detðAÞ ≠ 0. In this case, the
coefficient matrix A of the linear equation system (101)
is invertible. Therefore, we obtain X ¼ 0, i.e., B ¼ D ¼ 0.

Furthermore, due to 2C − B ¼ 0, there is C ¼ 0. The
theory does not allow scalar gravitational waves.
Case 1.2. m2∉fm2

kg;detðAÞ¼0;m2∈fm̃2
kg;m2∈fm̂2

kg.
Equations (97) and (98) are not independent. Therefore,
to study scalar gravitational waves, we only need to
consider Eq. (97). In this case, the equation can be
written as

2Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkBþ Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkD ¼ 0:

ð102Þ

It can be seen that when m2 ∈ fm̃2
kg and m2 ∈ fm̂2

kg,
Eq. (102) is naturally satisfied. So, B and D can take any
value. Therefore, there is a scalar gravitational wave with
mass m and C ¼ B

2
.
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Case 1.3. m2∉fm2
kg;detðAÞ¼0;m2∈fm̃2

kg;m2∉fm̂2
kg.

In this case, Eq. (102) requires D ¼ 0. There is a scalar
gravitational wave with mass m and C ¼ B

2
.

Case 1.4. m2∉fm2
kg;detðAÞ¼0;m2∉fm̃2

kg;m2∈fm̂2
kg.

In this case, Eq. (102) requires B ¼ 0. Furthermore, due to
2C − B ¼ 0, there is C ¼ 0. The theory does not allow
scalar gravitational waves.
Case 1.5. m2 ∉ fm2

kg; detðAÞ ¼ 0; m2 ∉ fm̃2
kg;

m2 ∉ fm̂2
kg. In this case, Eq. (102) requires

B ¼ −
Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk
2Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk
D: ð103Þ

There is a scalar gravitational wave with mass m
and C ¼ B

2
.

B. Case 2: m2 ∈ fm2
kg;detðAÞ ≠ 0

In this case, Eq. (96) is naturally satisfied. For Eq. (99),
the coefficient matrix A is invertible. Therefore, we have

X ¼ A−1B: ð104Þ

Here, A−1 is the inverse of A and can be expressed as
follows:

A−1 ¼ 1

detðAÞ

 
Λ5

Q
S
k¼1 ðm2 − m̄k

2Þsk −Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk
3m2Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk 2Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk

!
: ð105Þ

It can be seen that the relationship between B and C
satisfies

B ¼ −γk23ð2C − BÞ; ð106Þ

where

detðAÞγ ¼ 2Λ3Λ5

YQ
k¼1

ðm2 −m02
k Þqk

YS
k¼1

ðm2 − m̄k
2Þsk

− Λ2
4

YR
k¼1

ðm2 − m̂k
2Þrk

YR
k¼1

ðm2 − m̂k
2Þrk : ð107Þ

We can further divide it into more detailed cases for
discussion.
Case 2.1. m2 ∈ fm2

kg; detðAÞ ≠ 0; γ ¼ 0. In this case,
from Eq. (106), we obtain B ¼ 0. There is a scalar
gravitational wave with mass m and B ¼ 0.

Case 2.2. m2 ∈ fm2
kg; detðAÞ ≠ 0; γ ≠ 0. In this case,

from Eq. (106), we obtain

C ¼ γk23 − 1

2γk23
B: ð108Þ

There is a scalar gravitational wave with mass m that
satisfies the relationship (108).

C. Case 3: m2 ∈ fm2
kg;detðAÞ= 0

In this case, Eq. (96) is naturally satisfied. Due to
detðAÞ ¼ 0, the set of vectors composed of the first row
and the second row of the coefficient matrix A of Eq. (99)
is linearly dependent.
For the convenience of the following discussion, we

define the following two vectors:

α ¼
�
2Λ2

YP
k¼1

ðm2 − m̃k
2Þpk ;Λ4

YR
k¼1

ðm2 − m̂k
2Þrk ; 2Λ3

YQ
k¼1

ðm2 −m02
k Þqk

�
;

β ¼
�
−3m2Λ4

YR
k¼1

ðm2 − m̂k
2Þrk ;Λ5

YS
k¼1

ðm2 − m̄k
2Þsk ;Λ4

YR
k¼1

ðm2 − m̂k
2Þrk
�
: ð109Þ

It can be seen that the first two components of the vectors
defined above are derived from the coefficient matrix A,
and the last component is derived from B.
If the set of α and β is linearly independent, then Eq. (99)

will require 2C − B ¼ 0. In this case, the equation degen-
erates into the form of Eq. (101). Therefore, the analysis of
scalar gravitational waves in this case is completely similar
to the analysis in case 1.

We can break it down into more specific cases for further
discussion.
Case 3.1.1. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly independent, m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg. In this case,

B and D can take any value. Therefore, there is a scalar
gravitational wave with mass m and C ¼ B

2
.

Case 3.1.2. m2 ∈ fm2
kg; detðAÞ ¼ 0, the set of α and β is

linearly independent, m2 ∈ fm̃2
kg; m2 ∉ fm̂2

kg. In this case,
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D ¼ 0 and there is a scalar gravitational wave with mass m
and C ¼ B

2
.

Case 3.1.3. m2 ∈ fm2
kg; detðAÞ ¼ 0, the set of α and β is

linearly independent, m2 ∉ fm̃2
kg; m2 ∈ fm̂2

kg. In this case,
B ¼ C ¼ 0 and the theory does not allow scalar gravita-
tional waves.
Case 3.1.4. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly independent, m2 ∉ fm̃2

kg; m2 ∉ fm̂2
kg. In this case,

B ¼ −
Λ4

Q
R
k¼1 ðm2 − m̂k

2Þrk
2Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk
D: ð110Þ

Therefore, there is a scalar gravitational wave with mass m
and C ¼ B

2
.

If the set of α and β is linearly dependent, then Eqs. (97)
and (98) are not independent. At this point, we only need to
study Eq. (97).
We can delve into more specific cases for our discussion.
Case 3.2.1. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent, m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg; m2 ∈ fm02

k g. In
this case, Eq. (97) is naturally satisfied. Therefore, there is a
scalar gravitational wave with mass m and independent B
and C.
Case 3.2.2. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent,m2 ∉ fm̃2

kg; m2 ∈ fm̂2
kg; m2 ∈ fm02

k g. In
this case, Eq. (97) requires B ¼ 0. Therefore, there is a
scalar gravitational wave with mass m and B ¼ 0.
Case 3.2.3. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent,m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∈ fm02

k g. In
this case, Eq. (97) requires D ¼ 0. Therefore, there is a
scalar gravitational wave with mass m and independent B
and C.
Case 3.2.4. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent,m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg; m2 ∉ fm02

k g. In
this case, Eq. (97) requires 2C − B ¼ 0. Therefore, there is
a scalar gravitational wave with mass m and C ¼ B

2
.

Case 3.2.5. m2 ∈ fm2
kg; detðAÞ ¼ 0, the set of α and β is

linearly dependent, m2 ∉ fm̃2
kg; m2 ∉ fm̂2

kg; m2 ∈ fm02
k g.

In this case, Eq. (97) requires

2Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkBþ Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkD ¼ 0:

ð111Þ
Therefore, there is a scalar gravitational wave with mass m
and independent B and C.
Case 3.2.6. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent, m2 ∉ fm̃2

kg; m2 ∈ fm̂2
kg; m2 ∉ fm02

k g.
In this case, Eq. (97) requires

2Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkBþ 2k23Λ3

×
YQ
k¼1

ðm2 −m02
k Þqkð2C − BÞ ¼ 0: ð112Þ

Therefore, there is a scalar gravitational wave with mass m
that satisfies the relationship (112).
Case 3.2.7. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent, m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∉ fm02

k g.
In this case, Eq. (97) requires

Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkDþ 2k23Λ3

×
YQ
k¼1

ðm2 −m02
k Þqkð2C − BÞ ¼ 0: ð113Þ

Therefore, there is a scalar gravitational wave with mass m
and independent B and C.
Case 3.2.8. m2 ∈ fm2

kg; detðAÞ ¼ 0, the set of α and β is
linearly dependent, m2 ∉ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∉ fm02

k g.
In this case, Eq. (97) requires

2Λ2

YP
k¼1

ðm2 − m̃k
2ÞpkBþ Λ4

YR
k¼1

ðm2 − m̂k
2ÞrkD

¼ −2k23Λ3

YQ
k¼1

ðm2 −m02
k Þqkð2C − BÞ: ð114Þ

Therefore, there is a scalar gravitational wave with mass m
and independent B and C.
As can be seen, as long as m2 ∈ fm2

kg or detðAÞ ¼ 0 is
satisfied, there exists a nonzero solution given in Eq. (84).
We write the expression for detðAÞ as

detðAÞ ¼ 2Λ2Λ5

YP
k¼1

ðm2 − m̃k
2Þpk

YS
k¼1

ðm2 − m̄k
2Þsk

þ 3m2Λ2
4

YR
k¼1

ðm2 − m̂k
2Þrk

YR
k¼1

ðm2 − m̂k
2Þrk :

ð115Þ

It can be observed that Eq. (115) is a polynomial in m2, so
detðAÞ can always be equivalently written as

detðAÞ ¼ Λ6

YT
k¼1

ðm2 − m̊k
2Þtk : ð116Þ

Therefore, m2 ∈ fm2
kg or detðAÞ ¼ 0 is equivalent to

m2 ∈ fm2
kg ∪ fm̊k

2g. To avoid superluminal speed and
the linear instability, we also expect each m̊2

k to be a
non-negative real number.
Now, we study the polarization modes of the scalar

gravitational wave.
For all cases that satisfy B ¼ 0, using Eq. (63), it can be

seen that P6 ¼ 0 and P1 ¼ jðm2 − ω2ÞCj. The scalar
gravitational wave is a longitudinal mode.
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For all cases that satisfy 2C − B ¼ 0, using Eq. (63), it
can be seen that the scalar gravitational wave is a mixture
of the longitudinal mode and the breathing mode, and the
amplitude ratio R of the two modes is m2=ω2. When
R ¼ 0, the scalar gravitational wave degenerates into a
breathing mode.
For all cases where B andC can take any value, the scalar

gravitational wave could be a breathing mode, a longi-
tudinal mode, or a mixed mode of the two.
There are still case 2.2 and case 3.2.6. For case 2.2,

according to Eqs. (63) and (108), the scalar mode is a
mixture of the longitudinal mode and the breathing mode,
and the amplitude ratio R is

R ¼
����P1

P6

���� ¼
���� 1þ γm2

γω2

����: ð117Þ

For case 3.2.6, according to Eqs. (63) and (112), the scalar
gravitational wave is a mixture of the longitudinal mode of
the breathing mode, and their amplitude ratio R is

R ¼
����P1

P6

����
¼
����m2Λ3

QQ
k¼1 ðm2 −m02

k Þqk − Λ2

Q
P
k¼1 ðm2 − m̃k

2Þpk

ω2Λ3

QQ
k¼1 ðm2 −m02

k Þqk
����:

ð118Þ

We summarize the results of scalar gravitational waves in
Table II.

Now, we have completed the study of polarizations in the
most general scalar-tensor theory.
Finally, it should be emphasized that the most general

scalar-tensor theory still satisfies the four universal prop-
ositions given in Sec. V. This is because the proof of these
four propositions only requires Eqs. (38), (46), and (53).
These equations also hold true in the most general scalar-
tensor theory.

VII. CONCLUSION

In this paper, we have formulated the most general
second-order actions for perturbations in both the most
general metric theory and the most general scalar-tensor
theory, satisfying the four conditions outlined in the
Introduction. We also have some implicit assumptions:
(1) The existence of a flat spacetime background; (2) The
theory is an extension of general relativity; (3) The
Lagrangian is analytical. Then we studied the polarization
modes of gravitational waves in the general metric theory
and the general scalar-tensor theory. We found that both the
most general metric theory and scalar-tensor theory allow
for up to all six polarization modes, and these modes
depend on the parameter space. The specific properties of
the polarization modes and the speed of gravitational waves
in the two theories under different parameter spaces were
listed in Sec. IV and Sec. VII, respectively. Therefore, the
study of the polarization modes and speed of gravitational
waves in the specific general metric theory and scalar-
tensor theory will be entirely attributed to the determination
of the parameters in the second-order action given in
this paper.

TABLE II. Scalar modes in various cases in the most general scalar-tensor theory.

Cases Conditions
Breathing
mode

Longitudinal
mode

Dependent
or not R ¼ m2=ω2

Case 1.1 m2 ∉ fm2
kg; detðAÞ ≠ 0 ✗ ✗ � � � � � �

Case 1.2 m2 ∉ fm2
kg; detðAÞ ¼ 0; m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg ✓ ✓ ✓ ✓

Case 1.3 m2 ∉ fm2
kg; detðAÞ ¼ 0; m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg ✓ ✓ ✓ ✓

Case 1.4 m2 ∉ fm2
kg; detðAÞ ¼ 0; m2 ∉ fm̃2

kg; m2 ∈ fm̂2
kg ✗ ✗ � � � � � �

Case 1.5 m2 ∉ fm2
kg; detðAÞ ¼ 0; m2 ∉ fm̃2

kg; m2 ∉ fm̂2
kg ✓ ✓ ✓ ✓

Case 2.1 m2 ∈ fm2
kg; detðAÞ ≠ 0; γ ¼ 0 ✗ ✓ � � � � � �

Case 2.2 m2 ∈ fm2
kg; detðAÞ ≠ 0; γ ≠ 0 ✓ ✓ ✓ ✗

Case 3.1.1 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly independent, m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg ✓ ✓ ✓ ✓

Case 3.1.2 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly independent, m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg ✓ ✓ ✓ ✓

Case 3.1.3 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly independent, m2 ∉ fm̃2

kg; m2 ∈ fm̂2
kg ✗ ✗ � � � � � �

Case 3.1.4 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly independent, m2 ∉ fm̃2

kg; m2 ∉ fm̂2
kg ✓ ✓ ✓ ✓

Case 3.2.1 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∈ fm̃2

kg; m2 ∈ fm̂2
kg; m2 ∈ fm02

k g ✓ ✓ ✗ � � �
Case 3.2.2 m2 ∈ fm2

kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∉ fm̃2
kg; m2 ∈ fm̂2

kg; m2 ∈ fm02
k g ✗ ✓ � � � � � �

Case 3.2.3 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∈ fm02

k g ✓ ✓ ✗ � � �
Case 3.2.4 m2 ∈ fm2

kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∈ fm̃2
kg; m2 ∈ fm̂2

kg; m2 ∉ fm02
k g ✓ ✓ ✓ ✓

Case 3.2.5 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∉ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∈ fm02

k g ✓ ✓ ✗ � � �
Case 3.2.6 m2 ∈ fm2

kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∉ fm̃2
kg; m2 ∈ fm̂2

kg; m2 ∉ fm02
k g ✓ ✓ ✓ ✗

Case 3.2.7 m2 ∈ fm2
kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∈ fm̃2

kg; m2 ∉ fm̂2
kg; m2 ∉ fm02

k g ✓ ✓ ✗ � � �
Case 3.2.8 m2 ∈ fm2

kg; detðAÞ ¼ 0, α, β linearly dependent, m2 ∉ fm̃2
kg; m2 ∉ fm̂2

kg; m2 ∉ fm02
k g ✓ ✓ ✗ � � �
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We also found that whether it is the general metric theory
or the general scalar-tensor theory, the polarization modes
satisfy the following four properties: (1) If the theory allows
vector gravitational waves with mass m, then there must be
tensor gravitational waves with the same mass m in the
theory. Correspondingly, if the theory allows tensor gravi-
tational waves with mass m nonvanishing, then there must
be vector gravitational waves with the same mass m. (2) If
the general metric theory allows tensor gravitational waves
propagating only at the speed of light, then there must be no
vector gravitational waves. (3) If the theory allows tensor
gravitational waves propagating only at the speed of light,
then for a scalar gravitational wave with mass m and
frequency ω, it must be a mixed mode of the longitudinal
mode and breathing mode. And the amplitude ratio of the
two modes must be m2=ω2 (therefore, when m ¼ 0, it
degenerates into a breathing mode). (4) If the amplitude
ratio of the longitudinal mode and the breathing one of a
scalar gravitational wave with mass m and frequency ω is
not m2=ω2, then the theory must have a field equation
higher than the second derivative and must have tensor and
vector gravitational waves with speed less than the speed of
light. The existence of these universal properties indicates
that the detection of polarization modes of gravitational
waves can be used not only to test various modified
gravitational theories but also to test basic physical prin-
ciples. If not all of these properties are found to be correct,

then either the gravity theory that describes our world is not
the general metric theory or the general scalar-tensor
theory, or we need to modify at least one fundamental
physical principle.
We have studied polarization modes of gravitational

waves in the general metric theory and scalar-tensor theory.
An interesting question is whether this research method can
be extended to other modified gravity theories, such as the
vector-tensor theory and the scalar-vector-tensor theory. It
is necessary to conduct similar research on the polarization
modes of gravitational waves in other modified gravita-
tional theories and verify whether the universal properties
we have identified remain valid. This aspect will be left for
future work.
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