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Neutrino interactions are essential for an accurate understanding of the binary neutron star merger
process. In this article, we extend the code infrastructure of the well-established numerical-relativity code
BAM that until recently neglected neutrino-driven interactions. In fact, while previous work allowed
already the usage of nuclear-tabulated equations of state and employing a neutrino leakage scheme, we are
moving forward by implementing a first-order multipolar radiation transport scheme (M1) for the advection
of neutrinos. After testing our implementation on a set of standard scenarios, we apply it to the evolution of
four low-mass binary systems, and we perform an analysis of ejecta properties. We also show that our new
ejecta analysis infrastructure is able to provide numerical relativity-informed inputs for the codes POSSIS
and Skynet, for the computation of kilonova lightcurves and nucleosynthesis yields, respectively.
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I. INTRODUCTION

Simulations of binary neutron star (BNS) mergers are a
fundamental tool to support interpretations of multimes-
senger observations combining gravitational waves (GWs)
and electromagnetic (EM) signals produced by the same
transient event, allowing, among others, the study of matter
at supranuclear densities e.g., [1–5], the expansion rate of
the Universe [6], and the production of heavy elements,
e.g., [7–11].
The strong interest in BNS mergers is partially caused

by the myriad of observational data that has recently
become available with the detection of the GW signal
GW170817 [12] by advanced LIGO [13] and advanced
Virgo [14] and its associated EM counterparts; the
kilonova AT2017gfo [15–20] and the short γ-ray burst
GRB170817A [21,22], with long-lived signatures of its
afterglow [23–25]. With the start of the O4 observation run
of the LIGO-Virgo-Kagra Collaboration in May 2023,
more events of this kind are expected to be detected,
e.g., [26–29].
In the neutron-rich matter outflow, r-process nucleosyn-

thesis can set in, which can power transient EM phenom-
ena due to heating caused by radioactive decay of newly
synthesized nuclei in a wide range of atomic numbers [30],

corroborating the hypothesis that kilonovae are connected to
the production of heavy nuclei [31,32]. Analysis of
AT2017gfo has shown that kilonovae can consist of multiple
components, each one generated by ejecta with different
electron fractions and entropy [16,17,19,33–43]. Studies of
ejecta based on numerical-relativity (NR) simulations of
BNSmergers suggest that the properties of the ejecta depend
on the different ejection mechanisms during and after the
merger, e.g., Refs. [19,44–48].
Most NR simulations of BNS mergers are relatively

short (≤100 ms after the merger) and thus provide infor-
mation on the early time, dynamical ejecta, which is
generally divided into a tidal component (driven by tidal
torques) and a shocked component (driven by shocks
launched during NS core bounces) [49–56]. In equal-mass
mergers, the shocked component is found to be up to a
factor ∼10 more massive than the tidal one [57]. However,
the dynamical ejecta found in NR simulations cannot
account alone for the bright blue and late red components
of the observed kilonova in AT2017gfo [44,45,58].
Winds powered by neutrino absorption and angular

momentum transport can unbind Oð0.1M⊙Þ from the disk
surrounding the remnant on timescales ofOð0.1 − 1 sÞ and
could (if present) give the largest contribution to the
kilonova signal [59–70]. Until recent years, these winds
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have been mostly studied by means of long-term simu-
lations of neutrino-cooled disks [71–74]. Ab initio NR
simulations of the merger with advanced neutrino transport
and magnetohydrodynamics were not yet fully developed
at sufficiently long timescales [51–54,56,64,65,75–82],
but large progress has been made recently, e.g., [83].
Additionally, shorter (up to 100 ms postmerger) NR
simulations pointed out the existence of moderately neu-
tron-rich spiral-wave wind that is sufficiently massive and
fast to contribute to the early blue kilonova emission [81].
Another contribution to postmerger ejecta can come from
neutrino-driven winds that can lead to ∼10−4 − 10−3M⊙
ejecta with high electron fraction [59,61,84].
To perform multimessenger analyses of future GW and

EM detections associated with BNS mergers, NR simu-
lations, including microphysical modeling, are essential. In
particular, for the estimation of nucleosynthetic yields and
kilonova light curves, it is important to account for the
interaction of nuclear matter with neutrinos. This is because
neutrino emission and absorption are responsible for
determining the electron fraction of the ejecta, which
influences kilonova light curves and nucleosynthesis
strongly.
In the past, several attempts were made to map ejecta

properties to binary parameters like deformability and mass
ratio, e.g., [85–92], with the aim of building phenomeno-
logical fits for Bayesian analysis of kilonova light curves
and GW signal simultaneously. These studies showed that
neutrino radiation treatment plays an important role in
determining the mass, composition, and geometry of the
ejecta. The extension and improvements of such fits with
new data require the use of an advanced scheme to include
neutrino radiation.
The first attempt to include neutrino interactions in a

BNS merger simulation was made more than 20 years ago
in [93,94] by means of a neutrino leakage scheme (NLS).
NLS employs an effective neutrino emissivity assigned to
each fluid element according to its thermodynamical
configuration and the optical depth of the path from it to
infinity. This effective emission represents the rate of
neutrino energy/number that escapes a fluid element.
Hence, NLS is limited to model neutrino cooling.
Unfortunately, this quantity is only known in the diffusive
and free-streaming regimes, and phenomenological inter-
polation is used for gray zones. The main issue of NLS is
the fact that, by neglecting the neutrino heating and
pressure on the nuclear matter, it leads to a significant
underestimation of the ejecta’s electron fraction [55] and
affects the matter dynamics. The more recent development
of an advanced spectral leakage (ASL) scheme tried to
solve this issue by phenomenological modeling of neutrino
flux anisotropies [95–97].
A more accurate theoretical approach to incorporate

neutrino effects would require evolving the neutrinos
distribution function according to the general relativistic

Boltzmann equation [98]. In principle, it is possible to
follow this approach in a conservative 3þ 1 formulation,
e.g., [99]. However, since the distribution function is
defined in the (6þ 1)-dimensional one-particle phase
space, the computational cost of such an approach is
prohibitive. Therefore, in recent years, more computation-
ally efficient neutrino radiation transport approaches have
become increasingly popular. Amongst them is the so-
called moment scheme, which is based on a multipolar
expansion of the moments of the radiation distribution
function [100]. The 3þ 1 decomposition of such a for-
malism has been first studied in [101]. The basic idea of this
framework is to dynamically evolve the distribution func-
tion of neutrino intensity in a base of multipoles up to a
certain rank and evolve them as field variables. Most of the
radiation transport codes used in NR consider the transport
of the zeroth and first-rank moments, thus referred to asM0
scheme [55] orM1moments scheme [101–105]. It is worth
noting that the aforementionedM1 implementations rely on
the gray approximation, i.e., the considered moments are
frequency integrated. This description makes the compu-
tation significantly less expensive but less accurate regard-
ing the matter-neutrino interaction rates, which are strongly
dependent on the neutrino energy [106]. We want to point
out that not only in BNS simulations but also in core-
collapse supernovae and disk simulations, multipolar radi-
ation transport schemes are regularly used. In most cases,
even in more sophisticated versions, like nongray, energy-
dependent schemes, e.g., [107–113].
One important artifact of multipolar radiation transport

schemes is the well-known unphysical interaction of cross-
ing beams [103], which is due to the inability of the M1
scheme to treat higher-order moments of the distribution.
The crossing beams and energy-dependent interaction rates
issues are both cured by Monte Carlo radiation transport. In
the latter, radiation is modeled by an arbitrary number of
neutrino packets, each one with its own energy and
momentum. This scheme has recently been adapted to
NR simulation [114–116].
Another scheme that can, in principle, solve these issues

is the relativistic Lattice-Boltzmann [117], where the
momenta component of the Boltzmann equation is solved
in every space point on a discretized spherical grid in order
to model the transport even in presence of higher-order
momenta. Overall, we refer to [118] for a detailed review of
neutrino transport methods.
Among all the mentioned schemes, we decided to

implement M1 transport because of its ability to treat
neutrino heating and pressure with a reasonable computa-
tional cost and for being well-tested in NR simulations of
BNS mergers.
This article is structured as follows: In Sec. II, we recap

the governing equations of general relativistic radiation
hydrodynamics (GRRHD) andM1 transport. In Sec. III, we
discuss the numerical methods used to integrate M1
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transport equations, paying particular attention to the stiff
source terms and the advection of radiation in the trapped
regime. In Sec. IV, we show the results of the tests we
performed to validate the code in different regimes. In
Sec. V, we present the application of our newly developed
code to the merger of binary neutron stars with two
different equations of state (EOSs) and mass ratios, with
a description of ejecta geometry, neutrino luminosity, GW
signal, nucleosynthesis yields, and kilonova light curves.
Throughout this article, we will use the Einstein notation

for index summation with the ð−;þ;þ;þÞ signature of the
metric and (unless differently specified) geometric units,
i.e., G ¼ c ¼ M⊙ ¼ 1. Also, the Boltzmann constant is
κB ¼ 1.

II. GOVERNING EQUATIONS

A. (3 + 1)-decomposition and spacetime evolution

The spacetime dynamics is considered by numerically
solving Einstein’s field equations in 3þ 1 formulation, for
which the line element reads

ds2 ¼ −α2dt2 þ ðdxi þ βidtÞðdxj þ βjdtÞγij; ð1Þ

where α is the lapse function, βi is the shift vector, and γij is
the three-dimensional spatial metric (or 3-metric) induced
on the three-dimensional slices of the four-dimensional
spacetime, identified by t ¼ constant. The 3-metric is
given by

γαβ ¼ gαβ þ nαnβ; ð2Þ

where gαβ is the four-dimensional spacetime metric and nα

is the timelike, normal vector field. By construction, nα is
future directed, normal to each point of a given t ¼
constant slice and normalized to nμnμ ¼ −1. In the coor-
dinate system given by the line element of Eq. (1), the
normal vector field has components

nα ¼
�
1

α
;−

βk

α

�
; nα ¼ ð−α; 0Þ: ð3Þ

In this framework, the BAM code [119–123] can solve
for the Einstein field equations. In this work, we do so
using the Z4c formulation with constraint damping terms
[124–126] as implemented in [127].

B. General relativistic hydrodynamics

As in the previous version of BAM that included
a neutrino leakage scheme [123], we solve general-
relativistic radiation hydrodynamics equations arising from
the conservation of stress-energy tensor of matter with
source terms representing neutrino interactions. Further-
more, the conservation of baryon number and transport of
electron fraction lead to

∇μðρuμÞ ¼ 0; ð4Þ

∇μT
μν
matter ¼ −Sν; ð5Þ

∇μðρYeuμÞ ¼ mbR; ð6Þ

with ρ being the rest mass density, Tmatter
μν the stress energy

tensor of matter, uμ its four-velocity, mb the baryon mass,
and Ye ¼ np=nb ¼ ðne− − neþÞ=nb the electron fraction.
ne− , neþ , np, and nb are the number densities of electrons,
positrons, protons, and baryons, respectively. The source
terms Sμ and R represent the interaction of the fluid with
neutrinos, i.e., neutrino cooling and heating, and the lepton
number deposition rate, respectively.
We employ the usual decomposition of the fluid’s

4-velocity as follows:

uα ¼ Wðnα þ vαÞ; nαvα ¼ 0; ð7Þ

withW ¼ −nαuα ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p
, being the Lorentz factor.

Assuming matter to be an ideal fluid, its stress-energy
tensor can be decomposed as

Tμν
matter ¼ ρhuμuν þ pgμν; ð8Þ

where h and p are the specific enthalpy and the pressure of
the fluid, respectively. Equations (4)–(6) are expressed as
conservative transport equations following the standard
Valencia formulation [128] as already implemented in
previous versions of BAM, e.g., [120,123], which is based
on the evolution of the conservative variables

D ¼ ffiffiffi
γ

p
Wρ; ð9Þ

τ ¼ ffiffiffi
γ

p ðW2hρ − pÞ −D; ð10Þ
Si ¼ ffiffiffi

γ
p

W2hρvi; ð11Þ

DY ¼ ffiffiffi
γ

p
WρYe: ð12Þ

As an upgrade, in comparison to our previous implemen-
tation, we modified the source terms Sμ and R to adapt
them to the new neutrino scheme, as we will discuss in the
following.

C. Multipolar formulation for radiation transport

In this article, we implement a first-order multipolar
radiation transport scheme following the formulation of
Refs. [100,101]. The multipolar formulation was originally
developed to reduce the dimensionality of the general-
relativistic Boltzmann equation for the neutrino distribution
function in the phase space

dfðxμ; pμÞ
dl

¼ Scollðxμ; pμ; fÞ; ð13Þ
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with f being the distribution of neutrinos, l being the proper
length traveled by neutrinos in a fiducial observer frame,
and Scoll being a collisional term that takes into account the
interaction of neutrinos with matter, i.e., emission, absorp-
tion, and scattering. The derivative d=dl is along the
trajectory in the phase space of the neutrinos, so it will
have a component in physical spacetime and one in
momentum space. Since neutrinos are assumed to travel
on lightlike geodesics, their momentum has to satisfy the
constraint pαpα ¼ 0. This reduces the dimensionality of
the problem by one and allows us to describe the
4-momentum via the variables Ω and ν, representing the
space direction of particles on a solid angle and their
frequency in the fiducial observer frame. To make the
evaluation of collisional sources easier, we chose the fluid
frame as the fiducial frame. In the following text, ν will
always be the frequency of neutrinos as measured in the
fluid frame.
At this point, we still have to handle a (6þ 1)-dimen-

sional problem that, if we want to ensure a sufficient
resolution and accuracy for proper modeling, would com-
putationally be too expensive. Hence, we need to work out
a partial differential equation on the physical 3D space that
can capture the main features of radiation even without
fully solving for f in the momentum space. In this regard,
Thorne [100] showed that it is convenient to decompose the
intensity of radiation I ¼ ν3f and the source Scoll in
multipoles of the radiation momentum pα

Mα1…αkðxβÞ≔
Z

∞

0

dνν3
Z

dΩ
fðν;Ω;xμÞ

νk
pα1…pαk ; ð14Þ

Sα1…αkðxβÞ ≔
Z

∞

0

dνν3
Z

dΩ
Scollðν;Ω; xμ; fÞ

νk
pα1…pαk :

ð15Þ

Plugging this ansatz into the Boltzmann Equation, Eq. (13),
one can derive the following evolution equations for every
radiation moment MAk :

∇βMAkβ − ðk − 1ÞMAkβγ∇γuβ ¼ SAk; ð16Þ

where Ak is a multi-index of order k; cf. Ref. [100].
In this work, we will focus on the second-order multi-

pole Mαβ, which is known to be equal to the stress-energy
tensor of radiation. It can be decomposed employing
the laboratory frame or employing the fluid frame by
choosing two different decompositions of the radiation
momentum pα:

fluid frame : pα ¼ νðuα þ lαÞ; ð17Þ

laboratory frame : pα ¼ ν0ðnα þ lαÞ; ð18Þ

where ν and ν0 are neutrino frequency in the fluid and lab
frame, respectively,1 with the constraints uαlα ¼ nαlα ¼ 0
and lαlα ¼ lαlα ¼ 1.
In such a way, we can express the radiation stress-energy

tensor in the fluid frame as

Tαβ
rad ¼ Mαβ ¼ Juαuβ þ uαHβ þHαuβ þKαβ; ð19Þ

with uαHα ¼ Sαβuα ¼ 0 and

J ≔
Z

∞

o
dνν3

Z
dΩfðν;Ω; xμÞ; ð20Þ

Hα ≔
Z

∞

o
dνν3

Z
dΩfðν;Ω; xμÞlα; ð21Þ

Kαβ ≔
Z

∞

o
dνν3

Z
dΩfðν;Ω; xμÞlαlβ; ð22Þ

representing respectively the energy, the momentum, and
the stress-energy tensor measured in the fluid frame. We
will use these variables to express source terms since
interaction rates of radiation with matter are usually
evaluated in the fluid frame, in particular, we will write
the 1st source multipole following Shibata et al. [101] as

Sα ¼ ηuα − κaJuα − ðκa þ κsÞHα; ð23Þ
with κa being the absorption opacity, κs being the scattering
opacity, and η being the emissivity. In our work, we
incorporate neutrino emission, absorption, and elastic scat-
tering into the source term, butwe neglect inelastic scattering.
In general, the emissivity η and the opacities κa, κs

depend both on the fluid properties, namely on the density
of the matter ρ, the temperature T, and the electron fraction
Ye, but also on the neutrino spectrum. Unfortunately, the
latter information is not available in our formalism since we
only evolve averaged quantities. This represents one of the
weaknesses of the employed scheme. Hence, to enable
dynamical simulations, we have to employ additional
assumptions that we will outline in the following.

D. M1 evolution equations

Reference [101] showed that fluid-frame variables are
not suitable for obtaining a well-posed system of partial
differential equations in conservative form. For such a
purpose, we need to perform a decomposition in the
laboratory frame as

Tαβ
rad ¼ Mαβ ¼ Enαnβ þ Fαnβ þ Fβnα þ Pαβ; ð24Þ

with nαFα ¼Pαβnα ¼Ft ¼Ptα ¼ 0, in this case, E, Fi, and
Pij represent, respectively, the energy density, momentum

1Note that ν appearing in the integrals of Eqs. (14) and (15) is
always the frequency in the fluid’s frame.
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density, and stress tensor as measured in the lab frame and
are defined in an analogous way as their fluid frame
equivalents.
We can work out laboratory frame variables starting from

the fluid frame ones and vice versa performing different
projections of Tαβ

rad. For our work, we will use

J ¼ W2E − 2WFiui þ Pijuiuj; ð25Þ

Hα ¼ ðEW − FiuiÞhαβnβ þWhαβF
β − hαi ujP

ij; ð26Þ

where we have defined the 3-metric in the fluid frame as

hαβ ¼ gαβ þ uαuβ: ð27Þ

Reference [101] showed that by decomposing Mαβ as in
Eq. (24) and plugging it into Eq. (16) with k ¼ 1, we can
get the following conservative evolution equations for the
energy and momentum of neutrinos:

∂tẼþ ∂jðαF̃j − βjẼÞ
¼ αðP̃ijKij − F̃j

∂j lnðαÞ − S̃αnαÞ; ð28Þ

∂t
eFi þ ∂jðαP̃j

i − βj eFiÞ

¼
�
−Ẽ∂iαþ F̃k∂iβ

k þ α

2
P̃jk

∂iγjk þ αS̃αγiα

�
; ð29Þ

where Kij is the extrinsic curvature of the spatial hyper-
surface, and we defined the densitized variables Ẽ ¼ ffiffiffi

γ
p

E,
F̃i ¼ ffiffiffi

γ
p

Fi, P̃ij ¼ ffiffiffi
γ

p
Pij, and S̃α ¼ ffiffiffi

γ
p

Sα. Here, we can
clearly see that the source terms of this equation can be
divided into two categories, the gravitational ones, propor-
tional to the first derivatives of the metric and the gauge,
and the collisional ones, proportional to S̃α. While the
former is responsible for effects like neutrino path bending
and gravitational blueshift/redshift; the latter describes
neutrino emission, absorption, and scattering by the fluid.

E. Closure relation

Since we do not have an evolution equation for Pij, we
can only estimate it from E and Fi. We follow the
prescription discussed in [101],

Pij ¼ 1

2
ð3χðζÞ − 1ÞPij

thin þ
3

2
ð1 − χðζÞÞPij

thick; ð30Þ

with Pthin and Pthick being the closures in the optically thin
and thick regimes, respectively, and the quantity χ is called
Eddington factor. The Eddington factor was introduced to
model the transition from a trapped radiation regime
(χ ¼ 1=3) to a free streaming radiation regime (χ ¼ 1).
In this work, we use the so-called Minerbo closure [129]

χðζÞ ¼ 1

3
þ ζ2

6 − 2ζ þ 6ζ2

15
; ð31Þ

where

ζ2 ¼ HαHα

J2
; ð32Þ

is the closure parameter. We expect ζ → 1 for free stream-
ing radiation and ζ → 0 for trapped radiation.
The free-streaming closure can be expressed as [101]

Pij
thin ¼ E

FiFj

F2
: ð33Þ

The computation of Pij
thick is more elaborated since the thick

closure must be defined in such a way to be isotropic in the
fluid frame, i.e., we want

Kαβ
thick ¼

1

3
Jhαβ: ð34Þ

References [103,104] showed thatKαβ
thick of Eq. (34) leads to

Pij
thick ¼

4

3
JthickW2vivjþ2WvðiγjÞα Hα

thickþ
1

3
Jthickγij; ð35Þ

with

Jthick ¼
3

2W2 þ 1
½Eð2W2 − 1Þ − 2W2Fivi�; ð36Þ

γiαHα
thick¼

Fi

W
−
4

3
JthickWviþW½Fivi−EþJthick�vi: ð37Þ

The system composed of Eqs. (28) and (29) is proven to
be strongly hyperbolic using the closure (30) as long as the
causality constraint E ≤ jFj is satisfied. Equation (30) also
guarantees that characteristic velocities of the system [(28)
and (29)] are not superluminal.
Similar to other implementations of this scheme, e.g.,

[103–105,130], we divide neutrinos into three species; νe,
νe, and νx, with this last species collecting all heavy
neutrinos and respective antineutrinos together. In this
way, we are solving three M1 systems (28) and (29)
coupled to each other only through the fluid.

F. Neutrino number density

The previously described scheme still misses any infor-
mation about the neutrinos energy spectrum, which will be
important for having an accurate estimate of the fluid’s
neutrino opacities κa and κs (since cross sections of the
involved processes are strongly dependent on neutrino
energy). The simplest way to improve the previous scheme
in this sense is adding the evolution of neutrino number
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density in such a way to be able to get the neutrino average
energy hϵνii in every point.
In our implementation, we set up the neutrino number

evolution following [104,131], i.e., through the transport
equation

∇αðnfαÞ ¼ ηn − κnn; ð38Þ

where n is the neutrino number density in the fluid frame
and ηn and κn are the neutrino number emissivity and
opacity respectively and nfα is the four-dimensional
number flux. According to Ref. [104] we chose

fα ¼ uα þHα

J
; ð39Þ

in such a way that the projection of nfα along uα gives the
neutrino number density in the fluid frame,

n ¼ −nfαuα: ð40Þ

Expressed in slice adapted coordinates, Eq. (38) reads

∂tðα
ffiffiffi
γ

p
nf0Þ þ ∂iðα

ffiffiffi
γ

p
nfiÞ ¼ α

ffiffiffi
γ

p ðηn − κnnÞ; ð41Þ

which is a transport equation for the conservative variable

N ≔ α
ffiffiffi
γ

p
nf0: ð42Þ

Finally, we can find f0 and fi using the definition of
slice-adapted coordinates:

αf0 ¼ −fαnα ¼ W −
Hαnα
J

; ð43Þ

fi ¼ Wvi þ γiαHα

J
− βif0: ð44Þ

We solve Eq. (41) together with Eqs. (28) and (29) to get a
complete and closed system of hyperbolic transport equa-
tions in conservative form. Note that in this formulation, the
average energy of neutrinos in the fluid frame can be
simply obtained by

hϵνi ¼
J
n
: ð45Þ

G. Coupling to hydrodynamics

To model the exchange of energy and momentum
between neutrinos and the fluid, we modify the conserva-
tion of the matter’s stress-energy tensor into

∇βT
βα
matter ¼ −

X
νi

Sανi ; ð46Þ

where the sum runs over all three neutrino species. This
means

∂tτ ¼ standard hydro rhsþ
X
νi

αnαS̃α;νi ; ð47Þ

∂tSi ¼ standard hydro rhs −
X
νi

αγαi S̃α;νi ; ð48Þ

where τ and Si are the conservative internal energy and
momentum in the standard Valencia formulation of GRHD.
We also take the variation of the electron fraction of the

fluid into account and solve the transport equation

∇αðρYeuαÞ ¼ mbR; ð49Þ

with a source term given by interaction with neutrinos

R ¼ −
X
νi

signðνiÞðηn;νi − κn;νinνiÞ; ð50Þ

where

signðνiÞ ¼
8<
:

1; if νi ¼ νe;

−1; if νi ¼ ν̄e;

0; if νi ¼ νx;

ð51Þ

is a function that accounts for different signs of contribu-
tions given by different neutrinos species.

H. Opacities and emissivities

Within our gray scheme, we evolve energy-integrated
variables and lose information about the neutrino spectrum.
This means opacities contained in Eqs. (23) and (50)
represent effective frequency-averaged quantities. In the
case of neutrinos in thermal equilibrium with the fluid, we
can define the equilibrium opacities as

κeqa;s ¼
Rþ∞
0 κa;sðϵÞIeqðϵ; T; μÞdϵRþ∞

0 Ieqðϵ; T; μÞdϵ ; ð52Þ

κeqn ¼
Rþ∞
0 κaðϵÞneqðϵ; T; μÞdϵRþ∞

0 neqðϵ; T; μÞdϵ ; ð53Þ

where ϵ is the neutrino energy, Ieq and neq are the
spectral energy density and number density at equilibrium,
respectively. T is the fluid’s temperature and μ is the
neutrino chemical potential at equilibrium. We assume
Ieq ∼ ϵ3fFDðϵ; T; μÞ and neq ∼ ϵ2fFDðϵ; T; μÞ with fFD
being the ultrarelativistic Fermi-Dirac distribution function.
The fluid’s temperature T is one of the primitive

variables provided by the hydrodynamic sector in our
new BAM implementation [123] while the chemical
potential at equilibrium μ is obtained by the nuclear
EOS table. The latter actually provides the chemical
potential for e−, n, and p. Based on these, we can compute
the potentials for neutrinos assuming β-equilibrium, i.e.,
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μνe ¼ μe− þ μp − μn; μν̄e ¼ −μνe ; μνx ¼ 0: ð54Þ

The frequency-dependent opacities κa;sðϵÞ are obtained
from the open source code NuLib [107] available at [132].
For a given EOS, they are evaluated as functions of the
fluid’s rest-mass density ρ, temperature Tf, and electron
fraction Ye and given in the form of a 4D table. For every
value of ϵ in the opacity table, we perform a 3D inter-
polation with respect to the other three variables (ρ, T, Ye)
to get κa;sðϵÞ. Finally, we use those values to discretize and
evaluate the integrals in Eqs. (52) and (53) to obtain the
desired opacities. For our work, we use 400 points for ρ,
180 for T, 60 for Ye, and 24 for ϵ. Table I lists all reactions
taken into account for the calculation of the spectral
opacities and the emissivities with related references about
the calculation method. We note that, in principle, NuLib
could include more reactions.
As also reported in Ref. [138], NuLib tables give an

unphysically high opacity in regions with ρ < 1011 g=cm3

and T ≲ 0.35 MeV. This is because of blocking factors that
are applied to the absorption opacities for ρ > 1011 g=cm3.
Unfortunately, the application of blocking factors in
lower-density regions leads to numerical issues for
1 MeV≲ T ≲ 30 MeV. Therefore, we modified the origi-
nal NuLib code to extend the domain of application of
absorption blocking factors to the regions where T <
0.35 MeV and Ye ≶ 0.4 (> for νe, < for ν̄e) independently
on ρ, in addition to the region ρ > 1011 g=cm3. This
ensures that we obtain a smooth table that is free of

unphysical absorption opacities that were previously affect-
ing the low-density and low-temperature regions.
So far, we assumed neutrinos to be in equilibrium with

the fluid. However, this is, in general, not the case. Since
the cross sections of neutrinos scale with ϵ2, the assumption
of neutrinos at equilibrium with the fluid would lead to an
underestimate of opacities when hot neutrinos out of
equilibrium cross a region of cooler fluid. To take this
energy dependence into account, we apply the correction

κa;s;n ¼ κeqa;s;n

�
Tν
eff

T

�
2

; ð55Þ

which is also used in most other gray M1 implementations
[104,105,131]. Where Tν

eff is the effective temperature of
neutrinos. To obtain Tν

eff , we assume neutrinos spectrum to
be Planckian with temperature Tν

eff and reduced chemical
potential ην ¼ μ=Tf. We can then evaluate the average
neutrino energy as

hϵνi ¼
F3ðηνÞ
F2ðηνÞ

Tν
eff ; ð56Þ

with Fk being the Fermi integral of order k. Since we know
hϵνi ¼ J=n, we can solve Eq. (56) for

Tν
eff ¼

F2ðηνÞ
F3ðηνÞ

J
n
; ð57Þ

and plug Tν
eff into Eq. (55) to obtain the corrected opacity.

EOS tables only provide chemical potentials of neutri-
nos at thermal equilibrium with the fluid. When neutrinos
get decoupled from the latter, we expect to approach a
distribution with zero chemical potential, i.e., the distribu-
tion describing a fixed number of particles. As in [103], to
qualitatively account for this transition, we are evaluating
the reduced chemical potentials of Eq. (57) in the follow-
ing way:

ην ¼
μ

T
ð1 − e−τÞ; ð58Þ

where τ is the optical depth provided by the NLS of [123].
Finally, once we have set κa;s;n, we remain with η and ηn

to be set. For that, we assume the Kirchhoff law

η ¼ κeqa
4π

ðhcÞ3 F3ðμ=TÞT4; ð59Þ

ηn ¼ κeqn
4π

ðhcÞ3 F2ðμ=TÞT3: ð60Þ

Such a choice ensures that neutrinos thermalize with the
fluid and reach the expected thermal equilibrium state when
trapped.

TABLE I. Weak-interaction processes taken into account in our
work using NuLib. All processes involving charged particles
include weak-magnetism and recoil corrections from [133].
Charged current and thermal processes sections only include
absorption and emission processes. Their inverse processes are
also taken into account through the Kirkhhoff law. In the last
section, the neutrino family is not specified since all families are
involved in these processes, even though, eventually, with
different cross sections.

References

Charged current processes

νe þ n ↔ pþ e− [106,133]
ν̄e þ p ↔ nþ eþ [106,133]
νe þ ðA; ZÞ ↔ ðA; Z þ 1Þ þ e− [106,134]

Thermal processes
e− þ eþ ↔ νx þ ν̄x [106,135,136]
N þ N ↔ N þ N þ νx þ ν̄x [106]

Elastic scattering
νþ α → νþ α [106,134]
νþ p → νþ p [106,133,134]
νþ n → νþ n [106,133,134]
νþ ðA; ZÞ → νþ ðA; ZÞ [106,134,137]
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III. NUMERICAL SCHEME

We implemented the above multipolar formalism for
radiation transport as a new module in the BAM code
[119–123], and will provide implementation details below.

A. Closure factor

Equation (32) cannot be evaluated directly since Hα and
J are functions of Pij (and so of ζ); cf. Eqs. (25) and (26).
Hence, the closure factor must be found by solving the
following implicit equation:

ζ2J2ðζÞ −HαðζÞHαðζÞ
E2

¼ 0; ð61Þ

using a root finder algorithm.
In our implementation, we solve Eq. (61) for ζ using a

Dekker algorithm [139], which improves the convergence
speed compared to the bisection scheme.

B. Fluxes

To evaluate the numerical fluxes at cell interfaces, we
follow Ref. [104]. Given a field variable u and its flux
F ðuÞ, we employ a linear combination of a low-order
diffusive flux FLO and a second-order nondiffusive flux
FHO so that

F iþ1=2 ¼ FHOðuiþ1=2Þ − A½FHOðuiþ1=2Þ − FLOðuiþ1=2Þ�;
ð62Þ

where A¼minð1; 1
κ̄ΔxÞ and κ̄¼ðκs;iþκs;iþ1þκa;iþκa;iþ1Þ=2.

This ansatz leads to F iþ1=2 ¼ FLO in the free streaming
regime and to F iþ1=2 ≃ FHO in the scattering/absorption
regime. The low-order diffusive flux is computed using
fluxes at the cell center, and a local Lax-Friedrichs (LLF)
Riemann solver [140,141]:

FLOðuiþ1=2Þ ¼
F ðuiÞ þ F ðuiþ1Þ

2
− λamax

uiþ1 − ui
2

; ð63Þ

with

λamax ¼ max
a∈ fi;iþ1gb∈ ½1;2�

fjλbajg; ð64Þ

where λb are the characteristic velocities of the system. This
choice ensures the monotonicity preservation of the sol-
ution in case of shocks and leads to better stability in the
free streaming regime due to an increased numerical
dissipation. Certainly, in some cases, the latter can also
be a disadvantage, e.g., in the case of radiation in an
optically thick medium, it would introduce an unphysical
diffusion, leading to a wrong estimation of the neutrinos

diffusion rate. To avoid this effect, we employ the following
nondiffusive scheme in optically thick regions:

FHOðuiþ1=2Þ ¼
1

2
½F ðuiÞ þ F ðuiþ1Þ�: ð65Þ

Our choice of FHO cures the unphysical diffusion of FLO,
but in case of shocks, it can violate monotonicity
preservation.
To make the scheme described by Eq. (62) able to handle

shocks in a thick regime without adding unphysical
diffusion in smooth regions, we first compute F in every
point using Eq. (62) and then set F ¼ FLO if one of the
following conditions is satisfied:

(i) Δn
i−1Δn

i < 0 orΔn
iΔn

iþ1 < 0, i.e., if the solution at the
current time step shows an extremum.

(ii) Ẽnþ1
i ≤ 0 or Ẽnþ1

iþ1 ≤ 0, i.e., if the energy solution at
the next time step would be overshoot to a neg-
ative value.

(iii) Δnþ1
i−1

Δnþ1
i

< 1
4
or Δnþ1

i

Δnþ1
iþ1

< 1
4
, i.e., if the solution at next time

step would develop an extremum or if the change in

the slope happens too quickly,
where

Δn
i ¼ uniþ1 − uni ;

unþ1
i ¼ uni −

Δt
Δx

ðF n
i − F n

i−1Þ:

Characteristic velocities are constructed as a linear combi-
nation of thin and thick velocities with the same coef-
ficients used to compose the closure in Eq. (30). We chose
to employ the following velocities in a generic ith direction:

λ1;2thin ¼ −βi � αjFij=jFj; ð66Þ

λ1;2thick ¼ −βi � α
ffiffiffiffiffiffiffiffiffiffi
γii=3

q
: ð67Þ

In our tests, this particular choice increases the stability of
our scheme without affecting the accuracy. Thin velocities
are the same as employed in [103] while the thick ones are
taken from [104]. For a complete list and discussion of the
characteristic velocity, we refer to [101].
We note that, in principle, Eq. (62) is second-order

accurate in the diffusive region far away from shocks or
solution’s extrema and first-order accurate in the free
streaming regime.

C. Implicit-explicit time step

Scattering and absorption opacities, even in the geom-
etrized units handled by BAM, can reach large values up to
103Δt in very thick regions, e.g., in the neutron star interior.
For such values, the collisional source terms Sα of Eqs. (28)
and (29) become stiff, i.e., we have to treat the terms
through an implicit scheme. Fluxes and gravitational
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sources are instead handled via a second-order explicit-
implicit method. A full time step of our radiation evolution
algorithm is given by

q� − qn

Δt
¼ −∂iF iðqnÞ þGðqnÞ þ Scollðq�Þ; ð68Þ

qnþ1 − qn

Δt
¼ −∂iF iðq�Þ þGðq�Þ þ Scollðqnþ1Þ; ð69Þ

where q ¼ ðẼ; F̃i; NÞ, and F i, G, and Scoll represent
fluxes, gravitational-source terms, and collisional source
terms of Eq. (28), (29), and (41), respectively. This method
is second-order accurate in fluxes and gravitational terms
but only first-order accurate in the implicit terms.
Hydrodynamics variables are kept constant during the
radiation substep of Eq. (68), and are updated after the
second step using Scollðqnþ1Þ. Analogously radiation var-
iables are kept constant during the hydrodynamics and
spacetime evolution substeps, which are performed ignor-
ing radiation-fluid interactions.
The application of a partially implicit method requires

the solution of a system in Ẽnþ1, F̃nþ1
i , and Nnþ1. The last

variable is decoupled from the rest of the system since its
implicit time step can be written as

Nnþ1 − Nn

Δt
¼ −∂iF i

NðNnÞ þ α
ffiffiffi
γ

p
ηn − κn

Nnþ1

f0
; ð70Þ

which can be solved straightforwardly for Nnþ1 as

Nnþ1 ¼ Nn − ∂iF i
NðNnÞΔtþ α

ffiffiffi
γ

p
ηnΔt

1þ kn
f0 Δt

: ð71Þ

Solving for the neutrino momenta, unfortunately,
requires more effort. We follow the linear scheme of
[103]. Plugging the expression of J and Hα in Eqs. (25)
and (26), into the definition of Sα in Eq. (23), and taking the
value ζ and Fi=jFj at time n, we can write

S̃nþ1
α ¼ Ẽnþ1Aα þ F̃nþ1

i Bi
α þ

ffiffiffi
γ

p
ηuα; ð72Þ

where Aα and Biα are tensor functions of κa, κs, ζ, Fi=jFj,
and uα only, i.e., of known quantities. This way we obtain a
linear system in (Ẽnþ1; F̃nþ1

i ). Plugging this expression into
Eq. (69), we get a system of four linear equations for four
variables, whose analytical solution can be found in
Appendix A.
We have pointed out that the scheme used for collisional

terms is not fully implicit since Aα and Biα are also
dependent on neutrino variables, and the values of the
fluid’s opacities are not updated according to the radiation-
fluid interaction at each substep. However, the solution of a
fully coupled implicit system would require a nonlinear
root finder and an update of fluid variables at each substep

with a significantly higher computational cost. For this
reason, we limit ourselves to this linear implicit scheme,
which we found to be enough to ensure the stability of
the code.
Finally, it is worth mentioning that other M1 imple-

mentations [104,105,142] treat the nonlinear terms of Scoll
implicitly. This is equivalent to treating the ratio fi ¼
Fi=jFj as a variable at time nþ 1 and solving for a four-
dimensional nonlinear root-finding problem. This scheme
is believed to be more accurate in describing the interaction
of radiation with a fast-moving fluid since it better handles
the terms proportional to v · f. However, in the next
section, we will show that our scheme properly captures
the advection of trapped radiation by a moving fluid, which
is a stringent test that must be satisfied by a radiation
transport code oriented to the simulation of BNS mergers.

D. Neutrino right-hand side routine

In the following, we summarize the steps followed to
evaluate the full right-hand side of the neutrino sector from
E, Fi, and N, i.e., Eqs. (28), (29), and (41):

(i) We check for causality constraint E ≤ jFj, if it is not
satisfied we set E ¼ jFj by rescaling Fi. This step is
necessary to ensure the causality and hyperbolicity
of the scheme.

(ii) We evaluate the closure factor ζ solving Eq. (61). We
use ζ to evaluate the fluid frame energy J and the
neutrino number density n.

(iii) We set opacities using the scheme described in the
previous section.

(iv) We compute fluxes at the cell’s interfaces using
Eq. (62).

(v) We check whether the reconstructed fluxes satisfy
one of the conditions listed above. If they do, we
recompute them using Eq. (63).

(vi) We add the fluxes divergence to the rhs.
(vii) We evaluate the gravitational source terms of

Eqs. (28) and (29) and add them to rhs.
(viii) We solve Eq. (69) for Enþ1, Fnþ1

i , and Nnþ1 using
the explicit part of rhs we have evaluated in the
previous points.

All the steps listed above are repeated for the three
neutrino species.

IV. NUMERICAL TESTS

A. Geodesics

To test the fluxes and gravitational sources, we set up a
test employing Kerr-Schild spacetime with zero angular
momentum, where we shoot a beam of free streaming
neutrinos with Ẽ ¼ jF̃j ¼ 1 from left to the right of our
numerical domain. In Fig. 1, the neutrino beam is injected
in the simulation tangentially to the black hole horizon at a
coordinate distance 5 to 5.5 M from the singularity (which
is located in the origin of the coordinate system). The red
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lines in the figure show light-like geodesics that neutrinos
at the top and bottom of the beam are supposed to follow.
The whole beam should then be contained between these
two lines. We observe that most of the neutrino energy
remains confined between the two geodesics with a small
part that is dispersed outside, mostly because of the low-
order reconstruction scheme employed to handle the free-
streaming region, which introduces numerical dispersion.
This interpretation is strengthened by the fact the dispersion
happens on both sides of the beam and decreases with
increasing grid resolution. However, we expect that this is
not an issue in BNS simulations since we do not expect to
have sharp variations of the energy density in free stream-
ing regions as in this test case.

B. Absorption

To test the collisional source terms that model the
neutrino-fluid interaction in the pure absorption regime,
we set up two tests on a flat spacetime, one with a static and
one with a stationary moving fluid. In both tests, we shoot a
beam of neutrinos similar to the previous case. Since, in
these conditions, neutrinos should be only absorbed and not
scattered, we expect their regime to remain purely thin and
the momentum vectors to remain parallel to each other.
In Fig. 2, we show a wide beam of neutrinos moving

from left to right encountering a sphere of matter with

κa ¼ 0.5 in the center and decreasing radially as a
Gaussian. As expected, neutrino momenta remain parallel
to each other, and as a consequence, the region behind the
sphere receives a much smaller amount of radiation when
compared to regions on the sides, projecting a very clear
shadow on the right edge of the simulation domain.
In the second absorption test, shown in Fig. 3, we

distribute matter on a vertical tube with homogeneous
properties, κa ¼ 0.05 and vy ¼ 0.5. As expected, we
observe that a part of the radiation is absorbed by the
fluid, and another part passes through it without being
scattered. In contrast to the previous test, the fluid is not at
rest. Hence, the test is well suited to probe the conversion
between the fluid and the laboratory frame, which were
equal in our previous test, i.e., ζ ¼ 1 was trivially satisfied
along the beam. In this new test, we still expect to find
ζ ¼ 1. However, since now HαHα ≠ FiFi and E ≠ J, this
is not trivial anymore. Based on the success of the test, we
can conclude that the root finder algorithm used to evaluate
ζ is converging to the correct solution.

C. Advection

Advection of trapped radiation in a moving fluid is one
of the most challenging situations that our code has to
handle. To test such a scenario, we set up a test similar to

FIG. 1. A neutrino beam traveling in a Kerr-Schild spacetime
with three different resolutions. In the top panel, we use a grid
spacing of Δx ¼ 0.075. In the central and bottom panels, we have
Δx=2 and Δx=4, respectively. Coordinates with respect to the
singularity are expressed in mass units. The color map represents
the energy density of the neutrinos Ẽ. Red lines represent the
expected geodesics that should contain the beam.

FIG. 2. Neutrinos traveling from left to right, encountering a
sphere of matter at rest with pure absorption opacity. The center
of the sphere is located at (10,0) and has an opacity of κa ¼ 0.5
that decreases radially as a Gaussian. Red arrows represent
neutrino momentum F̃i. The black line shows the contour level
of κa ¼ 0.1 for the sphere of matter.

FIG. 3. A Neutrino beam traveling from left to right passing
through a tube of fluid with density ρ ¼ 10−5 and absorption
opacity κa ¼ 0.05 traveling upward with velocity vy ¼ 0.5
(represented by black arrows).
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the one shown in Sec. 4 of Ref. [104], i.e., we evolve a one-
dimensional Gaussian neutrino packet trapped in a homo-
geneous fluid moving at mildly relativistic velocity with
stiff, pure-scattering opacity. As initial conditions, we
chose

Ẽðt¼ 0;xÞ¼ e−x
2

; J¼ 3E
4W2−1

; Fi ¼
4

3
JW2vi: ð73Þ

As shown in [104], with this condition for Fα, it is ensured
that Hα ¼ 0, i.e., we model a fully thick regime. For the
fluid, we chose κs ¼ 103 and jvj ¼ vx ¼ 0.5. We use a
single uniform grid with Δx ¼ 0.05 and employ a Courant-
Friedrich-Levi (CFL) factor of 0.25. We test two different
flux reconstruction schemes to check whether they can
capture the correct diffusion rate in the regime ksΔx ≫ 1.
In this article, we test two different schemes; a constant
reconstruction (uiþ1=2 ¼ ui) with an LLF Riemann solver
[Eq. (63)] and the composed flux of Eq. (62) proposed
in [104].
Results are shown in Fig. 4 together with the reference

solution, which we assume to be the advected solution of
the diffusion equation

Ẽðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Dt

p exp

�
−
ðx − vxtÞ2
1þ 4Dt

�
; ð74Þ

with D ¼ 1=ð3κsÞ being the diffusivity. We see that the
lowest order reconstruction scheme [Eq. (63)] fails in
reproducing the correct diffusion rate because of its intrinsic
numerical dispersion. The scheme used in [104], instead,
performs better except near the maximum, where it reduces
again to the lower order one. Moreover, we observe no
unphysical amplification of the package, contrary to the test
performed using ZelmaniM1 library [143] in [104]. In our
implementation, we find that both the neutrino energy and
the neutrino number are advected with the correct velocity.
To test the robustness of the scheme, we performed an

additional test increasing the fluid’s opacity and velocity to
κs ¼ 104 and v ¼ 0.8, and setting neutrinos’ initial data
given by a step function. Results at time t ¼ 4 are shown in
Fig. 5 for different resolutions together with the reference
solution

Ẽðx; tÞ ¼ 1

2

�
1 − erf

�
x − vxt

2
ffiffiffiffiffiffi
Dt

p
��

; ð75Þ

with erf being the error function. This test shows that the
flux reconstruction, Eq. (62), together with the collisional
sources of Eq. (72), can handle shocks even in the presence
of stiff source terms preserving the monotonicity of the
solution and with a numerical dispersion that decreases
with the increase of resolution.

FIG. 4. Top panel: Gaussian neutrino packet being advected and
diffused in high-scattering regime by a fluid with κs ¼ 103 and
moving to the rightwith a velocity ofv ¼ 0.5. The snapshot is taken
at time t ¼ 4. Different dashed lines represent different schemes for
fluxes reconstruction, while the black line represents the analytical
solution of the translated heat equation. Bottom panel: L2-norm of
the error with respect to resolution for the test shown above with
HOþ LO fluxes. The black line shows first-order convergence.

FIG. 5. A similar test as performed in Fig. 4 but using a step
function as initial condition. The exact solution is shown by a
black line, while colored lines show numerical solutions at
different resolutions. The evolution scheme and grid configura-
tion are the same as in Fig. 4.
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D. Uniform sphere

The uniform sphere test is the closest configuration to an
idealized star for which we have an analytical solution of
the Boltzmann equations [144]. For this reason, several
groups have shown such simulations to test their imple-
mentations, e.g., Refs. [103–105,144]. It consists of a
sphere of radius rs ¼ 1. In its interior, we set κa ¼ η ¼
constant and κs ¼ 0. We set up this test on a three-
dimensional Cartesian grid with Δx ¼ Δy ¼ Δz ¼ 0.05
imposing reflection symmetry with respect to x − y, x − z,
and y–z planes. Evolution is performed using a RK3
algorithm with a CFL factor of 0.25. We perform this test
with two different opacities κ1 ¼ 5 and κ2 ¼ 1010 to test
different regimes; cf. [103].
Figure 6 shows both the numerical and analytical Ẽ as a

function of the radius for the opacities. The numerical
solution is taken at t ¼ 12 along the diagonal x ¼ y ¼ z.
Overall, we find a good agreement between our numerical
result and the analytical solution of the Boltzmann equa-
tion, comparable to the results obtained in other works.
However, we point out that one cannot expect to converge
to the exact solution since the M1 scheme is only an
approximation to the Boltzmann equation and is only exact
in the fully trapped or free streaming regimes (without
crossing beams).

E. 1D nonlinear waves

In order to test the full radiation-fluid interactionwe set up
three 1D nonlinear wave tests as in [145]. In these tests we
evolve both radiation and fluid on a flat spacetime assuming
an ideal gas EOS P ¼ ðΓ − 1Þρϵ, absorption opacity given
by κa ¼ κ̃aρ and emissivity η ¼ κaaRT4 ¼ κaaRm4ðP=ρÞ4,
with κ̃a being constant and aRm4 assigned in such a way to
obtain the desired equilibrium neutrino energy at the

domain’s extrema, where we assume to have thermal
equilibrium. In all these tests, purely thick radiation closure
is used.
We evolve these configurations on the domain

x∈ ð−20; 20ÞwithΔx ¼ 0.0125.Hydrodynamics is evolved
using a third-order Runge-Kutta schemewithWENOZ [146]
reconstruction of variables at cells interfaces and HLL [147]
Riemann Solver for recovering numerical fluxes.
The three configurations that we chose are summarized

in Table II and are aimed at testing three different regimes;
Test 1 is fluid energy dominated and in Newtonian limit,
Test 2 is mildly relativistic, and with the fluid energy
comparable to the radiation one, Test 3 is mildly relativistic
and dominated by the radiation energy.
Results are shown in Fig. 7. We observe overall good

agreement with the analytical solutions (black dashed
lines), with the exception of J and Hx on the left side of
the shock in Test 2, where a small deviation is observed. We
believed this to be the result of the numerical dissipation
introduced by the variables’ discontinuity.

F. Single isolated hot star

We evolve a single isolated hot neutron star employing
the SFHo EOS [148]. Initial data are constructed by sol-
ving the Tolman Oppenheimer-Volkoff (TOV) equations
with the assumption of constant entropy and beta equilib-
rium as in [123]. For the integration of the TOV equation,
we choose ρc ¼ 8.65 × 1014 g=cm3 and an entropy per
baryon s ¼ 1kB. This leads to a total baryonic massMbar ¼
1.64M⊙, which corresponds to a gravitational mass of
1.52M⊙, a coordinate radius R ¼ 9.8 km, and a central
temperature of 27.8 MeV. We evolve the system on a grid

FIG. 6. Radial dependence of the neutrino energy density for the
uniform sphere test at time t ¼ 12 (profiles are extracted along the
diagonal direction). We show the numerical solution of the M1
scheme and the analytical solution of the Boltzmann equation. We
use two different values of opacity κ1 ¼ 5 and κ2 ¼ 1010.

TABLE II. Summary of 1D radiation-hydrodynamics tests.
Initial data are constructed from left and right states following
the procedure described in [145] to obtain a stationary solution,
which is then Lorentz-boosted at speed μ.

Left state Right state

Test 1 ρ ¼ 1.0 ρ ¼ 2.4
Γ ¼ 5=3 P ¼ 3.0 × 10−5 P ¼ 1.61 × 10−4

κ̃a ¼ 0.4 ux ¼ 0.015 ux ¼ 6.25 × 10−3

μ ¼ 0 J ¼ 1.0 × 10−8 J ¼ 2.51 × 10−7

tfinal ¼ 1000 Hx ¼ −3.56 × 10−13 Hx ¼ −8.71 × 10−18

Test 2 ρ ¼ 1.0 ρ ¼ 3.11
Γ ¼ 5=3 P ¼ 4.0 × 10−3 P ¼ 0.04512
κ̃a ¼ 0.3 ux ¼ 0.25 ux ¼ 0.0804
μ ¼ 0.1 J ¼ 2.0 × 10−5 J ¼ 3.46 × 10−3

tfinal ¼ 100 Hx ¼ −5.13 × 10−9 Hx ¼ −2.01 × 10−12

Test 3 ρ ¼ 1.0 ρ ¼ 3.65
Γ ¼ 5=3 P ¼ 6.0 × 10−3 P ¼ 3.59 × 10−2

κ̃a ¼ 0.08 ux ¼ 0.69 ux ¼ 0.189
μ ¼ 0.1 J ¼ 0.18 J ¼ 1.30
tfinal ¼ 100 Hx ¼ −3.68 × 10−4 Hx ¼ 2.17 × 10−7
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with a grid spacing of Δx ¼ Δy ¼ Δz ¼ 182 m using a
CFL factor of 0.25. In this test, we evolve the hydrodynamics
with the module of [123] using 4th order Runge-Kutta
(RK4) integration algorithm and WENOZ [146] primitive
reconstructionwith LLFRiemann solver for the fluxes at cell
interfaces.
Figure 8 shows the transition of neutrinos from trapped to

the free streaming regime on the surface of the star. As
expected, the neutrino energy density reaches its peak in the
star’s core due to the higher density and temperature of the
fluid in this region. Moreover, we can observe that neutrinos
inside the star have a zero average momentum since they
constitute a particle gas in thermal equilibriumwith the fluid,
and the transport phenomena are negligible.When theoptical
depth τ drops below 2=3, interactions with the fluid start
becoming subdominant, and neutrinos start traveling freely,
developing an average momentum in the radial direction.
Another important consequence of the neutrino-baryon

decoupling can be seen in Fig. 9, where we can observe all
three species of neutrinos being thermalized with the fluid
in the inner part of the star and decoupling next to the
relative photosphere at three different temperatures. After
decoupling, the neutrino temperature remains constant due
to the lack of interactions with the fluid. The average
energy hierarchy is, as reported in the literature, hϵνei <hϵν̄ei < hϵνxi [104,138].

V. BINARY NEUTRON STAR MERGERS

A. Configurations and setup

We run 10 different BNS configurations employing two
different EOSs (SFHo [148] and DD2 [149]) with the same

FIG. 7. Radiation-hydrodynamics nonlinear wave tests from
[145] summarized in Table II. Red dashed lines show the
configuration at the final simulation time. Black dashed lines
show the analytical solution.

FIG. 8. 2D snapshot at t ¼ 4.5 ms. The colormap shows the
energy density of antielectron neutrinos. Red arrows represent the
normalized neutrino momentum Fi=E and the black contour line
shows the neutrino photosphere defined by τ ¼ 2=3.
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total baryonic mass of 2.6M⊙, and two different mass ratios
of q ¼ M1=M2 ¼ 1 and q ¼ 1.2, where Mi is the gravi-
tational mass of the ith star. All binary systems are
considered to be irrotational, i.e., the stars are nonspinning.
Further details about the setups are given in Table III. We
run the simulations with SFHo EOS and neutrino transport
at two different resolutions; R1 with 96 points per dimen-
sion in each of the two finest boxes covering the stars. This
corresponds to a grid spacing in the finest level of Δxmin ¼
248 m and Δxmax ¼ 31.8 km in the coarsest one. R2 with
128 points on each finest box for Δxmin ¼ 186 m and
Δxmax ¼ 23.8 km on the coarsest level. Initial data was
produced using the pseudo-spectral code SGRID [150–153]
under the assumption that matter is in beta-equilibrium with
a constant initial temperature of T ¼ 0.1 MeV; cf. [123].
The proper initial distance between the stars’ centers is set
to 38 km. This corresponds to about three orbits before the
merger of the stars. Given that we will primarily focus on
the postmerger evolution, we did not perform any eccen-
tricity reduction procedure. Both spacetime and hydro-
dynamics variables are evolved using a method of lines
with RK4 algorithm with a CFL factor of 0.25. Time
evolution is performed using a Berger-Oliger algorithm
with eight refinement levels. The two finest refinement
levels are composed of two moving boxes centered around
the stars. The Hamiltonian constraint violation is shown in
Fig. 26 of Appendix D. Spacetime is evolved employing

the Z4c formulation [127,154]. It is discretized using a
finite difference schemewith a fourth-order centered stencil
for numerical derivatives. Lapse and shift are evolved using
1þ log slicing [155] and gamma-driver conditions [156]
respectively. For hydrodynamic variables we use a finite
volume scheme with WENOZ [146] reconstruction of
primitives at cell interfaces and HLL Riemann solver
[147] for computing numerical fluxes. We apply the flux
corrections of the conservative adaptive mesh refinement
[121] to the conservative hydrodynamics variables but not
to the radiation fields.

B. Ejecta

We compute ejecta properties using a series of concentric
spheres centered around the coordinate origin with radii
varying from 300 km to 1000 km. On each sphere, the total
flux of mass, energy, and momentum of outgoing, unbound
matter is computed. On such extraction spheres, the matter
is assumed to be unbound according to the geodesic
criterion [160], i.e., if

ut < −1 and ur > 0: ð76Þ
From now on, we will always refer to the unbound mass as
the one that satisfies this criterion unless stated otherwise.
Differently from previous BAM versions, the spheres with
radius 450 km and 600 km also save the angular coor-
dinates ðθ;ϕÞ of the matter flux together with ut, ρ, T, and
Ye. This allows a more detailed analysis of the ejecta that
includes its geometry and thermodynamical properties,
e.g., the use of the Bernoulli criterion [81,161] for
determining unbound mass, i.e.,

hut < −1 and ur > 0: ð77Þ
Since ut [or hut for Bernoulli] is assumed to be conserved
and at infinity ut ¼ −W [or hut ¼ −W], it is also possible
to compute the asymptotic velocity v∞ of each fluid
element as v∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=u2t

p
[or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðhutÞ2

p
].

1. Ejecta mass

Mass ejection from BNS mergers within a dynamical
timescaleOð10 msÞ has already been the subject of several
detailed studies, e.g., [50,52–54,56,160,162,163]. There is
a general consensus on dividing dynamical ejecta into two
components: tidal tail and shocked ejecta. The former is

FIG. 9. Temperature of fluid and neutrinos at t ¼ 4.5 ms as a
function of radius.We can see the three neutrino species decoupling
from the fluid at three different temperatures near r ¼ 10 km.

TABLE III. Table of BNS parameters. From left to right: EOS, baryonic masses, gravitational masses, compactnesses, mass ratio,
reduced tidal deformability parameter [157–159], Arnowitt-Deser-Misner (ADM) mass, and angular momentum, respectively.

Model name EOS M1
b ½M⊙� M2

b ½M⊙� M1
G ½M⊙� M2

G ½M⊙� C1 C2 q Λ̃ MADM ½M⊙� JADM ½M2
⊙�

SFHo_q1 SFHo 1.301 1.301 1.200 1.200 0.148 0.148 1 843 2.376 5.673
SFHo_q12 SFHo 1.432 1.172 1.309 1.091 0.162 0.134 1.2 875 2.377 5.617
DD2_q1 DD2 1.292 1.292 1.183 1.183 0.134 0.134 1 1585 2.377 5.749
DD2_q12 DD2 1.420 1.165 1.309 1.091 0.146 0.123 1.2 1618 2.379 5.866
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composed of matter shed from the star’s surface right
before the merger due to tidal forces. Since this matter does
not undergo any shock heating or weak interaction, it has a
low Ye comparable to the one of neutron stars’ outer layers
and low entropy ≲10κB. Shocked ejecta, on the opposite, is
launched by the high pressure developed in the shock
formed at the star’s surface during the plunge. It has
significantly higher entropy and Ye with respect to the
tidal tails. It is produced later but with higher velocity,
rapidly reaching the tidal tails and interacting with
them [162].
In Fig. 10, we show the mass of the unbound matter

moving through the detection sphere at r ≃ 450 km as a
function of time for both geodesic and Bernoulli criteria.
There is an important qualitative difference between
simulations where neutrinos are neglected and the ones
including neutrino transport. While in the former case, the
ejecta mass saturates within 20 ms after the merger, in the
latter one, we observe a non-negligible matter outflow

continuing for the whole duration of the simulation,
although with decreasing intensity. Such a phenomenon
has been observed in other BNS simulations with M1
transport in [164,165], where a very similar numerical
implementation ofM1 is used, and in much smaller amount
also in [54]. We attribute it to the neutrinos emitted from the
remnant. Through scattering/absorption processes in the
upper parts of the disk, they can indeed accelerate material,
making it gravitationally unbound. This hypothesis is
consistent with what we see in Fig. 11, where we show
the conserved mass density for bound and unbound matter
on the xz-plane roughly 45 ms after the merger. We denote
by Du the conserved mass density of unbound matter, i.e.,
Du ¼ D where matter is unbound and Du ¼ 0 otherwise.
Most of the unbound matter is concentrated in the inner part
of the upper edge of the disk, as we would expect from a
neutrino wind mechanism powered by the remnant emis-
sion. In particular, in [164], equal mass simulations using
the SFHo and DD2 EOSs are performed, and an early
neutrino wind mechanism is also observed. However,
such simulations only show results up to ≃10 ms after
the merger.
For both EOSs, the ejecta mass is higher and more

rapidly growing for asymmetric configurations. This is in
agreement with the higher amount of tidal tails ejecta that
asymmetric binaries are known to produce. In the same
figure, the amount of ejecta according to the Bernoulli
criterion is also shown. Bernoulli-criterion ejecta corre-
sponds to the geodesic one in the very initial phase of the
matter outflow but predicts a significantly higher mass after
the dynamical phase. More importantly, Bernoulli ejecta is
not close to saturation at the end of the simulation time.
These features are comparable with the results of other
works, e.g., [79,81,163,165–167]. This continuous matter
outflow is attributed to the so-called spiral wave wind, i.e.,
the outward transport of angular momentum through the
disk due to the shocks.

FIG. 10. Mass of the ejecta passed through the detection sphere
at r ≃ 450 km as a function of time for the SFHo simulations. The
left and right panels show simulations without and with neutrino
radiation, respectively. Solid lines represent the mass unbound
according to the geodesic criterion, while dashed lines refer to the
Bernoulli criterion.

FIG. 11. Right: xz-plane snapshot of bound Db and unbound Du matter for the simulation SFHo_q1_M1_R2 represented by two
different colormaps. Bound matter is identified using the ballistic criterion. Left: xz-plane snapshot of Ye for the same simulation.
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2. Electron fraction and velocity

Figure 12 shows the average of Ye and v∞ (hYei and
hv∞i respectively), of matter flowing through the detection
sphere, located at r ≃ 450 km, as a function of time. These
quantities are defined as

hYeiðtÞ ¼
R
dΩFDu

ðt;ΩÞYeðt;ΩÞR
dΩFDu

ðt;ΩÞ ; ð78Þ

hv∞iðtÞ ¼
R
dΩFDu

ðt;ΩÞv∞ðt;ΩÞR
dΩFDu

ðt;ΩÞ ; ð79Þ

where r is the radius of the extraction sphere and FDu
¼

Duðαvr − βrÞ is the local radial flux of unbound matter
through the detection sphere.
All simulations show an overall monotonically increas-

ing electron fraction since matter ejected later remains
longer next to the remnant, having more time for proto-
nizing due to neutrino absorption. In addition, most
systems show a more or less pronounced plateau at about
5–15 ms after the merger with a visible dependence on the
mass ratio. This is likely due to tidal tails containing
material with an almost uniform and low hYei of ≃0.1.
Tidal tails are then reached and partially reprocessed by the
faster and more proton-rich shocked ejecta, giving rise to
the plateau we observe.2 hv∞i has a sharp velocity peak at
early times followed by slow late-time ejecta. The fact the
initial peak does not show a bimodal shape is another
indicator of the fact that tidal and shock ejecta already
merged together at the extraction radius. Finally, we see
that asymmetric binaries present a higher velocity peak of
the early ejecta. This feature is consistent with Fig. 13 and

is responsible for the tails with v ∼ 0.5c − 0.7c. The
velocity histogram in the same figure shows no dependence
on the EOS, with the mass ratio being the only feature
determining the velocity profile.

3. Angular dependence

In the upper panel of Fig. 14, we show the normalized
polar angle distribution of the ejecta defined as

mejðθÞ ¼ r2
Z

T

0

Z
2π

0

FDu
ðt; θ;ϕÞdtdϕ; ð80Þ

FIG. 12. Average hYei and hv∞i of matter passing through the
detection sphere at radius r ≃ 450 km.

FIG. 13. Histogram of the ejecta’s asymptotic velocity. Dashed
lines refer to the dynamical ejecta only, while the continuous one
includes the neutrino wind component. Histograms have been
normalized with respect to Mtot

ej .

FIG. 14. Mass distribution and average hYei along the polar
angle, with θ ¼ 0 being the pole and θ ¼ π=2 being the equator.
Mass distribution has been normalized with respect to Mtot

ej .
Continuous lines refer to the total amount of ejecta flowed during
the whole simulation time, the dashed ones account only for the
matter being ejected before 20 ms.

2Note that this plateau is absent for SFHo_q1_M1 due to the
smaller amount of tidal ejecta for this equal mass, soft-EOS
configuration.
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with T being the final time of the simulation and r the
radius of the detection sphere (in this case ≃450 km).
According to this definition Mej ¼

R
π
0 sinðθÞmejðθÞdθ.

Then mejðθÞ is normalized by the total mass of the
ejecta Mtot

ej . The peak at θ ≃ 0.5 due to the postmerger
neutrinowind is immediately visible. At lower latitudes, the
neutrino wind mechanism is indeed heavily suppressed by
the disk, which is cold and optically thick and stops the
neutrinos emitted by the remnant (see Fig. 15). For
asymmetric binaries, there is also a peak at low latitudes
visible, caused by the tidal tail ejecta. The effect of such a
component on the electron fraction is visible in the lower
panels of the same figure. It is responsible for the lower
hYei of the equatorial region, and, as expected, it is more
evident for asymmetric binaries. In the same panel, we can
also observe that when neutrino wind is included in the
ejecta, the hYei of the polar regions increases significantly,
reaching up to 0.5, while regions with polar angles above
one radiant are unchanged by the phenomenon. This is due
to the intense neutrino irradiation that this matter received,
which increased its electron fraction. The fact that dynami-
cal ejecta from equal mass binaries has an overall higher
hYei can be explained by the higher amount of shocked
ejecta that such configurations are known to produce.
Shock ejecta is indeed supposed to have a higher entropy
and electron fraction with respect to tidal tail ejecta and is
more isotropically distributed. The last characteristic can
explain why symmetric binaries give a higher hYei than
their respective asymmetric counterparts at lower latitudes.
In Fig. 16, a histogram of the ejecta’s hYei is shown.

Dynamical ejecta of equal mass binaries produces a fairly
uniform distribution of mass with a drop for hYei≲ 0.1. In
the unequal mass scenario, the situation changes. Here, we
have indeed a clear peak at hYei ≃ 0.1 produced by tidal
tails. In both cases, the inclusion of neutrino wind leads to
an increase of ejecta with 0.3≲ hYei≲ 0.6.
Another important feature of the ejecta that has been

investigated in literature is the correlation between Ye and
entropy (s=kB). In Fig. 17, we show a 2D histogram of the

total ejecta in these two variables. Most of the ejecta mass
lies within a main sequence with a positive monotonic
correlation between entropy and Ye. This is a consequence
of the fact that fluid with a higher entropy is characterized
by a more proton-rich thermodynamical equilibrium con-
figuration. The exception to this rule is made by matter with
Ye ≲ 0.3 and entropy in a very wide range going up to
s ∼ 100kB. This matter is present in every simulation and is
believed to be a consequence of the interaction between
tidal tails and shocked ejecta [168]. When the latter hits the
former, it generates indeed a violent shock that increases
the fluid’s entropy. Since this happens at low density, when
the neutrino-matter interaction timescale is bigger than the
dynamical one, this does not leave time for the fluid to
settle to an equilibrium configuration with higher Ye.
Ejecta’s average properties of our simulations are sum-

marized in Table IV. Here we see, as expected, a strong
dependence of hYei on the mass ratio, with asymmetric
binaries producing a more neutron-rich, and an overall
more massive, outcome. An imprint of the tidal deform-
ability can also be observed, with the more deformable
EOS (DD2) producing less massive but neutron-rich ejecta.
For SFHo simulations, the dependence of the ejecta mass
and hYei on the mass ratio is consistent through all
resolutions. We do not observe any significant dependence
of the average asymptotic velocity on the mass ratio or tidal
deformability.

C. Neutrino luminosity

We determine the neutrino luminosity as the total flux of
neutrino energy Ẽ through the same series of spheres used
for the analysis of the ejecta, i.e.,Lν ¼ r2

R
dΩðαF̃r − ẼβrÞ.

Similarly to the ejecta detection, also here the two spheres,
located at 450 km and 600 km, are able to save the flux
angular direction together with its values of J and n,

FIG. 15. 2D snapshot of the fluid’s temperature and neutrino
photosphere in the postmerger for SFHo_q1_M1. The latter is
defined as the place where τ ¼ 2=3 and is shown by a different
colored contoured line for every species: green for νe, red for ν̄e
and black for νx.

FIG. 16. Histogram of the ejecta’s electron fraction. Again the
dashed lines refer to the ejecta before 20 ms only, while the
continuous ones include the later time component. Both dashed
and solid lines have been normalized to their respective Mtot

ej .
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enabling a more detailed study that includes the geometry of
neutrino luminosity and its average energy.
Looking at the total neutrino luminosity in the left panel of

Fig. 18, we find that ν̄e emission is brighter in the early

postmerger with respect to the other species. Its peaking
luminosity of∼1053 erg=s is consistentwith results obtained
by similar simulations [52,104,164,165,169,170]. The ini-
tial ν̄e burst is a consequence of the fast protonization that the

FIG. 17. Two-dimensional histogram of the ejectamass as a function of the entropy per baryon andYe for all simulations at resolutionR2.

TABLE IV. Summary of ejecta and disk properties for all simulations. The first three columns include the mass, the average velocity,
and the average Ye of the ejecta extracted up to 20 ms after merger. The fourth and fifth columns contain the mass and the average Ye of
the disk, respectively. Finally, in the last three columns are the mass, the average velocity, and the average Ye of all the ejecta, i.e., also
including the component identified as neutrino wind. For simulations without neutrino transport, we do not show hYei, and since we do
not have neutrino wind ejecta, we only show the total ejecta. Hence, we mark them as nonavailable data (N.A.).

Simulation name M20ms
ej [10−2M⊙] hv20ms

∞ i hY20ms
e i Mdisk ½M⊙� hYdisk

e i Mtot
ej [10−2M⊙] hvtot∞ i hY tot

e i
SFHo_q1_M1_R1 0.22 0.15 0.29 0.21 0.13 0.37 0.13 0.37
SFHo_q1_M1_R2 0.20 0.16 0.28 0.21 0.15 0.30 0.14 0.37
SFHo_q12_M1_R1 0.36 0.17 0.20 0.28 0.13 0.50 0.15 0.29
SFHo_q12_M1_R2 0.31 0.16 0.17 0.24 0.15 0.48 0.14 0.28
SFHo_q1_R2 0.20 0.20 0.15
SFHo_q12_R2 0.27 0.32 0.17
DD2_q1_M1_R2 0.13 0.14 0.21 0.24 0.12 0.17 0.13 0.28
DD2_q12_M1_R2 0.26 0.16 0.20 0.20 0.15 0.37 0.14 0.22
DD2_q1_R2 � � � 0.12 0.14
DD2_q12_R2 � � � 0.24 0.17
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material undergoes right after the merger, when the beta
equilibrium is broken, and the system evolves toward a new
metastable configuration characterized by a higher entropy
and Ye. Approximately 10 ms after the merger, the ν̄e starts
decreasing and approaches the luminosity of νe a few tens of
ms later. This is a signal that the system is approaching the
weak equilibrium configuration within the late simulation
time. Both νe and νx show similar behavior, with a peak at
∼10 ms and roughly half of the intensity of ν̄e. In the
early postmerger, we have, as reported in the literature,
Lν̄e > Lνx > Lνe . The brightness oscillations that appear in
this phase for every neutrino species are due to the remnant
oscillations, which cause shocks propagating outward and
perturbing the surface of the neutrino sphere. The last
inequality is inverted after the luminosity peak. Lνx drops
faster because of the remnant’s cooling. νx interactions
indeed include only thermal processes that are independent
of Ye. This makes the heavy neutrino emission more
sensitive to temperature with respect to other species. The
right panel of Fig. 18 shows the average energy of neutrinos
flowing through the detection sphere at r ¼ 450 km as a
function of time. As reported in the literature νx have
significantly higher energy with respect to the other two
species in the early postmerger. This is an expected feature
since heavy neutrinos are less interacting with matter and
decouple at higher densities, where matter is usually also
hotter. All the features described above have been already
explored in more detail in, e.g., [169].
Finally, in Fig. 19, we show the total luminosity for all

four configurations at resolution R2. The first observation
is that SFHo systems emit significantly more neutrinos
than their DD2 counterparts due to the temperature
difference visible in Fig. 20, with a difference of almost
50% at the brightness peak. Such an important difference
could explain, or at least contribute to, the significant
difference in the neutrino wind emission between the
two EOSs.

D. Remnant properties

Webegin the analysis of the remnant by looking at Fig. 20,
showing the evolution of density and temperaturemaxima. In
the left panel, we can observe that maximum density is not
significantly affected by neutrino radiation, with differences
rarely exceeding 5% during the postmerger oscilation and
settling to smaller values after ≃15 ms. Considering the
temperature evolution, we find that the maximum temper-
ature for the simulations using SFHo is indeed lower for
systems usingM1 compared to simulationswithout evolving
the neutrinos. Contrary, the setups employing the DD2 EOS
show an almost unchanged maximum temperature. The
difference betweenM1 and neutrinoless simulations is more
pronounced for SFHo EOS because of the higher amount of
neutrino energy involved.We explain this result as an indirect
effect of neutrino cooling affecting the remnant in the early
postmerger.
Since all the binary simulations performed in this work

produce a stable massive neutron star (MNS) surrounded

FIG. 18. Neutrino luminosity and average energy as a function of time for the three different species from the simulation
SFHo_q1_M1_R1. The data refer to the extraction sphere located at r ≃ 450 km.

FIG. 19. Total neutrino luminosity for all simulations at
resolution R2.
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by a disk, we decide to adopt the usual convention of
defining the disk of a MNSþ disk system as the region
where matter is gravitationally bound and ρ < 1013 g=cm3,
by contrary the MNS is defined by ρ > 1013 g=cm3;
[55,56,171,172]. This allows us to provide an estimate
of the mass of the disk and the MNS.
In Fig. 21, we show the masses of the disk and the MNS

as a function of postmerger time. After an initial time where
the disk is growing fast, acquiring mass from the remnant,
the disk mass stabilizes at ≃20 ms after the merger. Such
disk accretion phenomena are usually sustained by angular
momentum viscous transport and shocks generated by the
m ¼ 1 bar mode oscillations of the central object [81,173]
and contrasted by the gravitational pull of the central
object. The effect of neutrino transport on the disk’s mass
for SFHo simulations is negligible (see Table IV), and the
results look robust also at lower resolutions. This is an

expected result since the disk formation takes place at times
when neutrino cooling is not the dominant source of
energy loss.

E. Nucleosynthesis

The nucleosynthesis calculations are performed in post-
processing following the same approach as in [53,55]
employing the results from the nuclear reaction network
Skynet of [30]. In Fig. 22, we show the abundances as a
function of the mass number A of the different isotopes
synthesized by the r-process 32 years after the merger in
ejecta. To compare the results for different simulations, we
shift the abundances from all models such that they are
always the same as the solar one for A ¼ 195. The solar
residual r-process abundances are taken from [174] (for a
review of the solar system abundances; see [175]). The
normalization to Asol ¼ 195 is chosen as nucleosynthesis in

FIG. 20. Maximum rest mass density and temperature. Solid lines refer to simulations with neutrino transport and dashed lines to
simulations where neutrinos interactions have been neglected. In the left plot the relative difference between simulations with neutrino
transport and without neutrinos is shown.

FIG. 21. Mass of the disk and of MNS as a function of time.
The last one is computed as the integral of boundD in the regions
where ρ > 1013 g=cm3.

FIG. 22. Nucleosynthesis yields for all simulations. The nucleo-
synthesis is computed dynamical ejecta only (t ¼ 20 ms). (In the
top panel the normalization to Asol ¼ 195 is used, while in the
bottom the normalization to Asol ¼ 135 is done. Solid lines
indicate the dynamical ejecta, while dashed lines correspond to
the dynamical ejecta extracted with the Bernoulli criterion.
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neutron-rich ejecta from BNS mergers was shown to
robustly reproduce the third r–process peak [176]. We
also consider normalization to Asol ¼ 135 and Asol ¼ 152
commonly considered in literature [177]. The former leads
to only a minor qualitative change while the latter leads to
the overall overestimation of the abundances at both,
second and third r-process peaks.
As the mass-averaged electron fraction of the dynami-

cal ejecta from most models (except SFHo q ¼ 1 model)
is small (see Fig. 16), the r-process nucleosynthesis
results in the underproduction of lighter, first and second
peak elements. Additionally, the elements around the
rare-earth peak are underproduced. This can be also
attributed to the systematic uncertainties in the simplified
method we employ to compute nucleosynthesis yields.
The simulation with SFHo EOS and mass-ratio q ¼ 1
displays a more flat electron fraction distribution in its
ejecta, and relative abundances at the second peak are
consistent with solar.
The Bernoulli ejecta displays on average higher

electron fraction, as it undergoes strong neutrino irradi-
ation, being ejected on a longer timescale. Higher Ye
leads to a larger amount of lighter elements produced.
However, the overall underproduction of the first
r-process elements for all simulations but the SFHo
q ¼ 1 model remains.

F. Gravitational waves

While neutrinos are supposed not to play any role
during the inspiral, they could, in principle, be relevant in
the postmerger dynamics, e.g., through the additional
cooling channel of the formed remnant, which might
change the compactness of the remnant and, therefore, the
postmerger GW frequency and the time until black-hole
formation. We investigate this possibility in the following
subsection by comparing the GW signal produced by each
simulation and its “neutrinoless” counterpart. We compute
the GW strain h on a series of concentric spheres using the
Ψ4 Newman-Penrose scalar [178], following the method
of [179].
In Fig. 23, we show the GW strain h and its frequency for

the dominant (2, 2) mode of each simulation. Overall, one
can observe only minimal changes in the GW amplitude
and frequency caused by neutrino cooling.3 Given the large
challenge in measuring the postmerger GW signal from
future detections [180–185] and the presumably large
uncertainties regarded the extracted postmerger frequen-
cies, we expect that the differences visible here are not
measurable, potentially not even with the next generation of
detectors. However, a more systematic study involving

Bayesian parameter estimation is needed to verify this
hypothesis.

G. Light curves

To compute the kilonova signal associated with the
extracted ejecta profiles from the performed simulations,
we use the 3DMonte Carlo radiative transfer code POSSIS
[186,187]. The code allows us to use the 3D simulation
output of the unbound rest-mass density Du and the
electron fraction Ye of the ejecta as input. The required
input data represents a snapshot at a reference time t0 and is
subsequently evolved following a homologous expansion,
i.e., the velocity vi of each fluid cell remains constant. In
Appendix C, we outline the exact procedure employed to
obtain POSSIS input data.
For the generation of photon packets (assigned energy,

frequency, and direction) at each time step, POSSIS

FIG. 23. Amplitude and frequency of the GW’s (2, 2) mode as a
function of the retarded time u. The waveforms are extracted at
r ≃ 1200 km.

3We note that the spike at 6 ms for DD2_q12 is due to
numerical inaccuracies when computing the instantaneous GW
frequency for a GW signal with almost vanishing amplitude.
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employs the heating rate libraries from [188]4 and com-
putes the thermalization efficiencies as in [191,192]. The
photon packets are then propagated through the ejecta,
taking into account interactions with matter via electron
scattering and bound-bound absorption. POSSIS uses
wavelength- and time-dependent opacities from [193] as
a function of local densities, temperatures, and electron
fraction within the ejecta. We perform the radiative transfer
simulations with a total of Nph ¼ 106 photon packets.
In contrast to previous works in which we used POSSIS

[189,190], we are now able to use the electron fraction of
the material directly and do not have to approximate it
through the computation of the fluid’s entropy. This is an
important improvement since this quantity is fundamental
in determining the kilonova luminosity and spectrum.
Matter with low Ye (like tidal tails) can indeed synthesize
Lanthanides and Actinides, which have high absorption
opacities in the blue (ultraviolet-optical) spectrum, making
the EM signal redder. On the contrary, high Ye material
(like shocked ejecta and winds) synthesizes lighter ele-
ments that have a smaller opacity and are more transparent
to high-frequency radiation, i.e., it will produce a bluer
kilonova.
In Fig. 24, we show the bolometric luminosity for each

simulation for five different observation angles: For the pole
with Θ ¼ 0°, and in the orbital plane with Θ ¼ 90° for
Φ ¼ 0°, Φ ¼ 90°, Φ ¼ 180°, and Φ ¼ 270°. In general, we
find that the luminosity at the pole is higher than in the
equatorial plane, because of the smaller opacities and the
higher amount of mass. At the same time, light curves
obtained for the four angles in the orbital plane are rather
similar in the q ¼ 1 simulations. For the systems with
unequal mass, the differences are more prominent, but they
tend to decrease in time within a timescale of a few days.
This can be explained by the fact that the ejecta input in
POSSIS for these systems is less axisymmetric than for the
systemswith equal masses (see ejecta maps in Appendix C).
Furthermore, we show in Fig. 25 the light curves for the

four systems in different frequency bands, ranging from
ultraviolet to optical and infrared. We focus on oneΦ-angle
only, i.e.,Φ ¼ 0°. Still, we want to note here that the results
for other Φ angles for the systems with unequal masses

differ up to about ∼1 mag in the first two days after the
merger.
We observe that the magnitude difference between polar

angles is more pronounced in the ultraviolet and optical
bands than in the infrared bands, particularly, in the J- and
K-bands. The light curves for the systems with SFHo EOS
are on average brighter due to the larger ejecta mass than
systems employing the DD2 EOS (at the same mass ratio).
Even more importantly, we observe that the ratio between
the blue and the red component of the kilonova is strongly
affected by both the EOS and mass ratio, with more
deformable EOS (DD2) and asymmetric configurations
giving a redder kilonovae due to the bigger amount of tidal
tails with respect to shocked ejecta.
Moreover, we find that in the orbital plane (Θ ¼ 90°) the

infrared bands are generally more dominant. This is due to

FIG. 24. Bolometric luminosity for all four BNS systems. We
show the luminosity for the pole with Θ ¼ 0° (thick solid line),
and in the orbital plan with Θ ¼ 90° for different azimuths:
Φ ¼ 0° (thin dashed line), Φ ¼ 90° (thin dotted line), Φ ¼ 180°
(thin dash-dotted line), and Φ ¼ 270° (thin solid line). The
deposition curve, based on the amount of energy available, is
shown as black dashed line for each system.

4Reference [188] computes heating rates for uniform ejecta
with mref ¼ 0.05M⊙, expanding velocity vexp and electron
fraction Ye. A fitting formula as a function of vexp and Ye was
also provided and is implemented within POSSIS [187]. For the
nonuniform and homologously expanding ejecta in our simu-
lations, the density ρðtÞ ¼ ρ0ðt0=tÞ3 (where ρ0 is the density at
the reference time t0) can be equated to the density in [188],
i.e. ρ0ðt0=tÞ3 ¼ 3mref

4πv3expt
3. This gives an expression for vexp ¼

ð3mref
4π

Δv3
ΔmÞ1=3 that depends on the mass distribution in velocity

space through the factor Δv3=Δm, where Δv and Δm are the cell
width (in velocity space) and mass, respectively. We use the
velocity above in place of the local velocity of the ejecta as
previously done [187,189,190].
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the neutron-rich matter of tidal tails located at low latitude,
which absorbs most of the radiation at high frequencies. In
contrast, for an observer at the pole (Θ ¼ 0°), the ultraviolet
and optical bands are brighter in the first two days.
However, these diminish rapidly, and at later times the
red and infrared bands dominate the kilonova signal here as
well. Accordingly, a blue kilonova will be observed in the
first days, shifting to the red spectra in the following days.
These observations indicate again the need for quick
followup observations of GW signals with upcoming
UV-satellites, e.g., [194].

VI. CONCLUSIONS

In this article, we implemented a gray M1 multipolar
radiation transport scheme following [100,101,103,104,131]
in the BAM code. The main features of the implementation
are summarized in Table V. The scaling of our new
implementation is show in Appendix D, in comparison with
previous versions of the BAM code.
We performed a series of standard tests: transport along

lightlike geodesics in vacuum, absorption by static and

moving fluid, advection by a moving fluid in the scattering-
dominated regime, and emission by a thick uniform sphere.
The main difficulty was to properly account for the colli-
sional sources implicitly and to suppress artificial dissipa-
tion in the trapped regime in order to capture the correct
diffusion rate. We show that our implementation is able to
correctly handle all these regimes employing linear implicit
sources of [103] and the flux reconstruction of [104].
In addition, we also performed simulations of a single,

isolated, hot neutron star. In this case, both the spacetime and
the fluid are dynamically evolved. Opacities are motivated
by nuclear physics theory and computed using the Nulib
library. In this last test, we show that neutrinos correctly
thermalize inside the star, where they form gas in thermal
equilibriumwith the nuclearmatter and decouple at the star’s
surface at different temperatures according to their species
(with the hierarchy Tνe

eff<T ν̄e
eff<Tνx

eff ). Moreover, we showed
neutrinos correctly start developing a nonzero average
momentum at the neutrinosphere τ ¼ 2=3. In the last part
of the article, we simulated four different low-mass BNS
configurations using two different EOS and twomass ratios.
Ejecta from our simulations had the following properties:

masses of the order of ∼10−3M⊙ with hV∞i ¼ 0.1c − 0.2c
and hYei ¼ 0.2–0.4, the latter with a strong dependence on
the mass ratio. In general, more asymmetric systems and
systems with a stiffer EOS (DD2) produce lower hYei due to
the larger mass of tidal tail ejecta, with the lowest hYei given
by the asymmetric DD2 configuration. We also illustrated
that, on average, more asymmetric binaries produce more
ejecta with respect to their symmetric counterparts for both
EOSs. Softer EOS (SFHo) eject more than stiffer ones due to
the more violent impact of the merger.
Overall, the mechanisms we identified in our simulations

are consistent with those reported in the literature for the
dynamical ejecta. Moreover, similar to [164], we found a
neutrino wind ejecta component in the polar region during
the whole duration of the simulation, albeit with decreasing
matter flux. Such a component is significantly more
important for softer EOSs, in our case SFHo, due to the
higher outflow of neutrino energy. It can contribute up to
50% of the total ejecta mass and significantly increase hYei.
This component could get even more dominant if the
simulation is run for longer.
All our simulations produce a MNS remnant surrounded

by a massive, neutrino-thick disk with baryonic mass

FIG. 25. Light curves at the azimuth Φ ¼ 0°. We show each
light curve for the polar angle Θ ¼ 0° (solid line), i.e., the pole,
and Θ ¼ 90° (dashed line), i.e., in the orbital plane.

TABLE V. Summary of the M1 implementation and the
employed methods.

Method References

Fluxes Composed, Eq. (62) [104]
Collisional
sources

Linear in (Ẽnþ1, F̃i;nþ1) [103]

Opacities Modified Nulib tables [107]
Time step Implicit-explicit, Eqs. (68) and (69) [104]
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Mdisk ∼ 10−1M⊙. The mass of the disk increases with the
mass ratio for SFHo EOS while having the opposite
behavior for the stiffer DD2. The results summarized so
far are valid for all resolutions.
Finally, we used our new ejecta analysis tools to employ

our NR-extracted ejecta properties as inputs for the codes
Skynet and POSSIS, which we used to compute nucleo-
synthesis yields and kilonova light curves, respectively.
The use of Ye obtained directly from the NR simulations
produces much more realistic results with respect to the
previous assumption based on fluid’s entropy that was used
in POSSIS.
We plan to use the implementation described in this

article as the standard for our future BNS simulations
oriented to the study of ejecta properties and postmerger
dynamics and of the associated kilonova light curves and
nucleosynthesis yields.
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APPENDIX A: IMPLICIT TIME STEP SOLUTION

The projections of tensors Aα and Bα
i of Eq. (72)

perpendicular to the spacelike hypersurface Σt can be
written as

nαAα ¼ kaAðJÞ − ðka þ ksÞAðHÞ; ðA1Þ

with

AðJÞ ¼W

�
W2þaW2ðv ·fÞ2þb

W2−1

2W2þ1
ð3−2W2Þ

�
;

AðHÞ ¼W

�
−1þW2þaW2ðv ·fÞ2þb

W2−1

2W2þ1
ð3−2W2Þ

�
;

ðA2Þ

and

nαBi
α ¼ kaBi

ðJÞ − ðka þ ksÞBi
ðHÞ; ðA3Þ

where we define

Bi
ðJÞ ¼ W

�
−2W þ b

W2 − 1

2W2 þ 1
4W2

�
vi;

Bi
ðHÞ ¼ W

�
1 − 2W2 þ b

W2 − 1

2W2 þ 1
4W2

�
vi: ðA4Þ

While for the parallel component, we have

γαi Aα ¼ kaAi;ðJÞ − ðka þ ksÞAi;ðHÞ; ðA5Þ

with

Ai;ðJÞ ¼−W
�
W2þaW2ðv ·fÞ2þb

W2−1

2W2þ1
ð3−2W2Þ

�
vi;

Ai;ðHÞ ¼−
�
W3þaW3ðv ·fÞ2þbW

W2

2W2þ1
ð3−2W2Þ

�
vi

−aWðv ·fÞfi; ðA6Þ

and

γαi B
j
α ¼ kaB

j
i;ðJÞ − ðka þ ksÞBj

i;ðHÞ; ðA7Þ

with

Bj
i;ðJÞ ¼ W

�
2W2 − b

W2 − 1

2W2 þ 1
4W2

�
vivj;

Bj
i;ðHÞ ¼

�
2W3 − bW

W2 − 1

2W2 þ 1
4W2

− b
W

2W2 þ 1
ð2W2 − 1Þ

�
vivj

þ ð1 − bv2ÞWδji ; ðA8Þ

where a ¼ ð3χ − 1Þ=2 and b ¼ 1 − a are the thin and thick
closure coefficients, respectively, and fi ¼ Fi=jFj.
Using these projections we can write Ẽ and eFi at time

nþ 1 as
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F̃nþ1
i ¼ ðM−1ÞjiSj;

Ẽnþ1 ¼ 1

1þ αΔtnαAα
½Ẽn þ Δtð−∂iF i

E þ GEÞ

þ αΔtðη ffiffiffi
γ

p
W − nαBi

αF̃
nþ1
i Þ�; ðA9Þ

with

Mj
i ¼ δji − αΔtγαi B

j
α þ α2Δt2

1þ αΔtnαAα
Aαγ

α
i n

βBj
β; ðA10Þ

and

Si¼ F̃n
i þΔtð−∂jF j

Fi
þGFi

ÞþΔt
�
α

ffiffiffi
γ

p
ηWvi

þ αAαγ
α
i

1þαΔtnαAα
ðẼnþΔtð−∂iF i

EþGEÞþαΔt
ffiffiffi
γ

p
WηÞ

�
;

ðA11Þ
where GE and GFi

represent the gravitational sources of
Eqs. (28) and (29), respectively, computed using Ẽn and
F̃n
i . SinceM

j
i and Si only depend on known variables, F̃

nþ1
i

must be first computed and then plugged into the expres-
sion of Ẽnþ1 to complete the solution.

APPENDIX B: HAMILTONIAN
CONSTRAINT VIOLATION

In Fig. 26, we show the L2 norm of the Hamiltonian
constraint as a function of the time. The latter follows the
same qualitative evolution as in Ref. [123]. When initial data
are interpolated from SGRID, the Hamiltonian constraint is of
the order of 10−8. The evolution with the Z4c formulation
reduces this value order 10−10 due to its constraint-damped
properties. At merger time, the value increases, due to
the formation of shocks in the hydrodynamics variables,
reaching a peak shortly after. After the peak, the value

decreases and stabilizes between 10−9 and 10−10.
Simulations including neutrino transport systematically show
a bigger violation of the Hamiltonian constraint after the
merger. One of the reasons might be that, as common in the
literature, the neutrino’s stress-energy tensor is not included in
the matter term of the spacetime evolution equations. This
leads to a mathematical violation of General Relativity
constraints proportional to neutrino’s stress-energy tensor.
However, we can observe that the value of the Hamiltonian
constraint is always lower than its initial value.

APPENDIX C: EJECTA DATA FOR POSSIS

Given the limited length of our simulations and the issue
of covering both early-time and postmerger ejecta with

FIG. 26. Hamiltonian constraint violation for R2 simulations as
function of postmerger time. Shaded lines represent the corre-
spondent neutrinoless counterparts.

FIG. 27. Maps of the matter density ρ, electron fraction Ye, and
temperature T in the vy − vz plane as used in POSSIS. We show
the configurations for all four systems, i.e., SFHo_q1_M1,
SFHo_q12_M1, DD2_q1_M1, and DD2_q12_M1, scaled for
1 day after the merger by homologous expansion.
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individual snapshots, we employ 3D snapshots together
with information from the detection sphere at r ≃ 450 km.
The detailed procedure is as follows:

(i) We find the latest 3D snapshot in which all the ejecta
is contained within the simulation domain. We mark
the time of this snapshot as tcut. From it, we cut out
the matter still contained within the detection sphere.
This component includes most of the ejecta mass,
including the tidal tails and the shocked component.

(ii) We rescale the ejecta from the previous step assum-
ing homologous expansion the same way POSSIS
does, i.e., assuming every fluid element moves with a
constant velocity vi ¼ xi=ðt − tmergerÞ. This is equiv-
alent to defining a scale factor αðtÞ ¼ ðt − tmergerÞ=
ðtcut − tmergerÞ and rescaling coordinates and mass
density as xi → αðTÞxi, ρ → ρ=α3ðTÞ, where T is
the final time of the simulation. After this step, the
radius of the inner cut (initially corresponding to the
detection sphere) moved outwards, leaving a gap
between the ejecta and the detection sphere that we
are going to fill using data from the sphere itself.

(iii) From the sphere we select data with t∈ ½tcut; T�.
Assuming homologous expansion like for the 3D
data, we can map the time into a radius by RðtÞ ¼
rðT − tmergerÞ=ðt − tmergerÞ ¼ rαðTÞ=αðtÞ where r is
the fixed coordinate radius of the detection sphere.
At the same time, we rescale the mass density by
ρðt; θ;ϕÞ → ρðt; θ;ϕÞðαðtÞ=αðTÞÞ3. After this pro-
cedure, we will have the ρðR; θ;ϕÞ, and we inter-
polate it into the Cartesian grid, where the ejecta
from 3D data is defined. This way, we fill the gap

between the ejecta and the detection sphere left by
the previous rescaling step.

It is important to point out that the ejecta at the detection
sphere is not fully homologous, and assuming a constant
velocity with vi ¼ xi=ðt − tmergerÞ might introduce biases.
This is due to the different velocities of components ejected
at different times, with shock ejecta that is faster than tidal
tails, although it is ejected later. Although deviations from
homologous expansion are shown to be present even at
Oð100 msÞ after the merger [195,196], it has been shown
that their influence for the light curve computation using
POSSIS is negligible, i.e., within the range of Monte Carlo
noise, if the ejecta is extracted at t > 80 ms after the merger
[189]. (In [189], only the dynamical ejecta was included,
and GRHD simulations were performed without the evo-
lution of the electron fraction. The inclusion of other ejecta
components or neutrino radiation probably leads to a delay
in reaching the homologous phase.)
Because of this reason, we let the ejecta evolve as long as

possible out of the detection sphere before assuming
homologous expansion and starting the procedure
described above. In order to alleviate the issue, an even
longer evolution would be required to produce accurate
light curves.
The resulting input data for the radiative transfer sim-

ulations are shown in Figs. 27 and 28. In Fig. 27, we
present maps in the vy − vz plane of the matter density ρ,
electron fraction Ye, and temperature T used in POSSIS
and computed at 1 day after the merger for all four BNS
systems using the M1 scheme. In addition, we show in
Fig. 28 the distribution of density and electron fraction in

FIG. 28. Maps of the matter density ρ and electron fraction Ye in the vx − vy plane as used in POSSIS. We show the configurations for
all four systems, i.e., SFHo_q1_M1, SFHo_q12_M1, DD2_q1_M1, and DD2_q12_M1, scaled for 1 day after the merger by
homologous expansion.
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the vx − vy plane to show how the configurations deviate
from axisymmetry.

APPENDIX D: SCALING BEHAVIOR

In order to see how the scaling behavior changes with our
new implementation, we performed a scaling test onHAWK
at HLRS. In Fig. 29 we show strong scaling results for pure
GRHD simulations compared to simulations with neutrino
leakage and our new M1 neutrino transport scheme. Pure
GRHD simulations are performed using piecewice poly-
tropic EOS, while simulations with neutrino interactions are
carried using 3D tabulatedEOS. For the tests,we simulated a
typical BNS system using a total of seven refinement levels
with 1923 grid points in the five inner,moving level and 3843

grid points in the two outer, nonmoving levels. As expected,
we find that the speed of the code decreases as the complex-
ity of the physical description increases. Yet, the scaling
performance does not change drastically.
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