
Black-bounce solution in k-essence theories

Carlos F. S. Pereira *

Departamento de Física, Universidade Federal do Espírito Santo,
Avenida Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, Espírito Santo, Brazil

Denis C. Rodrigues †

Núcleo Cosmo-ufes and Departamento de Física, Universidade Federal do Espírito Santo,
Avenida Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, Espírito Santo, Brazil

Júlio C. Fabris ‡

Núcleo Cosmo-ufes and Departamento de Física, Universidade Federal do Espírito Santo,
Avenida Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, Espírito Santo, Brazil

and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
115409, Kashirskoe shosse 31, Moscow, Russia

Manuel E. Rodrigues §

Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará Campus Universitário de
Abaetetuba, 68440-000, Abaetetuba, Pará, Brazil

and Faculdade de Física, Programa de Pós-Graduação em Física, Universidade Federal do Pará,
66075-110, Belém, Pará, Brazil

(Received 30 September 2023; accepted 8 January 2024; published 5 February 2024)

In the present work, we construct black-bounce configurations in the context of k-essence theory. The
solutions have a regular metric function at the origin. The area metric function is linked to the black-bounce
area initially considered by Simpson-Visser, Σ2 ¼ x2 þ a2. Subsequently, the expressions for the scalar
field and scalar potential corresponding to the found solutions are determined, exhibiting phantom behavior
everywhere due to violation of the null energy condition ðNECϕÞ. The Kretschmann scalar is regular in
spacetime, and the geodesics are complete. The energy conditions are analyzed, verifying that the null

ðNECϕ
1 Þ and dominant energy conditions ðDECϕ

1 Þ are violated inside and outside the event horizon. Finally,
the extrinsic curvature method is applied to determine the sign of the mass on the junction surface.
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I. INTRODUCTION

Recently, Simpson and Visser [1] introduced a new
class of solutions called “black-bounce” describing regular
black holes and traversable wormholes. These solutions
have a nonzero throat radius a2 ≠ 0 and reduce to the
Schwarzschild metric when a → 0. Subsequent studies
have explored generalizations and applications of the
black-bounce solutions. Lobo et al. [2] constructed new
black-bounce solutions by modifying the mass function,
recovering the original Simpson-Visser solution [1] for
particular parameter values. Rodrigues and Silva [3]
investigated the Simpson-Visser black-bounce geometry
with modifications to the metric function related to the

black-bounce area. Junior and Rodrigues [4] obtained novel
black-bounce solutions in the context of fðTÞ modified
gravity theory.
The search for exotic solutions such as regular black

holes and traversable wormholes requires violating stan-
dard energy conditions: the minimally coupled canonical
scalar field cannot describe such geometries. However,
Bronnikov and Fabris showed a canonical scalar field with
phantom behavior can allow regular black holes [5]. In this
context, k-essence theory has emerged as an exotic matter
alternative, with its noncanonical kinetic term displaying
phantom behavior without exotic matter. The k-essence
theories generalize the scalar field kinetic term, originally
proposed for modeling primordial inflation with just a
kinetic term [6–8]. Generalized kinetic terms are also
motivated by string theory [9]. This work examines
black-bounce solutions in k-essence theory with a power
law kinetic term and potential, focusing on energy con-
dition violations.
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In the studies of static, spherically symmetric configura-
tions, exotic matter is frequently introduced in order to find
regular black holes and wormholes solutions in nonlinear
electrodynamics. These new regular metrics constitute exact
solutions in general relativity, derived through a combined
stress-energy tensor of a scalar field with nonzero self-
interaction potential and a magnetic field [10–14]. However,
rotating metrics have also been found to accommodate such
regular objects [15–17]. This analysis investigates black-
bounce solutions in k-essence theory to gain insights into
k-essence and exotic solutions in general relativity.
Furthermore, Bronnikov et al. investigated Ellis-

Bronnikov wormhole solutions within the framework of
extended gravity theories [18]. The analysis reveals that
the samewormhole metric arises in both Rastall gravity and
k-essence theories, although with distinct stability charac-
teristics. Perturbation analysis exposes inconsistencies in
Rastall gravity, whereas the k-essence solution proves to
be unstable for specific model parameters. These findings
underscore the difficulties encountered in discovering
straightforward, traversable, and perturbatively stable
wormhole solutions devoid of exotic matter.
The Simpson-Visser metric has been studied in other

contexts, such as light deflection and gravitational lensing
effects [19–22]. Gravitational lensing was analyzed using
black-bounce solutions in a spherically symmetric and
stationary spacetime [23,24]. In the zero mass limit, this
reduces to the Ellis-Bronnikov chargedwormhole. Quantum
dynamics have been studied using the Ellis-Bronnikov
metric [25–28].
Phantom scalar fields are often studied as a source

of exotic matter required to obtain wormhole solutions
minimally coupled to general relativity [14,29]. Their
phantom properties are typically associated with the vio-
lation of energy conditions and occasionally lead to
instabilities [30,31]. Additionally, ghost fields are com-
monly associated with dark energy candidates, further
emphasizing the importance of investigations in this
direction [32,33]. From this perspective, phantom fields
have been explored as a matter source for singular [34,35]
and regular black holes [5,36,37].
The present study first establishes in Sec. II the theo-

retical background of the k-essence model, including the
key relationships and equations. Section III then derives the
specific metric function corresponding to a defined black-
bounce throat geometry, and determines the associated
scalar field and potential solutions that satisfy the equations
of motion. Next, Sec. IVexamines the geometric properties
by defining the regular Kretschmann scalar and stress-
energy tensor components inside and outside the horizon,
as well as analyzing the energy conditions required for
the black-bounce solutions. Finally, Sec. V summarizes the
main conclusions from this analysis regarding the viability
of constructing regular black-bounce geometries within
k-essence theories.

II. GENERAL RELATIONS

The k-essence theories are characterized by a nonca-
nonical kinetic term for the scalar field, represented by the
Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p ½R − FðX;ϕÞ�; ð1Þ

where R is the Ricci scalar and X ¼ ηϕ;ρϕ
;ρ denotes the

kinetic term. While k-essence models can include a
potential term and nontrivial couplings, the scalar sector
is generally minimally coupled to gravity. The parameter
η ¼ �1 avoids imaginary terms in the kinetic expression X.
By choosing different forms of the function FðX;ϕÞ,
k-essence theories can describe both phantom and standard
scalar fields.
The variation of the Lagrangian (1) with respect to the

metric and the scalar field yields the field equations:

Gν
μ ¼ −Tν

μðϕÞ ¼ −ηFXϕμϕ
ν þ 1

2
δνμF; ð2Þ

η∇αðFXϕ
αÞ − 1

2
Fϕ ¼ 0; ð3Þ

whereGν
μ is the Einstein tensor, Tν

μ the stress-energy tensor,
FX ¼ ∂F

∂X, Fϕ ¼ ∂F
∂ϕ, and ϕμ ¼ ∂μϕ.

The line element representing the most general spheri-
cally symmetric and static spacetime takes the form

ds2 ¼ e2γðuÞdt2 − e2αðuÞdu2 − e2βðuÞdΩ2; ð4Þ

where u is an arbitrary radial coordinate, dΩ2 ¼ dθ2 þ
sin2 θdφ2 the volume element, and ϕ ¼ ϕðuÞ.
The nonzero components of the stress-energy tensor are

T0
0 ¼ T2

2 ¼ T3
3 ¼ −

F
2
; ð5Þ

T1
1 ¼ −

F
2
− ηFXe−2αϕ02; ð6Þ

with ϕ0 ¼ dϕ
du.

It is assumed that the function X ¼ −ηe−2αϕ02 is pos-
itive, which implies that η ¼ −1. As a result, the equations
of motion take the form

2ðFXe−αþ2βþγϕ0Þ0 − eαþ2βþγFϕ ¼ 0; ð7Þ

γ00 þ γ0ð2β0 þ γ0 − α0Þ − e2α

2
ðF − XFXÞ ¼ 0; ð8Þ

−e2α−2β þ β00 þ β0ð2β0 þ γ0 − α0Þ − e2α

2
ðF − XFXÞ ¼ 0;

ð9Þ
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−e−2β þ e−2αβ0ðβ0 þ 2γ0Þ − F
2
þ XFX ¼ 0: ð10Þ

The notation used here follows the same as used in
Ref. [38]. The following coordinate transformation is
defined: u≕ x, and the quasiglobal gauge αðuÞ þ
γðuÞ ¼ 0 is employed. As a result, the line element in
Eq. (4) can be expressed in the following form:

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − Σ2ðxÞdΩ2; ð11Þ

where the metric functions are defined as AðxÞ ¼ e2γ ¼ e−2α

and eβ ¼ ΣðxÞ. The equations of motion defined in
Eqs. (7)–(10) can then be rewritten in the new coordinates.
Combining Eqs. (8)–(10) yields the expressions

2A
Σ00

Σ
− XFX ¼ 0; ð12Þ

A00Σ2 − AðΣ2Þ00 þ 2 ¼ 0; ð13Þ

where the primes now represent derivatives with respect
to x.
The two remaining equations, Eqs. (7) and (10), are

rewritten in the new coordinates as

2ðFXAΣ2ϕ0Þ0 − Σ2Fϕ ¼ 0; ð14Þ

1

Σ2
ð−1þ A0Σ0Σþ AΣ02Þ − F

2
þ XFX ¼ 0: ð15Þ

For the remainder of this analysis, the k-essence function
is defined as FðXÞ ¼ F0Xn − 2VðϕÞ, where F0 is a
constant parameter, n is a real number, X ¼ ηϕ;ρϕ

;ρ is
the kinetic term, and VðϕÞ represents the potential.

III. GENERAL SOLUTION

The analysis aims to find black-bounce solutions to the
k-essence equations of motion [1,39]. The metric function
Σ2ðxÞ ¼ x2 þ a2 from the original work [1] is used, where
the nonzero throat radius a gives regular black holes or
wormholes, with the area function Σ2ðxÞ and the k-essence
equations of motion, Eq. (13), the corresponding metric
function AðxÞ is derived.
The general solution of the differential equation (13) is

given by

AðxÞ ¼ 1þC1

�
ðx2þa2Þarctan

�
x
a

�
þ xa

�
þC2ðx2þa2Þ;

ð16Þ

where C1 and C2 are constants.
Certain requirements were imposed on the solution

Eq. (16), such as being asymptotically flat, leading to a
constraint between the constants C2 ¼ − π

2
C1. Further-

more, the solution should approach the Simpson-Visser
solution as x → 0, namely, Aðx → 0Þ ¼ 1 − 2m

a . Hence, the
constant is set as C1 ¼ 4m

πa3. The resulting solution is

AðxÞ ¼ 1þ
�
4m
πa3

��
xaþ ðx2 þ a2Þ

�
arctan

�
x
a

�
−
π

2

��
:

ð17Þ

Figure 1(a) shows curves of the metric function from
Eq. (17) for various throat radii a, inside and outside the
event horizon. For all a, AðxÞ diverges as x → −∞ and is
asymptotically flat as x → ∞. This general solution of
Eq. (17) is regular at the origin and for x → −∞, asymp-
totically approaching to de Sitter–Schwarzschild form.
This requires considering the series expansion of arctanðxaÞ
for x → −∞ and discarding higher order terms Oð1xÞ.

FIG. 1. (a) Curves for various throat radius values a; the function is not asymptotically flat in both x → �∞ limits. (b) Radii inside and
outside the horizon, with the metric function defined by matching asymptotically flat solutions at x ¼ 0 for x → �∞.
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Taking the general metric function in Eq. (17) gives

AðxÞ ¼ 1 −
8m
3π

�
1

x

�
−
4m
a3

ðx2 þ a2Þ: ð18Þ

The general metric function in Eq. (17) is equivalent to
the solution in Eq. (10) from [5], with redefinitions ρ0 ¼ 4m

π
and c ¼ − 2m

a . This corresponds to the canonical n ¼ 1

phantom scalar field case in k-essence theory. The regu-
larity of the general solution in Eq. (17) can be seen in the
Kretschmann scalar in Fig. 6(a), which tends to zero as
x → ∞ (Minkowski limit) and is constant and positive
as x → −∞.
The behavior of the scalar field for the obtained

k-essence solution, with n ¼ 1
3
, can be examined using

the general metric solution in Eq. (17). The scalar field ϕðxÞ
for this metric is given by

ϕðxÞ ¼ D1

4a5

�
xa3

Σ4
þ 3xa
2Σ2

þ 3

2
arctan

�
x
a

��

−
D1m
πa2Σ4

−
D1m
a6

�
ax
Σ2

þ arctan

�
x
a

��

þ
�
2D1m
πa6

��
a2

2Σ2
þ arctan

�
x
a

�

×

�
xa
Σ2

þ 1

2
arctan

�
x
a

���
; ð19Þ

where D1 ¼ ð6a2F0
Þ32 is a constant.

As shown in Fig. 2(b), ϕðxÞ approaches constant values
depending on the throat radius a as x → �∞, specifically

ϕðx → −∞Þ ¼ −
9π

ffiffi
3
2

q
4a3

ða − 4mÞ and

ϕðx → ∞Þ ¼
3π

ffiffi
3
2

q
4a3

ð3a − 4mÞ; ð20Þ

where we set F0 ¼ 1.
Similarly, the potential VðϕðxÞÞ can be analyzed. The

potential for the metric in Eq. (17) is given by

VðϕðxÞÞ ¼ 2a2

Σ4
−
cax
Σ4

ðΣ2 þ 2x2Þ

−
c
Σ2

ð3x2 − a2Þ
�
arctan

�
x
a

�
−
π

2

�
; ð21Þ

where c ¼ 4m
πa3 is a combination of constants.

To better represent the potential, the transformation ψ ¼
arctanðxaÞ is performed, and the potential is rewritten in
terms of this new variable ψ . Thus, in asymptotic analysis,
taking the limit x → �∞ is equivalent to taking ψ → � π

2
.

The potential is therefore expressed as

VðψÞ ¼ 2cos4ðψÞ
a2

þ c sin ð2ψÞ
2

½cos ð2ψÞ − 2�

þ c

�
ψ −

π

2

�
½2 cos ð2ψÞ − 1�: ð22Þ

As Fig. 2 exhibits, VðψÞ tends to the constant 3πc as
x → −∞ and to zero as x → ∞.

A. Black-bounce solution

In order to construct black-bounce solutions, the general
solution in Eq. (17) will be matched to construct the
appropriate geometry.
First, the requirement was imposed that the metric

function be asymptotically flat in both limits, to recover

FIG. 2. Graphing for the scalar field and potential for the general metric function Eq. (17) with radius values of throats outside the
inside event horizon. We fixed the constant F0 ¼ 1.
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the Schwarzschild metric. To achieve this, the metric
function Eq. (17) was bisected at x ¼ 0 and mirrored,
defining two regions [see Fig. 1(b)]. The metric function is
thus expressed as

AþðxÞ ¼ 1þ
�
4m
πa3

��
xaþ ðx2 þ a2Þ

�
arctan

�
x
a

�
−
π

2

��
;

x ≥ 0;

A−ðxÞ ¼ 1 −
�
4m
πa3

��
xaþ ðx2 þ a2Þ

�
arctan

�
x
a

�
þ π

2

��
;

x ≤ 0: ð23Þ

Figure 3 shows curves of derivatives up to fourth order
for the metric function Eq. (23). Figure 3(a) shows the
derivatives for a throat radius a ¼ m inside the event
horizon. Figure 3(b) displays the derivatives for a radius
a ¼ 4m outside the event horizon.
The odd derivatives of the metric function Eq. (23)

exhibit discontinuity at the origin, as shown in Fig. 3, while
even derivatives are continuous, as expected for a smooth
function. This arises due to the construction method in
Eq. (23) and implies a spherically symmetric thin shell
exists at the junction point x ¼ 0. Consequently, black-
bounce solutions are obtained only for the cases of the
wormhole traversable in both directions a > 2m and the
wormhole with two horizons a < 2m. The possibility of
one-way traversable wormholes with a ¼ 2m is ruled out.
This restriction is further examined in the Appendix and is
similar to previous studies [4].
In order to enhance the depiction of graphs throughout

the study, it will be advantageous to utilize the variable
transformation y ¼ x

a, enabling the expression of physical
quantities in terms of the mass m.
At this stage, the metric functions have been constructed

to meet all necessary conditions. The set of equations of

motion, Eqs. (12)–(15), can be rewritten in terms of the
metric function A�ðxÞ for each region.
Equation (13) was used for the area metric function from

the original work [1] to derive the corresponding function
A�ðxÞ. To obtain the associated scalar field, Eq. (12) is
solved for the k-essence field, defined as X ¼ −ηA�ϕ02 and
FðXÞ ¼ F0Xn − 2VðϕÞ, where F0 is a constant, n is real,
and VðϕÞ is the potential. With fixed n ¼ 1

3
and η ¼ −1,

Eq. (12) becomes

ϕ0� ¼
�

6

F0

Σ00

Σ

�3
2

A�: ð24Þ

The above relation is a first order differential equation
containing only the metric functions Σ and A�. Direct
integration produces the scalar field ϕ�ðxÞ, already found
in Eq. (19), now, for each region

ϕ�ðxÞ ¼
D1

4a5

�
xa3

Σ4
þ 3xa
2Σ2

þ 3

2
arctan

�
x
a

��

∓ D1m
πa2Σ4

−
D1m
a6

�
ax
Σ2

þ arctan

�
x
a

��

�
�
2D1m
πa6

��
a2

2Σ2
þ arctan

�
x
a

�

×

�
xa
Σ2

þ 1

2
arctan

�
x
a

���
; ð25Þ

where

ϕðxÞ ¼
�
ϕþ; x ≥ 0;

ϕ−; x ≤ 0;
ð26Þ

where D1 ¼ ð6a2F0
Þ32 is a constant. Hence, the scalar field

described by Eq. (25) reaches its maximum value as
ϕþðx → ∞Þ and its minimum value as ϕ−ðx → −∞Þ.

FIG. 3. (a) The odd and even derivatives of the asymptotically flat function Eq. (23) for a radius a ¼ m inside the horizon. (b) The
derivatives for a radius a ¼ 4m outside the horizon.
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The corresponding expressions for these values are defined
below:

ϕmax ¼ ϕþðx → ∞Þ ¼
3π

ffiffi
3
2

q
4a3

ð3a − 4mÞ and

ϕmin ¼ ϕ−ðx → −∞Þ ¼ −
9π

ffiffi
3
2

q
4a3

ða − 4mÞ; ð27Þ

where we set F0 ¼ 1.
To satisfy the system Eqs. (12)–(15), a scalar potential is

required. Equation (15) is thus used together with the
metric functions Σ and A�ðxÞ and the scalar field equa-
tion (25) to define the associated potential V�ðϕðxÞÞ:

V�ðϕðxÞÞ ¼ A�
Σ00

Σ
þ 1

Σ2
−
A0
�Σ0

Σ
−
A�Σ02

Σ2
: ð28Þ

The potential in Eq. (28) is obtained through a procedure
analogous to the scalar field definition in Eq. (25). With
some algebraic simplifications, it can be expressed explic-
itly as

V�ðϕðxÞÞ ¼
2a2

Σ4
∓ cax

Σ4
ðΣ2 þ 2x2Þ

∓ c
Σ2

ð3x2 − a2Þ
�
arctan

�
x
a

�
∓ π

2

�
; ð29Þ

where

VðϕðxÞÞ ¼
�
Vþ; x ≥ 0;

V−; x ≤ 0;
ð30Þ

where c ¼ 4m
πa3 is a combination of constants. The potential

equation (30) approaches zero as x → �∞, and near the

origin, it tends toward 2ða−mÞ
a3 .

As in the previous section, to better represent the
potential, the transformation ψ ¼ arctanðxaÞ is performed
and the potential is rewritten in terms of this new variable
ψ . The potential is therefore expressed as

V�ðψÞ ¼
2 cos4ðψÞ

a2
� c sin ð2ψÞ

2
½cos ð2ψÞ − 2�

� c

�
ψ ∓ π

2

�
½2 cos ð2ψÞ − 1�: ð31Þ

With the scalar potential defined, verification shows all
equations of motion are satisfied. In particular, Eq. (14),
which was not used in the derivation, is also satisfied in
both regions:

dV�
dx

þ F0

3

�
ϕ0
�

Σ2

� ffiffiffiffiffiffiffiffiffiffiffi
F0Σ5

6Σ00

s !0

¼ 0: ð32Þ

Figures 4 and 5 show the scalar field equation (25) and
potential equation (31) for various throat radii. The dis-
continuity and symmetry in the curves reflects the match
procedure for the metric function A�ðxÞ. Discontinuities in
odd derivatives are also shown.
The scalar field displays oscillations due to its inter-

action with the thin shell at x ¼ 0 for radii values inside
the horizon, as depicted in Fig. 4(a). Conversely, the
potential functions have a barrier that increases for radii
near the event horizon and decreases as the radius value
moves away from the horizon, as illustrated in Fig. 5(b).
When considering increasingly internal values, the poten-
tial exhibits similarities to the Pöschl-Teller potential
[40–43] for the radius within the event horizon, as seen
in Fig. 5(a).
These characteristics of the potential can be further

visualized through the construction of a parametrized graph
of the potential equation (30) as a function of the scalar
field equation (26). This is exemplified by the curves

FIG. 4. Curves of the scalar field equation (25) for throat radii inside the horizon are displayed in (a), with constant F0 ¼ 1. In (b),
curves are exhibited for radii outside the horizon, also fixing F0 ¼ 1.
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depicted inside the event horizon, as shown in Fig. 5(c), and
outside the event horizon, as illustrated in Fig. 5(d).
Continuing with the parametric graph depicting curves

with throat radii within the event horizon, it is evident from
Fig. 5(c) that the scalar field attains maximum and mini-
mum values in accordance with the expression provided by
its asymptotic Eq. (27). Notably, in this figure, it is apparent
that the minimum point of the potential gradually shifts
toward the negative side as the radii values move further
internally toward the horizon.

IV. GEOMETRIC QUANTITIES

With the solutions constructed, the focus now turns to
investigating the geometric properties before analyzing the
energy conditions. The spherically symmetric line element
is defined as

ds2 ¼ A�ðxÞdt2 −
dx2

A�ðxÞ
− Σ2ðxÞdΩ2: ð33Þ

Constructing the Kretschmann scalar requires the non-
zero Riemann tensor components. With the area metric

function defined as Σ2ðxÞ ¼ x2 þ a2, the nonvanishing
elements are

Rtr
tr ¼

A00
�
2

; Rθϕ
θϕ ¼ A�Σ02 − 1

Σ2
;

Rtθ
tθ ¼ Rtϕ

tϕ ¼ A0
�Σ0

2Σ
; Rrθ

rθ ¼ Rrϕ
rϕ ¼ A0

�Σ0 þ 2A�Σ00

2Σ
:

ð34Þ
Using the nonzero Riemann tensor components from

Eq. (34), the Kretschmann scalar K ¼ RαβμνRαβμν can be
constructed in terms of the Riemann tensor as a semi-
positive sum of quadratic terms [2,44]:

K ¼ 4ðRtr
trÞ2 þ 4ðRtθ

tθÞ2 þ 4ðRtϕ
tϕÞ2 þ 4ðRrθ

rθÞ2
þ 4ðRrϕ

rϕÞ2 þ 4ðRθϕ
θϕÞ2: ð35Þ

That imposing the spherical symmetry conditions can be
written in a reduced form by the expression below:

K ¼ 4ðRtr
trÞ2 þ 8ðRtθ

tθÞ2 þ 8ðRrθ
rθÞ2 þ 4ðRθϕ

θϕÞ2: ð36Þ

FIG. 5. Curves of the potential equation (31) for throat radii inside the horizon are depicted in (a). In (b), curves are shown for radii
outside the horizon. In the remaining panels (c) and (d), we respectively present the behavior of the potential equation (30) as a function
of the scalar field equation (26) for selected values of throat radii inside and outside the horizon. Here, we have set F0 ¼ 1.
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The Riemann tensor components in Eq. (34) show the Kretschmann scalar must be defined piecewise due to its
dependence on the metric function A�ðxÞ. Thus, the Kretschmann scalar is

KþðxÞ ¼
ðΣ2A00þÞ2 þ 2ðΣΣ0A0þÞ2 þ 2Σ2ðΣ0A0þ þ 2AþΣ00Þ2 þ 4ð1 − AþΣ02Þ2

Σ4
; x ≥ 0;

K−ðxÞ ¼
ðΣ2A00

−Þ2 þ 2ðΣΣ0A0
−Þ2 þ 2Σ2ðΣ0A0

− þ 2A−Σ00Þ2 þ 4ð1 − A−Σ02Þ2
Σ4

; x ≤ 0; ð37Þ

Kðx → 0Þ ¼ 4ð3a2 − 8amþ 12m2Þ
a6

: ð38Þ

Note that in Eq. (38), the Kretschmann scalar is regular
in the limit of x → 0, and therefore, no singularity is
present. Likewise, in the limit of x → �∞, the scalar goes
to zero.
Figure 6(b) plots the Kretschmann scalar for throat radii

inside and outside the horizon. For a ¼ 1.8m within the
horizon, Eq. (38) demonstrates a finite value at the origin.
Similarly, the curves for radii outside the horizon also
exhibit finite values at the origin.

A. Energy conditions

Analyzing the null energy conditions requires starting
from Einstein’s equations [45], previously defined in
Eq. (2). This gives the nonzero stress-energy tensor compo-
nents [46] as

Tμ
ν ¼ diag½ρϕ;−pϕ

1 ;−p
ϕ
2 ;−p

ϕ
2 �; ð39Þ

where ρϕ is the scalar field energy density, pϕ
1 the radial

pressure, and pϕ
2 the tangential pressure. Using the stress-

energy tensor diagonal component expressions in Eqs. (5)
and (6) for the k-essence configuration n ¼ 1

3
from Eq. (24)

and associated potential equation (28),

ρϕ� ¼ −
F0

2
½−ηA�ðϕ0

�Þ2�
1
3 þ V�ðxÞ ¼ −

3A�Σ00

Σ
þ V�ðxÞ;

ð40Þ

pϕ
1� ¼ −T1

1 ¼
A�Σ00

Σ
− V�ðxÞ; ð41Þ

pϕ
2� ¼ −T2

2 ¼ −T0
0 ¼ −ρϕ� ¼ 3A�Σ00

Σ
− V�ðxÞ: ð42Þ

The defined stress-energy tensor diagonal components
are only valid outside the horizon where A� > 0, with
metric signature ðþ;−;−;−Þ and t timelike and x
spacelike.
Inside the horizon, t becomes spacelike and x timelike.

The signature changes to ð−;þ;−;−Þwith A� < 0, revers-
ing the coordinate roles. The stress-energy tensor compo-
nents must then be rewritten as

Tμ
ν ¼ diag½−pϕ

1 ; ρ
ϕ;−pϕ

2 ;−p
ϕ
2 �; ð43Þ

and therefore, the equations for energy density, radial
pressure, and tangential pressure must be rewritten as

FIG. 6. The figure plots on the right represent the Kretschmann scalar for selected throat parameter valuesm, with a ¼ 1.8m inside the
horizon (blue curve) and a ¼ 3m, 4m outside the horizon (red and purple curves, respectively). On the left, we have the Kretschmann
scalar for some throat values inside and outside the horizon for the general expression Eq. (17).
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ρϕ� ¼ −
A�Σ00

Σ
þ V�ðxÞ; ð44Þ

pϕ
1� ¼ 3A�Σ00

Σ
− V�ðxÞ; ð45Þ

pϕ
2� ¼−T2

2 ¼−T0
0 ¼−ρϕ� ¼−ð−pϕ

1�Þ ¼
3A�Σ00

Σ
−V�ðxÞ:

ð46Þ

The constructed geometric quantities depend on the
metric function A�ðxÞ, so they are defined piecewise.
With the defined energy density and pressure components,
the energy conditions for black-bounce solutions can now
be examined [39].
The commonly used energy conditions are inequalities

relating the energy density and pressures [39]:

NEC1;2 ¼ WEC1;2 ¼ SEC1;2 ⟺ ρϕ� þ pϕ
ð1;2Þ� ≥ 0; ð47Þ

SEC3 ⟺ ρϕ� þ pϕ
1� þ 2pϕ

2� ≥ 0; ð48Þ

DEC1;2 ⟺ ρϕ� þ pϕ
ð1;2Þ� ≥ 0 and ρϕ� − pϕ

ð1;2Þ� ≥ 0;

ð49Þ

DEC3 ¼ WEC3 ⟺ ρϕ� ≥ 0: ð50Þ

The energy conditions can be explicitly expressed in
terms of the metric functions by substituting the stress-
energy tensor components from Eqs. (40)–(42) into the
defining inequalities Eqs. (47)–(50).
This gives the energy conditions in the timelike region

outside the event horizon where A� > 0 as

NECϕ
1 ¼ WECϕ

1 ¼ SECϕ
1 ⟺ −

2A�Σ00

Σ
≥ 0; ð51Þ

NECϕ
2 ¼ WECϕ

2 ¼ SECϕ
2 ⟺ 0; ð52Þ

SECϕ
3 ⟺

4Σ00A�
Σ

− 2V�ðxÞ ≥ 0; ð53Þ

DECϕ
1 ⟺ −

4Σ00A�
Σ

þ 2V�ðxÞ ≥ 0; ð54Þ

DECϕ
2 ⟺ −

6Σ00A�
Σ

þ 2V�ðxÞ ≥ 0; ð55Þ

DECϕ
3 ¼ WECϕ

3 ⟺ −
3A�Σ00

Σ
þ V�ðxÞ ≥ 0: ð56Þ

Likewise, the energy conditions inside the horizonwhere t is
spacelike are obtained by substituting the stress-energy
tensor components from Eqs. (44)–(46) into the inequalities
Eqs. (47)–(50). This gives the energy conditions for A� < 0
as

NECϕ
1 ¼ WECϕ

1 ¼ SECϕ
1 ⟺

2A�Σ00

Σ
≥ 0; ð57Þ

NECϕ
2 ¼ WECϕ

2 ¼ SECϕ
2 ⟺

2A�Σ00

Σ
≥ 0; ð58Þ

SECϕ
3 ⟺

8A�Σ00

Σ
− 2V�ðxÞ ≥ 0; ð59Þ

DECϕ
1 ⟺ −

4A�Σ00

Σ
þ 2V�ðxÞ ≥ 0; ð60Þ

DECϕ
2 ⟺ −

4A�Σ00

Σ
þ 2V�ðxÞ ≥ 0; ð61Þ

DECϕ
3 ¼ WECϕ

3 ⟺ −
A�Σ00

Σ
þ V�ðxÞ ≥ 0: ð62Þ

Equations (51) and (57) demonstrate that the null energy
condition ðNECϕ

1 Þ is violated both inside and outside
the event horizon. Likewise, NECϕ

2 given by Eq. (52) is
satisfied outside the horizon but violated inside according

FIG. 7. DEC plot relating energy density and tangential pressure, for radii inside and outside the event horizon.
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to Eq. (58). Since DECϕ
2 is connected to NECϕ

2 , it is also
violated within the horizon through Eq. (61). Similarly,
DECϕ

1 is violated both outside and inside the horizon,
which is tied to the violation of ðNECϕ

1 Þ.
Complementarily, Fig. 7(a) exhibitsDECϕ

2 violation for all
radii outside the horizon. However, DECϕ

3 violates outside
but satisfies inside the horizon [Fig. 7(b)]. Finally, SECϕ

3

violates inside and outside, as shown in Fig. 8.

V. CONCLUSION

The present analysis utilizes the k-essence field equations
describing a phantom scalar field to construct black-bounce
solutions not possible with an ordinary scalar field. It should
be noted that k-essence does not constitute a modified theory
of gravity; rather, it introduces a scalar field through a
nonstandard kinetic term. The analysis begins with the areal
metric function Σ2 ¼ x2 þ a2 containing a throat radius a as
in the original black-bounce proposals [1]. The correspond-
ing metric function in k-essence theory is derived by
applying boundary conditions to obtain an asymptotically
flat spacetime. This defines the full metric and enables study
of the black-bounce structures.
The analysis attempts to satisfy the equations of motion

with only a kinetic term for the scalar field. However, this is
insufficient, requiring introduction of a scalar potential as
well.Analytical expressions for the scalar field andnecessary
potential are derived, with the full set of equations satisfied.
The possibility of using alternative black-bounce throat
metric functions, as studied in Ref. [3], is also examined
but leads to algebraically intractable solutions.
With the derived analytical metric function and known

black-bounce throat function, the Kretschmann scalar is
verified to be regular at the origin for radii inside and
outside the horizon. The mixed stress-energy tensor com-
ponents are defined on each side of the horizon, with the
roles of t and x reversed. Analysis of the energy conditions

shows violation of the null energy condition (NECϕ
1 ) inside

and outside the horizon, consistent with other black-bounce
solutions. Violation of the null energy condition is the main
ingredient for building regular black-bounce geometries.
As is well known, in general relativity the strong energy

condition ðSEC3Þ is typically violated within the event
horizon for regular black hole solutions, while the weak
energy condition (WEC) can be violated throughout space-
time in some cases [1,4]. However, the solution presented in
this work exhibits different behavior, with the strong energy
condition ðSECϕ

3 Þ being violated both outside and inside the
event horizon, as shown in Fig. 8. Meanwhile, the weak
energy condition ðWECϕ

3 Þ is violated outside the horizon but
satisfied inside, as depicted in Fig. 7(b).
An interesting observation is that due to the visual form

that the potential takes in Fig. 5 we may be indicating a
possible stability of the solutions when subjected to radial
perturbations, considering the possibility of having normal
and quasinormal modes [40–43].
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APPENDIX: THIN SHELL
IN BACK-BOUNCE SOLUTION

This section is reserved to demonstrate the sign of the
mass of the surface at the point where the metric function
was matched [Eq. (23)]. For the line element contained in
Eq. (33), the following coordinate transformation will
be considered: r2 ¼ x2 þ a2 which transforms into an
equivalent line element and was adopted in [47,48,49]. It
is emphasized that in this last section, the same signature of
the metric will be used as in the cited works above so that
the results can be better compared. In this way, the line
element Eq. (33) gets rewritten as

ds2 ¼ A�ðrÞdt2 −
dr2

A�ðrÞð1 − a2

r2Þ
− r2dΩ2: ðA1Þ

The metric function A�ðrÞ is defined in terms of the new
coordinate as

A�ðrÞ ¼ 1� 4m
πa3

�
að

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

p
Þ

þ r2
�
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

p

a

�
∓ π

2

��
: ðA2Þ

In the original metric [Eq. (33)], the coordinates x and t
are defined over the entire space x∈ ð−∞;þ∞Þ and
t∈ ð−∞;þ∞Þ [1]. In the new coordinates [Eq. (A1)],
the temporal part t retains the same range, but the radial part

FIG. 8. Strong energy condition (SEC) plot combining energy
density and all pressure components, for various radii inside and
outside the horizon.
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domain is modified to r∈ ða;þ∞Þ. The line element
describing the thin shell is given by

ds2 ¼ dτ2 − R2ðτÞdΩ2; ðA3Þ

where the parameter τ corresponds to the proper time for an
observer in the shell.
To compute the extrinsic curvature, the 4-velocity vector

Uμ ¼ ðdtdτ ; dRðτÞdτ ; 0; 0Þ and normal vector nμ to the hyper-
surface are first defined. The 4-velocity vector can be
expressed in terms of the metric components in Eq. (A1) as

Uμ
� ¼ �

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g11Ṙ2Þ

g00

s
; Ṙ; 0; 0

#
; ðA4Þ

on what Ṙ ¼ dR
dτ and UμUμ ¼ 1.

In the same way, we will define the normal vector to the
surface. For this, we will need to perform a parametri-
zation in terms of the intrinsic coordinates ξi ¼ ðτ; θ;ϕÞ,
Eq. (A3). Therefore, the parametrization is defined as
fðxμðξiÞÞ ¼ r − RðτÞ ¼ 0, and the normal unit 4-vector
is given by the expression

nμ ¼
∇μf

k∇fk ¼ �
����gαβ ∂f

∂xα
∂f
∂xβ

����−
1
2 ∂f
∂xμ

: ðA5Þ

The normal vector is unitary nμnμ ¼ −1 and orthogonal to
the vectors tangent to the surface nμe

μ
i ¼ nμð∂xμ∂ξi

Þ ¼ 0.
Therefore, the normal vector written in terms of the
components of the metric Eq. (A1) is given by

nμ� ¼ �
�
Ṙ

ffiffiffiffiffiffiffiffiffiffi
−
g11
g00

r
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g11 þ Ṙ2

q
; 0; 0

�
: ðA6Þ

With the constructed normal vector nμ and 4-velocity
vector Uμ, the extrinsic curvature can be defined as

K�
ij ¼ −nμ

�
∂
2xμ

∂ξi∂ξj
þ Γμ�

αβ

∂xα

∂ξi
∂xβ

∂ξj

�
: ðA7Þ

The θθ component of the extrinsic curvature is computed,
as it is related to the surface energy density. Thus, its
explicit form is given by

Kθ�
θ ¼ � 1

R

�
A�

�
1 −

a2

R2

�
þ Ṙ2

�1
2

: ðA8Þ

1. Lanczos equation

The discontinuity across the thin shell is characterized by
the difference in extrinsic curvature outside and inside,
kij ¼ Kþ

ij − K−
ij. The Einstein equation in the interior

spacetime yields the Lanczos equation:

Sij ¼ −
1

8π
ðkij − δijk

k
kÞ; ðA9Þ

where Sij are the nonzero components of the surface stress-
energy tensor, Sij ¼ diagð−σ;P;PÞ. Here, σ is the surface
energy density and P is the pressure. The ττ component of
the Lanczos equation yields the surface energy density:

σ ¼ −
1

4π
kθθ ¼ −

1

2πR

�
A�

�
1 −

a2

R2

�
þ Ṙ2

�1
2

: ðA10Þ

At the junction point x ¼ 0, the metric function takes the
Simpson-Visser form A� ¼ ð1 − 2m

R Þ [1]. For a static shell
with Ṙ ¼ 0, the energy density in Eq. (A10) becomes

σ ¼ −
1

2πR

��
1 −

2m
R

��
1 −

a2

R2

��1
2

: ðA11Þ

Therefore, by analyzing the expression for the static
energy density in Eq. (A11), we see that the product of the
terms inside the square root imposes two constraints to be
positive: R > a and whether the shell is inside or outside
the event horizon. Note that for any shell value greater than
the throat radius a, the second term inside the square root is
always positive. However, the first term inside the square
root depends on whether the shell is inside A� < 0 or
outside A� > 0 the event horizon. This implies that black-
bounce solutions are possible only for two-way traversable
wormholes with a > 2m and wormholes with symmetric
horizons a < 2m.
The static energy density in Eq. (A11) can be analyzed

generally, without requiring evaluation specifically at the
junction surface. Notably, the metric function in Eq. (A2) is
positive for throat radii outside the horizon, a > 2m, and
negative inside, a < 2m [Fig. 1(b)]. The surface mass is
defined as ms ¼ 4πR2σ. Therefore, for solutions with
a > 2m, the surface density σ is negative, aligning with
the violation of energy conditions observed in Fig. 7(b).
Conversely, for solutions with a < 2m, the surface density
σ is positive, representing no violation of energy conditions
as seen in Fig. 7(b).
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