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The intricacies of black hole ringdown analysis are amplified by the absence of a complete set of
orthogonal basis functions for quasinormal modes. Although damped sinusoids effectively fit the ringdown
signals from binary black hole mergers, the risk of overfitting remains, due to initial transients and nonlinear
effects. In light of this challenge, we introduce two methods for extracting quasinormal modes in numerical
simulations and qualitatively study how the transient might affect quasinormal mode fitting. In one method,
we accurately fit quasinormal modes by using their spatial functional form at constant time hypersurfaces,
while in the other method, we exploit both spatial and temporal aspects of the quasinormal modes. Both
fitting methods leverage the spatial behavior of quasinormal eigenfunctions to enhance accuracy, out-
performing conventional time-only fitting techniques at null infinity. We also show that we can construct an
inner product for which the quasinormal eigenfunctions form an orthonormal (but not complete) set. We then
conduct numerical experiments involving linearly perturbed Kerr black holes in horizon penetrating,
hyperboloidally compactified coordinates, as this setup enables a more precise isolation and examination of
the ringdown phenomenon. From solutions to the Teukolsky equation, describing scattering of an ingoing
gravitational wave pulse, we find that the contributions from early-time transients can lead to large
uncertainties in the fit to the amplitudes of higher overtones (n ≥ 3). While the methods we discuss here
cannot be applied directly to data from merger observations, our findings underscore the persistence of
ambiguities in interpreting ringdown signals, even with access to both temporal and spatial information.
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I. INTRODUCTION

According to general relativity, when two black holes
merge they form a highly distorted black hole that then
rings down a stationary Kerr black hole. The gravitational
waves emitted during the ringdown are thought to be well
described by linear black hole perturbation theory (“linear
theory” for short), as governed by the spin-�2 Teukolsky
equation [1,2]. The Teukolsky equation is a separable
partial differential equation for a single complex scalar,
the real and imaginary parts of which describe the two
physical gravitational wave polarizations.
The Teukolsky equation (with physical boundary con-

ditions) does not have mode solutions; instead, it has
exponentially decaying “quasinormal mode” (QNM) sol-
utions [3,4]. It is thought that shortly after merger the
ringdown signal is well described by a superposition of
QNMs [5–7], and fits to numerical relativity results seem to
confirm this expectation (e.g., [8–12]). At much later times

[Oð100MÞ after coalescence, where M is the mass of
the remnant], the signal is expected to transition to decay
as a power law. This is the so-called “tail” part of the
waveform [13–16]. An interesting property of the frequen-
cies of the QNMs is that they are uniquely determined
by the remnant black hole’s mass and spin. The reverse
process of estimating the mass and spin of the remnant
black hole from the QNM spectrum of the ringdown is
known as “black hole spectroscopy” [17–22].
To maximize the science that can be extracted from an

observed ringdown—whether for measuring properties of
the merger or for testing general relativity—one needs a
prediction for what the excitation amplitude of each QNM
is for a given merger. At present, computing these exci-
tation amplitudes is an open problem for a remnant formed
in a merger of black holes with comparable mass (though
some information can be gleaned from properties of
Green’s function for Kerr perturbations [23] or using linear
theory in the extreme mass ratio limit [24–26]). In lieu of
such calculations, one can attempt to measure the excitation
amplitudes directly from numerical relativity solutions of*hengrui.zhu@princeton.edu
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merger events. At present, such approaches typically
assume the ringdown can be entirely described by a sum
of linear QNMs and attempt to find the best first set
of amplitudes that reproduce the ringdown signal (see,
e.g., [8,9,11,27–29]). These studies have demonstrated, for
example, that in an astrophysical merger of a nearly equal
mass, nonprecessing binary, the l ¼ m ¼ 2 mode is the
maximally excited QNM, and the relative excitation
amplitudes of other angular modes may point to properties
of the progenitor binary system, e.g., precession, eccen-
tricity, mass ratio, etc.
There are many difficulties in attempting to ascribe

excitation amplitudes to merger events from fits to numeri-
cal relativity waveforms. The main difficulty already
present at the linear level is that the QNMs do not comprise
a complete basis of black hole perturbations, and the
gravitational wave “perturbation” will contain a transient
part that can have a significant amplitude relative to the sum
of QNMs, in particular, in the time window of Oð10MÞ
around peak amplitude of the ringdown. Note that in this
paper we use the phrase transient part (or sometimes
“prompt part”) to refer to the non-QNM part of a ringdown
waveform [30]. Beyond the linear level, a host of additional
difficulties arises, including nonlinear mode coupling
(quadratic modes have only recently begun to be studied
in full numerical relativity merger waveforms [31–35])
and the effects of backreaction of the gravitational wave
energy [36]. The latter complicates the questions of what
the appropriate background is for computing linear per-
turbations about and how good a constant amplitude
approximation is for the early-time linear QNM spectrum
of the waveform (due, in part, to nonlinear energy exchange
between modes). Though these difficulties are not thought
to have much effect on measuring the dominant funda-
mental l ¼ m ¼ 2 QNM, it is less clear how well higher
overtones and harmonics can be extracted. As such, there is
still much debate within the gravitational wave community
about which modes should be included in the ringdown fit
(see, e.g., [11,30]).
Given the intrinsic complexity of the problem and since

both nonmodal and nonlinear effects could play a nontrivial
role, several ways of analyzing and decomposing the
ringdown signal from numerical simulations into QNMs
have been proposed [11,12,30,32,37]. Most of these
methods involve finding the best fit to the ringdown signal
with a sum of damped sinusoids with quasinormal mode
frequencies,1 using gravitational waveforms extrapolated
to future null infinity, or through Cauchy-characteristic
extraction. Though, as discussed above, the signal is
expected to contain more than simply the set of linearly

damped QNMs, and if we do not know a priori what the
transient part of the waveform is, it is easy to envision that
this process could result in “overfitting”: an erroneous
QNM amplitude measurement due to overlap of the QNM
mode with a transient part of the signal. Particularly
susceptible to overfitting are the higher overtones, whose
damping times are sufficiently rapid that, unless they are
excited with extremely high amplitude, only a small
number of cycles or even only a fraction of a cycle of
the QNM will be visible above an effective noise floor set
by numerical truncation error (assuming all other extraction
systematics are under control). Some studies have already
pointed to overfitting by showing that different fitting
procedures can give different results for the QNM ampli-
tudes of the ringdown of a black hole produced from a
binary collision [30,38].
The main purpose of this paper is to gain more insight

into the nature of mode fitting and hence the problem of
overfitting. Instead of studying the full nonlinear ringdown
of a black hole produced from a binary collision, we
attempt to reconstruct the quasinormal mode spectrum of
solutions to the Teukolsky equation. This allows us to study
in detail how easy it is to distinguish the transient con-
tribution to the signal from the quasinormal modes.2 In our
fitting procedures, we include the spatial profiles of the
quasinormal mode eigenfunctions, which reduce system-
atic uncertainties in our fits. To aid in utilizing the spatial
dependence of the QNMs in our fits, we make use of
horizon penetrating, hyperboloidally compactified (HPHC)
coordinates, in which the QNM solutions to the Teukolsky
equation are regular everywhere, from the black hole
horizon to null infinity [39,40]. We consider two fitting
procedures to linear data: one that uses the spatial variation
of the Weyl scalar field and its time derivative on a single
constant time slice and another that uses both spatial and
temporal information. Within both procedures, fitting the
quasinormal mode amplitudes reduces to a problem of
linear regression, given (as we have here) exact knowledge
of the background black hole mass and spin.
We then apply these fitting procedures to a set of time

domain numerical solutions to the Teukolsky equation. We
demonstrate that, with pure QNM initial data, we can stably
recover the amplitudes of arbitrary linear combinations of
QNMs. By “stable” here we mean that the method recovers
the correct amplitudes (to within truncation error) over a
non-negligible window of time. When we consider scatter-
ing initial data with non-QNM contributions though, we
find that we cannot stably extract the amplitude of higher
(n ≥ 3) QNM overtones, and the traditional time-only fit at
future null infinity can only faithfully stably extract the

1An exception to this procedure is Ref. [32], where the authors
eliminated the dominant modes through a linear filter. Another
exception is Ref. [37], where properties of spheroidal harmonics
are explored to separate the prograde and retrograde contribution
to the ringdown signal.

2We expect the transient contribution to strongly depend on the
initial data; here, we only focus on scattering experiments, where
the initial data consist of an infalling pulse of gravitational wave
onto the black hole.
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fundamental and first overtone over a much narrower
window for fitting time. Conversely, we demonstrate the
power of using spatial information to establish a best-case
scenario for extracting QNMs. We note that this paper is
more a “proof of principle” for the linear case, in that we
have not tried to optimize the linear perturbation to “best
fit” any particular merger event; we leave a more extensive
study of the issue of initial conditions to future work.
The rest of this paper is organized as follows. In Sec. II,

we review the derivation of the Teukolsky equation in
HPHC coordinates, our code for computing pure QNM
initial data, and our code for evolving the Teukolsky
equation in the time domain. In Sec. III, we introduce our
two fitting procedures that make use of spatial information
of the quasinormal modes. In Sec. IV, we show results from
applying those two methods to numerical solutions to the
Teukolsky equation with several different classes of initial
data. Finally, we compare our new fitting procedures with
the traditional time-only fit at future null infinity in Sec. V.
We discuss the implications of our results and conclude in
Sec. VI. In Appendixes A–C we discuss some details of
computing the QNM eigenfunctions, their radial structure
in HPHC coordinates, and give some convergence results
from our code, respectively.

II. THE TEUKOLSKY EQUATION
ON A HYPERBOLOIDAL SLICE

In this section, we briefly review the Teukolsky equation
and QNMs in HPHC coordinates. We refer the reader to
Refs. [39–43] for further details.
The Teukolsky equation (TE) [1] was first derived in

Boyer-Lindquist (BL) coordinates [44]. Constant time
hypersurfaces in BL coordinates do not penetrate the black
hole horizon, nor do they reach future null infinity—
instead, they stretch from the bifurcation sphere of the
black hole to spatial infinity. One consequence of these
properties is that the radial eigenfunctions for quasinormal
modes are necessarily divergent at the asymptotic radial
boundaries (r� → �∞, where r� is the tortoise coordinate)
when evaluated on constant time slices [1]. This feature of
the quasinormal eigenfunctions (QNEs) in BL coordinates
complicates the analysis of computing QNM excitation
factors of black hole ringdown. This is because construct-
ing a well-defined inner product (from which the excitation

factors of the quasinormal modes can be computed)
involves an integration in the complex plane [23,45–48].
By contrast, since constant time hypersurfaces in HPHC
coordinates span from the black hole horizon to future
null infinity, the QNM solutions to the TE in these
coordinates remain regular everywhere exterior to the black
hole [39,40]. This opens up the possibility of a simpler
inner-product matrix that could be used to determine the
quasinormal mode content of a given gravitational wave-
form (see, for example, Ref. [49]). Furthermore, the ring-
down signal behaves like damped standing waves spatially
in HPHC coordinates, instead of traveling wave packets in
coordinates that asymptote to spatial infinity.
In this work, we use the same HPHC coordinates

described in Ref. [40]. These coordinates are identical to
BL coordinates, up to a redefinition of the time coordinate τ
and azimuthal coordinate ϕ, which are related to the BL
coordinates ðt; r;ϑ;φÞ via

dτ≡ dtþ
�
2Mr
Δ

þ dh
dr

�
dr; dϕ≡ dφþ a

Δ
dr; ð1Þ

whereM and a are the mass and spin of the black hole. Here
hðrÞ is a “height” function designed to make the radially
ingoing characteristic speed zero at infinity [42,43,50],
which we chose to be

dh
dr

¼ −1 −
4M
r

: ð2Þ

To bring future null infinity (located at r → ∞) to a finite
point, we compactify the radial coordinate via

ρ≡ 1

r
: ð3Þ

We additionally rescale the Newman-Penrose scalar ψ
to make the Teukolsky equation regular at the horizon
and to remove the “long-range potential” in the radial
coordinate [51,52]

ψ ≡ 1

r
Δ−sΨ: ð4Þ

With all the above definitions, the TE reads

½16M2 − a2sin2θ þ 8Mð4M2 − a2Þρ − 16a2M2ρ2�∂2τΨ − ρ4Δ∂2ρΨ −s ΔΨ − 2½1þ ða2 − 8M2Þρ2 þ 4a2Mρ3�∂τ∂ρΨ
þ 2aρ2∂ρ∂ϕΨþ 2að1þ 4MρÞ∂τ∂ϕΨþ 2½sð−2M þ ia cos θÞ þ ð4M2fsþ 2g − a2Þρ − 6Ma2ρ2�∂τΨ
þ 2½−1 − sþ ðsþ 3ÞMρ − 2a2ρ2�ρ∂ρΨþ 2aρ∂ϕΨþ 2ðMsþM − a2ρÞρΨ ¼ 0; ð5Þ

where s is the spin weight of the scalar Ψ. For the remainder of this article, we set s ¼ −2, so that Ψ corresponds to the Weyl
scalar Ψ4.
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Finally, to make the radial boundary independent of the
black hole spin, we perform the substitution

ρ → rþρ; ð6Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the radius of the outer

horizon in BL coordinates. This substitution makes the
TE regular at future null infinity (ρ ¼ 0) and on the black
hole horizon (ρ ¼ 1), regardless of spin.
We solve Eq. (5) in the time domain, using a modifi-

cation of the code described in Refs. [43,53], which we will
now briefly describe. The numerical implementation
decomposes Ψ into its azimuthal modes, Ψðt; ρ; θ;ϕÞ ¼P

m eimϕΨðt; ρ; θÞ. The code then evolves each m mode on
a two-dimensional ρ − θ grid. The angular direction is
discretized using a pseudospectral method made up of spin-
weighted spherical harmonics and the radial direction with
a fourth-order finite-difference method, as opposed to the
implementation presented in Ref. [43], which makes use
of a pseudospectral Chebyshev discretization in the radial
direction. To evolve in time, the code uses a method-of-
lines algorithm with a fourth-order Runge Kutta integrator.
We consider two classes of initial data, described in more
detail in Sec. IV: (1) a linear superposition of quasinormal
modes and (2) a Gaussian pulse (which we call “scattering”
initial data). We construct our quasinormal mode initial

data using a slight modification, described in detail in
Appendix A, of the algorithm presented in Ref. [40]
(publicly available at [53]).

III. SPATIAL AND SPACETIME FITTING WITH
QNM EIGENFUNCTIONS

Let us consider a linearly perturbed black hole with
fixed known mass and spin. Since the quasinormal mode
decomposition of the solution can be recovered using a
linear least-squares algorithm if the linearized gravitational
solution can be entirely described as a superposition of
quasinormal modes [11,33], we fix the quasinormal mode
frequencies and then fit for the complex amplitudes of the
modes that minimize the residual error. In our fitting
procedures, we minimize not just the residual error of
our waveform fit at future null infinity, but also the error of
the waveform over the entire computational domain, which
ranges from the horizon to null infinity.
We consider two different mode extraction methods:

“spatial” and “spacetime” fitting, which we describe in
detail in Secs. III A and III B, respectively. Spatial fitting
refers to measuring the amplitudes for each QNM on a fixed
time slice t ¼ t0, given the data fΨ4ðt0; rÞ; ∂tΨ4ðt0; rÞg
[23,34,54]. That is, for a fixed azimuthal number m, we
minimize the residual

R ¼
X
i;j

�
Ψ4ðt0; ρi; θjÞ −

X
½p�;n;l

A½p�lnR½p�lnðρiÞ−2Sðaω½p�ln; θjÞe−iω½p�lnt0

�
2

þ
�
∂tΨ4ðt0; ρi; θjÞ þ

X
½p�;n;l

iω½p�lnA½p�lnR½p�lnðρiÞ−2Sðaω½p�ln; θjÞe−iω½p�lnt0

�
2

; ð7Þ

for the complex constants A½p�ln, where −2S are the spin-
weighted spheroidal harmonics, and R½p�lnðρÞ and ω½p�l0n are
the QNM radial eigenfunctions and frequencies, respec-
tively. In the above expression, the sum is over the prograde
and retrograde (½p� ¼ �) modes, the overtones n, angular
number l, radial grid points ρi, and angular grid points θj. In

practice, we perform a spherical harmonic decomposition of
the signal in θ before minimizing the residual.
On the other hand, the spacetime fitting consists of

finding the best quasinormal mode fit to the rescaled Weyl
scalar Ψ4 over the entire time domain we evolve for, i.e., in
both space and time. Specifically, we minimize the residual

R ¼
X
i;j;k

�
Ψ4ðtk; ρi; θjÞ −

X
½p�;n;l

A½p�lnR½p�lnðρiÞ−2Sðaω½p�ln; θjÞe−iω½p�lntk

�
2

; ð8Þ

where now we include a sum over the time steps tk. As we
discussed above, both fitting methods differ from previous
QNM fitting procedures as our residual includes the radial
profile of the modes.
If the gravitational waveform is dominated by quasi-

normal modes, our fitting procedure provides a robust
way to determine the quasinormal mode content of a

gravitational waveform. We now provide specific details
of both approaches.

A. Spatial fitting

In this approach, we find a sum of the QNE with
amplitudes that best represent the data fΨ; ∂tΨg on a
constant time hypersurface [23,55,56]. At intermediate
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times t, i.e., after initial data transients have decayed but before the tail contributions are evident, we expect the linear
gravitational wave to be well approximated by a sum of quasinormal modes. In this regime, the field and its time derivative
on a constant time slice t0 can then be approximated by

Ψ4ðρ; θ; t0Þ ¼
X

p∈ f�g

X
n

X
l

A½p�ln−2YlðθÞ
X
l0
c½p�ll0n R½p�l0nðρÞ expf−iω½p�l0nt0g; ð9Þ

∂tΨ4ðρ; θ; t0Þ ¼
X

p∈ f�g

X
n

X
l

A½p�ln−2YlðθÞ
X
l0
ð−iω½p�l0nÞc½p�ll0n R½p�l0nðρÞ expf−iω½p�l0nt0g; ð10Þ

where c½p�ll0n are the spherical-spheroidal mixing coeffi-
cients, −2Yl are the spin-weighted spherical harmonics,
and R½p�lnðρÞ and ω½p�l0n are the QNM eigenfunctions and
frequencies, respectively.
We can rewrite Eqs. (9) and (10) as a matrix equation for

the amplitudes A½p�ln. In terms of the spherical harmonics
for Ψ4, we may write for each angular number l,

M½p�ll0nðρiÞA½p�l0n ¼ Ψ4;lðρiÞ; ð11aÞ

−iω½p�l0nM½p�ll0nðρiÞA½p�l0n ¼ ∂tΨ4;lðρiÞ; ð11bÞ

where repeated indices are summed over,3 and

Ψ4;lðρ; tÞ ≔
Z
θ
Ψ4ðρ; θ; tÞ−2Y�

l ðθÞdθ; ð12Þ

M½p�ll0nðρiÞ ≔ c½p�ll0n R½p�l0nðρiÞ expf−iω½p�l0nt0g: ð13Þ

The QNM amplitudes A½p�l0n must simultaneously solve
Eqs. (11a) and (11b) for all l, which we do numerically.
Here, we can simply stack the two matrix equations in
the radial direction (indexed by i) and solve the resultant
equation by a minimization matrix solver. Specifically, we
stack via the following rule:

N½p�ll0nðiÞ ¼
(
M½p�ll0nðρiÞ if i ≤ imax;

−iω½p�l0nM½p�ll0nðρi−imax
Þ if i > imax;

ð14Þ

and, similarly, for the right-hand side of Eq. (11),

blðiÞ ¼
(
Ψ4;lðρiÞ if i ≤ imax;

∂tΨ4;lðρi−imax
Þ if i > imax;

ð15Þ

where imax is the number of radial grid points. Under this
procedure, Eq. (11) can now be written as

NIJAJ ¼ bI; ð16Þ

where I indexes the spatial components (radial i and
angular l,) and J indexes the modes (prograde/retrograde
[p], angular index l0, and overtone number n.) The matrix
NIJ, where we pack the fitting basis functions as column
vectors, is called the “design matrix” (see, e.g., Ref. [57]).
We find that, when the initial data are pure, arbitrary

superpositions ofQNMs,we correctly recover the amplitudes
and phases of the modes when we solve the matrix equa-
tion (16). The design matrix induces an inner product via

PðΨ½p�ln;Ψ½p0�l0n0 Þ ≔
1

2
hN−1Ψ½p�ln; N−1Ψ½p0�l0n0 i

¼ δpp0δll0δnn0 ; ð17Þ
where h·; ·i denotes the usual inner product onCd, andΨ½p�ln
and Ψ½p0�l0n0 are constructed from the quasinormal mode
eigenfunctions, as in Eq. (15). We numerically find that
the designmatrix defined in Eq. (14) has full rank and its right
inverse exists as long as the overtones are radially resolved,
with imax ≫ nmax; i.e., there are more radial points than
overtones in our fit. For given numerical data, we can
determine the QNM amplitudes by computing N−1b.

B. Spacetime fitting

We now minimize a quadratic residual, as with the
spatial fitting, but now we also sum over the different time
steps. When the linear gravitational wave is dominated
by QNMs, the fitting problem reduces again to solving
Eq. (9) for the amplitude A½p�ln’s, given numerical data
fΨ4ðρ; θ; tÞg within t∈ ½t0; t1�.
As in the spatial fit, we decompose Ψ4 into spin-

weighted spherical harmonics. Discretizing the radial (ri)
and time (tj) coordinates, the design matrix now takes
the form

M½p�ll0nðρi;tjÞ¼ð−iω½p�l0nÞc½p�ll0nR½p�l0nðρiÞexpf−iω½p�l0ntjg;
ð18Þ

where now the right-hand side is set to be the field for the
entire spacetime perturbation,

blðρi; tjÞ ¼ Ψ4;lðρi; tjÞ: ð19Þ
3The i’s in parentheses and as subscripts index the radial grid

points,
ffiffiffiffiffiffi
−1

p
otherwise.

CHALLENGES IN QUASINORMAL MODE EXTRACTION: … PHYS. REV. D 109, 044010 (2024)

044010-5



The spacetime fitting as a matrix equation is then

MIJAJ ¼ bI; ð20Þ

where I now indexes both the temporal and spatial
components (time j, radial i, and angular l), and J indexes
the modes by [p], l0, and n. In Secs. IV B and IV C, we
demonstrate that the spacetime fit results are consistent
with the spatial fit in regimes where we expect QNMs to
dominate the solution.
Before going to the numerical examples, we first briefly

discuss the incompleteness of the QNEs as a function basis
for general solutions to the TE and a resulting caveat of
fitting QNMs due to the presence of nonmodal solutions of
the TE.

C. A caveat: Mode vs transient

While we can define an inner product under which the
QNMs are orthonormal by making use of their radial and
angular information, the modes remain incomplete as a
basis for fitting black hole ringdown. By incompleteness,
we mean that a generic solution to the TE cannot be
represented as a sum of QNMs when the solution violates
the physical boundary condition: no ingoing wave at the
horizon and no ingoing wave at infinity.4 As we already
mentioned, in addition to QNMs, solutions to the TE also
admit a prompt and a tail contribution [59,60], the sum of
which we refer to as the transient part of the solution.
Prompt here relates to the kind of perturbations we expect
following a black hole merger or scattering a compact wave
packet off the black hole and refers to the early rise in the
waveform before the QNMs dominate. The tail part of the
solution arises from backscattered gravitational waves on
the Kerr geometry and dominates the solution at late times
(beyond the times considered in this paper).
At the linear level there are no prompt or tail contribu-

tions to the solution if the initial data consists of purely
quasinormal modes. However, for more generic initial data
that better describes a distorted black hole formed from an
astrophysical merger, there will be prompt and tail con-
tributions [23,30]. In these more generic settings, assuming
the signal is purely made up of QNMs, fitting to those can
lead to biased results, in particular, for the high-n over-
tones, as they typically decay quite rapidly and on similar
timescales to the prompt part of the transients. As we
mentioned earlier, we call this overfitting the signal.
The prompt response dies off rapidly in time as it is

sourced over a relatively small spacetime volume around
the remnant black hole at the time of merger, and the
corresponding wave fronts essentially follow geodesic
trajectories to either future null infinity or the black hole

horizon. Starting the QNM fit at later times should reduce
the bias caused by the contribution of this transient
response in the signal. However, the exact form of prompt
response depends heavily on the initial data; in some cases
one might expect it to be large enough and decay slowly
enough to mask the higher overtones. By contrast, the tail
contribution decays in a power-law fashion in time, slower
than the QNM contribution [13]. Thus, the tail response
may bias quasinormal mode fitting at late times (provided
the signal-to-noise ratio of the signal was large enough to
resolve a late-time signal).
To assess the quality of our fitting results when non-

QNM contributions to the solution are present, we adapt the
technique presented in Refs. [30,33,34,38,61]. Namely, we
vary the start time of the spacetime fitting, or time at which
we apply the spatial fitting, and check if the amplitude for
each quasinormal mode remains constant. We discuss the
results of this exercise in Secs. IV B and IV C.

IV. NUMERICAL EXAMPLES

Here we present some examples of applying the pro-
posed spatial and spacetime fitting to numerical solutions
of the TE with different initial conditions, as described in
Sec. II. Unless otherwise mentioned, all simulation results
presented here were from runs with resolution nρ ¼ 512

and nθ ¼ 40, where nρ and nθ are the number of radial
and angular grid points, respectively (see Appendix C for
convergence results).
First, in Sec. IVAwe evolve initial data that consist of a

single QNM to demonstrate the accuracy of our evolution
and (quasinormal mode) initial data codes, described in
Appendix A. In Sec. IV B, we move to a more complicated
class of initial data: a superposition of QNMs. In this case,
we demonstrate that we can still reliably recover the
amplitudes of the QNMs up to numerical precision of
the solution, using both fitting techniques.
Finally, in Sec. IV C we consider scattering initial data

(that is, initial data that cannot be written as a pure sum of
quasinormal modes). In this case, we also extract the QNM
content from the signal, although we do not have a direct
theoretical estimate for the QNM amplitudes for this class
of initial data. We do demonstrate that both the spatial and
spacetime fitting methods are consistent, in the sense that
both yield identical estimates for the QNM amplitudes
given the same initial data, and such estimates are stable
with respect to fitting time, at least for the fundamental
mode and the first two overtones.5 We further point out that
the instability of fitting to the n ≥ 3 overtones for scattering
initial data is likely due to the presence of the transient
solution masking the high-n overtone spectrum, though

4Reference [58] suggests completeness of QNMs as a basis
for solutions to the TE that respects the physical boundary
conditions.

5Because of how long-lived the transient is in the case of a
near-extremal black hole, for that example we can only extract the
fundamental mode during the numerical integration time of
500 M.
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their initial excitation amplitudes might be lower than that
from black hole mergers.

A. Evolving a single QNM

Let us consider the evolution of a single QNM for both
Schwarzschild and near-extremal Kerr (a ¼ 0.999) back-
grounds. We set the initial condition to be either the
l ¼ m ¼ 2 fundamental mode (n ¼ 0) or the l ¼ m ¼ 2;
n ¼ 3 overtone.6 As illustrated in Fig. 1, we can accurately
evolve both the fundamental mode and overtone (blue solid
lines) as compared to the analytic solution (red dashed
lines). The residuals at future null infinity between the
analytical solution and these runs are plotted in black. As
shown in Appendix C, this residual converges to zero at
fourth order with increasing resolution.
These results are a strong test of our evolution code: if an

overtone is excited, the code is capable of capturing it up to

numerical precision. This accuracy provides the foundation
for our following analysis.

B. Evolving and fitting to a superposition of QNMs

In this section, we consider initial data that consist of a
superposition of QNMs. We demonstrate that the spatial
and spacetime fitting procedures, proposed in Sec. III, can
also correctly extract the QNM amplitudes in this case.
Let us consider initial data constructed by superposing

the l ¼ m ¼ 2 fundamental (n ¼ 0), fourth (n ¼ 4), and
fifth (n ¼ 5) overtones on a Kerr background with spin
a ¼ 0.7 (the expected remnant spin from the astrophysical
merger of equal mass, nonspinning, quasicircular binaries
[62]). In Fig. 2, we show the amplitudes extracted by
applying the spatial fit at different t ¼ constant surfaces
(colored solid lines) that match, up to numerical error, the
analytical values of the mode amplitudes (gray dashed
lines). As a check, we have also included overtones that are
not present in the initial data in our fit, to demonstrate that
the results have amplitudes consistent with the numerical
error of our initial data and time evolution code. This test
demonstrates the robustness of our fitting procedure, at

FIG. 1. Evolving single QNMs (n ¼ 0 and n ¼ 3, left and right panels, respectively) for (top) Schwarzschild and (bottom) near-
extremal Kerr black holes with a ¼ 0.999. The numerical solution at future null infinity is shown with solid blue lines, while the
analytical predictions are drawn with red dashed lines. Plotted in black is the residual/difference between the two, which convergence
studies (see Appendix C) show arises purely from numerical truncation error.

6With our implementation, we can evolve even higher
overtones accurately; we only show the n ¼ 3 overtone as an
example.
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least when applied to linearized solutions to the Einstein
equations, with purely QNM initial data.
Furthermore, as in, e.g., Ref. [30], in Fig. 3 we show the

stability of the fitting by factoring out the known decay

rates of the modes. By doing that, the resulting QNM
amplitudes are expected to be constant when fitting at
different times, i.e., we consider the extraction of a given
mode to be stable if we recover a roughly constant
amplitude (and phase) over some relevant, non-negligible
time period. We have also compared the results between the
spatial fit (colored solid lines) and the spacetime fit (colored
dashed lines). We find that both methods are capable of
stably extracting all the QNMs present (even the fifth
overtone) until their amplitudes reach a floor set by
numerical truncation error. This suggests that the inner
product presented in Sec. III A indeed establishes ortho-
gonality between modes, complementing recent analytical
results [47,58].

C. Evolving and fitting to scattering initial data

For our final example, we apply our quasinormal mode
fitting procedures to analyze scattering initial data. These
types of initial data excite the black hole in a more complex
manner than quasinormal mode initial data, and we
anticipate that a prompt, non-QNM transient solution to
the Teukolsky equation will be noticeable in the ringdown
signal. Specifically, we consider an approximately ingoing
Gaussian pulse7 as initial data,

Ψ4ðρ; θÞ ¼ exp

�
−
ðρ−1 − r0Þ2

w2

�
−2YlðθÞ; ð21aÞ

∂tΨ4ðρ; θÞ ¼ −
ρ2

2þ 4ρ
∂ρðΨ4ðρ; θÞÞ; ð21bÞ

where r0 and w specify the initial central location and width
of the pulse, respectively. For the context of this paper,
regardless of the black hole spin, we specify the angular
part of the initial data to be purely l ¼ m ¼ 2 spin weight
−2 spherical harmonics and the radial part as a Gaussian
centered at r0 ¼ 8 M with width w ¼ 1. For Kerr black
holes, we expect the l > 2 modes to also be excited due to
spherical-spheroidal mixing. To account for this mixing, we
include up to l ¼ 4 modes when constructing the design
matrices for fitting, and we include up to the n ¼ 5
overtones, both prograde and retrograde, for the l ¼ 2
modes and up to n ¼ 1 for l ¼ 3, 4 modes, unless otherwise
specified.8

In Fig. 4, we show the fitting results for different modes
after applying the spatial fitting (solid lines) and spacetime
fitting (dashed lines) procedures to the numerical data
obtained with the scattering initial data on Kerr back-
grounds with spins a ¼ 0, a ¼ 0.7, and a ¼ 0.999. To
assess the stability of the fits over time, we anchored the
amplitude of each mode at a common time t2, chosen

FIG. 3. Stability of fitting superpositions of QNMs (n ¼ 0,
n ¼ 4, and n ¼ 5) on a Kerr background with a ¼ 0.7 (from the
same run as shown in Fig. 2). When factoring out the decay rate,
the mode amplitudes we extract become constant in time, until
the numerical noise dominates. The amplitudes extracted
from the spacetime fit (colored dashed lines) are consistent with
those obtained from the spatial fitting (colored solid lines), and
both agree with the analytical results (gray dashed lines). As
expected, when fitting the overtones that were not included in the
initial data, the amplitudes are always unstable.

FIG. 2. Extracted amplitudes when applying the spatial fit
(colored solid lines), described in Sec. III A for an initial
superposition of QNMs (n ¼ 0, n ¼ 4, and n ¼ 5) on a Kerr
background with a ¼ 0.7. Modes that are present in the initial
data are plotted in bold lines. The gray dashed lines show the
expected mode amplitude given our QNM initial conditions. The
amplitudes for all modes are recovered to numerical precision,
while the modes that are not present in the initial data have
extracted amplitudes consistent with truncation error.

7Gaussian in Boyer-Lindquist radial coordinate rBL.8We checked that the quality of the fit does not improve upon
adding more modes, either higher harmonics or overtones.
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(somewhat arbitrarily) to be the time when Ψ4 peaks at
future null infinity; that is, we divide the mode amplitude at
the time of fitting (the horizontal axis) by the expected
amplitude evolution from the time t2 to the fitting time. The
subsequent fit is then stable if the fitted amplitude and
phase remain constant over an interval of fitting start times.
For clarity, we have only plotted the overtones for the
prograde, l ¼ m ¼ 2 mode in Fig. 4. The fundamental
retrograde modes and higher multipoles from spherical-
spheroidal mixing can also be extracted stably using our
fitting methods.
Both fitting methods yield consistent results, although

they inherently have different truncation error (or, loosely
speaking, “noise”) characteristics. We speculate that, as
the spacetime fitting method uses the late-time signal, its
effective signal-to-noise ratio decreases faster than the
spatial fit method. Consequently, the mode amplitude
computed from this method typically becomes unstable
slightly earlier than that from the spatial fit. On the other

hand, spatial fitting does not incorporate information from
late times, hence it is more sensitive to the early-time
transient and, consequently, it tends to become stable
slightly later than the spacetime fitted amplitudes.
Overall, for these scattering experiments we found that

we can stably extract the fundamental mode and the first
two overtones for a period of at least ∼15 M, around or
after the time of peak ψ4, for Kerr backgrounds not too
close to the extremal limit.9 However, the fitting for higher
overtones was generically unstable.10 Given that in the
previous section we demonstrated that our code and fitting
algorithms are capable of solving for and extracting super-
positions of QNMs with overtones higher than the second,
and that linear theory tells us the difference between these
two classes of initial data resides in the transient part of the
solution (as discussed above), this suggests that the source
of the fitting instability is the presence of transients, with
scattering initial data. We note, however, the n ≥ 3 over-
tones could be more strongly excited during mergers and
hence still be stably fitted. We defer the study of such initial
data to a future work.

V. A COMPARISON TO THE TRADITIONAL
TIME-ONLY FITTING AT FUTURE

NULL INFINITY

In this section, we test the quality of a QNM fit from a
traditional (time-only) fitting method, see, e.g., Ref. [11],
and compare that against our fitting procedures. The time-
only fit we employ here is equivalent to our spacetime fit
restricted at future null infinity; namely, it takes into
account the angular eigenfunction (spherical-spheroidal
mixing), but without any radial information. In numerical
relativity, it is common to estimate the value the waveform
takes at future null infinity, either through extrapolating
waveforms measured at several finite radii or through a
Cauchy-characteristic extraction/matching [65–71], and
then to find the best-fit QNMs using fits to the temporal
evolution of a select set of angular harmonics of the
waveform at infinity.
We will assess the quality of these temporal fits in two

ways. First, we consider the stability of the fitting, namely,
how well one can stably extract the amplitude and phase
when changing the fitting start time [30]. Second, we
consider the recovery of spatial information by testing
whether the extracted mode amplitudes from performing
time-only fits at several different radii agree with the radial
eigenfunctions for the modes.

FIG. 4. Extracted amplitudes with spatial fitting (solid lines)
and spacetime fitting (dashed lines) from numerical scattering
experiments on Kerr backgrounds with a ¼ 0 (top), 0.7 (middle),
and 0.999 (bottom) as a function of the fitting start time. As in
Fig. 3, the existence of a specific mode is supported if its
amplitude remains constant over some period of time. The
vertical dotted lines correspond to the times t1 and t2, when
the amplitude of ψ4 is maximum at the horizon and at infinity,
respectively. We have scaled out the decay rate for the mode
amplitudes relative to the value at t2. Note that, for the near-
extremal case, a ¼ 0.999, the waveform first peaks at future null
infinity (t2) before peaking at the horizon (t1); this is likely related
to the transient growth of modes that in the extremal limit
becomes the Aretakis instability [63,64], which complicates the
fitting for the overtones.

9The difficulty with near-extremal cases is not unexpected due
to the slower decay of transients, related to the more efficient
trapping of null geodesics. The instabilities in fitting could be due
to insufficient integration time and larger numerical truncation
error. We leave the detailed analysis of high spin cases to a future
work.

10In Appendix C, we show that the instability of overtones with
n ≥ 3 is not due to numerical error.
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A. Stability of the time-only fitting

In Fig. 5 we compare the results from the time-only fit at
future null infinity (dotted lines) to the spatial fitting (solid
lines), applied to the Gaussian pulse scattering experiment
described in Sec. IV C. We find that, for Schwarzschild and
Kerr black hole with a ¼ 0.7, the time interval over which
the first overtone’s (n ¼ 1) amplitude and phase can be
stably extracted is much shorter in duration with the time-
only fit, while the second and higher overtones can never be
stably extracted with the time-only fit.11 Interestingly, we
find that, when applying the time-only fit to the a ¼ 0.7
Kerr black hole, the first overtone can be stably extracted
before Ψ4 peaks at future null infinity. Whether the above
holds in astrophysical ringdown (that is, with initial data
that smoothly match to the gravitational wave signal after
merger) needs further study, but earlier results do indicate
that, at least with numerical relativity waveforms, one can
decompose the signal into QNMs beginning at the time of
peak strain [8,11], roughly 10 M before the peak of Ψ4

(issues of overfitting aside).
The time-only fit’s improved stability at early times in

Fig. 5 does not indicate superior performance to the spatial

fit. As the time-only fit makes use of the signal over a time
interval, at early times it still attempts to fit the postpeak
QNM ringing. This results in a smooth rise in the mode
amplitudes for the time-only fit with respect to the fitting
start time, until they asymptote to stable values. By
contrast, the spatial fit uses the information at a constant
time slice. We interpret the instabilities in the mode
amplitudes at early times for the spatial fit as a demon-
stration of the fact that the QNMs are not a complete
description of generic black hole ringdown signals.

B. Recovery of the spatial eigenfunction

Another robust way to assess if the waveform is being
overfitted (or underfitted) is to test the time-only QNM fits
at different radii against the known radial eigenfunction.
Starting with the mode contribution of the signal, Eq. (9),
if one fits it with the QNM frequencies at a set of radii,
one would expect the measured amplitude for each mode
labeled by l, n, and [p] to be radially scaled by the
associated radial wave function

At
½p�lnðρÞ ¼ R½p�lnðρÞA½p�ln; ð22Þ

where R½p�lnðρÞ is the radial quasinormal eigenfunction,
A½p�ln is the true amplitude of the quasinormal mode, and
At
½p�lnðρÞ is the expected amplitude one gets from a time-

only fit at a given radius ρ.
In the presence of a transient contribution to the ring-

down signal, the time-only fit can be susceptible to over-
fitting. When overfitting, the measured radial structure of
modes from the time-only fit would deviate from Eq. (22)
as transients have distinct radial functions from QNMs. To
quantify the agreement between the time-only fit for a
QNM, labeled by subscript n, and the radial eigenfunction,
we define the following spatial mismatch M:

M ¼ 1−

����� hAt
nðρÞ; RnðρÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihAt

nðρÞ; At
nðρÞihRnðρÞ; RnðρÞi

p
�����; ð23Þ

where

hf; gi ¼
Z

dρf̄g: ð24Þ

We now perform a waveform fit at several different fixed
radii on numerical data, with the scattering initial data
described in Sec. IV C, and test if the fitted amplitude and
phase for each mode at different radii agree with the
prediction from the radial eigenfunction. We vary the
fitting start time t0 for the time-only fit and evaluate
the radial mismatch M as a function of t0. The result is
shown in Fig. 6. We find that for Schwarzschild (with
scattering initial data), the time-only fit can identify the
fundamental mode and first two overtones. For Kerr

FIG. 5. Comparison between the time-only fit (dotted lines)
and the spatial fit (solid lines) applied to scattering initial data
for a Kerr black hole with a ¼ 0 (top), 0.7 (middle), and 0.999
(bottom).

11This quantitative result may not hold true for merger
calculations, as one would expect the relative excitation ampli-
tudes for the overtones in mergers to be different from that in the
scattering initial data presented here. Though we do expect that
qualitatively a similar result would hold, namely that above a
certain overtone number n QNMs cannot be stably measured due
to a combination of transients and numerical error.
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black hole, with spin a ¼ 0.7, we can only faithfully
reconstruct up to the first overtone.12 Finally, in the
near-extremal limit, the radial mismatch for the fundamen-
tal mode decreases as t0 increases because the transient
decays away faster than the fundamental mode, yet none of
the overtones are correctly recovered within the time span
of our numerical integration (500 M).
To illustrate the quality of the reconstructed radial

structure, in Fig. 7 we plot the mode amplitudes as a
function of radius from time-only fits against the expected
radial eigenfunctions (gray dashed lines), with t0 ¼ t1
(colored solid lines) and t2 (colored dashed lines), the
times at which the waveform peaks at the horizon and null
infinity, respectively. For visual comparison, the amplitudes
for the known radial functions are set to agree with the
time-only fit at future null infinity when t0 ¼ t1 (solid
lines), by construction.
As indicated by Figs. 6 and 7, the radial eigenfunctions

are better recovered by the time-only fit at a surprisingly
early time (overfitting aside), except for the near-extremal
case. We further note that our ability to extract the QNM
radial variation through the time-only fit also depends on
the initial data, which, as we already discussed, heavily

impacts the form of the transient signal. We defer a detailed
study of the initial data and interpretation of the seemingly
better-behaved fittings at early time to a future work.

VI. DISCUSSION

In this work, we have presented two new techniques for
extracting the quasinormal mode content from perturbed
single black holes. The main novel aspect of the fitting
procedures is that they utilize the radial structure of each
QNM over the full exterior of the black hole spacetime.
This is aided by our use of horizon penetrating, hyper-
boloidally compactified coordinates, in which the quasi-
normal mode eigenfunctions to the Teukolsky equation are
well behaved from the horizon to future null infinity.
We used the methods described in Refs. [40,43] to solve

the Teukolsky equation in the time domain, evolving initial
data that can be a superposition of a chosen number of
QNMs together with a more generic transient. We first
showed that our fitting procedures are capable of stably
extracting the correct amplitudes when the initial data

FIG. 7. Mode amplitude radial variation from time-only fitting
(colored lines) for scattering initial data [see Eq. (21)]. Note that
the vertical axis for each subplot has a different scale. We plot the
measured radial amplitude variation with two fitting start times t1
(colored solid lines) and t2 (colored dashed lines), the time at
which the waveform peaks at Hþ and J þ, respectively. The
known radial functions are plotted as gray dashed lines for
comparison, whose amplitudes are chosen to match the solid
colored lines at J þ. The seemingly better agreement for the
overtones in the case of a ¼ 0.999 near null infinity is likely due
to the similar frequencies of the family of zero-damped modes in
the extremal limit; i.e., approaching this limit, the overtones do
not decay much more rapidly that the fundamental mode.

FIG. 6. Spatial mismatchM [Eq. (23)] for the time-only fit as a
function of fitting start time t0, applied to scattering experiments
for a Kerr black hole with a ¼ 0 (top), a ¼ 0.7 (middle), and
a ¼ 0.999 (bottom). The radial amplitude variation agrees
relatively well with the known radial function when M < 10−3,
i.e., outside the shaded region.

12The marginal dip in the mismatch for the n ¼ 2 mode around
t0 ¼ 15 ∼ 20M hints at its existence for Kerr black hole with
a ¼ 0.7, whichwe do extract stably using the spatial fit (see Fig. 5).
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consist of a superposition of pure QNMs and include
rapidly decaying high overtones, until the corresponding
amplitudes drop below a floor set by numerical truncation
error. The reason that the fitting procedure works this well
is that it uses more information about the waveform—
namely, its radial dependence. This drastically increases the
number of data points available in the fit as compared to a
fit at a fixed radius (or at a small number of radii).
Moreover, by making use of the radial dependence of
the modes, we can construct an inner product for which the
quasinormal modes are orthogonal with respect to each
other. This allows us to project out QNM amplitudes from a
perturbation consisting of a pure sum of QNMs at a given
fixed time slice, though such projection can still be biased
in the presence of transients (defined as any non-QNM
component of the perturbation).
With confidence in our ability to accurately extract

QNMs in the absence of transients, we examined the linear
excitation of a black hole through a prompt, compact pulse
of gravitational wave. This investigation aimed to shed
light on the issue of overfitting when attempting to extract
the excitation amplitudes of QNMs from numerical sim-
ulations of binary black hole mergers, which can lead to
erroneous QNM amplitude measurements if transients are
not accounted for. As we are using the Teukolsky equation
for the evolution of the perturbation, we can only study the
effects of the linear transients. However, since it seems
unlikely that nonlinear effects would help with the problem
of overfitting, our study can be considered a best-case
scenario for the theoretical measurement of excitation
amplitudes. First, we showed that, even using our new
fitting algorithms, the presence of linear transients (with
scattering initial data) prevented stable measurement
beyond the second overtone of the fundamental mode of
the dominant l ¼ m ¼ 2 perturbation for a Schwarzschild
and an a ¼ 0.7 Kerr black hole (for an a ¼ 0.999 Kerr
black hole we could only stably extract the fundamental
mode during our integration time of 500 M).
We then compared our new fitting procedures to a more

traditional time-only fit. This analysis showed that a time-
only fit may result in erroneous amplitude for the first
overtone of the l ¼ m ¼ 2 mode of an a ¼ 0.7 Kerr black
hole, outside an interval for fitting start time of order 15 M.
Moreover, when performing the time-only fit at different
radii, we found that the amplitude and phase one obtains
from the fitting at each radius does not match the predicted
behavior of the second (and higher) overtones of the
quasinormal mode radial eigenfunctions (again, except
for the case of Schwarzschild where the second overtone
does match to reasonable precision). In the case of a near-
extremal hole (a ¼ 0.999), only the fundamental mode can
be faithfully extracted due to long-lasting transient insta-
bility near the horizon; the overtones might be present in
the signal but require longer time of integration and higher
numerical resolution.

A significant issue regarding extrapolating our results to
what this implies for existing studies, which have attempted
to extract mode amplitudes in the full nonlinear case, is that
we have not attempted to match our Gaussian pulse
perturbation of the black hole to the initial data of any
particular merger event, as we do not have a theoretical
estimate for the excitation amplitudes of the overtones in
the merger case. Thus, though we expect similar issues to
occur in the nonlinear case at some overtone number n for
any given angular mode, and expect overfitting to be worse
in the nonlinear case, to put a threshold on the cutoff
overtone number from the linear problem would require a
study using better adapted initial data.
The basic idea of the techniques described here—fitting

for the spatial behavior of the quasinormal eigenfunctions
and their dependence on time—could, in principle, be
applied to fully nonlinear numerical relativity simulations
of ringdown. However, there are several complications: the
method requires a fixed gauge choice in the ringdown
phase (potentially achievable through an appropriate gauge
driver condition [72,73]) and a careful treatment of wave
extraction in the strong field [74]. Additionally, spatial
information could only be used far away from the remnant
black hole, where the gravitational waves could be well
described by linear (and possibly second-order) perturba-
tion theory.
Our ability to set up pure mode initial data should allow

for further studies of nonlinear second-order effects during
black hole ringdown. Studying the time evolution of pure
quasinormal mode initial data in a nonlinear/second-order
code would allow one to systematically study the efficiency
of mode mixing. Additionally, with pure quasinormal
mode eigenfunction initial data, one could study the func-
tional form of the second-order source term that appears in
the solution to the second-order vacuum Teukolsky equa-
tion [43,75]. Doing so would allow us to study how the
source term varies with different kinds of quasinormal
modes, such as the overtones. We leave a study of these
effects to future work.
Our setup—solutions to the Teukolsky equation with

fitting procedures that use the entire waveform, not just its
value at future null infinity—is arguably “optimal” for
extracting the QNM signal. Specifically, the solutions we
studied do not exhibit nonlinearities, allowing us to
concentrate solely on the signal’s prompt and QNM
contributions. Do astrophysical mergers excite the over-
tones of the remnant black hole more cleanly compared to
the scattering experiments proposed here? We leave this
question to a future study to set up initial data describing
the perturbed remnant black hole from merger calcula-
tions. Nevertheless, given the challenges of fitting for the
overtones in this (simplified) setup, our results provide
further evidence that fitting for the overtones in astro-
physical or full numerical relativity data, as well as the
interpretation thereof, is a highly sensitive process that

HENGRUI ZHU et al. PHYS. REV. D 109, 044010 (2024)

044010-12



depends significantly on the data extraction and fitting
procedures employed.

The supporting code for this paper is openly available
from the Zenodo repository [53].
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APPENDIX A: CALCULATING QUASINORMAL
MODES AND EIGENFUNCTIONS FOR THE

TEUKOLSKY EQUATION

As we discuss in Sec. IV, one set of initial data we use
consists of a linear superposition of quasinormal eigen-
functions. To compute the quasinormal modes, we follow
the algorithm presented in [40], except for one change that
we found allows us to stably solve for the higher overtones.
Here we briefly outline the algorithm and the improvement
to it (the code we used can be accessed at [53]).
The Teukolsky equation (5) separates under the follow-

ing decomposition:

Ψðτ; r; θ;ϕÞ ¼ eimϕ−iωτRðρÞSðθÞ: ðA1Þ

From this, we obtain two ordinary differential equations,
which we schematically write as

AðρÞ d
2R
dρ2

þ Bðω; m; ρÞ dR
dρ

þ ðCðω; m; ρÞ − sΛm
l ÞR ¼ 0; ðA2aÞ

1

sin θ
d
dθ

�
sin θ

dS
dθ

�
þ
�
sþ ðmþ s cos θÞ2

sin2 θ
− 2aωs cos θ þ a2ω2 cos2 θ þ sΛm

l

�
S ¼ 0; ðA2bÞ

where A, B, C are functions that are given in [40]. Note that
(A2b) is the standard equation for the spin-weighted
spheroidal harmonics [1]. Following [40], we view (A2)
as defining two eigenvalue problems with the eigenvalue
sΛm

l . The set of fω; R; Sg for which (A2a) and (A2b) have
the same eigenvalue sΛm

l are the quasinormal modes and
eigenfunctions of the Teukolsky equation [40]. We note
that (A2a) and (A2b) also admit total transmission and
scattering mode solutions, but they would be irregular at the
outer boundary. Therefore, the regularity one inherits from
the set of spectral basis functions eliminates such solutions.
We numerically discretize (A2a) and (A2b), solve for the

eigenvalues and eigenvectors of the two systems, and then
vary ω until at least one of the eigenvalues for the two
discretized systems coincide. The value ω is then a quasi-
normal mode frequency, and the corresponding eigenvector
with eigenvalue sΛm

l gives the quasinormal eigenfunction.
As in [40], we discretize (A2b) using a spectral method first
described in [52,76]. The radial equation (A2a) was dis-
cretized using a Chebyshev pseudospectral method in [40].
We found that solving for the higher overtone quasinormal
modes using the radial Chebyshev pseudospectral method

required using a large number of collocation points. This
led to numerically ill-conditioned discretizations of (A2a),
which then required the use of higher-precision arithmetic.
Here we describe a spectral method that leads to sparse,
well-conditioned discretizations of (A2a), even when we
solve for the higher quasinormal mode overtones.
The spectral method makes use of the properties of

the ultraspherical (also called the Gegenbauer) polynomials
[77]. For completeness, we outline the basic idea of the
method here, although we refer to [77] for a more complete
exposition. Ultimately, we used the ApproxFun [78]13

implementation of these methods in our code. Our con-
ventions follow [79].
We first transform the radial coordinate to x∈ ½−1; 1�.

We next expand R in a series of Chebyshev polynomials of
the first kind,

RðxÞ ¼
XN
n¼0

cnTnðxÞ: ðA3Þ

13https://github.com/JuliaApproximation/ApproxFun.jl.
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The derivative of the Chebyshev polynomials of the first
kind can be written in terms of the Chebyshev polynomials
of the second kind,

dTnðxÞ
dx

¼ nUnðxÞ: ðA4Þ

For higher-order derivatives with respect to x, we use the
following property of the ultraspherical polynomials:

dCðλÞ
n ðxÞ
dx

¼ 2λCðλþ1Þ
n−1 ðxÞ; ðA5Þ

where UnðxÞ ¼ Cð1Þ
n ðxÞ. To conclude, we see that we can

write

dR
dx

¼
X
n¼1

ncnUn−1ðxÞ; ðA6aÞ

d2R
dx2

¼
X
n¼2

2ncnC
ð2Þ
n−2ðxÞ: ðA6bÞ

Consider the vectorial representation of R, Eq. (A3),

R ¼ TTc; ðA7Þ

where T¼ðT0ðxÞ;T1ðxÞ;…;TNðxÞÞ and c≡ðc0;c1;…;cNÞ.
We see that we can write the first and second derivatives
of R as

dR
dx

¼ UTD1c; ðA8aÞ

d2R
dx2

¼ CTD2c; ðA8bÞ

where U ¼ ðU0ðxÞ; U1ðxÞ;…; UNðxÞÞ, C≡ ðCð2Þ
0 ðxÞ;

Cð2Þ
1 ðxÞ;…; Cð2Þ

N ðxÞÞ, and D1 and D2 are sparse matrices,
the components of which can be inferred from Eq. (A6).
To complete the discretization of (A2a), we need to
convert A, B, C, along with dR=dρ and R to the

polynomial basis Cð2Þ
n , which can be done using sparse

matrices [77]. Ultimately, with this method, (A2a) can be
discretized to take the form

ðA − λBÞc ¼ 0; ðA9Þ

where A and B are sparse matrices with a relatively small
condition number. We do not need to impose boundary
conditions as regularity at the boundaries imposes the
ingoing radiation condition at the black hole horizon
and the outgoing radiation condition at future null
infinity [40,50]. We solve the generalized eigenvalue
problem (A9) using standard numerical linear algebra

routines (that is, with the eigen solver in the Julia

standard library).

APPENDIX B: STRUCTURE OF QNM RADIAL
EIGENFUNCTIONS

Here, we briefly discuss the structure of the radial
eigenfunctions for QNMs on τ ¼ const HPHC hypersur-
faces. In HPHC coordinates, τ ¼ const hypersurfaces
become tangent to null surfaces at the future horizon
and null infinity (and hence tangent to the characteristic
curves of the Teukolsky equation). There are two main
effects that determine the far-field behavior of the radial
quasinormal eigenfunctions to the Teukolsky equation.
First, there is some flexibility in HPHC coordinates as
to where τ ¼ const hypersurfaces intersect future null
infinity (while pinned to the same location at the
horizon) [42]; we call this flexibility a “propagation
effect.” Second, the rate at which the coordinate volume
on the slice changes as a function of ρ controls the
behavior of the eigenfunction at future null infinity,
which gives rise to the familiar 1=r decay at large radii.
Since we solve for the rescaled variable Ψ4 defined in
Eq. (4) in both the QNM (initial data) code and the
evolution code, the 1=r volume effect is factored out. We
discuss the propagation effect in detail below.

1. Propagation effects

To understand the nature of propagation effects in HPHC
coordinates, we first solve the null geodesic equation in
ingoing Eddington-Finkelstein coordinates (for a related
discussion, see Appendix C of [43]). Setting ξθ ¼ ξϕ ¼ 0,
we find that the characteristic speeds of out- and ingoing
null geodesics are

cþ ¼ ξþv
ξþr

¼ 1 −
4Mr

2Mrþ ΣBL
; ðB1aÞ

c− ¼ ξ−v
ξ−r

¼ −1: ðB1bÞ

To determine the radial null characteristics on a hyper-
boloidal slice, we first define a radial coordinate ρðrÞ and
time coordinate Tðv; rÞ. Under that coordinate change, the
characteristic speeds are

c̃� ¼ dρ=dr
1
c�
∂vT þ ∂rT

: ðB2Þ

From this, we can determine the time that it takes for a
radially outgoing wave, starting at radius ρ0 to reach null
infinity by integrating

τþðρ0Þ ¼
Z

ρJþ

ρ0

1

c̃þðρÞ
dρ: ðB3Þ
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Similarly, one can compute the time in this coordinate for a
radially ingoing wave to reach the black hole horizon,

τ−ðρ0Þ ¼
Z

ρ0

ρHþ

1

c̃−ðρÞ
dρ; ðB4Þ

where ρJ þ and ρHþ are, respectively, the radius of null
infinity and horizon in this coordinate, which we assume to
be independent of time.
One may interpret these time intervals as the amount by

which the slice mismatches with a radially out-/ingoing
spherical wave front. As the mode is exponentially
decaying, the amplitude of the mode will be affected by
this time mismatch. For a quasinormal mode with fre-
quency ω, the amplitude variation of the radial wave
function due to this mismatch time, for the outgoing part
of the wave, is given by

AðρÞ ∝ expfℑfωgτþðρÞg: ðB5Þ

Note that here the amplitude increases faster toward infinity
for a wave with a higher decay rate.
Figure 8 diagrams the basic intuition behind this result.

Far from the black hole, a spherical wave would be
approximately advected with a decay of 1=r along the
null geodesics. After factoring out the 1=r decay, we expect
the amplitude of the wave to be roughly constant along the
outgoing null geodesics labeled by gray dashed lines at
large radius. We see that on a T ¼ const hypersurface, the
faster decaying mode would have a radial amplitude AðρÞ
that decays faster as we approach the black hole.

We note that the propagation time depends on the
geodesic trajectory one considers (although the natural
choice is to compute the propagation time from the
characteristic speed of the Teukolsky equation, as we do
here). Since QNMs carry angular momentum, we expect
that the propagation times (B3) and (B4) are lower bounds
on the propagation time of a quasinormal mode wave front.
We also note that the wave front of a mode only travels
along a null geodesic in the eikonal limit; finite-wavelength
effects may further complicate our above argument. Never-
theless, we show that the QNM radial functions roughly
follow the above argument in Fig. 9. In that figure, we plot
the radial eigenfunction for the overtones following the
procedure outlined in Appendix A and compare them to
the predicted scaling of the radial amplitude from (B5).
In particular, we present the radial eigenfunctions for
successive overtones of a Schwarzschild black hole with
l ¼ m ¼ 2. We see that the radial profiles of the modes
roughly follow the scaling as predicted by Eq. (B5).
To determine τþðρÞ, we note that, in the coordinates we

are using,

ρðrÞ ¼ L2

r
; ðB6Þ

Tðv; rÞ ¼ vþ hðrÞ; ðB7Þ
where

dh
dr

¼ −1 −
4M
r

: ðB8Þ

FIG. 9. Radial eigenfunctions of overtones for Schwarzschild
black hole with l¼m¼2 (solid colored lines). We also plot pre-
dictions from radially outgoing geodesics with dashed lines, by
evaluating Eq. (B5) with the overtone frequencies. We note that the
geodesic predictionyields larger slopes for the radial functions atJ þ
for overtones with higher n, in accordance with the eigenfunctions
we calculated from the Teukolsky equation. However, the slope for
radial eigenfunctions is not precisely matched by the geodesic
prediction. This is likely due to the fact that quasinormal modes do
not exactly satisfy the eikonal limit from which (B5) is derived.

FIG. 8. Penrose diagram of the Kerr exterior. The black dashed
curve describes a T ¼ const hypersurface in HPHC coordinates.
The gray dotted lines represent the trajectories of outgoing null
geodesics. The box in the top-right corner shows the observed
black hole ringdown signal at future null infinity, one with slower
decay (blue) and the other faster (red). Note that the signals are
illustrative only; any decaying wave would have infinite ampli-
tude at i0, zero amplitude at iþ, and infinitely many oscillations
between.
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Here, L is a constant length scale that we take to be 1. The
locations of the horizon and future null infinity are then
ρ ¼ 1

Mþ
ffiffiffiffiffiffiffiffiffiffi
M2−a2

p and ρ ¼ 0, respectively. The in- and out-

going characteristic speeds in these coordinates are

c̃þ ¼ −
a2ρ2 cosðθÞ − 2Mρþ 1

8M2 − 4a2Mρ cosðθÞ ; ðB9Þ

c̃− ¼ ρ2

4Mρþ 2
: ðB10Þ

For illustrative purposes, we calculate the propagation time
defined in Eqs. (B3) and (B4) for null rays for a M ¼ 1=2,
a ¼ 0 black hole. In this case, the in- and outgoing
propagation times become

τþðρÞ ¼ 2 log ð1 − ρÞ; ðB11aÞ

τ−ðρÞ ¼ 2 −
2

ρ
þ 2 logðρÞ: ðB11bÞ

Note that the outgoing time delay diverges at the horizon,
and the ingoing time delay diverges at infinity; this reflects
the fact that there is no outgoing radiation at the black hole
horizon and no ingoing radiation at future null infinity.

APPENDIX C: CONVERGENCE TESTS

In this section, we show the numerical convergence of
time domain code [80] used in this work. We consider the
evolution of a single QNM and a numerical scattering
experiment. The time evolution code makes use of pseu-
dospectral methods in the angular (θ) direction and fourth-
order finite-difference methods in the radial (ρ) direction.
The initial data are then integrated in time using an

explicit fourth-order Runge-Kutta integrator. Therefore,
fixing the angular resolution, one expects the code to
approach the continuum solution with fourth-order con-
vergence. In general, we find that the numerical error is
dominated by the radial direction.
For our convergence tests, we fix the number of angular

collocation points to be 40 and increase the radial reso-
lution by successive factors of 2. We see fourth-order
convergence in Fig. 10, for single QNM evolution, and in
Fig. 11, for the gravitational wave scattering experiment.
We show that the numerical resolution of our simulations is
not the limiting factor in the precision of our QNM fits to
scattering initial data in Fig. 12, where we compare the
spatial fit applied to both the high and midresolution runs.

FIG. 11. Convergence in a scattering experiment simulation off
a Kerr background with a ¼ 0.7 (top) and a ¼ 0.999 (bottom).
Here, the number of angular collocation points is fixed to nθ ¼ 40
for all runs, and we change the radial resolution by factors of 2
successively. The ultralow resolution is run with nρ ¼ 64, low
with nρ ¼ 128, mid with nρ ¼ 256, and high with nρ ¼ 512.

FIG. 10. Convergence evolving a single QNM with n ¼ 3 and
a ¼ 0.999. Here, the number of angular collocation points is
fixed to 40 for all runs, and we change the radial resolution by
factors of 2 successively. The low resolution is run with
nρ ¼ 128, mid with nρ ¼ 256, and high with nρ ¼ 512 grid
points. By the “analytic” answer, we mean the prediction for Ψ4

at future null infinity for an n ¼ 3, l ¼ m ¼ 2 quasinormal mode.
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