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We revisit a question asked by Dyson: “Is a graviton detectable?” We demonstrate that in both Dyson’s
original sense and in a more modern measurement-theoretic sense, it is possible to construct a detector
sensitive to single gravitons, and in fact a variety of existing and near-term gravitational wave detectors can
achieve this. However, while such a signal would be consistent with the quantization of the gravitational
field, we draw on results from quantum optics to show how the same signal could just as well be explained
via classical gravitational waves. We outline the kind of measurements that would be needed to
demonstrate quantization of gravitational radiation and explain why these are substantially more difficult
than simply counting graviton clicks or observing gravitational noise in an interferometer, and likely
impossible to perform in practice.
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I. INTRODUCTION

Awide array of detector architectures which are sensitive
to single photons now exist [1,2]. On the contrary, design-
ing a detector capable of detecting single gravitons, or
similarly the shot noise from gravitational quantization,
may seem like an insurmountable challenge. Dyson, and
separately Rothman and Boughn, have argued that this
would be fundamentally impossible in certain architectures,
but possible with others in a sense we make precise below
[3–5]. Supposing that one could construct such a detector,
an important question arises: would observation of a signal
attributable to single gravitons imply that the gravitational
field is quantized?
First, let us motivate the idea that single graviton detection

is in principle possible, following Dyson. The energy density
in a gravitational wave is ρ ¼ 1

4
M2

Plh∂thμν∂thμνi, with MPl

the reduced Planck mass [6].1 For a wave of strain h and
frequency ω, this corresponds to ρ ¼ 1

4
h2ω2M2

Pl. Dividing
this energy up into gravitons of energy ω, we find that the
number of quanta per de Broglie volume λ3dB ¼ f−3 is

nλ3dB ¼ πh2M2
Pl

2f2
≃ 2 × 1035

�
h

10−22

�
2
�
1 kHz
f

�
2

; ð1Þ

with f ¼ ω=2π is the linear frequency. These parameters are
benchmarked to a LIGO event, where it is clear that the
number density of gravitons in an observable wave is
astronomically large. However, it is possible to look for
gravitons at much higher frequencies, where this occupation
density is diluted.
For example, consider the CERNAxion Solar Telescope

(CAST) [7]. This device consists of a large permanent
magnet B ∼ 10 T with an x-ray photodetector. The cou-
pling L ¼ 1

2
hμνT

μν
EM leads to linear conversion between

gravitational and electromagnetic radiation in the presence
of the magnetic field [8–12]. Given incident gravitational
radiation, a detected x-ray photon implies the absorption of
an individual graviton, under the assumption that the
gravitational field is quantized. Moreover, at x-ray frequen-
cies f ∼ 1018 Hz and with CAST’s nominal sensitivity h ∼
10−27 [10], this detector is sensitive to signals in the regime
where the number quanta per de Broglie cell can become
less than one. In such a state, the distribution of gravitons is
highly dilute,2 and in this sense CAST can detect individual
gravitons.3*carney@lbl.gov
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1We take ℏ ¼ c ¼ 1 and signature ð−;þ;þ;þÞ throughout.
2The analogue of Eq. (1) for dark matter is

nλ3dB ¼ ð2πÞ3ρ=m4v3, so that locally dark matter undergoes
the analogous transition at mDM ∼ 10 eV. For a review, see
Ref. [13].

3We know of no sufficiently strong sources for gravitational
radiation at this frequency (see Appendix A). In this paper, we
will only be concerned with questions of principle involving
detector sensitivities.
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In Fig. 1 we show that the region where nλ3dB < 1 covers
a large portion of the parameter space for high frequency
gravitational radiation, and that CAST and its successor
IAXO [14] clearly cut into that space. The remaining
aspects of the figure largely follow Ref. [15], and we refer
there for details; see also Refs. [11,12,16–29] for recent
work. We emphasize that for transient signals, the strain
must be interpreted carefully as discussed in Appendix A;
in particular, the figure assumes a signal duration compa-
rable to or longer than the measurement time, which for
CAST is roughly a year.
While an intensity detector like CAST could be sensitive

to such single graviton signals, it has also been suggested
that linear gravitational wave detectors, for example LIGO,
could be sensitive to analogous “shot noise” signals due
to gravitational quantization in highly squeezed states
[30–34]. Supposing that such a signal was observed in either
case, a natural question to ask is whether it would constitute
experimental proof that the gravitational field is quantized.4

The answer is no: classical gravitational radiation can equally
well explain the observed detector response.
To understand why, let us review a classic argument from

quantum optics, following Ref. [35]. Consider a photo-
detector operating based on the photoelectric effect, such as
a collection of approximately free electrons in a semi-
conductor. A fully quantized Hamiltonian describing a
given detector electron coupled to the incident electromag-
netic field is

ĤQ ¼ Ĥdet þ ĤA −
e
m
p̂ · Â; ð2Þ

where the first term describes a ground state and con-
duction band separated by an energy gap Δ > 0, p̂ is the
momentum operator of an electron, Â is the gauge field
operator, and ĤA is its kinetic energy. The probability for a
single electron to be excited from the ground state into the
conduction band in a short time δt computed from Eq. (2) is

PðtÞδt ≃ ηhIðtÞiΘðω − ΔÞδt: ð3Þ

Here, η is a constant representing the detector efficiency,
and we assume the incident field is nearly monochromatic
with frequency ω and a slowly varying intensity IðtÞ. The
result exhibits the hallmarks of the photoelectric effect:
zero emission for ω < Δ, and emission at a rate propor-
tional to the light intensity beyond this. Moreover, the
individual events can be resolved as discrete “clicks,”
occurring when an individual electron is excited.
In contrast, consider a semiclassical model, where the

gauge field is not quantized, but viewed as a classical field,

ĤSC ¼ Ĥdet þHA −
e
m
p̂ ·A: ð4Þ

Here A is a time dependent c-number that in principle can
be stochastic, drawn from a classical distribution PclðAÞ.
The detector electrons remain quantized, so our experiment
will continue to register a series of discrete clicks. In fact, a
straightforward calculation in perturbation theory (again
see Ref. [35] or Appendix B) yields precisely the same
result as Eq. (3) for the rate of electron excitations. In this
latter case, the bracket in hIðtÞi is an average over the
classical distribution PclðAÞ.5 We conclude that the photo-
electric effect can be equally well explained by a classical
electromagnetic field or quantized photons.
This leads to a final question: what kind of data stream

could we observe in the detector output that can be
explained by a quantum model of the radiation like
Eq. (2) but not by a classical model like Eq. (4)? A famous
example in quantum optics is sub-Poisson counting sta-
tistics, in which the variance in the observed photon or
graviton count rate is smaller than the mean rate [35,36].
Heuristically, if the radiation were quantized, one could
send a stream of photons with fixed separation between
them, leading to zero variance amongst the arrival times at
the detector, and for an ideal detector, zero variance in the

FIG. 1. The parameter space for gravitational radiation at high
frequency, and the region where the field—if quantized—would
be better described as a highly dilute state of graviton particles
rather than a gravitational wave [nλ3dB < 1 from Eq. (1)].
Instruments such as CAST are already reaching into this
parameter space.

4Assuming the events are not attributed to a background event
or an axion. For example, in CAST, a significant background
source is cosmic-ray muons interacting with the detector material
and generating fluorescent x rays [7,14].

5The presence of the energy conservation Θðω − ΔÞmay seem
surprising. In the semiclassical calculation, this arises from a
factor jR δt

0 dteiðEþΔ−ωÞtj2 ∼ δðEþ Δ − ωÞ in the perturbative
transition amplitude for a given electron to be excited into a
conduction state of energy E by an incident plane wave,
A ∝ e−iωt. For ωδt ≫ 1, certainly the case for example in optical
detection with ω≳ 1015 Hz, the approximation as a delta
function is excellent. More details are provided in Appendix B.
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measured response. As we review in Sec. I, sub-Poisson
counting statistics can be explained by a quantized radi-
ation field prepared in a variety of non-trivial quantum
states (e.g., a squeezed state or number eigenstate), but
cannot be explained by a classical field. Thus, observation
of such a signal would constitute proof that the incident
field is quantized.
However, as we will emphasize, the requirements for

observing such a quantization signature for gravitational
radiation are very stringent. We first need some source of
nonclassical graviton states, and then we need a detector
which can see the subtle quantum effects that differentiate
this state from a classical ensemble. In particular, simply
counting gravitons, or simply observing gravitational shot
noise (including that produced by a highly squeezed state
[30–34]) is not enough to demonstrate quantization. And
even if a source for such states exists in nature, it is
substantially more difficult to make a detector capable of
teasing out the subtle quantum parts of these signatures,
and probably impossible in practice.
The rest of the paper is dedicated to making the above

statements precise. We begin in Sec. I by sketching a simple
model of a gravitational radiation detector for illustrative
purposes. We then use this to discuss the various quantiza-
tion witnesses described above. In Sec. III we then discuss
what kinds of experimental parameters would be required
to construct a detector sensitive to the quantization mea-
sures. Finally in Sec. IV we relate this to other tests of
quantization of gravity, for example involving the micro-
wave background or tabletop entanglement experiments.

II. GRAVITON MEASUREMENT THEORY

The gravitational analogue to our models of quantized
and semiclassical radiation coupled to a detector is imme-
diate. We assume that spacetime is nearly flat gμν ≃ ημν near
the detector and consider small perturbations of the total
metric gμν ¼ ημν þ hμν. We will then consider the differ-
ence between a quantized gravitational field,

ĤQ ¼ Ĥdet þ Ĥh −
1

2

Z
d3xĥμνT̂

μν; ð5Þ

where T̂μν is some part of the matter stress tensor operator
in the detector (e.g., the mirrors in LIGO or the electro-
magnetic field in the CAST tube), and the classical version,

ĤSC ¼ Ĥdet þHh −
1

2

Z
d3xhμνT̂

μν; ð6Þ

where again hμν is a classically random c-number field. The
quantized model in Eq. (5) should be, as usual, interpreted
as an effective field theory, valid at the low energy densities
considered in this paper.
The goal is to determine how these hypotheses could be

distinguished. We begin in Sec. II A with a review of the

theory of coherence and classicality conditions in a
radiation field. In Sec. II B we give a toy model for a
gravitational wave detector which exhibits the difference
between an intensity (number) detector and a linear
(amplitude) detector. These two detectors offer different
observables which can be used to distinguish Eqs. (5) and
(6), and we study these in Sec. II C and II D, respectively.

A. Classicality vs quantization

The radiation fields can be decomposed as usual into
modes, whether we are dealing with classical or quantized
radiation. We will find it simplest to discretize the spectrum
by placing everything in a large box of length L, and take
L → ∞ at the end. In terms of positive and negative
frequency components,

AμðxÞ ¼
X
k;s

ϵs;μðkÞukðxÞeiωkta†k;s þ H:c:;

hμνðxÞ ¼ M−1
Pl

X
k;s

ϵs;μνðkÞvkðxÞeiωktb†k;s þ H:c:; ð7Þ

where the ϵs with s ¼ 1, 2 form bases for the polarization
vectors and tensors, and the uk; vk form complete sets of
mode functions. In this section, everything will be treated
symmetrically between the electromagnetic and gravita-
tional case. Since we are primarily interested in gravity, we
use the gravitational bk;s for the Fourier components, but
the same results all apply for electromagnetism b → a. See
Appendix E for more details on these mode expansions.
The distinction between classical and quantum models

comes from how we treat the coefficients bk;s. In the
classical case, the bk;s are c-number dynamical variables. A
general state consists of a probability distribution
Pclðfbk;sgÞ, which can for example include classical
correlations between the different modes. In the quantum
case, the bk;s are promoted to operators. A general state
consists of a density matrix ρ, which can include both
classical correlations and quantum correlations (entangle-
ment). Our goal is to understand what kind of observations
can distinguish between these two cases.
For simplicity, we will focus on narrow band signals in

what follows; we discuss generalizations in the
Appendixes. Consider a single mode of the radiation field
of interest (gravitational or electromagnetic), with wave
vector k, polarization s, and let b ¼ bk;s.

6 We can give a
simple description of the general quantum state of this
mode which will make it easy to compare to the classical
case. Define the coherent states jβi for this mode as usual,
bjβi ¼ βjβi, for any complex number β. These form an

6In the case of a classical gravitational wave, b translates to the
strain h as follows: the wave has fixed energy density
ρ ¼ ω2M2

Plh
2=4 ¼ ω

P
s jbsj2=4L3, so for a single polarization

b2s ¼ ωM2
Plh

2
sL3.
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overcomplete basis for the Hilbert space of the mode, since
they are nonorthogonal hβjβ0i ¼ e−jβ−β0j2=2. In fact, one can
express any density matrix of the mode as

ρrad ¼
Z

dβPðβÞjβihβj;
Z

dβPðβÞ ¼ 1: ð8Þ

This representation of the density matrix is called the
Glauber-Sudarshan (or sometimes “Glauber P”) represen-
tation [37,38]. The normalization condition on PðβÞ simply
enforces Tr½ρrad� ¼ 1.
The representation Eq. (8) is highly suggestive: it looks

like we can write any state of the mode as a classical
ensemble of coherent states. Indeed, in the case that we can
write the radiation state as such an ensemble, one can
always reproduce a detector’s output with the purely
classical radiation model, namely an ensemble of classical
plane waves with distribution PðβÞ [35,38,39]. This is true
even including observation of “vacuum fluctuations” or
shot noise, which can be explained by the quantum
mechanical nature of the detector even with a purely
classical signal, as discussed in the Introduction.
However, in a general quantum state, the weight function

PðβÞ can take negative values, or be a highly singular
function.7 In this case, PðβÞ is not a classical probability
distribution. It is precisely in this case—when PðβÞ fails to
be a classical distribution—that one can find observables in
a detector output that can be explained by a quantized field
model like Eqs. (2) or (5), but cannot explained by a
classical field model like in Eqs. (4) or (6). We therefore
refer to such states as “nonclassical.” Examples of such
states include number eigenstates, superpositions of coher-
ent states such as jψi ∼ jβ1i þ jβ2i, and squeezed coherent
states; see Appendix C. Notice in particular that the vacuum
is classical in this definition, since it is the trivial ensemble
consisting of just the zero-amplitude coherent state.8

An illuminating example of such a nonclassicality
observable can be constructed in the optics setting, where
the radiation field can be controlled. Consider an incoming
beam with annihilation operator b1 prepared in a coherent
state jβi1. After passing this beam through a 50-50 beam
splitter with vacuum j0i2 sent through the other port, the
state of the two arms is

jβij0i → jβ=
ffiffiffi
2

p
ijβ=

ffiffiffi
2

p
i: ð9Þ

For completeness, we provide the calculation in
Appendix D. If we have a pair of photodetectors, one
for each outgoing beam, they will continue to each register

half of the intensity, even for arbitrarily small beam energy
jβj2 → 0. On the other hand, consider something “non-
classical” like a beam of single-photon states, again with
vacuum through the dark port,

j1ij0i → 1ffiffiffi
2

p ½j1ij0i þ j0ij1i�: ð10Þ

Now the photodetectors will be perfectly anticorrelated,
i.e., either one detector registers the photon or the other
does, at each detection event. There is no classical random
ensemble that can reproduce this result [38]. Note that the
nonclassical state produced an entangled two-body state,
while the coherent state did not; this is a general feature of
nonclassical states [40]. While this example uses a beam
splitter and is thus not easy to generalize to the gravitational
setting, we will give analogous examples of these kinds of
measurements with realistic gravitational radiation detec-
tors in the next sections.
To summarize, in order to perform a measurement on a

gravitational radiation mode that would require a non-
classical description and thus demonstrate quantization of
the radiation field, we have two basic requirements:
(1) Nature has to provide a non-classical state of the

radiation mode.
(2) We have to detect some signature of this non-

classicality, for example, correlation statistics as just
described.

These are very stringent conditions. In this paper, we make
no comments on the possible sources of such states,
although see [30–34] for some ideas. Our focus will be
on the second condition, which as we shall see in what
follows, entails extremely challenging detector parameters.

B. A simple detector model

In order to be precise about detecting gravitons and
nonclassicality observables, we will need to discuss two
important issues. The first is that different detectors
measure the field in different bases. As concrete examples,
CAST is an intensity detector (it clicks when a graviton is
absorbed), while lower-frequency axion haloscopes based
on cavities, for example ADMX [41] or HAYSTAC [42],
could be operated as amplitude detectors (they measure the
amplitude of a cavity mode). Similarly, LIGO is an
amplitude detector. The second issue is that, in general,
real detectors do not perform projective measurements but
more general, “weak” measurements on the incoming
radiation field. This is particularly important in the gravi-
tational case, where the incident field is extremely weakly
coupled to the detector.
To make our discussion of both of these issues concrete,

consider a simple gravitational radiation detector consisting
of a strong homogeneous magnetic field B0 along the
z-axis, distributed over some spatial volume l3, as shown
in Fig. 2. For conceptual simplicity, we will consider an

7By a theorem of Schwartz, these singular P-functions must
take negative values. For further details, see Appendix C.

8As originally shown by Glauber [38], PðβÞ obeys an analogue
of the central limit theorem, implying that Gaussian PðβÞ, which
are positive definite, are highly generic. For example, thermal
radiation can be described by a Gaussian PðβÞ.
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incoming “beam” of gravitational radiation along the x-axis
with momentum k0 ¼ k0x̂. The modes of the electromag-
netic field couple to the gravitational field through the
Gertsenshtein effect (i.e., the coupling L ¼ 1

2
hμνT

μν
EM)

as discussed in the Introduction.9 The interaction
Hamiltonian, in the Schrödinger picture, is

V ¼ B0

Z
l3
d3xðFyxhyy þ FzxhyzÞ

¼ B0

2

Z
l3
d3xðδBzhþ − δByh×Þeik0x þ H:c:; ð11Þ

where δBy;z denote the perturbations of the magnetic field

strength around the background field, and hs ¼
bs=MPl

ffiffiffiffiffiffiffiffiffi
ωL3

p
are the amplitudes of the individual polar-

izations, according to the conventions we establish in
Appendix E. We include this here to emphasize that each
polarization couples to a specific direction of the magnetic
field perturbations.

Suppose that we can monitor a particular mode p0, r0 of
the electromagnetic field, with annihilation operator a ¼
ap0;r0 and frequency ω0 ¼ jp0j, polarized with B along the
y-axis for definiteness. Again for simplicity, we will
assume that this mode is perfectly matched to the incoming
gravitational radiation p0 ¼ k0. In this case, the interaction
Hamiltonian can be simplified to

V¼ igða†b−ab†Þ; g¼ B0

2
ffiffiffi
2

p
MPl

ffiffiffiffiffiffi
l3

L3

r
: ð12Þ

The coupling g has units of energy. The artificial spatial
scale L reflects the discretized radiation modes b; in the
continuum limit these scale like L3=2, and one would
essentially replace L → δk−1 in g to get the effective
coupling to a radiation signal of bandwidth δk. A more
general and rigorous form of this discussion is provided in
Appendix E. Our simplifying assumptions here make this
the “best case” scenario: we have a narrow band, perfectly
mode-matched, optimally orientated detector. We will see
that even in this case, detection of nonclassicality witnesses
is extraordinarily difficult; in a more realistic case the
difficulties will only increase.
First we consider how to use this as an intensity detector.

We assume that at each time step of length δt, the
electromagnetic mode a is prepared in its vacuum state
j0i, and we then measure the mode a in its number basis
jni, for example with a photodiode. Suppose to begin with
that the gravitational radiation mode is in some pure state
jψ radi, so that the initial total state is j0;ψ radi. The
probability that we see n photons excited in the detector
mode in the time step δt is given by

pðnÞ ¼
X
frad

jhn; fradjUj0;ψ radij2

¼ hψ radjK†
nKnjψ radi; ð13Þ

where the sum over the final state of the gravitational field
jfradi arises because we do not measure it directly. Here,

U ¼ exp

�
−i

Z
δt

0

dtVIðtÞ
�

ð14Þ
is the interaction-picture evolution operator, which encodes
the interaction between the radiation and detector. We have
used this to define the Kraus operator,

Kn ¼ hnjUj0i; ð15Þ
which acts on the radiation field. These Kraus operators
generalize projective measurements, which can be recov-
ered when the operators En ¼ K†

nKn are projectors.10

FIG. 2. Schematic implementation of our toy model detectors.
The gravitational mode b is incident on a fixed magnetic field B0.
In this field, b can convert to an electromagnetic mode a, which
can then be detected. The caps at the end represent photon
counters. Top: directly counting the converted photons produces a
gravitational intensity detector, as in Eq. (16). Bottom: an
external light beam at frequencyω0 and known phase is interfered
with the light coming out of the detector field. This produces a
homodyne (amplitude) measurement of the light amplitude X,
and thus an amplitude measurement of the gravitational signal, as
in Eq. (20).

9Note that this interaction is quite general. In addition to its
clear connection to devices like CAST, it can also describe the
basic detection mechanism of interferometers like LIGO. While
these are commonly described in terms of gravitational waves
moving test mirrors, they can equivalently be described in
terms of gravitational waves acting on the laser between the
mirrors [43].

10In measurement theory, the operators En ¼ K†
nKn form what

is called a positive operator-valued measure (POVM) [44]. They
satisfy

P
n En ¼ 1 and therefore give an operator-valued measure

on the space of outcomes, in this case, values of n that can be
registered by the detector. If the radiation is in a mixed state ρrad,
then Eq. (13) is generalized to pðnÞ ¼ tr½Enρrad�.
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The gravitational coupling is so weak that we are instead
making a very weak, nonprojective measurement. For
example, with our specific coupling Eq. (12), we have

K†
nKn ¼ ð1 − g2δt2b†bÞδn;0 þ g2δt2b†bδn;1; ð16Þ

up to terms of Oðg4δt4Þ. What this means is that with
overwhelming probability, the detector will have zero
excited photons, while the next most likely outcome, with
probability g2δt2 hψ radjb†bjψ radi, is that a single detector
photon is excited.
Essentially, this says that our detector is a graviton

version of a photodiode: it is excited with probability
proportional to the incoming intensity I ∼ ωb†b. Explicitly,
in the model where b is a classical c-number, we find that
the probability of a single detector excitation is

pð1Þ ¼ g2δt2jbj2 ¼ 1

2

ρ

ω

B2
0l

3

M2
Pl

δt2; ð17Þ

using Eq. (12). Thus, the conversion probability is propor-
tional to the number density of incident gravitons, ρ=ω.
This expression is reminiscent of the Gertsenshtein effect,
and indeed we will show the connection is exact.
The same basic detector architecture can also be used to

implement linear (“amplitude,” “quadrature”) measure-
ments on the gravitational radiation mode. We define the
electromagnetic field quadrature operators,

X ¼ aþ a†ffiffiffi
2

p ; Y ¼ −i
a − a†ffiffiffi

2
p ; ð18Þ

which are canonically conjugate ½X; Y� ¼ i and act like
position and momentum operators; these are sometimes
called the amplitude and phase variables. Suppose that
instead of monitoring the electromagnetic mode a with a
photocounting device, we monitor it with something like a
homodyne interferometer (see Fig. 2). This means that we
projectively measure it in one of the (continuous) quad-
rature bases, say the amplitude basis jXi. Again we assume
that we do this repeatedly every time step δt.11 The
probability distribution for the detector to be measured
with value X is12

pðXÞ ¼ hψ radjK†
XKXjψ radi; KX ¼ hXjUj0i: ð19Þ

Again using our specific interaction Hamiltonian equa-
tion (12), we find to linear order in gδt,

K†
XKX ¼ f0ðXÞ þ gδtf1ðXÞ½bþ b†�; ð20Þ

where

f0ðXÞ ¼ jhXj0ij2;
f1ðXÞ ¼ h0jXihXj1i; ð21Þ

involve the position-space harmonic oscillator wave func-
tions hXjni, and we used the fact that f1ðXÞ is real. We see
that the detector can in principle be excited to any value of
X. The probability distribution on these detector X out-
comes is shifted by an amount proportional to the gravi-
tational radiation field quadrature Xb ¼ ðbþ b†Þ= ffiffiffi

2
p

. For
example, with an incident coherent state jψ radi ¼ jβi, the
average value on the detector is X̄ ¼ ffiffiffi

2
p

gδtReðβÞ ∝ h,
where h is the usual strain observable. Thus this constitutes
a gravitational amplitude detector.
We emphasize that a gravitational radiation intensity

detector is one that measures in the number basis. In this
sense one can “detect single gravitons” simply by building
such a detector. As we will explain next, traditional
quantum optics experiments demonstrating quantization
of the photon have used this kind of detector, operated in a
regime where the incident light is intense (i.e., nλ3dB ≫ 1).
Therefore, to detect a quantization measure, it is not
necessary to be detecting in the dilute beam limit
nλ3dB ≪ 1, contrary to the implicit suggestion in Dyson’s
original work [3]. Conversely, detecting a signal in this
dilute limit does not imply or require a quantized descrip-
tion of the signal field.

C. Intensity measurements

We now turn to intensity measurements on the gravita-
tional radiation and how they can be used to test the
quantization of the gravitational field. What we will do is
calculate the most general signal possible with the classical
model in Eq. (6), then perform the analogous computation
with the quantized model of Eq. (5), and then show some
examples of intensity data that can be explained in the
quantized but not the classical model. Following our
discussion above, we will model the detector data as a
series of clicks: in each interval δt, either 0 or 1 click
occurs. Over a total integration time T ≫ δt, we can then
ask for the probability of observing N clicks, pðNÞ.
In the classical case, Eqs. (4) or (6), the general state of

the radiation mode is described by a probability distribution
PclðbÞ for the Fourier amplitude. First consider an incom-
ing state with a fixed value of b. Assuming that the
coupling g in Eq. (12) is weak gδt ≪ 1, the only meas-
urement outcomes in each time step δt with reasonable
probability are zero clicks [with pð0Þ ¼ 1 − g2δt2jbj2], and

11We are making another important simplifying assumption
here, which is that we know the phase of the incoming signal. In a
more realistic setting, say with an astrophysical source, the
unknown relative phase ϕ between the signal and the detector
mode would have to appear either in the coupling g → geiϕ
in Eq. (12) or in the measurement basis X → XðϕÞ ¼
ðaeiϕ þ a†e−iϕÞ= ffiffiffi

2
p

. As with our other simplifying assumptions,
this assumption will only make the task of detecting field
quantization easier, and since as we will see this is already
impossibly difficult, we will continue to assume a phase-matched
detector for a simpler presentation.

12Note that in this equation j0i is still the vacuum n ¼ 0 state,
not the amplitude X ¼ 0 eigenstate.
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one click, with pð1Þ ¼ g2δt2jbj2 from Eq. (17). The
average number of clicks in time T is then

N̄ ¼ pð1Þ T
δt

¼ ηϕT; ð22Þ

where we have defined

ϕ¼ ρl2

ω
¼ jbj2l2

4L3
; η¼ 4g2

L3

l3
lδt¼ B2

0

2M2
Pl

lδt; ð23Þ

which represent the incoming flux ϕ and detector efficiency
η. (In the quantum picture, ϕ corresponds to the number of
gravitons incident on the detector per unit time, whereas the
efficiency determines the fraction of those gravitons that are
absorbed.)
Within a long time interval T ≫ δt, we imagine collect-

ing N total clicks. Because we are rapidly resetting the
detector at each time step, the individual detection events
are independent, and so will be Poisson distributed, and
thereby fully described by the mean in Eq. (22). Thus
we have

pðNjbÞ ¼ 1

N!
½ηϕT�Ne−ηϕT: ð24Þ

The variance in the number of clicks is then given by the
usual Poisson formula,

ΔN2 ¼ N̄: ð25Þ

Notice, in particular, that the signal b here is completely
deterministic; this variance represents randomness in the
detector purely due to the detector’s quantum fluctuations.
In the most general classical model, b is not fixed, but

instead is a random variable drawn from a distribution
PclðbÞ. As a result, the flux is stochastic, and therefore so
too is the expected number of events in a small time
interval, ηϕðbÞδt, where we have made explicit the fact that
the flux ϕ ¼ ϕðbÞ depends on b through Eq. (23).
Nevertheless, the probability for observing N clicks in a
time T can be derived just as in the Poisson case,

pðNÞ ¼ 1

N!

Z
dbPclðbÞ½ηϕT�Ne−ηϕT: ð26Þ

The click variance is now given by

ΔN2 ¼ N̄ þ η2T2

Z
dbPclðbÞ½ϕ − hϕi�2

¼ N̄ þ η2T2h½ϕ − hϕi�2i; ð27Þ

where here h·i denotes an integral over the classical
distribution, so that hϕi ¼ R

dbPclðbÞϕðbÞ. In the case
where b is fixed, PclðbÞ ¼ δðb − b0Þ, the final term on the

right-hand side vanishes, reproducing Eq. (25). More
generally, as a classical probability distribution satisfies
PclðbÞ ≥ 0, Eq. (27) implies that ΔN2 ≥ N̄: the click
statistics must appear either as Poisson or “super-
Poisson.” Note, however, that as N̄ ∝ η, whereas the
super-Poisson contribution scales as η2: the statistics revert
to Poisson for η ≪ 1.
Now consider the model in Eqs. (2) or (5), where the

incident field is quantized into photons or gravitons.
Contrary to what we concluded for the classical field
model, there are quantum states that can produce sub-
Poisson statistics, ΔN2 < N̄. We will analyze this in direct
analogy with the classical case. First, consider an incoming
radiation mode in a definite coherent state jβi. The
probability of a single click in the detector is

pð1Þ ¼ hβjK†
1K1jβi ¼ g2δt2jβj2: ð28Þ

Moreover, the state of the incident radiation mode after this
measurement is still jβi.13 Thus in a time interval T ≫ δt,
we can have N clicks which will again be exactly Poisson
distributed,

pðNjβÞ ¼ 1

N!
½ηϕT�Ne−ηϕT; ð29Þ

where now ϕ ¼ jβj2l2=4L3, so that N̄ ¼ ηϕT. Here, ϕ̂ ∼
b†b is now an operator, and ϕ ¼ ϕðβÞ ¼ hβjϕ̂jβi is its
expectation value in a specific coherent state jβi. As
claimed, ϕ is a direct measure of the number of incident
gravitons per unit time. In the general case, the state of the
mode is described by a density matrix ρrad, which can be
described with the Glauber-Sudarshan representation of
Eq. (8). In analogy to the classical case, one then finds that
the variance in the observed detector counts is

ΔN2 ¼ N̄ þ η2T2

Z
dβPðβÞ½ϕ − hϕi�2; ð30Þ

where now hϕi ¼ Tr½ρradϕ�. See Appendix F for the
detailed calculation. In spite of the superficial similarity
to Eq. (27), there is a key difference: in a general radiation
field state, PðβÞ can be negative for certain values of β, and
the integral in Eq. (30) is not necessarily positive.
Therefore, observation of sub-Poisson detector clicks,
ΔN2 < N̄, can be explained by the quantum model of
the radiation field but not the classical version.

13After a measurement described by a Kraus operator Ka, the
state jψi → Kajψi=kKajψik where a is the measurement out-
come, which is the generalization of the usual projection
postulate. In this particular case, since K1 ∝ b, the measurement
leaves a coherent state jβi unchanged to leading order in gδt ≪ 1.
This is why the coherent state basis is used in the theory of
photodetection.
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Detecting sub-Poisson fluctuations is a formidable task.
This was only accomplished in the 1980’s in optics [45,46].
As discussed in Sec. II A, there are two reasons. The first is
that we need a source state that can produce a Glauber
distribution which has PðβÞ < 0 for at least some values of
β. A coherent state, where PðβÞ ¼ δðβ − β0Þ, does not
satisfy this condition, although it can be achieved for
example with a phase-squeezed state (see Appendix C).
However, in the gravitational case, perhaps the more
important issue is that one needs a high-efficiency detector.
This is clear from Eq. (30): if η ≪ 1, the actual data will be
Poisson distributed. Exactly as for the classical model in
Eq. (27), any deviation from Poisson statistics is suppressed
by η. Heuristically, this is a statement that the detected
sample statistics are a very poor approximation to the
underlying population statistics in the signal, and are
dominated by the intrinsic Poisson statistics of the detector
itself.14

Modern photocounting devices can achieve η ∼ 0.9
[1,2]. What about a gravitational intensity detector? With
our toy model, we can make a crude estimate of the
sensitivity of a real detector like CAST. Taking B0 ≃ 10 T
and l ≃ δt ¼ 10 m, the efficiency is

η ¼ B2
0

2M2
Pl

lδt ≃ 8.2 × 10−34: ð31Þ

Thus, the data will always look Poissonian. In other words,
there is no way for CAST to make a counting statistics
measurement that can differentiate between a classical
gravitational wave and a quantized beam of gravitons.
While this is very suggestive that any realistic detector
cannot make such a measurement, a natural question is
whether it is possible in principle. We analyze this in
Sec. III.
Finally, it is important to note that there are observables

in intensity detectors other than sub-Poisson statistics that
can distinguish between the classical and quantized models.
Examples include antibunching as observed in g2ðτÞ and
higher-order autocorrelation measurements [38]. One can
also consider entangled states (e.g., simultaneous detection
of entangled graviton pairs). We have not systematically
studied all of these, but in each example, the basic issue of

detector efficiency should be highly prohibitive indepen-
dent of the specific observable considered.

D. Amplitude measurements

Linear detectors of radiation fields also admit tests of
quantization analogous to sub-Poisson counting statistics.
Consider the amplitude detector described by Eq. (20). We
read out the detector by measuring its amplitude quadrature
X, which corresponds to a measurement of the gravitational
field amplitude Xb ¼ ðbþ b†Þ= ffiffiffi

2
p

. As a first guess, we
could try to look at the variance of this observable, in direct
analogy with the counting statistics of the previous section.
One finds a result which is very similar in spirit to the

number counting statistics. The detector data will have
variance given by

ΔX2 ¼ 1

2
þ g2δt2

(
hΔX2

bi; classical;

½hΔX2
bi − 1

2
�; quantum:

ð32Þ

Writing this more explicitly, in the classical radiation case,
we have

ΔX2 ¼ 1

2
þ 2g2δt2

Z
dbPclðbÞ½Re b − hRe bi�2; ð33Þ

while in the model with quantized radiation, we have
instead

ΔX2 ¼ 1

2
þ 2g2δt2

Z
dβPðβÞ½Re β − hRe βi�2: ð34Þ

A detailed calculation is provided in Appendix F. In both
the classical and quantum cases, the first 1=2 term
represents the vacuum fluctuations of the detector mode
itself (i.e., noise at the “standard quantum limit”).15 The
second terms are essentially the variance of the gravita-
tional mode Xb, which is transduced onto the detector mode
X with efficiency g2δt2 ≪ 1.
Much like the case of number counting statistics, the key

difference is that the integral over PclðbÞ is positive-
definite, while the integral over the quantum PðβÞ can
be negative. In particular, this means that with particular
incoming quantum states—for example, a highly squeezed
gravitational mode—it is possible that the detector’s data
will actually decrease in variance compared to its native14Backgrounds will also contribute to the challenge. To high-

light this, let us consider the perfectly ideal case where our
detector has η ¼ 1 and a signal in a quantum state with complete
sub-Poisson statistics that provides Nq counts per interval with
zero variance. The challenge is to measure the statistics of this
signal on top of a classical Poisson distributed background that
has mean Nc. (This background could even be another gravita-
tional wave signal in a classical rather than quantum state.) Our
measured clicks would then have a mean and variance of Nc þ
Nq and Nc, respectively, implying the result will be driven
Poisson again in the limit Nq ≪ Nc.

15As is well known, this is not a fundamental limit. The 1=2
can in principle be reduced arbitrarily close to 0 by using various
quantum measurement techniques, such as the preparing the
detector mode in a squeezed state instead of the vacuum.
However, this only helps in the case that the phase of the
incoming signal is known (see footnote 11). Moreover, in a
realistic device, squeezing can at most achieve a reduction of this
factor 1=2 by a few orders of magnitude before becoming limited
by optical losses.

CARNEY, DOMCKE, and RODD PHYS. REV. D 109, 044009 (2024)

044009-8



vacuum fluctuations. This behavior is impossible with an
incoming classical signal.
However, observing this effect is probably impossible in

practice, because g2δt2 is astronomically small in a real
detector. In particular, the maximum quantum effect, even
with an infinitely squeezed state, would be to render
ΔX2 ¼ 1=2 − g2δt2. In this case, the gravitational amplitude
is fluctuating less than in its vacuum state. This is directly
analogous to the counting statistics: quantum mechanics
allows for radiation states which will produce “less noisy”
data than any classical state (because they can act to reduce
the noise in the detector itself), but observing this requires
overcoming a detector efficiency η ∼ g2δt2 ≪ 1.
In Refs. [31,32], it was argued that observing shot noise

induced from a highly squeezed, large-amplitude gravita-
tional state would constitute evidence for the quantization
of gravity. We agree that a highly squeezed state can lead to
an exponential enhancement of the measured strain noise
(see Appendix C), where hΔX2

bi ≫ 1. However, observing
this enhanced noise would not provide any information
about the quantization of the field, since either the quantum
or classical radiation models can produce the same data.
This does not require an exotic or highly tuned classical
model; a simple Gaussian distribution of classical plane
waves with the same width hΔX2

bi would suffice to
reproduce the same signal. The only “uniquely quantum”
signal would be if the minute fluctuations of the noise have
hΔX2

bi < 1=2, i.e., if the gravitational amplitude is fluctu-
ating less than its vacuum state. As we have argued above,
observing this would be extremely challenging with a
realistic detector.
For completeness, we also note that there are other

quadrature observables that can distinguish between the
classical and quantized cases. In principle, for example, one
could fully reconstruct the underlying density matrix using a
tomographic set of measurements [33,47], which in particu-
lar would allow one to check if PðβÞ < 0. However, we
expect any of these observables to be similarly limited by the
detector efficiency issues discussed here.

III. CAN THE QUANTIZATION SIGNATURES BE
DETECTED IN PRINCIPLE?

In the previous section, we described experimental
measurements which could clearly demonstrate that the
gravitational radiation field is quantized. Even if we
allowed for sources of the appropriate nonclassical graviton
states, all such measurements appear prohibitively difficult
with realistic terrestrial detectors. The fundamental obstruc-
tion was encoded in Eq. (31): signatures of nonclassicality
are highly suppressed by the miniscule detection efficiency.
In this section, we turn to the question of whether it is
possible even in principle, given the known laws of physics,
to construct a detector capable of observing these subtle
quantization effects in the gravitational radiation field.

To do so, let us return to the example of an amplitude
detector based on graviton to photon conversion, i.e. a
futuristic version CAST. Naively, the basic question is
whether the laws of physics will allow us to increase B0

and/or the detector size l such that the detector efficiency
η ≈ 1. In this case, the explicit challenge is the small
graviton-photon conversion probability, pðg → γÞ, which is
controlled by the inverse Gertsenshtein effect, and well
studied as a classical wave mixing problem; see
Refs. [9,48,49]. The probability that a graviton converts
to a photon over the length of the detector, however, is
exactly the detector efficiency in the language of Eq. (23),
with δt ¼ l set by how long the graviton takes to traverse
the detector. Accordingly, we can also compute the
efficiency from the inverse Gertsenshtein effect [49],

η ¼ B2
0

2M2
Pl

l2
osc sin2

�
l
losc

�
: ð35Þ

Here l denotes the length over which the oscillation can
occur within a homogeneous magnetic field B0 orthogonal
to the propagation direction, exactly as in our discussion
in Sec. I.
However, this general result includes an additional effect:

self-interactions of the electromagnetic field, as encoded in
the Euler-Heisenberg Lagrangian. These imply that increas-
ing B0 will not arbitrarily enhance the detection efficiency.
Instead, a larger B0 eventually reduces the coherence of the
photon and graviton, thereby reducing the mixing. This is
captured by the oscillation length losc that is determined
from 4=l2

osc ¼ m4
EH=ω

2 þ 2B2
0=M

2
Pl, where for a single

polarization m2
EH ¼ 7ω2ðe2=180π2ÞðB0=BcritÞ2 and Bcrit ¼

m2
e=e with me and e the electron mass and charge,

respectively. The result as stated neglects any possible
plasma mass for the photon, and further assumes
ω ≫ mEH, which is justified for all parameters we will
consider.
For CAST, B0 ¼ 10 T, f ¼ 1018 Hz, and l ¼ 10 m, so

that in natural Heaviside-Lorentz units,

2B2
0

M2
Pl

≃ ð5.6 pcÞ−2; m4
EH

ω2
≃ ð0.17 AUÞ−2: ð36Þ

Accordingly losc ≃ 0.35 AU ≫ l, implying that the Euler-
Heisenberg corrections are irrelevant. Indeed, when l ≪
losc the efficiency in Eq. (35) reduces to Eq. (31), as it
must, demonstrating the equivalence of the classical and
quantum derivation of the Gertsenshtein process. If we seek
to maximize η, losc must be accounted for. Doing so for
l ¼ 1 AU, the maximum efficiency occurs for B0 ≃ 6 T,
but remains small, η ≃ 5 × 10−14. Over cosmological dis-
tances sizeable values can be achieved: for l ¼ 1 Mpc
(1 Gpc) and B0 ¼ 0.1 G (1 mG) we can achieve η ≃ 1%
(70%). While such large devices are certainly unrealistic,
we do not see a physical law that would prohibit such an
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instrument existing in the Universe, thereby allowing
η ∼Oð1Þ. The observation that CAST has already reached
the dilute graviton regime, while even a Gpc version barely
meets the requirements to test quantization underlines how
much more difficult the latter task is.

IV. OUTLOOKANDRELATION TOOTHER TESTS

Gravity can be consistently quantized at low energy
densities as an effective quantum field theory [50,51]. An
important question is to determine what kinds of measure-
ments could be used to verify that this is the way gravity
really operates in nature. We have analyzed Dyson’s
suggestion that one could try to make a detector that is
sensitive to single gravitons. The conclusion is straightfor-
ward: it is possible to make such a detector, but simply
seeing the detector click due to incoming gravitational
radiation could be explained either with quantized grav-
itons or simple classical gravitational waves. Vice versa,
from the point of view of high-frequency gravitational
wave searches venturing into the parameter space shown in
Fig. 1, the dilute graviton regime is a red herring: crossing
this line in the parameter space does not come with any
particular change in the difficulty of performing a gravi-
tational wave measurement.
In order to make a measurement that cleanly distin-

guishes between the quantum and classical cases, two very
substantial hurdles have to be overcome: a source of
nonclassical (e.g., squeezed or entangled) gravitational
radiation has to be produced, and then detected with a
gravitational detector with high efficiency. We do not see a
realistic path to satisfying either of these conditions,
although we also have no argument that nature is funda-
mentally incapable of satisfying them.
There are two known alternatives to testing low-energy

quantum gravity. One is to look at fluctuations in the
cosmic microwave background, assuming these are pro-
duced by a phase of cosmic inflation. As the arguments in
this paper should make clear, observation of a Gaussian
power spectrum (in either the scalar or tensor fluctuations)
can easily be explained by either classical or quantized
gravitational radiation. Similarly, the measurement of CMB
tensor modes with superhorizon correlations, as proposed,
e.g., in Refs. [52,53], can also be explained by either a
classical or quantized model of gravitational perturbations
(unless there is independent evidence pointing to vacuum
fluctuations of inflation). It may however be possible to
produce good nonclassicality witnesses with higher-point
observables [54,55].
The other is to use tabletop experiments to observe

quantum effects generated by the two-body Newton inter-
action V̂ ¼ GNm1m2=jx̂1 − x̂2j (for a review, see
Ref. [56]). It is known that a coherent, entangling
Newton interaction is only consistent with unitarity and
Lorentz invariance if gravitons also exist in the spectrum of
scattering states [57,58]. Thus experimental verification

that the low-energy interaction is coherent and unitary
would provide an indirect proof that the radiation field is
also quantized. We view the clear difficulties with mea-
surements directly on the gravitational radiation presented
in this paper as substantial motivation to pursue both of
these programs.
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APPENDIX A: CAST AS A SINGLE
GRAVITON DETECTOR

Figure 1 is suggestive that CAST has the required
sensitivity to detect individual gravitons. Here we demon-
strate that this is indeed the case. We will also see that it is
extremely difficult to conceive of a suitable source close to
the current sensitivity of CAST. Of course, we emphasize,
as demonstrated in the main body, even a detection would
a priori not prove the source was quantized.
To begin with, the CAST analysis in Ref. [10] reports a

characteristic strain sensitivity of hc ≃ 5 × 10−28 to a sto-
chastic gravitational wave background at 1018 Hz. This can
be translated to an energy density, ρ ¼ ρc

R
d lnωΩgw, with

Ωgw ¼ ω2h2cM2
Pl=2ρc and ρc the critical energy density. The

CAST sensitivity thus corresponds to the following energy
and number density:

ρ ≃ 2 × 1018 keV=cm3;

n ≃ 4 × 1017 gravitons=cm3: ðA1Þ

Although these densities are large, the de Broglie volume is
not, and we have nλ3dB ∼ 10−5 ≪ 1. Hence, a (weak) signal
in CAST due to GWs would imply GW detection in the
single graviton limit.
However, a stochastic gravitational wave background at

this amplitude is firmly excluded by the constraints on extra
radiation from BBN and CMB [59–61]. We thus proceed to
estimate the sensitivity of CAST to transient signals, which
are not subject to these bounds. Let us consider a transient
signal with frequency f ¼ 1018 Hz, amplitude h, and
duration Tgw. Then, comparing the energy density of a
plane GW with the CAST limit yields a sensitivity of

h ≃ 7 × 10−28ðTm=TgwÞ1=4; ðA2Þ
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where Tm ≃ 1 year denotes the measurement time of CAST
and the factor ðTgw=TmÞ1=4 ≤ 1 accounts for finite duration
of the GW signal assuming a statistics limited experiment.
As we are now considering a transient rather than stochastic
signal we have swapped to h ¼ ffiffiffi

2
p

hc, which matches
between the conventions of the present work and Ref. [10].
Consequently, the CAST sensitivity implies a detection
threshold of nλ3dB ≃ 10−5ðTm=TgwÞ1=2, which means that
CAST can reach the single graviton threshold for signals
lasting Tgw ∼ 4 ms at h ≃ 2 × 10−25.
A source with these properties is, however, difficult to

conceive. The prototypical example of an ultra high-
frequency GW source is the inspiral of light primordial
black holes (PBH). Matching the CAST frequency and the
required Tgw fixes mPBH ≃ 4 × 10−24M⊙ (for equal masses
in the binary). At such small masses, the PBHs would
dissipate due to Hawking radiation in less than a day (and
for instance are strongly excluded as being the dark matter
of the Universe [62]). Even putting this aside, in order to
reach the required amplitude of h ∼ 10−25 requires a
distance between the binary and the detector of OðcmÞ,
which clearly rules this out as a viable source. There are
other possible sources—for a review see Refs. [15,63]—
although these appear similarly challenging at best.
In summary, while interesting that CAST does reach the

single graviton regime and, in principle, one could imagine
a GW with the required properties, conceiving of a viable
source for such a GW is challenging. Moreover, as
discussed in Sec. III a measurement of sub-Poissonian
statistics, seems completely out of reach with any realistic
version of this technology: it would require an improved
detection efficiency—with the associated challenges dis-
cussed in Sec. III—and the source itself having a non-
classical distribution. In this sense, our conclusions are very
similar to those of Dyson [3], though we stress that the
difficulty lies in finding a viable GW source and in
measuring sub-Poissonian statistics, not in the single
graviton detection itself.

APPENDIX B: SEMICLASSICAL
PHOTOELECTRIC EFFECT

Here we briefly expand on the justification that the
semiclassical Hamiltonian in Eq. (4) reproduces the famous
observations of the photoelectric effect encoded in Eq. (3).
This is a well-known result, and our discussion closely
follows Ref. [35]. As mentioned in the main text, even
when the electromagnetic field is classical, we continue to
infer its presence with quantized electrons, and therefore
our measurements remain discrete clicks. Further, the
appearance of the intensity will remain, as the transition
is dictated by quantum mechanics, it must depend on
jAðtÞj2 ∼ IðtÞ. More interesting is to consider the behavior
when ω ∼ Δ. Working in the interaction picture, the
transition probability in a small time interval δt is given by

TP ¼
����
Z

δt

0

dthEjĤSC;IðtÞj − Δi
����2

¼
���� em

Z
δt

0

dthEjp̂j − Δi ·AðtÞeiðEþΔÞt
����2: ðB1Þ

If we treat A as describing a nearly monochromatic plane
wave with frequency ω, the relevant contribution will be
proportional e−iωt, so that the transition probability is
controlled by����

Z
δt

0

dteiðEþΔ−ωÞt
����2 ¼

�
sin½1

2
ðEþ Δ − ωÞδt�

1
2
ðEþ Δ − ωÞ

�
2

: ðB2Þ

Even for ω < Δ, this quantity is nonzero. Nevertheless, for
realistic values of Δ and ω, it is highly suppressed. For
Δ ∼ ω ∼ eV ∼ 1015 Hz, we expect ðω − ΔÞδt ≫ 1, and the
final line of Eq. (B2) is very well approximated by
δðEþ Δ − ωÞ. To determine the total probability for
excitation into the conduction band, we integrate the
transition probability over all E, finding no support when
ω < Δ, consistent with Eq. (3). The claim that the semi-
classical model is fully consistent with Eq. (3) therefore
follows.

APPENDIX C: AN EXAMPLE NONCLASSICAL
PðβÞ FUNCTION

In the main text, we showed how a quantum state whose
Glauber representation PðβÞ is negative for some values of
β can produce output in a detector which cannot be
reproduced by any classical radiation signal, even one
with classical randomness. In this appendix, we explain
how PðβÞ works for a specific quantum state of interest: the
squeezed coherent state. We first define these states,
calculate their number and amplitude variances hΔn2i
and hΔX2i, then show how these observables can be used
to deduce the negativity of PðβÞ.
The squeezed coherent states are Gaussian states of a

harmonic oscillator whose variance in one quadrature is
below the vacuum value, say ΔX < 1=2, which by
Heisenberg uncertainty requires that ΔY > 1=2. They
can be efficiently defined in terms of the squeezing and
displacement unitary operators (see Sec. 21 of Ref. [35]),

SðzÞ ¼ exp

�
1

2
½z�b2 − zb†2�

	
;

DðβÞ ¼ exp fβb† − β�bg: ðC1Þ

Both β and z are arbitrary complex numbers. The dis-
placement operator rotates a given coherent state jαi into
jβ þ αi. The squeezing operator takes a coherent state into
a complicated superposition of coherent states which we
will describe shortly. To calculate statistics in these states, it
is most useful to use their transformation properties on the
creation and annihilation operators,
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S†bS ¼ μb − νb†; S†b†S ¼ μb† − ν�b;

D†bD ¼ bþ β; D†b†D ¼ b† þ β�; ðC2Þ

where the complex squeezing number z is parametrized
z ¼ reiθ, or alternatively,

μ ¼ cosh r; ν ¼ eiθ sinh r: ðC3Þ

Often r is called the squeezing amplitude and θ is the
squeezing angle. In terms of these operators, the squeezed
vacuum state is jzi ≔ SðzÞj0i. More generally one can
consider a squeezed coherent state,16

jz; βi ≔ SðzÞDðβÞj0i: ðC4Þ

Generally speaking, to create a squeezed state from the
vacuum or coherent state, one requires a nonlinear inter-
action to enact the squeeze operator. These states have been
produced in optical fields since the 1980’s, using, for
example, nonlinear crystals. In the gravitational case, there
is no definitively known source of squeezed states,
although inflation and the nonlinearities of gravitational
mergers have been suggested as possible sources [30–34].
Let us now study the nature of the “nonclassicality” of

the squeezed states. The most efficient way to understand
this is by computing the observables studied in the main
text, such as the signal variance hΔX2i, and then comparing
the specific results to the general results we showed must
hold in the classical case. Recall the definition of the
amplitude quadrature X ¼ ðbþ b†Þ= ffiffiffi

2
p

. In a general
squeezed coherent state, simple algebra using Eq. (C2)
gives the average,

hXiz;β ¼
1ffiffiffi
2

p ½ðμ − ν�Þβ þ ðμ − νÞβ��; ðC5Þ

with hXiz;β ¼ hz; βjXjz; βi. The expectation of X2 is

hX2iz;β ¼
1

2
jμ − νj2hbb†i0 þ hXi2z;β; ðC6Þ

where we left hbb†i0 ¼ h0jbb†j0i ¼ 1 explicit to highlight
the “vacuum fluctuations.” We then obtain the variance,

hΔX2iz;β ¼
1

2
jμ − νj2: ðC7Þ

For example, the true vacuum is μ ¼ 1, ν ¼ 0 (i.e. r ¼ 0) so
that hΔX2i0 ¼ 1=2, the usual vacuum fluctuations. What
squeezing does is to modify the variance. In particular, we
can choose values of the squeezing parameters such that
hΔX2i < 1=2 is below the vacuum value; for example a
large amount of squeezing r → ∞ and θ ¼ 0 sends
hΔX2i → 0. This does not violate Heisenberg uncertainty:
one can perform the analogous calculation in the conjugate
variable Y ¼ −iðb − b†Þ= ffiffiffi

2
p

and find that for the same
state, hΔY2i → ∞. In this manner, squeezing distributes all
the uncertainty into a specific quadrature, whereas the
standard vacuum distributes it evenly between variables.
The result in Eq. (C7) is enough to show that the Glauber

function PðβÞ for such states is negative in some region.
Compare this result to the general result in any Glauber
state, our expression hΔX2

biqu in Eq. (34). In a squeezed
state where hΔX2i < 1=2, Eq. (34) immediately implies
that the integral over β must be negative, from which it
follows that PðβÞ < 0 for some values of β. It is worth
emphasizing that the nonclassicality of the state is inde-
pendent of the coherence β; it depends only on the
squeezing parameters.
In principle, one can look to show PðβÞ < 0 directly by

computing the Glauber function. This turns out to be
difficult. For instance, we can compute the Glauber
function using a formula due to Mehta [64], which gives
P in terms of the density matrix,

PðβÞ ¼ ejβj2

π2

Z
dαh−αjρjαiejαj2eβα�−β�α: ðC8Þ

For example, with a coherent state ρ ¼ jβ0ihβ0j, this
formula produces the expected PðβÞ ¼ δðβ − β0Þ.
However, inserting a squeezed state, one finds a highly
singular distribution in which PðβÞ is expressed as an
infinite series of derivatives acting on Dirac delta functions
∼ð∂=∂βÞnδðβÞ. A similar results holds for a Fock state jni
with definite graviton number. This highlights the fact that
in general PðβÞ is a distribution in the sense of a Dirac delta
function, not an actual function. A general theorem due to
Schwartz, however, shows that any distribution of order
greater than zero (which roughly means that it has points
which behave like derivatives of the Dirac delta) must
always be negative in some region. See, for instance,
Chap. 6 of Ref. [65].
Finally, we mention that one can also produce sub-

Poisson counting statistics with squeezed signals. Let n ¼
b†b be the number operator of the signal, i.e., the graviton
mode. We use n to distinguish this from N, the number of
clicks observed in the detector. Using the same algebraic
tools as above, one finds the average,

16Note that ½S;D� ≠ 0. Our definition here is what has
historically been called a “two-photon squeezed state,” while
the alternative DSj0i states were called “ideal squeezed states.”
This choice is somewhat arbitrary, as one can always express a
two-photon squeezed state as an ideal one, or vice versa. The
terminology “two-photon” does not mean that the states have two
photons (indeed they do not have a definite number), but rather
reflects the fact that to generate SðzÞ from a Hamiltonian S ¼
e−iHt requiresH to be bilinear in the photon operators. For further
discussion see Ref. [35].
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hniz;β ¼ jνj2þjμβ�−ν�βj2 ¼ sinh2r

þjβj2½cosh2rþ sinh2r− sinh2rcosð2ϕ−θÞ�; ðC9Þ

where we invoked Eq. (C3) and wrote the coherence
parameter as β ¼ jβjeiϕ. The variance takes more work,
but one obtains

hΔn2iz;β ¼ hniz;β þ sinh2 r cosh 2r

þ 2jβj2 sinh r½sinh 3r − cosh 3r cosðθ − 2ϕÞ�:
ðC10Þ

Taking r ¼ 0, we recover the Poissonian result,
hΔn2i ¼ hni, as expected for a coherent state. The statistics
of the squeezed state are more general. To exhibit sub-
Poisson variance, the final term in Eq. (C10) must domi-
nate. Therefore, for simplicity, let us take θ ¼ 2ϕ, and
consider a large-amplitude state jβj ≫ 1. Then the above
results combine as

hΔn2i − hni
hni ¼ −1þ e−2r: ðC11Þ

By taking r ≫ 1 (but≪ 1
3
ln jβj) this can be arbitrarily close

to −1, which would mean a state with no fluctuations in the
number flux hΔn2i → 0, which is the most sub-Poisson
distribution possible.

APPENDIX D: BEAM SPLITTERS

A general beam splitter is defined by a scattering matrix,

�
b01
b02

�
¼

�
t r

r� t

��
b1
b2

�
; ðD1Þ

with bi the inputmodes andb0i the outputmodes. LetU be the
unitary that implements b1 → b01 ¼ Ub1U† ¼ tb1 þ rb2,
etc. The action on a single-excitation state is

Uj10i ¼ Ub†1U
†j00i ¼ ðt�b†1 þ r�b†2Þj00i

¼ t�j10i þ r�j01i; ðD2Þ

where we used U†j00i ¼ j00i.17 The action on a pair of
coherent states can be computed similarly. The coherent states
are generated by the displacement operator of Eq. (C1),

jβ1β2i ¼ Dðβ1; β2Þj00i;
Dðβ1; β2Þ ¼ exp fðβ1b†1 − β�1b1Þ þ ðβ2b†2 − β�2b2Þg: ðD3Þ

Writing D out as a Taylor series and inserting factors of
U†U ¼ 1, it is clear that this transforms as

UDðβ1; β2ÞU† ¼ Dðβ01; β02Þ; ðD4Þ

where

β01 ¼ t�β1 þ rβ2; β02 ¼ t�β2 þ r�β1: ðD5Þ

AgainusingU†j00i ¼ j00i,we then see that an incomingpair
of coherent states is transformed by the beam splitter into a
new pair of coherent states,

Ujβ1β2i ¼ UDðβ1; β2ÞU†j00i ¼ jβ01; β02i: ðD6Þ

Choosing t ¼ r ¼ 1=
ffiffiffi
2

p
justifies Eqs. (9) and (10) from the

main text.

APPENDIX E: DETECTOR TOY MODEL

In this appendix, we provide a more detailed discussion
of the detector Hamiltonian of Eq. (12) used in the main
text. As described there, the basic idea is to use is the
fluctuations in a single mode of the electromagnetic field
with an external, homogeneous magnetic field as the
detector.
To determine the interaction between the electromag-

netic detector modes and the gravitational field, we begin
with the action for the coupling between electromagnetism
and gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
gμαgνβFμνFαβ

�
: ðE1Þ

Expanding the metric around flat spacetime
gμν ¼ ημν þ hμν, one obtains the interaction to leading
order in the fluctuations h,

Sint ¼
1

2

Z
d4xhμνTμν;

Tμν ¼ FμαFν
α −

1

4
ημνFαβFαβ; ðE2Þ

where here all indices are raised and lowered by ημν. In the
Hamiltonian framework, we can write this as an interaction
Hamiltonian,

V ¼ −
1

2

Z
l3
d3xhμνTμν: ðE3Þ

The integration is performed over the detector volume, l3,
which is the region we assume our magnetic field is
localized to.
Turning to the magnetic field, we assume it is homo-

geneous, has magnitude B0 and is oriented along the z-axis.

17This in turn follows because b1U†j00i ¼
U†ðUb1U†Þj00i ¼ U†ðtb1 þ rb2Þj00i ¼ 0, and similarly for b2.
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We expand Fμν ¼ F0;μν þ δFμν into fluctuations around
this background,18 where

F0;μν ¼

0
BBB@

0 0 0 0

0 0 B0 0

0 −B0 0 0

0 0 0 0

1
CCCA: ðE4Þ

In transverse traceless gauge, this reduces the interaction
Hamiltonian to the simple form,

V ¼ B0

Z
l3
d3x½hxzδBx þ hyzδBy − ðhxx þ hyyÞδBz�: ðE5Þ

This expression is completely general and only relies on the
orientation of the external magnetic field.
Now we want to determine the part of the coupling in

Eq. (E5) that drives the electromagnetic mode that we will
detect. We can decompose the electromagnetic gauge field
(in the Schrödinger picture) as

δAμðxÞ ¼
X
p;r

ϵr;μðpÞupðxÞa†p;r þ H:c:; ðE6Þ

where ϵrðpÞ are a complete set of polarization vectors, and
the upðxÞ form a complete, discrete set of modes,

Z
l3
d3xupðxÞu�p0 ðxÞ ¼ δp;p0

2ωp
; ϵrðpÞ · ϵ�r0 ðpÞ ¼ δr;r0 : ðE7Þ

In general, the nature of these modes depends on the details
of the detector. For a device like CAST, which detects x-ray
wavelength photons (λ≲ 1 nm) in a detector volume of
orderm3, the modes of interest can be modeled as traveling
plane waves. In an experiment like a microwave axion
cavity, one instead detects a single mode whose wavelength
is the size of the cavity, and one should really use stationary
standing waves. For simplicity here, we will use plane
waves,

upðxÞ ¼
e−ip·xffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωpl3

q ; p ¼ 2πn
l

; ðE8Þ

with n an arbitrary vector of integers, though this result can
be easily generalized to cavity modes with appropriate
boundary conditions. The normalizations are chosen so that
the energy density in the field modes is

HEM ¼ 1

2

Z
l3
d3x½E2 þ B2� ¼

X
p;r

ωpa
†
p;rap;r; ðE9Þ

plus the usual infinite zero-point energy.
Meanwhile, the gravitational radiation field hμν is freely

propagating no matter what the detector boundary con-
ditions are, so we expand it as in Eq. (7), viz.,

hμνðxÞ ¼ M−1
Pl

X
k;s

ϵs;μνðkÞvkðxÞb†k;s þ H:c:; ðE10Þ

where we take the polarization tensors ϵs;μνðkÞ to be real,
and normalized according to,

ϵs;μνðkÞϵμνs0 ðkÞ ¼ δs;s0 : ðE11Þ

Conventionally the two polarizations are labeled as
s ¼ þ;×.19 The mode functions are just the usual plane
waves, normalized again to fix the correct expression for
the kinetic energy, and so that h is a dimensionless strain,

vkðxÞ ¼
e−ik·xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkL3

p ; k ¼ 2πn
L

: ðE12Þ

To connect our notation with a classical gravitational wave
of a single mode, we would take amplitudes bs ¼
hsMPl

ffiffiffiffiffiffiffiffiffi
ωL3

p
, so that

hμνðxÞ ¼ 1ffiffiffi
2

p ½hþϵμνþ ðkÞ þ h×ϵ
μν
× ðkÞ�eik·x þ H:c:; ðE13Þ

and the total strain is h2 ≡ jhþj2 þ jh×j2.
Now, suppose we are monitoring a single mode a ¼

ap0;r0 of the electromagnetic field, with wave vector p0 ¼
ω0x̂ and polarization r0.

20 We take this to be a mode such
that its magnetic field at t ¼ 0 is aligned along the y-axis.
Then only the δBy term in Eq. (E5) contributes. Using
the mode expansion of Eq. (E6) with B ¼ ∇ ×A, and the
gravitational mode expansion Eq. (E10), we find that

18More precisely, we are taking the external magnetic field to
be static in the transverse traceless frame, whose coordinates are
given by freely falling observers. We make this assumption
mainly for simplicity, although it will not impact the qualitative
conclusions we reach. In general, the difference between frames
for high-frequency gravitational waves must be treated carefully,
see for instance the discussion in Refs. [11,12,23]. Nevertheless,
if the frequency exceeds the mechanical resonances of the
system, as is the case for the setups we consider, we expect this
to be a good approximation to a more complex detector model
[19,24].

19Concretely, we work in the transverse traceless gauge, and
define the polarization tensors as ϵijþ ¼ ðuiuj − vivjÞ= ffiffiffi

2
p

, ϵij× ¼
ðuivj þ viujÞ= ffiffiffi

2
p

with v ¼ ðêz × k̂Þ=jêz × k̂j ¼ êϕ and u ¼
v × k̂.

20If the detector is an electromagnetic cavity, this can be done
easily by just isolating a single cavity frequency. For a detector
with a continuum of modes, one can isolate a single mode for
example with filter cavities near the final photodetectors. We use
the single-mode language for simplicity, but the results generalize
in a straightforward way to finite-bandwidth detectors.
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the interaction Hamiltonian between the mode a and the
gravitational field is given by

V ¼ B0

MPl

Z
l3
d3xðOb þO†

bÞðOa þO†
aÞ; ðE14Þ

where we have defined the operators,

Ob ¼
X
k;s

ϵs;yzðkÞv�kðxÞbk;s; Oa ¼ iω0u�p0
ðxÞa: ðE15Þ

Equation (E14) represents the precise coupling of the
detector mode a ¼ ap0;r0 to the entire gravitational field;
notice that it involves a sum over all the gravitational
modes.
Finally, we can simplify the interaction potential by

performing the volume integral. We use the integral,

Wðp;kÞ ¼
Z

l=2

−l=2
d3xeiðp−kÞ·x

¼
Y

i¼x;y;z

2 sin½ðpi − kiÞl=2�
pi − ki

: ðE16Þ

Again the precise nature of this window function depends
on the relative size of the detector and signal mode of
interest. For simplicity, consider the case where λsig ≪ l,
and where we the detector integrates over a reasonable
number of signal periods ωδt ≫ 1 (as in, for example,
CAST). Then, Wðp;kÞ → l3δp;k, and we have simply

V →
iB0

2
ffiffiffi
2

p
MPl

ffiffiffiffiffiffi
l3

L3

r
ða†bp0;× − ab†p0;×

þ ab−p0;× − a†b†−p0;×Þ: ðE17Þ

Note that in this result we have assumed the detector is
large compared to the signal wavelength; this assumption
can be relaxed in a straightforward way by just leaving the
window functions W under an integral.
If we neglect the terms on the second line of Eq. (E17)

and write b ¼ bp0;×, we arrive at Eq. (12) in the main text.
If ωδt ≫ 1 ignoring these terms is well justified. In the case
of a detector which averages over many periods of the
signal, these naturally average out in the interaction
Hamiltonian Eq. (14) (the “rotating wave approximation”).
In a slower detector, like a resonant amplitude detector,
these terms do in fact contribute by adding an additional
quanta of graviton vacuum fluctuations. As we will see in
Appendix F, this additional quanta will not substantially
change any of our conclusions and can safely be ignored.

APPENDIX F: VARIANCE CALCULATIONS

In this appendix we provide the detailed computations of
the variances in the click rates—Eqs. (27) and (30)—and

amplitude measurements—Eq. (32)—given in the main
text. Our discussion partly follows Ref. [35], and we refer
there for further details.

1. Number variance

Consider the intensity detector discussed in Sec. II C. We
begin with the classical calculation. First, assume a
classical incoming radiation state with definite Fourier
amplitude b. The mean number of clicks observed in a
time T is then fixed by Eq. (22) to N̄ ¼ ηϕT, with ϕ ¼
ϕðbÞ ¼ jbj2l2=4L3 the incoming gravitational flux, as in
Eq. (23). Even so, the observed number of detector clicks
will be stochastic. As the events will each be independent,
the observed number of clicks N in a single observation of
time T will be Poisson distributed,

pðNjbÞ ¼ 1

N!
½ηϕðbÞT�Ne−ηϕðbÞT; ðF1Þ

where we explicitly note this is the distribution in the
semiclassical model. We can confirm the average is as
expected,

N̄ ¼
X∞
N¼0

pðNjbÞN

¼ ηϕðbÞT
X∞
N¼1

1

ðN − 1Þ! ½ηϕðbÞT�
N−1e−ηϕðbÞT

¼ ηϕðbÞT: ðF2Þ

Similarly,

NðN − 1Þ ¼ ½ηϕðbÞT�2
X∞
N¼2

1

ðN − 2Þ! ½ηϕðbÞT�
N−2e−ηϕðbÞT

¼ ½ηϕðbÞT�2; ðF3Þ

from which we conclude

ΔN2 ¼ NðN − 1Þ þ N̄ − N̄2 ¼ ηϕðbÞT; ðF4Þ

as one expects in a Poisson distribution. These are
elementary calculations; we include them as the calcula-
tions in the more general scenarios will mirror these. Note
that we use overlines to denote averages taken over many
observations.
Now instead of a definite value for b, suppose that it is a

classically random variable with distribution PclðbÞ.
Physically this could correspond to a stochasticity in the
amplitude of the input wave. By the law of total probability,
we now have
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pðNÞ ¼
Z

dbPclðbÞpðNjbÞ

¼ 1

N!

Z
dbPclðbÞ½ηϕðbÞT�Ne−ηϕðbÞT: ðF5Þ

Despite the superficial similarity, for a general PclðbÞ
Eq. (F5) is not the Poisson distribution. This can be
confirmed by explicit calculation. We have

N̄ ¼
Z

dbPclðbÞ
X∞
N¼0

pðNjbÞN

¼
Z

dbPclðbÞηϕðbÞT

¼ ηThϕi; ðF6Þ

directly from Eq. (F2). Here we use the notation h·i to
denote an integral over PclðbÞ is performed, for example
hϕi ¼ R

dbPclðbÞϕðbÞ. We emphasize that this is distinct
from expectation values over the distribution of the clicks
observed in a time T, which we represent with an overline.
Continuing, Eq. (F3) implies

NðN − 1Þ ¼
Z

dbPclðbÞ½ηϕðbÞT�2 ¼ η2T2hϕ2i; ðF7Þ

so that the variance is now

ΔN2 ¼ N̄ þ η2T2hðϕ − hϕiÞ2i ≥ N̄; ðF8Þ

as quoted in the main text in Eq. (27).
These same arguments can now be generalized to the

case where the incident graviton flux is quantized. Consider
first an incoming field of definite coherent state jβi, such
that the flux takes a fixed value of ϕ ¼ ϕðβÞ ¼ jβj2l2=4L3.
Clicks in the detector will remain independent, so that again
the observed number will be Poisson distributed,

pðNjβÞ ¼ 1

N!
½ηϕðβÞT�Ne−ηϕðβÞT: ðF9Þ

The mean and variance are identical to the fixed classical
case with jbj2 → jβj2.
A general quantized initial state is described by a

Glauber PðβÞ, and although this is not a probability
distribution, the general distribution is given by

pðNÞ ¼ 1

N!

Z
dβPðβÞ½ηϕðβÞT�Ne−ηϕðβÞT: ðF10Þ

A careful derivation justifying this form for a stationary
incident field is given in Ref. [35]. Crucially, however,
Eq. (F10) is not the quantum expectation value of Eq. (F1)
in the state jβi, with jbj2 ¼ b†b interpreted as an operator.
Rather, it is the expectation value of the normal ordered

version of pðNjbÞ. This latter statement follows from a
general result sometimes called the optical equivalence
theorem, which says that for an operatorOðb; b†Þ, we have
h∶Oðb; b†Þ∶i ¼ R

dβPðβÞOðβ; β�Þ. This normal ordering
will be crucial in what follows. Note that hϕi ¼ h∶ϕ∶i
since ϕ ∼ b†b is already normal ordered.
Again, for a general PðβÞ, Eq. (F10) is not the Poisson

distribution. The deviations can be even more striking than
in the classical case. Given Eq. (F10), one can proceed as
above and finds in similar fashion,

N̄ ¼ ηThϕi;

ΔN2 ¼ N̄ þ η2T2

Z
dβPðβÞ½ϕðβÞ − hϕi�2; ðF11Þ

with the second result confirming Eq. (30). As the integral
is now performed over PðβÞ, which can take on negative
values, ΔN2 − N̄ can take on either sign and exhibit sub-
Poisson statistics, which are strictly forbidden for a purely
classical incident state. An explicit example of this was
provided in Appendix C. The result cannot be arbitrarily
negative, however. As ϕ is proportional to the number
operator,

ΔN2 ¼ N̄ þ η2T2½h∶ϕ2∶i − h∶ϕ∶i2�
¼ N̄ð1 − ηTl2=4L3Þ þ η2T2hΔϕ2i
≥ N̄ð1 − ηTl2=4L3Þ: ðF12Þ

As expected, the size of the deviation is controlled by η.

2. Amplitude variance

Consider next the amplitude detector discussed in
Sec. II D. We will compute its output noise spectrum,

ΔX2 ¼ X2 − X̄2; ðF13Þ

in the presence of some incoming gravitational radiation.
Here the overline denotes an expectation value taken over
pðXÞ. We will consider the classical and quantum calcu-
lations as well as the fixed and variable incident flux
scenarios simultaneously. We take the interaction as in
Eq. (12), namely,

V ¼ igða†b − ab†Þ; ðF14Þ

where for the time being b; b† can be either c-numbers or
operators. To compute the variance, we will need the Kraus
operators and POVM to second order in gδt ≪ 1. The
Kraus operator to this order is

KX ¼ hXj0i þ gδthXja†j0ib

þ 1

2
g2δt2½hXja†2j0ib2 − hXjaa†j0ib†b�: ðF15Þ
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Note again that j0i means the vacuum jn ¼ 0i, not the
position eigenstate jX ¼ 0i. This gives the POVM elements
to the same order,

EX ¼ K†
XKX

¼ h0jXihXj0i
þ gδt½h0jXihXja†j0ibþ h0jajXihXj0ib†�

þ 1

2
g2δt2½h0jXihXja†2j0ib2 − h0jXihXjaa†j0ib†b�

þ 1

2
g2δt2½h0ja2jXihXj0ib†2 − h0ja†ajXihXj0ib†b�

þ g2δt2½h0jajXihXja†j0ib†b�: ðF16Þ
At this stage, the dependence on the detector is reduced to
numerical factors involving matrix elements of creation and
annihilation operators a; a†. The dependence on the gravi-
tational signal enters through the b; b†.
Now we can assume some state (either classical or

quantum mechanical) for the gravitational signal and use it
to compute the average value of the detector amplitude
output X̄, by

X̄ ¼
Z

dXhEXiX: ðF17Þ

This follows as in the notation adopted, pðXÞ ¼ hEXi,
which is the appropriate generalization of Eq. (19). The
integral over X reduces the inner products in Eq. (F16) to
simple numbers, via manipulations of the form,Z

dXh0jXihXj0iX ¼ h0jXj0i ¼ 0: ðF18Þ

One finds after straightforward algebra of this type that

X̄ ¼ 1ffiffiffi
2

p gδthbþ b†i ¼ gδthXbi: ðF19Þ

This final expectation value can be treated either classically,
by integrating over a distribution PclðbÞ, or quantum
mechanically, by integrating in the Glauber representation
PðβÞ. A similar calculation results in

X2 ¼ 1

2
þ 1

2
g2δt2hb2 þ b†2 þ 2b†bi: ðF20Þ

This result is valid both classically and quantum mechan-
ically; to obtain it we did not need to invoke any
commutator between b; b†. The first 1=2 term comes from
the commutator ½a; a†� ¼ 1, i.e., the detector’s vacuum
fluctuations in the quadrature variables X, Y.
The key difference between quantum and classical

radiation variables now appears when we try to reexpress
this result in terms of Xb ¼ ðbþ b†Þ= ffiffiffi

2
p

. In the quantum
case we need to use a commutator ½b; b†� ¼ 1, and in
particular one has

X2
cl ¼

1

2
þ g2δt2hX2

bi;

X2
qu ¼

1

2
þ g2δt2

�
hX2

bi −
1

2

�
: ðF21Þ

Putting these results together, we obtain the variance in
the as

ΔX2 ¼ 1

2
þ g2δt2

(
hΔX2

bi; classical;

½hΔX2
bi − 1

2
�; quantum:

ðF22Þ

In terms of explicit integration over a classical probability
or quantum Glauber representation,

ΔX2 ¼ 1

2
þ 2g2δt2

(R
dbPclðbÞ½Reb − hRebi�2; cl:R
dβPðβÞ½Reβ − hReβi�2; qu:

ðF23Þ

In the classical case the expectation value is taken over
PclðbÞ, and therefore ΔX2 ≥ 1=2. In the quantum case, the
integral is over PðβÞ, which again can allow us to evade the
classical bound. However, from Eq. (F22) we see that even
for an extremely squeezed gravitational state that achieves
hΔX2

bi → 0, we only have demonstrably quantum behavior
in the range 1 > 2ΔX2 ≥ 1 − g2δt2. Again, although we
see a distinctly quantum state is required, it is insufficient:
we will also need a detector capable of registering the g2δt2

effect. Notice that a large-amplitude coherent state does not
make this easier.
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