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Einstein-Maxwell-dilaton-axion (EMDA) gravity provides a simple framework to investigate the
signatures of string theory. The axion and the dilaton fields arising in EMDA gravity have important
implications in inflationary cosmology and in addressing the late time acceleration of the Universe. It is
therefore instructive to explore the implications of such a model in explaining the astrophysical
observations. The Kerr-Sen metric represents the exact, stationary, and axisymmetric black hole solution
of EMDA gravity. Such a black hole is characterized by the angular momentum a acquired from the axionic
field and the dilatonic charge r2 arising from string compactifications. We study the role of spin and the
dilaton parameter in modifying the shape and size of the black hole critical curve, which is associated with
the projection of the spherical null geodesics on the sky. We compare the theoretically derived critical curve
with the Event Horizion Telescope results related to the images of M87* and Sgr A* to obtain constraints
on the dilaton parameter r2. We take into account the errors in mass and distance of M87* and Sgr A* while
deriving their theoretical critical curve. Our analysis reveals that the image of M87* exhibits a preference
toward the Kerr scenario when the critical curve angular diameter is calculated with the central value of
mass and distance. When errors in mass and distance are taken into account the allowed range of r2 turns
out to be 0≲ r2 ≲ 1. For Sgr A*, the preferred range of r2 is 0.1≲ r2 ≲ 0.4 when central values of mass
and distance are used to calculate the theoretical critical curve. When error bars in mass and distance are
used to calculate the theoretical critical curve of Sgr A*, the preferred range of r2 turns out to be
0≲ r2 ≲ 0.5. Thus the image of M87* favors the Kerr scenario and allows the Kerr-Sen scenario only when
errors in the mass and distance are taken into consideration while the image of Sgr A* favors the Kerr-Sen
scenario and allows general relativity when errors in the mass and distance are taken into account.
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I. INTRODUCTION

General relativity (GR), the successor of Newtonian
theory of gravity has radically changed our understanding
pertaining to gravitational interaction. In GR, the mass of a
body produces curvature in the spacetime which changes
the metric of the spacetime from the Minkowski metric [1].
The particles in curved spacetime move along geodesics
which are obtained by solving the geodesic equation
associated with the metric describing the spacetime. The
metric itself is obtained by solving the Einstein field
equations and depends crucially on the matter distribution.
GR has many interesting predictions [1], namely, the
perihelion precession of mercury, the bending of light,
and the gravitational redshift of radiation from distant stars,
to name a few, which have been experimentally verified
[2,3]. The detection of gravitational waves by the LIGO-
VIRGO Collaboration [4–6] and the release of black hole

images of M87* and Sgr A* by the Event Horizon
Telescope Collaboration [7–18] have further demonstrated
GR as a successful theory of gravity.
Despite being a very successful theory, GR also has

certain limitations. The theory allows the formation of
singularities [19–21] namely, the black hole and the big
bang singularities where the theory loses its predictive
power [19,20,22,23]. This indicates that GR is not a
complete theory of gravity [2] and that at very small length
scales it must receive considerable corrections from a
more complete theory that incorporates its quantum nature
[24–28]. In the observational front, GR falls short in
explaining the nature of dark matter [29–31] and dark
energy [32–38], which are invoked to explain the flat
rotation curves of galaxies and the accelerated expansion of
the Universe, respectively. These inadequacies have led to
the development of many alternate theories of gravity
which address the limitations of GR [39–47] and deviate
from GR in the strong field regime. Therefore, to test the
effectiveness of alternative theories of gravity, it is neces-
sary to study how effectively they explain observations
related to strong field tests of gravity [48,49].
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The alternatives to GR include higher curvature gravity,
e.g., fðRÞ gravity,[50–52] and Lanczos Lovelock models
[53–56], extra dimensional models [57–63], and scalar-
tensor/scalar-vector-tensor theories of gravity [64–68].
Many of these models are string inspired which provide
a framework for force unification [69–72]. In this work we
intend to discern the signatures of the string inspired model,
namely, the Einstein-Maxwell-dilaton-axion (EMDA)
gravity, from observations related to black hole images.
EMDA, a scalar-vector-tensor theory of gravity, arises in
the low energy effective action of superstring theories [73]
on compactifying the ten-dimensional heterotic string
theory on a six-dimensional torus. In the EMDA theory,
the scalar field dilaton and the pseudoscalar axion are
coupled to the Maxwell field and the metric. The axion and
dilaton fields which originate from string compactifications
have interesting implications in inflationary cosmology and
the late-time acceleration of the Universe [74,75]. It is
therefore important to explore the footprints of EMDA
gravity in astrophysical observations which is the goal of
the present work.
In particular, we aim to decipher the possible imprints of

the dilaton charge associated with black holes, from
estimates related to black hole images. Black holes (BH)
are compact objects with extremely strong gravity. Among
the various systems that possess strong gravitational field,
black holes are the most interesting and the simplest ones.
Different black hole solutions have been constructed in
the context of string inspired low-energy effective theories
[76–79]. Interestingly, the charge neutral axisymmetric
black hole solution in string theory resembles the Kerr
solution in GR [80,81]. In EMDA gravity, the stationary
and axisymmetric black hole solution is represented by the
Kerr-Sen metric which is similar to the Kerr-Newman
spacetime in GR. Despite the similarities, the intrinsic
geometry of the two black holes varies considerably which
has been explored extensively in the past [82–85].
Astrophysical signatures of the Kerr-Sen black hole have

been studied previously in the context of photonmotion, null
geodesics, strong gravitational lensing, etc. [82,86–90]. The
Kerr-Sen scenario has been tested using the reflection
spectrum of black holes to estimate bounds on the dilaton
charge [91]. In [90], the authors have worked out the critical
curve of theKerr-Sen black hole, but they have not compared
their results with the observed images, and hence no
constrain on the dilaton charge was reported. Recently, the
critical curve of dyonic Kerr-Sen black holes has been
studied [92], and an upper bound on the magnetic monopole
charge of Sgr A* has been mentioned. It is important to
mention here that in most of the literature, the projection of
null geodesics on the observer’s sky is referred as the shadow,
which we mention in our work as the critical curve
(following [93]). The reason for not adopting this well-used
terminology (black hole shadow) will be addressed in
Sec. III. We explore the role of the dilaton charge in

modifying the structure of the black hole critical curve from
that of the Kerr scenario. We compare the theoretically
derived critical curve (which depends on the dilaton param-
eter, spin, and the angle of inclination) with that of the Event
Horizon Telescope results ofM87* and SgrA*. Such a study
enables us to establish constrains on the dilaton parameter
of the Kerr-Sen black hole and allows us to comment on
the possible feasibility of string theory in explaining the
observed black hole images.
The structure of the paper is as follows: In Sec. II we give

a brief overview of the Kerr-Sen BH. In Sec. III we derive
the critical curve of the Kerr-Sen BH. In Sec. IV we discuss
our results related to constrains on the dilaton parameter r2
from the EHT observed images of M87* and SgrA*. We
give a summary of our results and concluding remarks in
Sec. V. In our paper we have chosen the metric signature
(−;þ;þ;þ) and used geometrized units (G ¼ c ¼ 1).

II. BLACK HOLE IN EINSTEIN-MAXWELL
DILATON AXION GRAVITY

The EMDA gravity [73,94] results from the compacti-
fication of ten-dimensional heterotic string theory on a six-
dimensional torus T6. In EMDA gravity, N ¼ 4, d ¼ 4
supergravity is coupled to N ¼ 4 super Yang-Mills theory
which can be suitably truncated to a pure supergravity
theory exhibiting S and T dualities. The bosonic sector of
this supergravity theory when coupled to the Uð1Þ gauge
field is known as the EMDA gravity [94] which provides a
simple framework to study classical solutions. The four-
dimensional effective action for EMDA gravity consists of
a generalization of the Einstein-Maxwell action such that
the metric gμν is coupled to the dilaton field χ, the Uð1Þ
gauge field Aμ, and the Kalb-Ramond field strength tensor
Hαβγ . The action corresponding to EMDA gravity assumes
the form

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x

×

�
R − 2∂μχ∂

μχ −
1

3
HρσδHρσδ þ e−2χFαβFαβ

�
: ð1Þ

In Eq. (1) g is the determinant, and R the Ricci scalar
associated with the four-dimensional metric gμν χ repre-
sents the dilatonic field; Fμν ¼ ∇μAν − ∇νAμ is the
Maxwell field strength tensor, and Hρσδ is given by

Hρσδ ¼ ∇ρBσδ þ∇σBδρ þ∇δBρσ

− AρBσδ − AσBδρ − AδBρσ; ð2Þ

where Aμ is the vector potential and Bμν is the second rank
antisymmetric tensor field called the Kalb-Ramond field
while its cyclic permutation with Aμ denotes the Chern-
Simons term. In four dimensions the Kalb-Ramond field
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strength tensor Hρσδ can be written in terms of the
pseudoscalar axion field ψ , such that

Hαβδ ¼
1

2
e4χϵαβδγ∂γψ : ð3Þ

The action in Eq. (1) written in terms of the axion field
assumes the form

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x
�
R − 2∂νχ∂

νχ −
1

2
e4χ∂νψ∂νψ

þ e−2χFρσFρσ þ ψFρσF̃ρσ

�
: ð4Þ

Variation of the action with respect to the dilaton, axion,
and Maxwell fields gives their corresponding equations of
motion. By solving the aforesaid equations one obtains
solutions for the dilaton, axion, and the Maxwell field,
respectively [73,94,95],

e2χ ¼ r2 þ a2cos2θ
rðrþ r2Þ þ a2cos2θ

ð5Þ

ψ ¼ q2

M
a cos θ

r2 þ a2 cos2 θ
ð6Þ

A ¼ qr

Σ̃
ð−dtþ a sin2 θdϕÞ; ð7Þ

whereM is the mass, a is the spin, and q is the charge of the
black hole. In Eq. (5) r2 is associated with the dilaton

parameter and is given by r2 ¼ q2

M e2χ0 where χ0 represents
the asymptotic value of the dilatonic field. The dilaton
parameter also depends on the electric charge of the black
hole, which owes its origin to the axion-photon coupling
and not to the in-falling charged particles. This is because
the axion and dilaton field strengths vanish if the electric
charge q ¼ 0 [see Eqs. (6) and (5)]. It is further important to
note that the axion field renders a nonzero spin to the black
hole since the field strength corresponding to the axion
field vanishes if the black hole is nonrotating [Eq. (6)].
Varying the action with respect to the metric gives the

Einstein field equations,

Gμν ¼ TμνðF; χ;ψÞ; ð8Þ

where Gμν is the Einstein tensor and Tμν the energy-
momentum tensor which is given by

TμνðF; χ;ψÞ ¼ e2χð4FμρF
ρ
ν − gμνF2Þ

− gμν

�
2∂γχ∂

γχ þ 1

2
e4χ∂γψ∂γψ

�
þ ∂μχ∂νχ þ e4χ∂μψ∂νψ : ð9Þ

The Kerr-Sen metric [73] is obtained when one looks for
the stationary and axisymmetric solution of the aforesaid
Einstein’s equations [96–98]. In Boyer-Lindquist coordi-
nates the Kerr-Sen metric takes the form

ds2 ¼ −
�
1 −

2Mr
ρ̃

�
dt2 þ ρ̃

Δ
ðdr2 þ Δdθ2Þ

−
4aMr
ρ̃

sin2θdtdϕþ sin2θdϕ2

�
rðrþ r2Þ þ a2

þ 2Mra2sin2θ
ρ̃

�
; ð10Þ

where

ρ̃ ¼ rðrþ r2Þ þ a2cos2θ ð11aÞ

Δ ¼ rðrþ r2Þ − 2Mrþ a2: ð11bÞ

The nonrotating counterpart of the Kerr-Sen metric corre-
sponds to a pure dilaton black hole characterized by its
mass, electric charge, and asymptotic value of the dilaton
field [77,99].
In order to obtain the event horizon rh of the Kerr-Sen

black hole one solves for grr ¼ Δ ¼ 0, which gives

rh ¼ M −
r2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M −

r2
2

�
2

− a2

s
: ð12Þ

Since r2 ¼ q2

M e2χ0 > 0, the presence of a real, positive event
horizon requires 0 ≤ r2

M ≤ 2 [see Eq. (12)]. Since we are
interested in black hole solutions we will be interested in
this regime of r2 in this work.

III. NULL GEODESICS IN THE KERR-SEN
SPACETIME

In this section we investigate the motion of photons in
the Kerr-Sen background. In particular, we will be inter-
ested in calculating the projection of the spherical null
geodesics on the obserser’s sky. Following Gralla et al. [93]
we shall refer to the curve associated with such a projection
as the critical curve and not the black hole shadow. In what
follows, we will compute the outline of the critical curve in
EMDA gravity which in turn can be compared with the
Kerr scenario in general relativity.
For a stationary, axisymmetric metric, the Lagrangian L

for the motion of any test particle is given by

Lðxμ; ẋμÞ ¼ 1

2
gμνẋμẋν

¼ 1

2
ðgttṫ2 þ grrṙ2 þ gθθθ̇

2 þ gϕϕϕ̇
2 þ 2gtϕ ṫ ϕ̇Þ:

ð13Þ
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The action S representing the motion of test particles
satisfying the Hamilton-Jacobi equation is given by

Hðxν; pνÞ þ
∂S
∂λ

¼ 0; ð14Þ

whereH is the Hamiltonian, λ is a curve parameter, and pμ,
the conjugate momentum corresponding to the coordinate
xμ is

pμ ¼
∂S
∂xμ

¼ ∂L
∂ẋμ

¼ gμνẋν: ð15Þ

The Hamiltonian is given by

Hðxν; pνÞ ¼
1

2
gμνpμpν ¼

k
2
¼ 0; ð16Þ

where k denotes the rest mass of the test particle which is
zero for photons. Since the Kerr-Sen metric does not
explicitly depend on t and ϕ, the first term in the Euler-
Lagrange equation,

∂L
∂xμ

−
d
dλ

�
∂L
∂ẋμ

�
¼ 0; ð17Þ

is zero. Therefore, the energy E and the angular momentum
Lz of the photon are conserved. Using Eq. (15) these
constants are given by

E¼ −gttṫ− gtϕϕ̇¼ −pt; Lz ¼ gtϕ ṫþ gϕϕϕ̇¼ pϕ: ð18Þ

We further note from Eq. (15) that

pt ¼
∂S
∂t

¼ gttṫþ gtϕϕ̇ ¼ −E;

pϕ ¼ ∂S
∂ϕ

¼ gtϕṫþ gϕϕϕ̇ ¼ Lz ð19Þ

pr ¼
∂S
∂r

¼ grrṙ; pθ ¼
∂S
∂θ

¼ gθθθ̇: ð20Þ

Integrating Eq. (19) the action S can be written as

S ¼ −Etþ Lzϕþ Sðr; θÞ: ð21Þ

It turns out that S̄ðr; θÞ can be separated into r and θ giving us

S ¼ −Etþ Lzϕþ SrðrÞ þ SθðθÞ: ð22Þ

From Eq. (16) we have gμνpμpν ¼ 0 giving us

gttp2
t þ grrp2

r þ gθθp2
θ þ gϕϕp2

ϕ þ 2gtϕptpϕ ¼ 0: ð23Þ

Using Eq. (19), Eq. (20), and Eq. (22), Eq. (23) can be
written as

gttE2 − 2gtϕELz þ gϕϕL2
z þ grr

�
dSr

dr

�
2

þ gθθ
�
dSθ

dθ

�
2

¼ 0;

ð24Þ
which on substitution of the metric components gμν [see
Eq. (10)] gives

½Δa2sin2θ− ðrðrþ r2Þ þ a2Þ2�E
2

Δ
þ 4MraELz

Δ

þ L2
z

Δsin2θ
ðρ̃− 2MrÞ þΔ

�
dSr

dr

�
2

þ
�
dSθ

dθ

�
2

¼ 0: ð25Þ

The above equation can be separated into r and θ such that

Δ
�
dSr

dr

�
2

þ a2E2 þ L2
z −

aL2
z

Δ

−
E2

Δ
ðrðrþ r2Þ þ a2Þ2 þ 4MraLzE

Δ

¼ −
�
dSθ

dθ

�
2

þ aE2cos2θ − L2
zcot2θ ¼ −Q; ð26Þ

where Q is called the Carter’s constant. From Eq. (26) the
angular part is given by�
dSθ

dθ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − L2

zcot2θ þ a2E2cos2θ
q

¼
ffiffiffiffiffiffiffiffi
Θðθ

p
Þ; ð27Þ

where

Q − L2
z cot2 θ þ a2E2 cos2 θ ¼ ΘðθÞ: ð28Þ

The radial equation is given by

VðrÞ ¼ Δ2

�
dSr

dr

�
2

; ð29Þ

where

VðrÞ ¼ −QΔ − a2E2Δþ E2ðrðrþ r2Þ þ a2Þ2
þ a2L2

z − ΔL2
z − 4MraELz: ð30Þ

We also note that

ṙ ¼ pr ¼ grr
dSr

dr
¼ Δ

ρ̃

ffiffiffiffiffiffiffiffiffi
VðrÞp
Δ

ð31Þ

while

θ̇ ¼ pθ ¼ gθθ
dSθ

dθ
¼

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp
ρ̃

: ð32Þ

Therefore the first order geodesic equations for r and θ can be
respectively written as�

ρ̃

E

�
2

ṙ2 ¼ a2ξ2 þ ðrðrþ r2Þ þ a2Þ2

− 4Mraξ − Δðηþ a2 þ ξ2Þ and ð33Þ
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�
ρ̃

E

�
2

θ̇2 ¼ ηþ a2cos2θ − ξ2cot2θ; ð34Þ

where ξ ¼ Lz=E and η ¼ Q=E2 represent the two impact
parameters. While ξ denotes the distance from the axis of
rotation, η signifies the distance from the equatorial plane.
The first order geodesic equations for t and ϕ are

obtained from Eq. (19) and are given by

ṫ ¼ E½ððrþ r2Þrþ a2Þ2 − Δa2sin2θ�
ρ̃Δ

−
2MarLz

ρ̃Δ
ð35Þ

ϕ̇ ¼
�
ρ̃ − 2Mr

ρ̃Δ

�
Lz

sin2θ
þ 2MraE

ρ̃Δ
: ð36Þ

A. Analysis of the θ equation

In this section we simplify the angular equation of
motion by defining a new variable u ¼ cos θ. Then the
angular Eq. (34) is given by

�
ρ̃

E

�
2

u̇2 ¼ η − u2ðηþ ξ2 − a2Þ − a2u4 ¼ GðuðθÞÞ: ð37Þ

Note that the left-hand side of Eq. (37) is positive which
implies that the right-hand side also needs to be positive.
Since Gð1Þ ¼ −ξ2 is negative, the photon cannot access
θ ¼ 0. To obtain the maximum accessible value of θ
denoted by θmax we solve for GðuÞ ¼ 0 which gives

u2 ¼ −ðηþ ξ2 − a2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηþ ξ2 − a2Þ2 þ 4a2η

p
2a2

: ð38Þ

If η > 0 one can only consider the positive root of (38)
since the left-hand side of Eq. (38) is positive. Such orbits
cross the equatorial plane reaching a maximum height of
θmax given by the solution of Eq. (38). For negative η, we
define η ¼ −jηj such that Eq. (38) can be rewritten as

u2 ¼ jηj − ξ2 þ a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−jηj þ ξ2 − a2Þ2 − 4a2jηj

p
2a2

: ð39Þ

From Eq. (39) it is easy to note that for its right-hand side to
be positive,

a2 þ jηj − ξ2 > 0; ð40Þ
which is the condition to be satisfied by the impact
parameters.
Finally, we note that η ¼ 0 has two solutions, namely,

u21 ¼ 0 u22 ¼ 1 −
�
ξ2

a2

�
: ð41Þ

If ξ2 > a2 only u21 is valid else both u21 and u22 are valid
solutions.

B. Analysis of the radial equation

In this section we consider the geodesic equation
associated with the radial coordinate given by Eq. (33),�
ρ̃

E

�
2

ṙ2 ¼ a2ξ2 þ ðrðrþ r2Þ þ a2Þ2 − 4Mraξ

− Δðηþ a2 þ ξ2Þ ¼ ṼðrÞ: ð42Þ
We will be interested in spherical photon orbits of constant
radius which yields ṼðrÞ ¼ Ṽ 0ðrÞ ¼ 0. Thus, we have to
solve the following two equations for η and ξ:

a2ξ2 þ ðrðrþ r2Þ þ a2Þ2 − 4Mraξ − Δðηþ a2 þ ξ2Þ ¼ 0 ðobtained from ṼðrÞ ¼ 0Þ
2ðrðrþ r2Þ þ a2Þð2rþ r2Þ − 4Maξ − ð2r − 2M þ r2Þðηþ a2 þ ξ2Þ ¼ 0 ðobtained from Ṽ 0ðrÞ ¼ 0Þ: ð43Þ

From Eq. (43) we obtain two classes of solutions for η and ξ:
(1)

η ¼ −
r2ðrþ r2Þ2

a2
ð44Þ

ξ ¼ aþ rðrþ r2Þ
a

ð45Þ

(2)

η ¼ −r2½−8a2Mð2rþ r2Þ þ ððrþ r2Þð2rþ r2Þ − 2Mð3rþ r2ÞÞ2�
a2ð−2M þ 2rþ r2Þ2

ð46Þ

ξ ¼ a2ð2ðM þ rÞ þ r2Þ þ rðrþ r2Þð2rþ r2Þ − 2Mð3rþ r2Þ
að2M − 2r − r2Þ

: ð47Þ
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The first solution has η < 0 which requires a2 þ jηj − ξ2 to
be positive (see previous discussion). Substituting η and ξ
from the first solution we note that a2 þ jηj − ξ2 ¼ −2rðrþ
r2Þ < 0which makes the first solution unphysical and hence
unacceptable. In the case of the second solution η may
assume any sign depending on the value of r, and it can be
shown that the suitable conditions as discussed earlier are
satisfied. We will therefore work with the second solution.

C. Equation of the critical curve

In this section we use the derived impact parameters
from the last section to evaluate the celestial coordinates x
and y of the critical curve as viewed by an observer at
infinity. The position of the distant observer is taken to be

ðr0; θ0Þ where we take r0 → ∞ and θ0 is the inclination
angle of the observer. In order to obtain the outline of the
critical curve in the observer’s sky we consider the
projection of the null geodesics onto the image plane.
In order to obtain the celestial coordinates we write the

metric in terms of Bardeen tetrads [100–102], which are
associated with observers to whom the black hole appears
static:

eμðtÞ ¼
� ffiffiffiffiffiffiffiffi

jgttj
p

;0;0;
gtϕffiffiffiffiffiffiffiffijgttjp �

eμðrÞ ¼
ffiffiffiffiffiffiffiffiffi
jgrrj

p
ð0;1;0;0Þ

eμðθÞ ¼
ffiffiffiffiffiffiffiffiffi
jgθθj

q
ð0;0;1;0Þ eμðϕÞ ¼

 
0;0;0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgϕϕj þ ðgtϕÞ2

jgttj

s !
:

FIG. 1. (a) Change in the area enclosed by the critical curve with dilaton parameter r2. We take the inclination angle to be θ0 ¼ 45° and
the spin to be a ¼ 0.6. (b) Change in the area enclosed by the critical curve with dilaton parameter r2. We take the inclination angle to be
θ0 ¼ 60° and the spin to be a ¼ 0.6. (c) Change in the shape of the critical curve with spin-parameter a. We take the inclination angle as
θ0 ¼ 60° and r2 ¼ 0.3. (d) Change in the shape of the critical curve with inclination angle θ0. Here we take the dilaton parameter
r2 ¼ 0.3 and spin a ¼ 0.6. The above figure illustrates the variation in the structure of the critical curve with the dilaton parameter r2, the
spin parameter a, and the inclination angle θ0.
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From the tetrads we can compute the components of
four momentum pðiÞ ¼ ejðiÞpj of a locally inertial observer.
The contravariant components of the four momentum
pðkÞ ¼ ηðkÞðlÞpðlÞ of the locally inertial observer are given as

pðtÞ ¼ E
c

�
c
ffiffiffiffiffi
gtt

p
− ξ

gtϕffiffiffiffiffi
gtt

p �
pðrÞ ¼ �

ffiffiffiffiffiffiffiffiffi
VðrÞ
ρ̃Δ

s

pðθÞ ¼ �
ffiffiffiffi
Θ
ρ̃

s
pðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgϕϕj þ ðgtϕÞ2

gtt

s
ξ:

A distant observer located at (r0, θ0) will find the local

apparent velocities of a photon to be vðθÞ ¼ pðθÞ

pðrÞ and vðϕÞ ¼
pðϕÞ

pðrÞ in which case the apparent perpendicular distance from

the axis of rotation and the equatorial plane are respectively
given by dϕ ¼ r0vðϕÞ and dθ ¼ r0vðθÞ. These are associated
with the celestial coordinates x and y such that

x ¼ lim
r0→∞

r0vðϕÞ ¼ lim
r0→∞

r0pðϕÞðr0; θ0Þ
pðrÞðr0; θ0Þ

¼ −
ξ

sin θ0
ð48Þ

y ¼ lim
r0→∞

r0vðθÞ ¼ lim
r0→∞

r0pðθÞðr0; θ0Þ
pðrÞðr0; θ0Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
Θðθ0Þ

p
: ð49Þ

Figure 1 illustrates the variation in the shape and size of
the critical curve with the dilaton parameter r2, inclination
angle θ0, and the black hole spin a. The figure reveals that
the area enclosed by the critical curve decreases with an
increase in the magnitude of the dilaton parameter r2. We
further note that when a and θ0 are enhanced the critical
curve becomes increasingly noncircular [103–106].
From the discussion presented in this section we note

that the critical curve which represents the projection on
sky of a particular set of null geodesics is a pure
mathematical locus (depending solely on the background
metric) and is not observable (the observable features
which are closely related to the critical curve are the
photon rings). The black hole shadow, on the other hand,
refers to a flux depression at the center of a black hole
image, and is an observable quantity. The structure of the
observed black hole shadow depends not only on the
background spacetime but is very strongly affected by
the properties of the accretion flow around the compact
object. The outer boundary of the observed shadow
generally does not coincide with the critical curve except
when the accretion is radially falling onto the black
hole [107]. However, when the emission is dominated
by matter orbiting in the equatorial plane, the shadow and
the critical curve do not coincide [108]. Altought the EHT
Collaboration reports the angular diameter of the observed
ring, they also mention the amount of offset that can be
expected between the observed ring and the critical curve.
Based on these data we compare our theoretical critical

curve with the observed images of M87* and Sgr A* which
in turn enables us to establish constrains on the dilaton
parameter r2. We will discuss this in greater detail in the
next section.

IV. COMPARISON WITH OBSERVATIONS
AND CONTRAINS

ON THE DILATON PARAMETER

In this section we aim to constrain the dilaton parameter
r2 using the images of M87* and SgrA* released by the
EHT Collaboration [7,13]. In order to obtain constrains
on the dilaton parameter r2 we theoretically calculate the
observables, namely, the angular diameterΔθ, the axis ratio
ΔA), and the deviation from circularity ΔC [109] for the
critical curve, assuming the spacetime around the black
hole to be described by the Kerr-Sen metric. In our
approach, we use measurements for distance D, mass M,
and the inclination angle θ0 (angle between the line of sight
and the jet axis) of the black hole determined from previous
observations. The observables related to the critical curve
which will be used to find the best estimate of the dilaton
parameter r2 are discussed below.

Angular diameter of the critical curveΔθ: It is a measure
of the angular width of the critical curve. If the maximum
vertical width of the critical curve is Δy (also called the
major axis length; see Fig. 2), the mass of the black hole is
M and the distance of the black hole from the observer isD
then the angular diameter of the critical curve Δθ [109] is
defined as

Δθ ¼ GMΔy
c2D

: ð50Þ

FIG. 2. Schematic diagram of the critical curve.
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The value ofΔy is calculated from the equation of the critical
curve which contains the impact parameters ξ and η. The
impact parameters in turn depend on r2,a, and the inclination
angle θ0. Therefore, the angular diameter also depends on the
three aforesaid parameters, and thus r2 can be constrained
usingEHTestimates ofΔθ assuming predeterminedmassM,
distance D, and inclination angle θ0.
Axis ratio ΔA of the black hole critical curve: As the

critical curve of the black hole is in general not circular, the
major axis Δy and the minor axis Δx may not be equal.
From Fig. 2, the axis ratio ΔA is defined as [109]

ΔA ¼ Δy
Δx

; ð51Þ

where the minor axis Δx is also calculated from the
equation of the critical curve, and hence, ΔA also depends
on r2, a and θ0.
Deviation from Circularity ΔC: Deviation from circu-

larity ΔC measures the amount of deviation from the
circular shape of the critical curve [109]. It is defined as
follows:

ΔC ¼ 1

Ravg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

flðϕÞ − Ravgg2dϕ
s

ð52Þ

Here; Ravg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

lðϕÞ2dϕ
s

ð53Þ

lðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðϕÞ − xcÞ2 þ yðϕÞ2

q
: ð54Þ

In the above expression Ravg is the average radius of the
critical curve. lðϕÞ is the length of the line joining the point
(xðϕÞ; yðϕÞ) on the critical curve and the geometric center
(xc; 0) (see Fig. 2). It must be noted that due to reflection
symmetry of the Kerr-Sen metric, the shape of the critical
curve is symmetric about the x axis; hence the y coordinate
of the geometric center is 0. The x coordinate of the
geometric center is calculated using

xc ¼
R
2π
0 xðϕÞdSR

2π
0 dS

ðhere dS is the area elementÞ: ð55Þ

EHT observations of M87*: The EHT Collaboration
measured the angular diameter Δθ, the axis ratio ΔA, and
the deviation from circularity ΔC for the observed ring
of M87*, the supermassive black hole candidate at the
center of the galaxy M87 [7–9]. The values reported are
given below.
(1) Δθ ¼ ð42� 3Þ μas. The EHT also reports a maxi-

mum offset of 10% between the angular diameter of
the observed primary ring and the critical curve.
Thus, the critical curve angular diameter can be as
small as Δθ ¼ ð37.8� 3Þ μas [7–9].

(2) ΔA≲ 4=3 [7–9].
(3) ΔC ≲ 10% [7–9].

In order to determine the observationally favored dilaton
parameter r2, we theoretically derive the above three
observables as functions of the parameters r2, a, and θ0.
As evident from Eq. (50) a theoretical computation of the
angular diameter Δθ requires independent measurements
of the black hole mass, distance, and inclination angle
(required to derive Δy). We use previously estimated
masses and distance of this source to compute the theo-
retical angular diameter. The distance of M87* as reported
from stellar population measurements turns out to be
D ¼ ð16.8� 0.8Þ Mpc [110–112]. The angle of inclina-
tion, which is the angle between the line of sight and the jet
axis (the jet axis is believed to coincide with the spin axis of
the black hole) is ð17� 2Þ° [113]. The mass of M87* has
been measured using different methods. The mass meas-
urement by modeling surface brightness and dispersion in
stellar velocity was found to be M ¼ 6.2þ1.1−0.6 × 109M⊙
[8,114,115]. Mass measurements from the kinematic
study of the gas disk gives M ¼ 3.5þ0.9−0.3 × 109M⊙ [8,116].
Mass measured from the image of M87* by the EHT
Collaboration assuming general relativity turns out to be
M ¼ ð6.5� 0.7Þ × 109M⊙ [7–9].
EHT observations of Sgr A*: In May 2022, the EHT

Collaboration released the image of the black hole Sgr A*
present at the Galactic Center of the Milky Way Galaxy.
The angular diameter of the primary ring is found to be
Δθ ¼ ð51.8� 2.3Þ μas [13–18]. The angular diameter of
the critical curve inferred from the observed primary ring is
Δθ ¼ ð48.7� 7Þ μas [13].
The mass and distance of Sgr A* reported by the Keck

Collaboration keeping the redshift parameter free, are
M ¼ ð3.975� 0.058� 0.026Þ × 106M⊙ [117] and D ¼
ð7959� 59� 32Þ pc [117] respectively. Fixing the value
of the redshift parameter to unity, the mass and distance of
Sgr A* reported by the Keck team are M ¼ ð3.951�
0.047Þ × 106M⊙ and D ¼ ð7935� 50Þ pc. The mass and
distance of Sgr A* reported by the GRAVITY Collabo-
ration are M ¼ ð4.261� 0.012Þ × 106M⊙ and D ¼
ð8246.7� 9.3Þ pc [118,119] respectively. When systemat-
ics due to optical aberrations are taken into account, the
GRAVITY Collaboration constrains the mass and distance
of Sgr A* to M ¼ ð4.297� 0.012� 0.040Þ × 106M⊙ and
D ¼ ð8277� 9� 33Þ pc respectively. Apart from mass
and distance we also need to provide independent
measurements of the inclination angle to establish obser-
vational constrains on r2. From [120] we take θ0 ≃ 134°
(or equivalently 46°). When models based on extensive
numerical simulations are compared with the observed
image of Sgr A*, one concludes that the inclination angle
of the source is θ0 < 50°. The estimates for the axis ratio
ΔA) and the deviation from circularity ΔC for the image
of Sgr A* by the EHT Collaboration are yet to be
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released; hence, for Sgr A* the angular diameter Δθ will
only be used for estimating constraints on r2.
To constrain the Kerr-Sen/dilaton parameter r2 using the

EHT estimates for the critical curve, we proceed with the
following approach:
(1) We derive the outline of the critical curve by

calculating the impact parameters ξ and η for the
Kerr-Sen black hole. We obtain the parametric
equations of the black hole critical curve outline.

(2) We fix the value of r2 and vary the spin a of the
black hole in a suitable range such that the event
horizon radius is real and positive.

(3) For each combination of (r2; a) we calculate the
values of angular diameterΔθ, axis ratioΔA, and the
deviation from circularity ΔC. In these calculations
we use values of massM, distanceD, and inclination
angle θ0 from previous measurements as dis-
cussed above.

(4) Then we repeat steps 2 and 3 for different values of
r2 up to r2 ¼ 1.8. It must be noted that the dilaton
parameter r2 varies in the range 0 ≤ r2 ≤ 2 since the

horizon radius (in units of M) is given by rh ¼
1 − r2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2

2
Þ2 − a2

q
which needs to be real and

positive.
(5) After obtaining values for Δθ, ΔA, and ΔC we plot

contour plots for the angular diameter Δθ, density
plots for the axis ratio ΔA, and the deviation from
circularity ΔC as functions of r2 and a.

(6) The values of r2 which are able to reproduce the
EHT estimated Δθ, ΔA, and ΔC for the critical
curve give us the allowed values of r2 based on the
EHT data.

At this point we emphasize once again that the critical
curve we have computed theoretically cannot be directly
compared to the observed images of M87* and Sgr A*
reported by the EHT Collaboration. This is because the
critical curve is not an observable quantity. It is asso-
ciated with the projection on sky of a particular set of
null geodesics and depends only on the background
metric and the inclination angle. The outline of the
observed image on the other hand depends both on
the background spacetime as well as the properties of the
accretion flow. For M87*, the observed ring and the
critical curve exhibit a maximum offset of 10% [121].
The angular diameter of the observed ring of M87* as
reported by the EHT Collaboration is Δθ ¼ ð42� 3Þ μas.
With 10% maximum offset, the angular diameter of the
critical curve can be as small as Δθ ¼ ð37.8� 3Þ μas. In
what follows, we will use the angular diameter of the
critical curve to derive the magnitude of r2 which is
observationally favored.
For Sgr A*, the emission ring has an angular diameter of

Δθ ¼ ð51.8� 2.3Þ μas [13–18]. The EHT papers define a
ratio α1 ¼ dm=dsh [18] where dm is the diameter of the

observed emission ring and dsh is the diameter of the
critical curve. Note that in the EHT papers [13–18],
the critical curve is referred as the shadow (we follow
here the terminology mentioned in Gralla et al. [93]). While
the diameter of the emission ring is observationaly derived,
the magnitude of α1 is obtained from a library of simu-
lations assuming various accretion models (see Fig. 7 of
[18]). Thus, the diameter of the critical curve depends on
the observed diameter of the emission ring and on α1 which
is model dependent. From Fig. 7 of [18] one can note that
the offset between the observed ring diameter and the
critical curve diameter varies for different models. Further,
note that, it is not unlikely that other models (e.g., radially
infalling models, other assumptions regarding the electron
heating prescription, general relativistic magnetohydro-
namics (GRMHD) flows starting from an initial condition
that differs from standard analytical tori) not included in the
simulation library would lead to other values of α1. This
however is beyond the scope of this work. Considering an
average over all models, the EHT Collaboration reports the
critical curve angular diameter to be Δθ ¼ ð48.7� 7Þ μas
(Table 1 of [13]). In the following discussion we will report
the observationally preferred magnitude of r2 from the
image of Sgr A*, based on the critical curve diameter
reported by the EHT, i.e., Δθ ¼ ð48.7� 7Þ μas [13].
As discussed earlier, theoretical estimation of the critical

curve angular diameter requires independent measurement
of mass, distance, and inclination angle of the source
[see Eq. (50)]. Although these three quantities have been
estimated for Sgr A* and M87*, they have their associated
error bars. We therefore need to take these error bars into
account while calculating the theoretical angular diameter.
Consider the mass of the source to be MþΔM1

−ΔM2
, distance

of the source to be DþΔD1

−ΔD2
, and the inclination angle to be

θ0 � Δθ0. In the above discussion we have mentioned these
quantities for Sgr A* and M87*. Since the theoretical
angular diameter is directly proportional to the mass and
inversely proportional to the distance [Eq. (50)], the angular
diameter calculated with maximum mass (M ¼ M þ ΔM1)
and minimum distance (D ¼ D − ΔD2) when compared
with observations will give the maximum allowed magni-
tude of r2. Similarly, when the theoretical angular diameter
calculated with minimum mass (M ¼ M − ΔM2) and
maximum distance (D ¼ Dþ ΔD1) is compared with
observations, the minimum allowed magnitude of r2 can
be derived. Thus, for every combination of mass and
distance measurement for M87* and Sgr A* we consider
three scenarios, namely, theoretical angular diameter cal-
culated with (i) the minimum mass and maximum distance,
(ii) the central value of mass and distance, and (iii) the
maximum mass and minimum distance. Also note that the
theoretical angular diameter depends on the inclination
angle which has its associated error bar. The error in θ0
also affects the constraints on r2. The θ0 for M87*
and SgrA* are ð17� 2Þ° [113] and ð133.911� 0.052Þ°
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(equivalent to ð46.089� 0.052Þ° [120], respectively. The
errors in θ0 are small compared to the central values, and
hence they do not drastically affect the constraints on r2.
Furthermore, from Fig. 1(d) one may note that the features
of critical curve do not change appreciably for variation in
θ0 from π=3 to π=2. Thus, only large variations in θ0 can
change the critical curve appreciably, e.g, π=12 to π=3.
Hence, we keep the value of the inclination angle fixed to
the central value in our analysis.

Constrains on the dilaton parameter r2 from EHT obser-
vations of M87*: Here we discuss the constrains on the
dilaton parameter r2 based on the critical curve angular
diameter (ð37.8� 3Þ μas) derived from the observed ring of
M87* by the EHT Collaboration. In order to get an under-
standing of the allowed values of r2, we theoretically
compute the observables, namely, Δθ (angular diameter),
ΔA (axis ratio), andΔC (deviation fromcircularity) related to
the black hole critical curve, which have been discussed

FIG. 3. The figure illustrates the variation of the angular diameter of M87* with metric parameters r2 and a forM ¼ 3.5þ0.9
−0.3 × 109M⊙

and distance D ¼ 16.8� 0.8 Mpc. In order to compute the angular diameter the inclination angle is taken to be θ0 ¼ 17°. (a) Variation
of angular diameter of M87* (calculated with minimum massM ¼ 3.2 × 109M⊙ and maximum distanceD ¼ 17.6 Mpc) with r2 and a.
(b) Variation of angular diameter of M87* (calculated with central value of mass M ¼ 3.5 × 109M⊙ and distance D ¼ 16.8 Mpc) with
r2 and a. (c) Variation of angular diameter of M87* (calculated with maximum mass M ¼ 4.4 × 109M⊙ and minimum distance
D ¼ 16 Mpc) with r2 and a.
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toward the beginning of this section. It is important to recall
that these observables depend on themetric parameters r2, a,
and the inclination angle θ0. We use previously estimated
values of the inclination angle θ0 ¼ ð17� 2Þ° [113] for
calculating the theoretical angular diameter. Since the error
bar in the inclination angle is small, we will use the central
value θ0 ¼ 17° throughout our analysis (see discussion
above). In addition, the theoretically derived Δθ requires
independent estimates of the mass M and the distance D of
the black hole [see Eq. (50)]. Based on stellar population

measurements, the distance of M87* is estimated to be
D ¼ ð16.8� 0.8Þ Mpc [110–112], which will be consid-
ered along with error bars in our analysis. The mass of
M87* has been independently estimated based on stellar
dynamics and gas dynamics studies. We first consider
constrains on r2 assuming a mass of M87* based on gas
dynamics studies, i.e., M ¼ 3.5þ0.9−0.3 × 109M⊙ (see Fig. 3).
To obtain the maximum allowed range of r2 we calculate
the theoretical angular diameter of the critical curve
assuming

(1) ðminimummass; maximumdistanceÞ → ðM ¼ 3.2 × 109M⊙; D ¼ 17.6 Mpc ½Fig: 3ðaÞ�Þ.
(2) ðcentral mass; central distanceÞ → ðM ¼ 3.5 × 109M⊙; D ¼ 16.8 Mpc ½Fig: 3ðbÞ�Þ.
(3) ðmaximummass; minimumdistanceÞ → ðM ¼ 4.4 × 109M⊙; D ¼ 16 Mpc ½Fig: 3ðcÞ�Þ.

In Fig. 3 the contour plots for variation of angular
diameter of the critical curve with the dilaton parameter r2
and spin a (when mass measurement from gas dynamics is
considered) are shown. In all the subfigures of Fig. 3 we
note that there is no suitable r2 in the range 0 to 2 (obtained
from the considerations of a real, positive event horizon)
which can reproduce the inferred critical curve angular
diameter of M87* with 10% maximum offset (i.e.,
Δθ ¼ 37.8� 3 μas). Thus, when gas dynamics mass mea-
surements for M87* are considered, the EHT estimated
angular diameter cannot be explained for any value of the

dilaton parameter r2, i.e., we do not obtain any constrains
on r2 in this case. The low values of theoretical angular
diameters in Fig. 3 are because of the low magnitude of
mass reported from gas dynamics studies. Hence, it seems
that the mass of M87* estimated from gas dynamics
measurements needs to be revisited.
We now consider calculating the theoretical angular

diameter of the critical curve assuming mass of M87*
based on stellar dynamics measurements, i.e., M ¼
6.2þ1.1−0.6 × 109M⊙. Once again, in order to obtain the
maximum observationally allowed range of r2 we consider

(1) ðminimummass; maximumdistanceÞ → ðM ¼ 5.6 × 109M⊙; D ¼ 17.6 Mpc ½Fig: 4ðaÞ�Þ.
(2) ðcentral mass; central distanceÞ → ðM ¼ 6.2 × 109M⊙; D ¼ 16.8 Mpc ½Fig: 4ðbÞ�Þ.
(3) ðmaximummass; minimumdistanceÞ → ðM ¼ 7.3 × 109M⊙; D ¼ 16 Mpc ½Fig: 4ðcÞ�Þ.

In Fig. 4 we present contour plots for the variation of
critical curve angular diameter with dilaton parameter r2
and a for the above three combinations of mass and
distance. We note from Fig. 4(a) that with minimum
mass ðM ¼ 5.6 × 109M⊙Þ and maximum distance
ðD ¼ 17.6 MpcÞ, there is no value of r2 that can explain
the EHT estimated angular diameter Δθ ¼ 37.8� 3 μas.
When the central value of mass M ¼ 6.2 × 109M⊙ and
distance D ¼ 16.8 Mpc are considered [Fig. 4(b)], r2 ≃ 0
best explains the central value of the EHT inferred angular
diameter (i.e., Δθ ¼ 37.8 μas), marked by the red solid
line in Fig. 4(b) while 0.1≲ r2 ≲ 0.4 is required to explain
the angular diameter within the lower 1-σ interval (i.e.,
Δθ ¼ 37.8 − 3 ¼ 34.8 μas). This is marked by the red
dashed line in Fig. 4(b). Finally, when maximum mass
(M ¼ 7.3 × 109M⊙) and minimum distance (D ¼ 16 Mpc)
are used to calculate the theoretical angular diameter, 0.8≲
r2 ≲ 1 is required to reproduce the central value of the EHT

estimated angular diameter (i.e.,Δθ ¼ 37.8 μas) marked by
the red solid line in Fig. 4(c). When the 1-σ interval in the
angular diameter is considered (i.e.,Δθ ¼ 37.8� 3 μas), the
range of r2 turns out to be 0.5≲ r2 ≲ 1.2 [see red dashed
lines in Fig. 4(c)]. The above discussion elucidates that the
image of M87* exhibits a preference toward the Kerr
scenario (since, with central values of mass and distance,
the central value of the EHT estimated critical curve angular
diameter, can be best explained by r2 ≃ 0). However, non-
zero dilaton charge is also allowed when errors in mass and
distance are taken into account or the 1-σ interval in the
derived critical curve angular diameter is considered. Thus,
the image of M87* does not reject the Kerr-Sen scenario.
For completeness we also calculate the theoretical

angular diameter with mass M ≃ 6.5 × 109M⊙ which is
the mass derived by the EHT Collaboration from the
observed ring of M87* assuming general relativity.
Since this is the largest among all the three masses (when
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the central values are considered), it can explain the derived
critical curve angular diameter of Δθ ¼ 37.8 μas (denoted
by the red solid line in Fig. 5) for 0≲ r2 ≲ 0.2. When the
lower 1-σ interval is considered higher values of r2 are
allowed, viz., 0.4≲ r2 ≲ 0.6 (denoted by the red dashed
line in Fig. 5). However, M ≃ 6.5 × 109M⊙ should not be
used to infer the observationally favored magnitude of r2
since this mass is derived from the observed image

diameter assuming GR. Therefore, using this mass estimate
we cannot constrain another alternative gravity theory.
We now discuss the constrains on r2 from the other two

observables ΔC and ΔA. The theoretical computation of
these two observables does not require information about
the mass and distance of the source. One however needs to
provide the inclination angle of the source (which in the
present case is 17°) to obtain ΔC and ΔA as functions of r2

FIG. 4. (a) Contour plots for critical curve angular diameter of M87* for different r2 and a assuming minimum mass M ¼
5.6 × 109M⊙ and maximum distanceD ¼ 17.6 Mpc. (b) Contour plots for critical curve angular diameter of M87* for different r2 and a
assuming central value of massM ¼ 6.2 × 109M⊙ and distance D ¼ 16.8 Mpc. (c) Contour plots for critical curve angular diameter of
M87* for different r2 and a assuming maximum massM ¼ 7.3 × 109M⊙ and minimum distanceD ¼ 16 Mpc. The figure illustrates the
variation of the critical curve angular diameter for M87* with metric parameters r2 and a for M ¼ 6.2þ1.1

−0.6 × 109M⊙ and distance
D ¼ 16.8� 0.8 Mpc. In order to compute the angular diameter, the inclination angle is taken to be θ0 ¼ 17°. The red solid contours
represent the central value of the EHT inferred critical curve angular diameter, and the red dashed contours represent the corresponding
1-σ interval values.
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and a. According to the EHT results, the deviation from
circularity ΔC≲ 10% [7–9] or 0.1 for M87*. The density
plot of ΔC for M87* is shown in Fig. 6(a).
From the density plot we observe that for all values of

spin and r2, ΔC < 10% or 0.1 is realized. Thus, the ΔC
estimate for M87* does not give any additional bound on
the dilaton parameter r2. The EHT Collaboration estimates

an upper bound on the axis ratioΔA for the image of M87*,
i.e, ΔA < 4

3
[7–9]. The density plot for the axis ratio ΔA in

Fig. 6(b) indicates that for all values of r2 and a the axis
ratio ΔA < 4

3
. Thus, the EHT estimate of the axis ratio ΔA

for M87* does not provide any additional constrain on the
dilaton parameter r2. It can be said that the axis ratio
estimate allows nonzero values of the dilaton parameter,
although it does not strictly constrain it.
Constrains on the dilaton parameter r2 from EHT

observations of Sgr A*: The EHT Collaboration measured
the angular diameter of the observed ring of Sgr A* to be
Δθ ¼ ð51.8� 2.3Þ μas [13–18]. The critical curve angular
diameter derived from the observed ring is estimated to be
Δθ ¼ ð48.7� 7Þ μas [13]. From the previous discussion
we may recall that the critical curve angular diameter is
offset from the angular diameter of the primary ring by a
factor of α1 ¼ dm

dsh
obtained from a library of simulations

assuming various accretion models [18]. The critical curve
angular diameter is thus model dependent. It turns out
that “the envelope of the 68th percentile credible intervals
across the different methods span[s] 41.7 − 55.6 μas” [18].
Therefore, the model averaged estimate of dsh for Sgr A* is
ð55.6þ 41.7Þ=2� ð55.6 − 41.7Þ=2 ≃ 48.7� 7 μas which
is quoted in Table 1 of [13]. We will constrain the dilaton
parameter r2 based on the angular diameter of the critical
curve, i.e., Δθ ¼ ð48.7� 7Þ μas.
The theoretical angular diameter depends on the massM,

the distance D, the inclination angle θ0, and the metric
parameters r2 and a [see Eq. (50)]. As before, we use
previously measured masses and distances of the source to
compute the theoretical angular diameter which is then
compared with the EHTestimates to establish constrains on

FIG. 5. The above figure demonstrates the dependence of the
angular diameter of the critical curve of M87* on the dilaton
parameter r2 and the spin parameter a assuming distance D ≃
16.8 Mpc and mass M ≃ 6.5 × 109M⊙. This mass is derived by
the EHT team from the observed image assuming GR. Therefore,
we cannot use this mass to constrain parameters of another
alternate gravity theory. The contours withM ≃ 6.5 × 109M⊙ are
plotted for the purpose of comparison and completeness only.

FIG. 6. (a) Figure illustrating the dependence of the deviation from circularity ΔC on r2 and a. Here ΔC has been calculated assuming
the inclination angle θ0 ¼ 17° corresponding to M87*. (b) Figure illustrating the dependence of the axis ratio ΔA on r2 and a. Here ΔA
has been calculated assuming the inclination angle θ0 ¼ 17° corresponding to M87*. The above figure depicts the variation of ΔC and
ΔA for M87* with the dilaton parameter r2 and the spin parameter a.
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r2. We also take into account the effect of errors in mass and
distance of Sgr A* in determining constraints on the dilaton
parameter r2. The angle of inclination has an estimated
upper bound θ0 < 50°) obtained by comparing the image
of Sgr A* with extensive numerical simulations [13].
Following [120] we fix the inclination angle to be θ0 ¼ 46°
in our present work.

In Figs. 7–10 the angular diameter Δθ of the critical
curve for Sgr A* is plotted for different estimates of mass
and distance. The mass and distance of the source
have been well constrained by the Keck team and the
GRAVITY Collaboration. We first discuss the constrains
on r2 assuming distance and mass measurements by the
Keck team [117]:

FIG. 7. (a) The above figure demonstrates the variation of the critical curve angular diameter of Sgr A* with r2 and a assuming
minimum mass M ¼ 3.891 × 106M⊙ and maximum distance D ¼ 8.050 kpc. (b) The above figure demonstrates the variation of the
critical curve angular diameter of Sgr A* with r2 and a assuming central value of mass M ¼ 3.975 × 106M⊙ and distance
D ¼ 7.959 kpc. (c) The above figure demonstrates the variation of the critical curve angular diameter of Sgr A* with r2 and a assuming
maximum massM ¼ 4.059 × 106M⊙ and minimum distanceD ¼ 7.868 kpc. Contour plots for angular diameter of critical curve of Sgr
A* assuming M ¼ ð3.975� 0.058� 0.026Þ × 106M⊙ and D ¼ ð7959� 59� 32Þ pc. In order to compute the angular diameter the
inclination angle is taken to be θ0 ¼ 46°. The critical curve angular diameter (Δθ ¼ 48.7� 7 μas) inferred by the EHT team is
represented by the red contour lines (the red solid line corresponds to the central value while the 1-σ contours are represented by the red
dashed lines).
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(1) Keeping the red-shift parameter free the Keck team reports the mass and distance of Sgr A* to be M ¼
ð3.975� 0.058� 0.026Þ × 106M⊙ and D ¼ ð7959� 59� 32Þ pc, respectively. We take into account the error in
mass and distance in our present analysis. To derive the maximum allowed range of r2 we calculate the theoretical
angular diameter of the critical curve with
(i) ðminimummass; maximumdistanceÞ → ðM ¼ 3.891 × 106M⊙; D ¼ 8.050 kpc ½Fig: 7ðaÞ�Þ.
(ii) ðcentralmass; central distanceÞ → ðM ¼ 3.975 × 106M⊙; D ¼ 7.959 kpc ½Fig: 7ðbÞ�Þ.
(iii) ðmaximummass; minimumdistanceÞ → ðM ¼ 4.059 × 106M⊙; D ¼ 7.868 kpc ½Fig: 7ðcÞ�Þ.

The dilaton parameter required to reproduce the central value of the EHT estimated critical curve angular
diameter of 48.7 μas (denoted by the red solid line in Fig. 7) is 0≲ r2 ≲ 0.1 for the first case [Fig. 7(a)],
0.1≲ r2 ≲ 0.2 for the second case [Fig. 7(b)], and 0.3≲ r2 ≲ 0.4 for the third case [Fig. 7(c)]. The allowed

FIG. 8. (a) The above figure demonstrates the variation of critical curve angular diameter of Sgr A* with r2 and a assuming M ¼
3.904 × 106M⊙ andD ¼ 7.985 kpc. (b) The above figure demonstrates the variation of critical curve angular diameter of Sgr A* with r2
and a assuming M ¼ 3.951 × 106M⊙ and D ¼ 7.935 kpc. (c) The above figure demonstrates the variation of critical curve angular
diameter of Sgr A*with r2 and a assumingM ¼ 3.998 × 106M⊙ andD ¼ 7.885 kpc. Contour plots for critical curve angular diameter for
SgrA* assumingM ¼ ð3.951� 0.047Þ × 106M⊙ andD ¼ ð7935� 50Þ pc. In order to compute the angular diameter the inclination angle
is taken to be θ0 ¼ 46°. The critical curve angular diameter (Δθ ¼ 48.7� 7 μas) inferred by theEHT team is represented by the red contour
lines (the red solid line corresponds to the central value while the 1-σ contours are represented by the red dashed lines).

IMPRINTS OF EINSTEIN-MAXWELL-DILATON-AXION … PHYS. REV. D 109, 044008 (2024)

044008-15



range of r2 is thus 0≲ r2 ≲ 0.4 when the central value of the critical curve angular diameter is considered (i.e.,
Δθ ¼ 48.7 μas). When the 1-σ interval in the angular diameter of the critical curve is taken into account (i.e.,
48.7� 7 μas, denoted by the red dashed lines in Fig. 7), the allowed range of r2 turns out to be (a) 0≲ r2 ≲ 0.8
[Case 1, Fig. 7(a)], (b) 0≲ r2 ≲ 1 [Case 2, Fig. 7(b)], and (c) 0≲ r2 ≲ 1.1 [Case 3, Fig. 7(c)].

(2) When the redshift parameter is fixed to unity the distance and mass estimates by the Keck team yield D ¼
ð7935� 50Þ pc and M ¼ ð3.951� 0.047Þ × 106M⊙ [117] respectively. In order to calculate the theoretical angular
diameter once again we consider
(i) ðminimummass; maximumdistanceÞ → ðM ¼ 3.904 × 106M⊙; D ¼ 7.985 kpc ½Fig: 8ðaÞ�Þ.
(ii) ðcentralmass; central distanceÞ → ðM ¼ 3.951 × 106M⊙; D ¼ 7.935 kpc ½Fig: 8ðbÞ�Þ.
(iii) ðmaximummass; minimumdistanceÞ → ðM ¼ 3.998 × 106M⊙; D ¼ 7.885 kpc ½Fig: 8ðcÞ�Þ.

FIG. 9. (a) The above figure demonstrates the variation of the critical curve angular diameter of Sgr A* with r2 and a assuming
M ¼ 4.249 × 106M⊙ and D ¼ 8.256 kpc. (b) The above figure demonstrates the variation of the critical curve angular diameter of Sgr
A* with r2 and a assumingM ¼ 4.261 × 106M⊙ andD ¼ 8.2467 kpc. (c) The above figure demonstrates the variation of critical curve
angular diameter of Sgr A* with r2 and a assuming M ¼ 4.273 × 106M⊙ and D ¼ 8.2374 kpc. Contour plots for angular diameter of
critical curve of Sgr A* for M ¼ ð4.261� 0.012Þ × 106M⊙ and D ¼ ð8246.7� 9.3Þ pc. In order to compute the angular diameter the
inclination angle is taken to be θ0 ¼ 46°. The EHT inferred critical curve angular diameter (Δθ ¼ 48.7� 7 μas) is represented by the red
contour lines (the red solid line corresponds to the central value while the 1-σ contours are represented by the red dashed lines).
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We first discuss constrains on r2 based on the central
value, i.e., Δθ ¼ 48.7 μas (denoted by the red solid line in
Fig. 8). With minimum mass (M ¼ 3.904 × 106M⊙) and
maximum distance (D ¼ 7.985 kpc), the allowed range of
r2 turns out to be 0≲ r2 ≲ 0.1 [Fig. 8(a)]. When the central
value of mass (M ¼ 3.951 × 106M⊙) and distance
(D ¼ 7.935 kpc) are considered the allowed range of r2
turns out to be 0.1≲ r2 ≲ 0.2 [Fig. 8(b)]. Finally, with
maximum mass (M ¼ 3.998 × 106) and minimum distance

(D ¼ 7.885 kpc) the allowed range of r2 turns out to be
0.2≲ r2 ≲ 0.3 [Fig. 8(c)]. In this case the observationally
preferred range of r2 is thus 0≲ r2 ≲ 0.3 when the central
value of the observed angular diameter is considered. When
the 1-σ interval in the critical curve angular diameter is
taken into account (i.e., 48.7� 7 μas, denoted by the red
dashed lines in Fig. 8), the allowed range of r2 turns out to
be (a) 0≲ r2 ≲ 0.9 [Case 1, Fig. 8(a), and Case 2, Fig. 8(b)]
and (b) 0≲ r2 ≲ 1 [Case 3, Fig. 8(c)].

FIG. 10. (a) The above figure demonstrates the variation of the critical curve angular diameter of Sgr A* with r2 and a assuming
M ¼ 4.245 × 106M⊙ and D ¼ 8.319 kpc. (b) The above figure demonstrates the variation of the critical curve angular diameter of Sgr
A* with r2 and a assuming M ¼ 4.297 × 106M⊙ and D ¼ 8.277 kpc. (c) The above figure demonstrates the variation of the critical
curve angular diameter of Sgr A* with r2 and a assuming M ¼ 4.349 × 106M⊙ and D ¼ 8.235 kpc. Contour plots for the angular
diameter of the critical curve of Sgr A* for M ¼ ð4.297� 0.012� 0.04Þ × 106M⊙ and D ¼ ð8277� 9� 33Þ pc. In order to compute
the angular diameter the inclination angle is taken to be θ0 ¼ 46°. The EHT inferred critical curve angular diameter (Δθ ¼ 48.7� 7 μas)
is represented by the red contour lines (the red solid line corresponds to the central value while the 1-σ contours are represented by the
red dashed lines).
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The above discussion elucidates that in both the mass
and distance measurements by the Keck team (i.e., redshift
parameter free or fixed to unity), when the central values of
the two aforesaid quantities are considered, a nonvanishing
dilaton charge (0.1≲ r2 ≲ 0.2) is required when one
attempts to explain the central value of the EHT estimated
critical curve angular diameter i.e., 48.7 μas. However,
when one takes into account the errors in mass and distance
along with the 1-σ interval in the critical curve angular
diameter, the Kerr scenario is included.
We next discuss constrains on r2 assuming distance and

mass estimates by the GRAVITY Collaboration [118,119]:
(1) According to the results of the GRAVITY Collabo-

ration the mass and distance of Sgr A* turn out to be
M ¼ ð4.261� 0.012Þ× 106M⊙ and D ¼ ð8246.7�
9.3Þ pc [118,119] respectively. As done earlier, we
use this mass and distance along with their 1 − σ
intervals to establish constrains on the preferred
range of r2. Once again, we report constrains on r2
based on the EHT inferred critical curve angular
diameter Δθ ¼ 48.7� 7 μas. The central value of
this observed angular diameter, i.e., Δθ ¼ 48.7 μas
(denoted by the red solid line in Fig. 9) can be
explained by 0.3≲ r2 ≲ 0.4 irrespective of whether
(i) The minimummass (M ¼ 4.249 × 106M⊙) and

maximum distance (D ¼ 8.256 kpc) are con-
sidered [Fig. 9(a)],

(ii) The central value of mass (M¼4.261×106M⊙)
and distance (D ¼ 8.2467 kpc) is considered
[Fig. 9(b)] or

(iii) The maximum mass (M ¼ 4.273 × 106M⊙)
and minimum distance (D ¼ 8.2374 kpc) are
considered [Fig. 9(c)].

Since in this case, the 1-σ intervals associated with mass
and distance are small compared to the central value, the
constrain on r2 (0.3≲ r2 ≲ 0.4) does not vary appreciably
with mass and distance. When one considers the 1-σ
interval in the critical curve angular diameter (i.e.,
48.7� 7 μas, denoted by the red dashed lines in Fig. 9),
the allowed range of r2 turns out to be (a) 0≲ r2 ≲ 1
for Case 1 [Fig. 9(a)] and Case 2 [Fig. 9(b)] and
(b) 0≲ r2 ≲ 1.1 for Case 3, [Fig. 9(c)].
(2) When one takes into account the systematics due to

optical aberrations, the GRAVITY Collaboration
constrains the mass and distance of Sgr A* to
M ¼ ð4.297� 0.012� 0.040Þ × 106M⊙ and D ¼
ð8277� 9� 33Þ pc respectively. Once again, the
theoretical angular diameter of the critical curve is
calculated with
(i) The minimummass (M ¼ 4.245 × 106M⊙) and

maximum distance (D¼8.319 kpc) [Fig. 10(a)],
(ii) The central value of mass (M¼4.297×106M⊙)

and distance (D ¼ 8.277 kpc) [Fig. 10(b)],
and with

(iii) The maximum mass (M ¼ 4.349 × 106M⊙)
and minimum distance (D ¼ 8.235 kpc)
[Fig. 10(c)].

We note that, in order to explain the central value of the
EHT inferred critical curve angular diameter (Δθ¼48.7 μas,
i.e., red solid line in Fig. 10), the required dilaton parameter
corresponds to (a) 0.25≲ r2 ≲ 0.3 for Case 1 [Fig. 10(a)],
(b) 0.3≲ r2 ≲ 0.4 for Case 2 [Fig. 10(b)], and
(c) 0.4≲ r2 ≲ 0.5 for Case 3 [Fig. 10(c)]. The observatio-
nally allowed range of r2 thus corresponds to 0.25≲ r2 ≲
0.5 when the central value of the critical curve angular
diameter is considered. When one takes into account the 1-σ

FIG. 11. (a) Figure illustrating dependence ofΔC on r2 and a assuming an inclination angle of 46° corresponding to Sgr A*. (b) Figure
illustrating dependence of ΔA on r2 and a assuming an inclination angle of 46° corresponding to Sgr A*. The above figure depicts the
variation of ΔC and ΔA as function of r2 and a, for the source Sgr A*.
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interval in the EHTestimated critical curve angular diameter
(i.e., 48.7� 7 μas) the allowed range of r2 turns out to be
(a) 0≲ r2 ≲ 1 for Case 1 [Fig. 10(a)], (b) 0≲ r2 ≲ 1.1 for
Case 2 [Fig. 10(b)], and (c) 0≲ r2 ≲ 1.2 for Case 3
[Fig. 10(c)].
From the above discussion we note that, considering both

the mass and distance measurements by the GRAVITY
Collaboration (with and without optical aberration), the
central value of the EHT estimated critical curve angular
diameter (48.7 μas) can be explained by only nonzero values
of the dilaton parameter (0.25≲ r2 ≲ 0.5). This result holds
even when the errors in the mass and distance are taken into
account. The Kerr scenario is however allowed when the
1-σ error bars in the critical curve angular diameter (i.e.,
(48.7�7 μas) are considered.
Thus, taking into account the mass and distance esti-

mates by both the Keck team and the GRAVITY Collabo-
ration, one may conclude that the image of Sgr A* shows a
preference toward the Kerr-Sen scenario although the
general relativistic case is allowed when the errors in mass
and distance are taken into account or the 1-σ interval in the
derived critical curve angular diameter is considered.
For completeness we plot in Fig. 11 the dependence of

the deviation from circularity ΔC and the axis ratio ΔA on
the metric parameters r2 and a. This is a theoretical plot
which only requires an independent estimate of the
inclination of the source, which is taken to be θ0 ¼ 46°
as discussed earlier. The EHT team has not provided any
data related to ΔA and ΔC for Sgr A*. These results
therefore cannot impose additional constrains on the
dilaton parameter r2 at present. These plots can however
be useful in the future when the EHT releases data
pertaining to ΔA and ΔC for Sgr A*.

V. CONCLUDING REMARKS

In this work we investigate the signatures of EMDA
gravity from the observed images of M87* and Sgr A*.
EMDA gravity arises in the low-energy effective action
of superstring theories, and exploring its astrophysical
implications is important as this can potentially provide
a possibility to test string inspired models. The Kerr-Sen
spacetime corresponds to the stationary, charged, and
axisymmetric black hole solution of EMDA gravity [73].
In our work, we constrain the dilaton parameter r2 (related
to the charge of the Kerr-Sen black hole) by using the
angular diameter of the critical curve (which is derived
from the observed ring) of M87* [7] and Sgr A* [13],
reported by the EHT Collaboration. In the event of a
vanishing dilaton charge, the Kerr scenario is recovered.
The theoretically calculated angular diameter of the

critical curve depends on the mass M, distance D, incli-
nation angle θ0, and the nature of the background space-
time. In this work we assumed the background spacetime to
be described by the Kerr-Sen metric. We used previously
measured values of M, D, and θ0 for M87* and Sgr A* in

our work. The errors in mass and distance are taken into
account while deriving constrains on the dilaton parameter
r2. We however keep the inclination angle fixed to the
central value as the errors in the inclination angle turn out to
be small.
We first discuss the allowed range of r2 from the observed

image of M87*. The observed ring diameter is 42� 3 μas,
while the EHT inferred critical curve angular diameter can be
as small as ð37.8� 3Þ μas.WeusepreviouslydeterminedM,
D, and θ0 forM87* to theoretically estimate the critical curve
angular diameter. The inclination angle of M87* is θ0 ¼
ð17� 2Þ° while its distance is 16.8� 0.8 Mpc. We use
the central value, i.e., θ0 ¼ 17° (see discussion above) and
take into account the 1-σ interval in D in our analysis. The
mass of M87* has been independently estimated based
on stellar dynamics and gas dynamics studies. We note that,
with mass of M87* estimated from gas dynamics studies
(M¼3.5þ0.9−0.3×109M⊙) [8,116] the inferred critical curve
angular diameter of ð37.8� 3Þ μas cannot be reproduced
even when the theoretical critical curve is calculated with
maximummass (M ¼ 4.4 × 109M⊙) and minimum distance
(16 Mpc). Therefore, this mass measurement probably needs
to be revisited.
When the mass of M87* based on stellar dynamics

measurements (M ¼ 6.2þ1.1−0.6 × 109M⊙) is used to compute
the theoretical critical curve angular diameter, (i) 0.8≲
r2 ≲ 1 is required to explain the inferred Δθ ¼ 37.8 μas
when maximum mass (M ¼ 7.3 × 109M⊙) and minimum
distance (16 Mpc) are considered, (ii) r2 ≃ 0 is required,
when the central value of mass (M ¼ 6.2 × 109M⊙) and
distance (16.8 Mpc) are considered, (iii) while no suitable
value of r2 can explain the inferred Δθ ¼ 37.8 μas (even
within 1-σ, i.e, Δθ ¼ 37.8� 3 μas) when minimum mass
(M ¼ 5.6 × 109M⊙) and maximum distance (17.6 Mpc)
are considered. Thus, in this case, the Kerr scenario is
preferred although nonzero dilaton charge is also allowed
when errors in mass and distance are taken into account or
the 1-σ interval in the derived critical curve angular
diameter is considered (see Sec. IV). Here, it may be
worthwhile to mention that the Kerr solution is not unique
to GR but arises even in several other alternative gravity
scenarios [80,81].
The EHT Collaboration has also released the image of

Sgr A* and reported that the angular diameter of the critical
curve derived from the observed ring is ð48.7� 7Þ μas. The
inclination angle of Sgr A* from previous measurements is
θ0 ¼ 46° [120]. The mass and distance of this source are
well constrained by the Keck team and the GRAVITY
Collaboration.
We first report observational constrains on r2 assuming

distance and mass estimated by the Keck team. Keeping the
redshift parameter free, the Keck team reports the mass and
distance of Sgr A* to be M ¼ ð3.975� 0.058� 0.026Þ ×
106M⊙ and D ¼ ð7959� 59� 32Þ pc, respectively.
The dilaton parameter required to reproduce the central
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value of the inferred critical curve angular diameter
(Δθ ¼ 48.7 μas) is 0.1≲ r2 ≲ 0.2 for the central value
of mass (M ¼ 3.975× 106M⊙) and distance (D¼ 7959 pc)
[Fig. 7(b)]. When errors in the mass and distance are
considered the allowed range of r2 turns out to be
0≲ r2 ≲ 0.4. When one further considers the 1-σ interval
in the inferred critical curve angular diameter ð48.7�
7Þ μas along with the errors in the estimated mass and
distance, then the maximum allowed range of r2 turns out
to be 0≲ r2 ≲ 1.1.
When the redshift parameter is fixed to unity, the

distance and mass estimates by the Keck team are D ¼
ð7935� 50Þ pc and M ¼ ð3.951� 0.047Þ × 106M⊙ res-
pectively. As before, we first discuss constrains on r2
assuming Δθ ¼ 48.7 μas. When the central value of mass
(M ¼ 3.951 × 106M⊙) and distance (D ¼ 7.935 kpc) are
considered, the allowed range of r2 turns out to be 0.1≲
r2 ≲ 0.2 [Fig. 8(b)]. With errors in mass and distance taken
into account, the allowed range of r2 becomes 0≲ r2 ≲ 0.3.
When the 1-σ intervals in the mass, distance, and the
inferred critical curve angular diameter ð48.7� 7Þ μas are
taken into account, then the maximum allowed range of r2
turns out to be 0≲ r2 ≲ 1.
We next discuss constrains on r2 assuming distance and

mass estimates by the GRAVITY Collaboration [118,119].
According to the results of the GRAVITY Collaboration, the
mass and distance of Sgr A* turn out to be M ¼ ð4.261�
0.012Þ × 106M⊙ and D ¼ ð8246.7� 9.3Þ pc [118,119]
respectively. Once again, we first report constrains on r2
based on the central value of the derived critical curve
angular diameter (48.7 μas). Our analysis reveals that Δθ ¼
48.7 μas can be explained by 0.3≲ r2 ≲ 0.4 even when 1-σ
intervals in mass and distance are considered. Considering
the 1-σ interval in the angular diameter (Δθ ¼ 48.7� 7 μas)
along with the errors in mass and distance, the maximum
allowed range of r2 turns out to be 0≲ r2 ≲ 1.1.
When one takes into account the systematics due to

optical aberrations, the GRAVITY Collaboration constrains
the mass and distance of Sgr A* toM ¼ ð4.297� 0.012�
0.040Þ × 106M⊙ and D ¼ ð8277� 9� 33Þ pc respec-
tively. In order to explain Δθ ¼ 48.7 μas, the required
dilaton parameter corresponds to 0.3≲ r2 ≲ 0.4 when the
central value of mass (M ¼ 4.297 × 106M⊙) and distance
(D ¼ 8.277 kpc) are considered. Taking into account the
errors in mass and distance, 0.25≲ r2 ≲ 0.5 is required to
reproduce Δθ ¼ 48.7 μas. When one considers the 1-σ
interval in the angular diameter (Δθ ¼ 48.7� 7 μas) in
addition to the errors in mass and distance, the maximum
allowed range of r2 turns out to be 0≲ r2 ≲ 1.2.

Therefore, when the theoretical critical curve angular
diameter is calculated with the central value of all four of
the mass and distance estimates of Sgr A*, a positive
dilaton parameter better explains the central value of the
derived critical curve angular diameter (Δθ ¼ 48.7 μas).
This implies that the observed image of Sgr A* shows a
preference toward the Kerr-Sen scenario although the Kerr
scenario is included when the errors in mass and distance
are taken into account or the 1-σ interval in the derived
critical curve angular diameter is considered.
It may be worthwhile to mention some limitations of

our methodology. First, the critical curve is not directly
observable; it is derived from the observed ring using
various model dependent simulations. Thus, the constraints
on r2 can be further improved, when simulations with
improved models are used to estimate quantities related to
the critical curve. Secondly, we have considered error bars
in mass, distance, and angular diameter of the critical curve
in finding constraints on r2. With more precise measure-
ments (i.e., lower error bars) the constraints on r2 can be
further improved.
The charge of the Kerr-Sen black hole has been con-

strained previously from different astrophysical observa-
tions, e.g., the black hole continuum spectrum [122] and
relativistic jets [123]. A comparison of the theoretical
spectrum of eighty Palomar Green quasars with their
optical observations reveals that r2 ∼ 0.2 best explains
the observations. The general relativistic scenario with
r2 ¼ 0 is however included when the 1-σ interval is
considered [122]. When the jet power associated with
ballistic jets in microquasars is used to constrain the dilaton
parameter, r2 ≃ 0 seem to be favored by observations [123].
The reflection spectrum of black holes has given an upper
bound r2 < 0.011with 90% confidence limit which weakly
favors the Kerr-Sen scenario [91]. Thus, we note that
astrophysical observations, e.g., black hole images, con-
tinuum spectra, or jets either indicate a small/moderate
dilatonic charge in black holes or exhibit a preference
toward the Kerr scenario. The scope to verify this finding
will further increase as EHT releases more black hole
images with greater resolution.
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