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We prove there is a unique vacuum solution in split-signature spacetimes with Kleinian SOð2; 1Þ
spherical symmetry. We extend our analysis to accommodate a positive or negative cosmological constant
and we prove the Kleinian spherically symmetric solutions to Einstein’s equation are locally isomorphic to
the split-signature analogs of Schwarzschild–(anti)-de Sitter or Nariai spacetimes. Our analysis provides a
Kleinian extension of Birkhoff’s theorem to metrics with split signature. Axisymmetric vacuum solutions
are also considered, including (2,2) signature formulations of the Kerr and Taub-Newman-Unti-Tamburino
metrics.
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I. INTRODUCTION

The Birkhoff theorem stands as a cornerstone in the
realm of general relativity, affirming that any spherically
symmetric vacuum solution derived from Einstein’s equa-
tions can be locally equated to a corresponding segment
of the Schwarzschild spacetime. The ubiquitous use of
the theorem along with its multiple origin history are a
testament to its profound importance in contemporary
general relativity and cosmology, and naturally invite
contemplation regarding the theorem’s potential extension
to diverse scenarios within the realm of gravitational
physics and theories of modified gravity.
Birkhoff’s theorem states that the Schwarzschild metric,

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 þ r2dθ2

þ r2sin2θdϕ2; ð1:1Þ

is the unique vacuum solution with spherical symmetry to
the Einstein equations and there are no time-dependent
solutions of this form, as long as t remains the timelike co-
ordinate and r; θ;ϕ remain spacelike. The maximal analytic
extension of the Schwarzschild solution has a nonstatic

interior with spacelike (rather than timelike) Killing vector
field. The theorem generalizes in the case of a nonvanishing
cosmological constant Λ, to the Schwarzschild-(A)dS sol-
utions. The caveat concerning the coordinate t remaining
timelike now extends to the region outside the de Sitter
cosmological horizon which is time dependent. The theorem
is ubiquitously attributed to Birkhoff [1], although it was
discovered earlier by Jebsen [2] and allegedly independently
by Alexandrow [3] and Eiesland [4,5], in various forms (see
e.g. [6,7] for historical accounts).
The analytic continuation from Lorentzian (1,3) signa-

ture to Kleinian (2,2) split signature has proved useful in
the study of quantum field theory and quantum gravity;
for example, as a tool to explore properties of physics
in Lorentzian signature L3;1 [8]. At the level of empty
space, this translates into the analytic continuation from
Minkowski space, M3;1 to Klein space, K2;2. Recently,
studies of black holes written in Kleinian signature have
appeared in the literature, making a complete investigation
of their emergence from the vacuum theory desirable. For
example, it has been shown that linearized black hole
geometries are captured by (2,2) three-point scattering
amplitudes of a graviton and a massive spinning particle.
The solutions include Kerr-Taub-Newman-Unti-Tamburino
(NUT) spacetimes which naturally encompass the
Schwarzschild solution [9,10].
In addition, two-dimensional quantum states associated

to four-dimensional linearized rotating self-dual black
holes in split signature have been shown to be comprised
of global conformal primaries circulating on the celestial
torus, the Kleinian analog of the celestial sphere. This
allows for a direct connection to the S matrix [11].
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In some cases, it was shown that a spin parameter a can
be added to existing solutions via a simple coordinate
change, including self-dual Taub-NUT (SDTN) [10] and
the self-dual analog of Kerr [12]. Furthermore, a double
copy relation between the gluon amplitude on a self-dual
dyon and graviton amplitude on a SDTN spacetime was
discussed in [13]. A possible explanation of hidden
symmetries of rotating black holes via analytic continuation
to Kleinian signature was explored in [14].
Given these advances in Kleinian geometry it is therefore

natural to consider complete studies of black hole space-
times with split signature, including properties of their
uniqueness. In this paper we initiate this effort, and
show that the Kleinian analog of Schwarzschild is the
unique vacuum solution to the Einstein equations with
Kleinian spherical symmetry and there are no time-
dependent solutions of this form, thus generalizing the
Birkhoff theorem to split-signature spacetimes. Spacetimes
with a cosmological constant are also considered and we
show the unique solutions are split-signature versions
of Schwarzschild-(A)dS or Nariai Klein spaces. Finally,
expanding our tolerance to allow for axially symmetric
vacuum solutions, we conjure the Kleinian analog of the
Kerr solution applying the Newman-Janis algorithm to
split-signature Schwarzschild written in Kerr-Schild coor-
dinates, and discuss the Kleinian Taub-NUT solution.
This paper is organized as follows. In Sec. II, we introduce

flat Klein space and our conventions used to transition from
Lorentzian to split-signature Kleinian metrics. In Sec. III,
we study Kleinian vacuum solutions to the Einstein equa-
tions, uncovering the Kleinian Schwarzschild solution. In
a brief discussion of black hole horizon crossing we find
the Kleinian Kantowski-Sachs metric. We then consider
Schwarzschild–(anti)-de Sitter and Nariai generalizations in
the presence of nonvanishing cosmological constant. We
then produce the Kleinian Schwarzschild solution in Kerr-
Schild coordinates and using the Newman-Janis trick we
construct a (2,2) signature Kerr solution. In this family of
metrics with axial symmetry we also discuss (2,2) signature
Taub-NUT space. We conclude in Sec. IV. An Appendix is
included to demonstrate alternative analytic continuations
from Lorentzian to Klein space.

II. KLEIN SPACE

Let us begin with local Cartesian coordinates
xα ¼ ðt; x; y; zÞ, in which the Lorentzian flat spacetime
metric is

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð2:1Þ

Transforming to spherical coordinates, the Euclidean line
element ds2 ¼ gijdxidxj is then fixed by invariance of the
metric on the manifoldM under the SOð3Þ rotation group:
SOð3Þ ×M → M and we find

ds2 ¼ −dt2 þ dr2 þ r2dθ2 þ r2 sin2 θdϕ2: ð2:2Þ

This coordinate transformation is given by

x¼ rcosϕsinθ; y¼ rsinϕsinθ; z¼ rcosθ; ð2:3Þ

with inverse transformation

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

q
; θ¼ arccos

�
z
r

�
; φ¼ arctan

�
y
x

�

ð2:4Þ

and the most general spherically symmetric spacetime
metric is

ds2 ¼ −Nðt; rÞdt2 þ Pðt; rÞdr2 þQðr; tÞdΩ2
L; ð2:5Þ

where dΩ2
L ¼ dθ2 þ sin2 θdϕ2 is the metric on the unit

sphere S2 and N, P, Q are arbitrary functions of the time
and radial coordinate.
It is possible to move from Lorentzian signature metrics

to split-signature (Kleinian) metrics via analytic continu-
ation. We may transition to Klein space in multiple ways.1

We choose to move to split-signature metric via the analytic
continuation

t → it; x → ix; y → iy; ð2:6Þ
so that in Kleinian signature the flat metric (2.1) becomes

ds2 ¼ dt2 − dx2 − dy2 þ dz2: ð2:7Þ

The analytic continuation (2.6) is equivalent to the spheri-
cal coordinate Euclideanization θ → iθ in (2.3), so that
cos θ → cosh θ and sin θ → i sinh θ. We can transform into
coordinates where SOð2; 1Þ invariance is manifest via

x¼ rcosϕsinhθ; y¼ rsinϕsinhθ; z¼ rcoshθ: ð2:8Þ

The inverse coordinate transformation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − x2 − y2

q
; θ ¼ arccosh

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − x2 − y2
p

�
;

ϕ ¼ arctan

�
y
x

�
: ð2:9Þ

The metric (2.7) becomes

ds2 ¼ dt2 þ dr2 − r2dθ2 − r2 sinh2 θdϕ2: ð2:10Þ

Invariance under the action of the Kleinian rotation
symmetry group on the spacetime manifold yields

1An alternative choice of continuation to the one presented
here is provided in the Appendix.
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corresponding infinitesimal motion generated by the com-
plex Killing vector fields

ξx ¼ sinϕ∂θ þ coth θ cosϕ∂ϕ

ξy ¼ − cosϕ∂θ þ coth θ sinϕ∂ϕ

ξz ¼ ∂ϕ: ð2:11Þ

Invariance under Kleinian rotations implies the vanishing
of the Lie derivative Lξgij ¼ 0 along these vector fields.
The commutators of the above ½ξi; ξj� ¼ ϵijkξk form the
Lie algebra of the Kleinian rotation group SOð2; 1Þ, and
thus we have invariance of the metric under the action
ξ∶SOð2; 1Þ ×M → M, of the group SOð2; 1Þ on the
spacetime manifold M. This suggests the most general
Kleinian spherically symmetric metric may be written

ds2 ¼ NðT; RÞdT2 þ PðT; RÞdR2

−QðT; RÞðdθ2 þ sinh2 θdϕ2Þ; ð2:12Þ

where N, P, and Q are scalar functions of T and R only.
We will also abbreviate the angular term in parentheses as
dθ2 þ sinh2 θdϕ2 ≡ dΩ2, the unit radius hyperbolic space
with constant Ricci scalar curvature R ¼ −2. We can make
a diffeomorphism to coordinates where Q ¼ r2 for some
coordinate r: this transforms the metric into

ds2 ¼
�
N þ P

�
∂R
∂T

�
2
�
dT2 þ P

∂R
∂T

∂R
∂r

ðdTdrþ drdTÞ

þ P

�
∂R
∂r

�
2

dr2 − r2dΩ2: ð2:13Þ

Defining new metric profile functions gTT , gTr, and grr, we
see that a Kleinian spherically symmetric metric can also be
written as

ds2 ¼ gTTdT2 þ gTrðdTdrþ drdTÞ þ grrdr2 − r2dΩ2:

ð2:14Þ

Next, we show that this metric can be written in the form

ds2 ¼ nðt; rÞdt2 þ pðt; rÞdr2 − r2dΩ2: ð2:15Þ

If we make the coordinate transformation dt ¼ ∂t
∂T dT þ

∂t
∂r dr on the above line element, we have that

ds2 ¼ n

�
∂t
∂T

�
2

dT2 þ n
∂t
∂T

∂t
∂r

ðdTdrþ drdTÞ

þ
�
n

�
∂t
∂r

�
2

þ p

�
dr2 − r2dΩ2: ð2:16Þ

Matching the above line element to (2.14), we obtain

n

�
∂t
∂T

�
2

¼gTT; n
∂t
∂T

∂t
∂r

¼ gTr; and n

�
∂t
∂r

�
2

þp¼ grr:

ð2:17Þ

These are three differential equations for three unknown
functions tðT; rÞ, nðt; rÞ, and pðt; rÞ, which is enough to
specify each along with supplying initial conditions on t.
The most general Kleinian spherically symmetric metric is
given by (2.15).

III. KLEINIAN VACUUM SOLUTION

We now begin an exploration of Kleinian solutions to the
vacuum Einstein equations Gμν ¼ 0, where as usual Gμν is
the Einstein tensor defined in terms of the Ricci tensor and
scalar, Gμν ¼ Rμν − 1

2
gμνR.

A. Kleinian Schwarzschild

Here we produce the slit-signature generalization of the
Birkhoff theorem, by searching for spherically symmetric
solutions to the vacuum Einstein equations. We substitute
(2.15) into the vacuum Einstein equations Gμν ¼ 0 to
find that

Gtr ¼
∂tp
pr

¼ 0; ð3:1Þ

which implies that p is a function independent of time.
With this condition, no time derivatives of n appear in the
other equations, and this implies that n is independent of
time as well. Gtt ¼ 0 implies that

pðp − 1Þ þ r∂rp ¼ 0; ð3:2Þ

which has the solution p ¼ ð1þ A=rÞ−1 with A a constant.
Additionally Grr ¼ 0 implies that

1 − pþ r∂rn
n

¼ 0: ð3:3Þ

Substituting the solution for p into the above equation
allows us to solve for n: we find that n ¼ B=Aþ B=r with
B a constant. If we impose that the metric reduce to its
flat form (2.10) as r → ∞ then A ¼ B. We discover that
the unique spherically symmetric solution to the vacuum
Einstein equations (2.15) is given by

ds2¼
�
1þA

r

�
dt2þ

�
1þA

r

�
−1
dr2−r2dθ2−r2sinh2θdϕ2:

ð3:4Þ

This is the Kleinian form of the familiar Schwarzschild
metric, as identified through analytic continuation t → it,
θ → iθ and by setting integration constant A ¼ −2m,
returning us to (1.1). Note that in the derivation one has
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the choice of analytic continuation to Klein space and as to
whether the orbit of SO(2,1) is spacelike (as we have done
here), giving the two-dimensional hyperboloid H2, or
timelike [as in the Appendix, see Eq. (A5)], giving two-
dimensional de Sitter spacetime ðdSÞ2.

1. Kleinian Kantowski-Sachs

Here we consider moving across r ¼ 2m in the Kleinien
Schwarzschild black hole solution. In Lorentzian
Schwarzschild spacetime the metric function gtt ¼ ð1 −
2m=rÞ changes sign while passing to the black hole interior
r < 2m. This is related to the changing of the roles of space
and time as seen by the transition of t and r to become the
spacelike and timelike coordinates, respectively. The
interior Schwarzschild metric is not static but rather a
homogeneous and anisotropic Kantowski-Sachs metric,

ds2 ¼ −νðtÞ−1dt2 þ νðtÞdr2 þ h2ðtÞðdθ2 þ sin2 θdϕ2Þ;
ð3:5Þ

with two scale factors, νðtÞ ¼ ðA=t − 1Þ and hðtÞ ¼ t.
Under the analytic continuation leading to (3.4), we see
that crossing r ¼ 2m ¼ −A leads to a Euclidean metric
with signature ð−;−;−;−Þ. This is in stark contrast to
what happens in ordinary Lorentzian Schwarzschild
when crossing the horizon. We note that this transition
to a Euclidean metric does not occur if one chooses to
analytically continue the Lorentzian Schwarzschild to
Klein space via the transformation leading to (A5).
In [10], split-signature linearized metrics were con-

structed from purely on-shell radiative modes. Under the
analytic continuation used above, the Kleinian traced-
reverse linearized metric has a real integrand, and ulti-
mately reduces to a convergent Gaussian integral (in the
region of interest). In contrast, under the continuation
leading to (A5), the integrand for the metric is imaginary
and oscillates, requiring an iϵ prescription for convergence.
We leave further physical interpretation of this phenome-
non to future work.

B. (A)dS generalization

If we allow for a nonzero cosmological constant, then the
Einstein equations state Gμν þ Λgμν ¼ 0. We proceed as in
the previous section and substitute the Kleinian spherically
symmetric metric (2.15) into the field equations. The
equation Gtr ¼ −Λgtr implies that ∂tp ¼ 0, as before; this
further implies that ∂tn ¼ 0 from the other field equations.
The equation Gtt ¼ −Λgtt demands that

pðp − 1Þ þ r∂rp ¼ Λpr2: ð3:6Þ

This has the solution p ¼ ð1þ A=r − Λr2=3Þ−1. Then the
Grr ¼ −Λgrr field equations imply that

1 − pþ r∂rn
n

¼ −Λpr2: ð3:7Þ

After enforcing that n → 1 as r → ∞ as before, this has the
solution n ¼ 1þ A=r − Λr2=3 ¼ p−1. The unique solution
with metric ansatz (2.15) and nonzero cosmological con-
stant is then

ds2 ¼
�
1þ A

r
−
Λ
3
r2
�
dt2 þ

�
1þ A

r
−
Λ
3
r2
�

−1
dr2

− r2dθ2 − r2sinh2θdϕ2; ð3:8Þ

which is the Kleinian Schwarzshild-(A)dS solution corre-
sponding to asymptotically anti-de Sitter/de Sitter space
for Λ < 0 or Λ > 0, respectively.

C. Kleinian Nariai

There is one further possibility to consider. Returning to
our general metric (2.5) in Kleinian signature

ds2 ¼ Nðt; rÞdt2 þ Pðt; rÞdr2 −Qðr; tÞdΩ2; ð3:9Þ

where again dΩ2 ¼ dθ2 þ sinh2 θdϕ2. The Einstein equa-
tion for this metric along with vacuum energy support,
Gμν þ Λgμν ¼ 0, gives

ṖQ0

2PQ
þ N0Q̇
2NQ

þQ0Q̇
2Q2

−
Q̇0

Q
¼ 0; ð3:10Þ

−
N
Q
−
NP0Q0

2P2Q
−
NQ02

4PQ2
þ NQ00

PQ
þ Ṗ Q̇
2PQ

þ Q̇2

4Q2
¼ −NΛ;

ð3:11Þ

−
P
Q
þ N0Q0

2NQ
þ Q02

4Q2
−
PṄ Q̇
2N2Q

−
PQ̇2

4NQ2
þ PQ̈
NQ

¼ −PΛ:

ð3:12Þ

The aforementioned case of interest occurs when the
Kleinian sphere orbits of the SOð2; 1Þ isometry have the
same constant radius of r ¼ ffiffiffiffi

Q
p

. A detailed discussion
may be found in [15]. In this case from (3.11) with constant
Q we find

Q ¼ 1

Λ
: ð3:13Þ

We further discover

N ¼ P−1 ¼ 1 − Λr2; ð3:14Þ

which gives the Kleinian analog of the Nariai spacetime,
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ds2 ¼ ð1 − Λr2Þdt2 þ ð1 − Λr2Þ−1dr2
− Λ−1ðdθ2 þ sinh2 θdϕ2Þ; ð3:15Þ

whose corresponding Lorentzian metric analog is only well
defined for Λ > 0.

D. (2,2) signature Kerr

We now discuss the case of nonzero angular momentum
with spin parameter a. We will arrive at our solution
using arguments analogous to the Newman-Janis algorithm
[16] and it is instructive to reformulate our Kleinian
Schwarzschild Birkhoff argument of Sec. III using Kerr-
Schild coordinates.

1. Kleinian Kerr-Schild coordinates

The metric (2.15) may be put into Kerr-Schild form [17],

gμν ¼ ημν þΦkμkν; ð3:16Þ

where kσ is a null vector and for our purposes Φ is a
function of r. For this discussion we will move to split
signature with the continuation: θ → iθ and ϕ → iϕ, which
allows for a real Kerr-Schild null vector and a real metric.
This is equivalent to analytically continuing z → iz in
Cartesian coordinates leading to flat space metric (A1).2 We
will use the coordinate transformation convention (2.8).
Taking the null vector

kσ ¼ ð1; 1; 0; 0Þ; ð3:17Þ

we see kμkμ ¼ 0 with respect to both the flat metric,

ds2 ¼ −dt2 þ dr2 − r2dθ2 þ r2 sinh2 θdϕ2; ð3:18Þ

and the full Kleinian Kerr-Schild metric (3.16), having line
element

ds2¼−dt2þdr2−r2dθ2þr2 sinh2θdϕ2þðdr−dtÞ2ΦðrÞ:
ð3:19Þ

Note the appearance of cross terms drdt in the metric
remains compatible with spherical SOð3Þ symmetry. With
this ansatz we compute the Ricci scalar R and set it to zero
as is appropriate for a vacuum solution,

R ¼ Φ00ðrÞ þ 2ðΦðrÞ þ 2rΦ0ðrÞÞ
r2

¼ 0; ð3:20Þ

where prime denotes differentiation with respect to r.
We find the solution for Φ is

ΦðrÞ ¼ c1
r2

þ c2
r
: ð3:21Þ

Further demanding the vacuum condition on the Ricci
scalar Rμν ¼ 0 yields c1 ¼ 0. Hence, setting c2 ¼ A we
find the Schwarzschild solution written in Kerr-Schild
form with

ΦðrÞ ¼ A
r
; ð3:22Þ

and the Kleinian Schwarzschild metric written in Kerr-
Schild coordinates is thus

ds2 ¼ −
�
1 −

A
r

�
dt2 þ

�
1þ A

r

�
dr2 − r2dθ2

þ r2 sinh2 θdϕ2 − 2
A
r
drdt: ð3:23Þ

The curvature invariants computed from (3.23) are identical
to Eq. (A6). The familiar Lorentzian Schwarzschild metric
in Kerr-Schild form is recovered from the above by taking

ðϕ → iϕÞ; ðθ → iθÞ; ð3:24Þ

and is given by line element

ds2 ¼ −
�
1 −

A
r

�
dt2 þ

�
1þ A

r

�
dr2

þ r2dθ2 þ r2 sin2 θdϕ2 − 2
A
r
drdt: ð3:25Þ

2. Kleinian Kerr solution

Having discovered Kleinian Schwarzschild in Kerr-
Schild coordinates, we may now formulate the Kerr
solution in (2,2) signature, by employing the Newman-
Janis trick [16] compexifying z → z − ia, so that the
Kerr-Schild scalar for Kleinian Schwarzschild becomes

Φ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 − y2 þ ðz − iaÞ2

p : ð3:26Þ

Introducing oblate spheroidal coordinates

xþ iy ¼ ðrþ iaÞ sinh θeiϕ; z ¼ r cosh θ; ð3:27Þ

the generating Kerr-Schild scalar is given by

Φ ¼ A
rþ ia cosh θ

: ð3:28Þ

We define

2An alternative choice of continuation leading to a complex
Kerr-Schild null vector and complex metric is presented in the
Appendix.
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α ¼ ReΦ ¼ A
2

�
1

rþ ia cosh θ
þ A
r − ia cosh θ

�

¼ r
r2 þ a2 cosh2 θ

; ð3:29Þ

β ¼ ImΦ ¼ A
2i

�
1

rþ ia cosh θ
−

A
r − ia cosh θ

�

¼ −a cosh θ
r2 þ a2 cosh2 θ

; ð3:30Þ

which yields the Kerr space-time in Cartesian Kerr-Schild
form with

Aα ¼ 2mr
r2 þ a2 cosh2 θ

¼ 2mr3

r4 þ a2z2
; ð3:31Þ

where A ¼ 2m and Kerr-Schild metric

gμν ¼ ημν þ
2mr3

r4 þ a2z2
kμkν ð3:32Þ

with null vector in terms of the coordinates introduced in
Sec. II,

kσ ¼ i

�
1;
xrþ ay
r2 þ a2

;
yr − ax
r2 þ a2

;
−iz
r

�
: ð3:33Þ

This concludes our derivation of the Kleinian Kerr solution.

E. (2,2) signature Taub-NUT

As a second example of a stationary axisymmetric
spacetime we consider Lorentzian Taub-NUT [18,19]
given by

ds2 ¼ −fðrÞðdt − 2N cos θdϕÞ2 þ dr2

fðrÞ
þ ðr2 þ N2Þðdθ2 þ sin2 θdϕ2Þ; ð3:34Þ

where

fðrÞ ¼ r2 − 2mr − N2

r2 þ N2
: ð3:35Þ

In the abovem is the Arnowitt-Deser-Misner mass and N is
the so-called NUT charge. We may transition to Klein
space via the complex rotations (A10) along with N → iN
to arrive at the Kleinian Taub-NUT line element

ds2 ¼ fðrÞðdt − 2N cosh θdϕÞ2 þ dr2

fðrÞ
− ðr2 − N2Þðdθ2 þ sinh2 θdϕ2Þ: ð3:36Þ

For an extensive analysis of this space see [10]. Let us focus
on the (anti)-self-dual case where m ¼ �N, so that

fðrÞ ¼ rþm
r −m

: ð3:37Þ

The metric for the self-dual case m ¼ þN becomes

ds2 ¼ r −m
rþm

ðdt − 2m cosh θdϕÞ2 þ rþm
r −m

dr2

− ðr2 −m2Þðdθ2 þ sinh2 θdϕ2Þ: ð3:38Þ

Interestingly, taking r→ r−m puts the SDTN metric (3.38)
in the form

ds2 ¼
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 − r2dθ2 − r2sinh2θdϕ2 − 4m

�
1 −

2m
r

�
cosh θdtdϕþ 2mrdθ2

þ 2m

�
2m

�
1 −

2m
r

�
cosh2θ þ rsinh2θ

�
dϕ2: ð3:39Þ

Glancing back at (3.4), we see that the SDTN may be
written as ordinary Kleinian Schwarzschild (identifying
A ¼ −2m) plus additional terms given by the second and
third lines of (3.39). The additional terms are made of
the cross term gtϕ and an extra gθθ and gϕϕ piece, breaking
the Kleinian spherical symmetry of (3.4). Remarkably, the
curvature invariants for (3.39) are identical to (A6), and
unlike the Kerr metric, depend only on the r coordinate. Of
course, the above metric is Ricci flat Rμν ¼ R ¼ 0. All
components of the Riemann tensor and curvature invariants
go to zero as r → ∞.
As a final comment we note that, unlike their electro-

magnetic linear counterparts, Lorentzian (real) gravitational

solutions are not in one-to-one correspondence with self-
dual solutions. However, for Kerr-Schild spacetimes there
is a simple correspondence between real vacuum solutions
and self-dual spacetimes due to the Einstein equations
linearizing for Kerr-Schild metrics. This fact was empha-
sized in [12], which also presented a self-dual version of the
Kerr solution.

IV. CONCLUSIONS

We have completed a study of the uniqueness of Kleinian
black hole solutions with maximally symmetric vacua.
A comprehensive study of Kleinian vacuum solutions is
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essential, given that split-signature metrics and their asso-
ciated properties have emerged as a rich and prominent
subject of study in contemporary physics. In this paper we
have demonstrated that there is a uniqueness theorem for
SOð2; 1Þ symmetric metrics in Kleinian signature analo-
gous to Birkhoff’s theorem in Lorentzian signature.
In vacuum, the unique Kleinian-spherically symmetric

metric is a complexified version of the Schwarzschild
metric. In a spacetime with nonzero cosmological constant,
the unique solution is generalized to a complexified version
of Schwarzschild-(A)dS or Nariai space. Additionally, we
have written down the unique metric form in Kerr-Schild
coordinates, and through the Newman-Janis transform we
were able to construct the Kleinian Kerr metric. Finally we
considered Kleinian Taub-NUT showing that it can be
written as Kleinian Schwarzschild with additional terms,
further enriching our understanding of axisymmetric sol-
utions in split signature. A natural continuation of this work
would be to extend the analysis to Kleinian electrovac
solutions and we leave such exploration to future research.
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APPENDIX: ALTERNATIVE ANALYTIC
CONTINUATION

An alternative choice of continuation from Lorentzian
metric (2.1) to Kleinian space is the minimal complex-
ification on z → iz alone, so that flat Klein space is given
by metric

ds2 ¼ −dt2 − dz2 þ dx2 þ dy2: ðA1Þ

We transform to spherical coordinates with

x¼ rcosϕcoshθ; y¼ rsinϕcoshθ; z¼ rsinhθ: ðA2Þ

The inverse coordinate transformation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − z2

q
; ϕ ¼ tan−1

y
x
;

θ ¼ sinh−1
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 − z2
p : ðA3Þ

The flat space metric is then

ds2 ¼ −dt2 þ dr2 − r2dθ2 þ r2 cosh2 θdϕ2: ðA4Þ

Under this continuation the Kleinian Schwarzschild
metric is

ds2 ¼ −
�
1þ A

r

�
dt2 þ

�
1þ A

r

�
−1
dr2

− r2dθ2 þ r2cosh2θdϕ2: ðA5Þ
Naturally, the choice of transformation does not matter
for the spacetime structure and corresponding curvature
invariants for either analytic continuation prescription are
equivalent. Some quadratic, cubic and quartic curvature
invariants are found to be

RμνσρRμνσρ ¼ 12A2

r6
;

Rμν
αβRαβ

ρσRρσ
μν ¼ −

12A3

r9
;

∇αRβγσρ∇αRβγσρ ¼ 180A2ðAþ rÞ
r9

;

RαβγρRαβγ
σRμνκ

ρRμνκσ ¼ 36A4

r12
: ðA6Þ

As another example of alternative continuations, the
arguments leading to the Kleinian Schwarzschild solution
in Kerr-Schild coordinates of Sec. III D 1 are easily
repeated using an alternative analytic continuation. One
may journey to Klein space via the continuation t → it,
θ → iθ, thusly accommodating a complex null vector:

kσ ¼ ði; 1; 0; 0Þ ðA7Þ

so that kμkμ ¼ 0 with respect to both the flat metric (2.10)
and the full metric (A8). Our Kleinian Kerr-Schild line
element from (3.16) is now the complex metric

ds2¼dt2þdr2−r2dθ2−r2 sinh2θdϕ2þðdrþ idtÞ2ΦðrÞ:
ðA8Þ

The Kleinian Schwarzschild metric written in Kerr-Schild
form under the above continuation reads

ds2 ¼
�
1 −

A
r

�
dt2 þ

�
1þ A

r

�
dr2 − r2dθ2

− r2 sinh2 θdϕ2 þ 2iAdrdt
r

: ðA9Þ

The curvature invariants computed from (A9), Eq. (A6)
remains identical. The real Schwarzschild result (3.25) is
recovered from the above by taking

ðt → itÞ; ðθ → iθÞ: ðA10Þ
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