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In this paper, we study the tidal effects in the gravitationally bound two-body system at next-to-next-to
leading post-Newtonian order for spinless sources in massless scalar-tensor theories. We compute the
conservative dynamics, using both a Fokker Lagrangian approach and effective field theory with the
post-Newtonian effective field theory formalism. We also compute the ten conserved quantities at the same
next-to-next-to leading order. Finally, we extend our results from simple scalar-tensor theories to Einstein-
scalar-Gauss-Bonnet gravity. Such results are important in preparation of the science case of the next

generation of gravitational wave detectors.
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I. INTRODUCTION

Gravitational wave astronomy is becoming a mature
field, nourished by the current and future gravitational
wave experiments such as LIGO-Virgo-KAGRA, LISA, or
the Einstein Telescope. To accompany the development of
the field, it is crucial to provide the community with all the
necessary tools to achieve a very high standard science
interpretation. Among this, one will explore the strong-field
and highly dynamical regime of gravity which will allow us
to test fundamental physics.

Compact binary systems are the most common sources of
gravitational waves, and their detection and parameter
estimation heavily rely on our ability to model their wave-
form at a very high precision. To test our gravitational
paradigm, such a program should be done not only in general
relativity (GR) but also in a representative selection of
alternative theories of gravity. In this work, we focus on
the scalar-tensor (ST) class of theories in which a single
massless scalar field is introduced in addition to the gravi-
tational field [1]. Although such a class is wide, with many
different models that can usually be classified in the Dege-
nerate Higher-Order Scalar-Tensor (DHOST) theories [2],
we will focus here on the simplest one, namely, the
generalized Brans-Dicke theories [3]. However, we will
see that our results can easily be extended to other theories,
such as Einstein-scalar-Gauss-Bonnet gravity [4].

Gravitational wave modeling in scalar-tensor theories
has been developed for the different phases of the coa-
lescence for several years. The merger part is being tackled
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using different numerical relativity approaches [5-10].
On the analytical side, which is used to model the inspiral
phase, results have now reached a high post-Newtonian
(PN) accuracy. Hence, the dynamics is now known at
3PN order,1 while the waveform and flux have been
obtained at 1.5PN order’ [11-13]. In particular, tidal
effects have also been investigated and derived at leading
order [14]. Note that all these results were first obtained in
the generalized Brans-Dicke (BD) framework and then
extended to other theories like Einstein-Maxwell-Dilaton or
Einstein-scalar-Gauss-Bonnet (EsGB) for which only the
leading-order correction was necessary to achieve the same
accuracy [15-20].

The purpose of this work is to compute the tidal effects at the
next-to-next-to-leading order (NNLO). Tidal effects are par-
ticularly interesting in ST theories as they start at 3PN order
compared to SPN order in GR. This is due to the presence of a
time-varying dipole moment that generates a scalar-induced
tidal deformation of compact objects. The motivation to go to
the NNLO is to reach a level where the gravitationally induced
tidal deformations start contributing [21].

After a short subsection on the notations, the rest of the
paper is organized as follows. First, in Sec. II, we present
the massless-scalar-tensor theories that will be studied
through this work. Then, in Sec. III, we explain how the
post-Newtonian formalism is adapted to the treatment of

'"We call nPN order the 2nth order in an expansion in 1/c,
namely, nPN = O(ﬁ)

’In scalar-tensor theories, the leading-order flux is at -1PN
order compared to GR due to the presence of dipolar emission.
In this paper, we choose to refer PN orders with respect to
the leading GR contribution. For example, 1PN order in the
flux corresponds to 2PN order beyond the leading-order ST
contribution.
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tidal effects in ST theories, and we present in Sec. IV an
alternative calculation based on the PN effective field
theory (EFT) formalism that we used to check our results.
In Secs. Vand VI, the NNLO Lagrangian and the conserved
quantities are respectively presented. Before concluding,
the short Sec. VII explains why our results are also valid for
EsGB gravity. The paper ends with some Appendixes
presenting technical details. We have relegated most of
the lengthy results to the supplemental material [22].

A. Notations

In this section, we present the notation that will be used
throughout the paper. Some quantities are related to ST
theories and their generalized PPN parameters, while others
are linked to compact objects and binary systems:

(i) We adopt the convention that the leading-order
contribution due to tidal effect, which is formally
at 3PN order, is noted as leading order (LO). The
higher-order corrections will be called next-to-
leading order (NLO) and NNLO, and they respec-
tively correspond to 4PN and 5PN orders.

The two masses are indicated by m; and m,. We
denote by y,(7) the two ordinary coordinate trajec-
tories in a harmonic coordinate system {z,x}, by

(i)

TABLE L

v,(t) = dy,/dt the two ordinary velocities, and by
a,(t) = dv,/dt the two ordinary accelerations. The
ordinary separation vector reads n1, = (y; —¥2)/ 712,
where r, = |y; —¥,|; ordinary scalar products are
denoted by parentheses, e.g., (nppv) =n, - vy,
while the three-dimensional Dirac function is de-
noted 6°)(x), and its value at the position y, is
written 6, = 6)(x —y,). We denote by L =
iy -+ i, a multi-index with ¢ spatial indices; V; =
V,; ---V, and so on; similarly, n, =n; ---n;,.
To express quantities in the center-of-mass (CM)
frame, we introduce the notations n = nyy, r = 1|,
and define the relative position x = y; — y,, velocity
v = v{ — ¥,, and acceleration a = a; — a,; we pose

= (vv) =v-v and i = (nv) =n-v. In the CM
frame, we use the total mass m = m; + m,, the
reduced mass y = m;m,/m, the symmetric mass
ratio v =u/mel0,1/4], and the relative mass
difference 6 = (m; —m,)/m €0, 1[. Note that the
symmetric mass ratio and the relative mass differ-
ence are linked by the relation 5> = 1—4v. To reduce
our expressions in the CM frame, we define con-
venient combinations of the tidal deformabilities,
namely,

(iif)

Parameters for the general ST theory and our notation for PN parameters.

ST parameters

General wy = (D(Qbo), w/o = g—“’ ‘¢ b’ " = ?;7“2’ ‘qb:qba’ ¢ = %, G = PGy
_ G(4+2wy) !
G ¢0<3+2”Z)) ’ C T 442wy
2 = £ do Jy =& w‘ — ¢ do
L 0= dp lp=1” 1 (1=0) dg? 37 0-04dg’ =1
[1 < 2] switches the particle’s labels (note the 1ndex on the 4;’s is not a particle label)
Sensitivities _ dinm,(¢) (k) _ d"inm,(¢) _
Sa—w|¢:¢o, Sa —Wb’:%, (@a=1,2)
s, =54, st = s, s = sy,
Sy="m, So=a
Order PN parameters
N a=1-=C+¢(1=25)(1 =2sy)
1PN 7=—2%(1-2s5)(1-2s,), Degeneracy a(2 +7) = 2(1 = ¢)
él a%(l = 255)% (4 (1 = 251) +2Ls1),
Pr= a%(l =2s51)* (4 (1 - 232) + 2{s5),
B, = ﬁl;/jZ i B = b ;/32.
2PN 5 = %(1 2s)2 5, = —C> (1-2s,)2, Degeneracy 165,6, = 7>(2 +7)?
5, = 5 ;52 5 — 1252’
= 5(1=280)%[(Ao = 423 + §A) (1 = 25y) — 60457 + 28757,
7o = (1= 251 [(% = 447 + C2)(1 = 25) = 60415 +2£7s5),
7 _ —)?v

7)(1+)(2
2

X+ = -
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&0 =228 g1 - as)e £
mp § my

n m n

=2 (1= 0) (1= 250)(1 = ¢+ ¢(1 = 25,))0

(iv) Finally, to later present our results, following
Ref. [11], we introduce a number of ST and post-
Newtonian parameters. The ST parameters are
defined based on the value ¢, of the scalar field
¢ at spatial infinity, on the Brans-Dicke-like scalar
function w(¢) and on the mass -functions m,(¢).
We pose ¢ = ¢/¢y. The post-Newtonian para-
meters naturally extend and generalize the usual
PPN parameters to the case of a general ST theory
[23,24]. All these parameters are given and sum-
marized in Table L.

II. MASSLESS SCALAR-TENSOR THEORIES

A. Gravitational action

We consider a generic class of scalar-tensor theories in
which a single massless scalar field ¢ minimally couples to
the metric g,,. It is described by the action

o(¢)

C
— — 7}
Ssr 162G g [(f’R — g aa¢aﬁ¢
+ Sm(m’ gu/})’ (2)

where R and g are, respectively, the Ricci scalar and the
determinant of the metric; w is a function of the scalar field;
and IN stands generically for the matter fields. The action
for the matter S,, is a function only of the matter fields and
the metric.

Equivalently, one can consider the same theory in
another frame, the Einstein frame, which is more practical
to perform the computations. We consider the following
conformal transformation for the metric and the redefinition
of the scalar field as

— _9
g;w - (pgﬂw @ _%

After some integration by parts, the action becomes
3
GF __ C ¢0 4 —| ~ 1~ ~ o~

_3+20(¢)
2¢*

(3)

gaﬁaa(oaﬂqo:| + Sm(m’ g(lﬂ)’ (4)

(1 — 252)62/1( ")

l = n
", (1 - 2S1)(31/1g ),

1—¢€(1 — 4+ L(1=2s))%,
) iZ—;(l 00 =2s)(1=C+c( =25 (1)

where we have introduced a gauge fixing term, « g, v
withI[V = §°T 1o to enforce working in the harmonic gauge.

B. Matter action

To study the tidal effects, we will consider finite-size
objects and go beyond the point-particle approximation that
is commonly used. Following the post-Newtonian effective
field theory approach, we model the coupling to matter by a
worldline action describing the coupling of the two objects
to gravity. First, as is usual in the PN formalism, we start
with the point-particle action

Spp = _CZ /drama(¢)7 (5)

a=12

where dr, is the proper time of particle a along its

—(9)a ”ifz. We have
also introduced a dependence of the masses on the scalar
field, m,(¢), in order to take into account the internal self-
gravity of each object with respect to the scalar field [25].

Then, going beyond the point-particle action, we con-
struct a tidal action, decomposed as

worldline y%, defined as dr, = cdt

Stidal - ng) + Sg) + SEg_S) (6)

The first piece of Eq. (6) encodes scalar-induced tidal
effects, i.e., the response of each object with respect to an
external scalar field. Still using the EFT approach, we
consider the action for the scalar tidal contribution

s =Y [ g, )

a=1.2

where L = p; - - - y; is a multi-index. We have introduced
the projection onto the hypersurface orthogonal to the four
velocity, namely, Vi = (&, +u,u”)V, and V; =V ... V..
The coefficients /1{1 are the lth order scalar tidal deform—
ability parameters. As for the masses, we have added an
explicit dependence in ¢ to describe their internal response
to the scalar field. In the following, we set 1,(¢) = A (¢)

and p,(¢) = Xa(d).
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Through the second piece of Eq. (6), we also model the
gravitational tidal effects, i.e., the usual gravitational
response of each object with respect to the companion
body. Following the approach [26] pioneered by Ref. [27],
the corresponding action is given by

dr, <= 1 .

Sﬁf) = E /—c E 2_“|:C£1(¢)GLGIJ

a=12 =2 <"
[

+mdi(¢)HzHﬁ]- (8)

G; and H; are the tidal moments whose expressions read

«  _ _ 29l L 0o
Gy . =—c [V<ﬂ1...V”I_QC”H/_WP,,]uauu, (9a)

a _ 3v7L 1 * P,
Hf ., =2c [V<ﬂl...VM_ZCﬂH,_,m>,,]uaua, (9b)
with C,,,, the Weyl tensor and C,,,, = 3 €,,1.C* ,,, Where

€, denotes the completely antisymmetric Levi-Civita
tensor. This action is formally the same as GR, with
{cg),dy)} being, respectively, the Ith-order mass-type
and current-type tidal deformability parameters and where,
once again, we have introduced an explicit dependence on
the scalar field. In our case, as we are interested in the
NNLO tidal effects with respect to the leading-order scalar
contribution, it will be sufficient to consider the mass
quadrupole tidal moment only, defined as

(G/w)a -

Note that in this definition the Weyl tensor in Eqgs. (9) has
been replaced by the Riemann tensor. This is due to the
fact that the traces of the Riemann tensor do not impact
the dynamics, as proved in Appendix B of Ref. [26]. In
other words, using both definitions yields the same
equations of motion for the system. As only the mass-
type quadrupolar deformation will contribute at the
NNLO, we set c,(¢) = c2(¢).

Finally, by adding the third piece of Eq. (6), we also
introduce gravitoscalar tidal effects, i.e., the possibility to
have a mixing between scalar and gravitational tidal effects.
Such effects were already mentioned in Ref. [28]. The
action is

—(R ugus. (10)

Mﬂ”")a a

s =1
S ==Y [ an > ph@GETEe), (1)
=2 "

a=1,2

where /,(¢) is the Ith-order gravitoscalar tidal deform-
ability parameter and possesses, as the other parameters, an
explicit dependence on the scalar field. As for the purely
gravitational case, only the / = 2 mode contributes to the
NNLO dynamics, so we will restrict to this case in the
following and use the loose notation v,(¢) = v2(¢).

At this point, a clarification on the different frames is
needed. In our formalism, we have coupled the matter fields
directly to the (Jordan-frame) physical metric, the possible
matter interaction being relegated to the dependence of the
mass and tidal parameters on the scalar field. However,
as will be clearer in Sec. IV, the definition of scalar and
gravitational perturbations and the rest of the calculation
are done in the conformal (Einstein) frame. As a conse-
quence, it will introduce additional couplings between the
matter and scalar fields as well as a mixing of the different
type of tidal deformability parameters. In other work, such
as Ref. [28], the coupling to matter is directly performed in
the Einstein frame; hence, no such mixing is appearing. We
will come back on this point in Sec. VIIL.

III. POST-NEWTONIAN FORMALISM

To derive the equations of motion for each object, we
follow a Lagrangian approach, often referred to as the
Fokker Lagrangian approach [29]. We remind the reader
here the main steps for such a construction:

(i) Starting from the action (4), we derive the field
equations for the metric and the scalar field pertur-
bations, displayed in Egs. (13).

(i) We solve iteratively these equations up to a certain
PN order, determined by the Fokker approach. Here,
as we are interested only in the correction due to
tidal effects, it is sufficient to know the point-particle
contributions to the metric and scalar field pertur-
bations; see Appendix A.

(iii) We inject these solutions in the total action up to
the required order. It results in a generalized
(Fokker) Lagrangian that depends not only on the
positions and velocities of the particles but also on
their higher-order derivatives. The result is presented
in Sec. V.

(iv) Varying the generalized action with respect to the
position of the particles, we obtain the equations of
motion for each particle. In Sec. VI B, we display the
resulting tidal correction to the equations of motion
after reduction to the center-of-mass frame at the
LO and NLO, and we relegate the NNLO result to
Appendix C.

In the following subsections, we give more details on the
implementation of the PN formalism in ST theories.

A. Field equations
First, after introducing the conformal gothic metric
g =+/—3§3", we define the scalar perturbation y and
the metric perturbation A** as
w=¢-—1, and h" =g —np", (12)
where 7 is the Minkowski metric. Then, from the
harmonic gauge-fixed action (4), we get the field equations
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162G

N (13a)
872G

D’?W: _7TS’ (13b)

where [, denotes the ordinary flat space-time d’ Alembertian
operator. The source terms read

4
o — % Jgl(T + AT#) LA, (14a)
¢ 4 ’
== e VAT (5 05) ) g

(14b)

The nonlinearities in the source terms are encoded by A** and
A, whose explicit expressions can be found in Ref. [13]. In
Eq. (14), we have introduced the classical matter stress-

88, . . .
energy tensor TH = \/L__g = the tidal correction to this tensor

AT = 2 ‘ZS idal - and thelr respective contractions with the
metric T = gﬂ,,T’“’ For convenience, we have also defined
d_T — aT(g;wv‘p) — _5Sudal
W= 00 |y 4 AS = 5750

The point-particle contribution to the stress energy tensor
T reads

ﬂv (3)
T x) = Y el 53(";__;3(‘)). (15)

a=12 gﬂyva vy /c?

Then, we expand the mass m,(¢) around the asymptotic
value of the scalar field at infinity, ¢,. Using the defini-
tion of the sensitivities and higher-order sensitivities of
Ref. [30],

) _ d" ' nm,(¢)

a = ) 16
dln¢n+l ( )

‘1/7450

we obtain, at the minimal order required for this work,

2 / 2
Sa+8q— sa)l//

) = ma |1+ 545

1
+e (s +3sls, —38), + 53 — 3852 + 25,

+ 0(1,/4)] (17)

As explained at the beginning of Sec. III and in
Appendix A, only the point-particle solution is required
to compute the NNLO tidal correction to the dynamics.
Hence, we do not display here the explicit expressions for
AT* and AS. They can be found in the forthcoming

companion article [31] in which we compute the NNLO
gravitational and scalar fluxes and waveforms. Similarly to
the mass, we expand the tidal deformation parameters as a
function of the scalar perturbation y as

(n) o (n)

o (n)
cald) = Doy (18)

B. Metric and scalar-field decomposition

To solve the field equations, we further decompose
the metric and the scalar field in terms of PN potentials
that obey flat d’Alembertian equations [32]. We start by
decomposing the metric perturbation in its component
= (K% O pif), where A% = h% 4+ hit, which are
in turn decomposed in terms of some PN potentials. The
same applies for the scalar perturbation y; see Egs. (20).
The next step is to determine the minimal order that is
required in order to get the dynamics at the NNLO in the
tidal effects. Following Ref. [26], we start by noticing that it
is enough to solve the point-particle field equations (i.e.,
neglecting the tidal corrections to the potentials) in order
to get the corrections to the Lagrangian due to tidal effects.
See Appendix A for the full reasoning. Hence, the poten-
tials will be sourced by the point-particle matter action (5)
only, and the tidal corrections will come from the injection

of these field equation solutions into Sy, = Sl(cg) + Sﬁf) +

Ség_s) . Furthermore, to get the NNLO corrections for tidal
effects, we formally need to know the metric and scalar
field up to 2PN beyond the leading order, i.e., to order
(W00 pO hiisy) = O L '5, '6, 6) However, as the lead-
ing term is sourced only by the scalar field, see Ref. [14],
such a high order is only required for the scalar field, while
one can go to one lower PN order for the metric compo-
nents. At the end, we get that we should know the metric
and the scalar field at the orders

G 1 1 1 1
hOOll’hOl’hlj; =0 — === . 19
( v) A3 Ao (19)
Using the standard PN decomposition, we introduce the

potentials (V, Vi, W) and (W), w(1)) to parametrize the
metric and scalar perturbations [11,32],

, 4 8 1
I/lOO” = —?V—FVZ—FO(E), (203)
‘ 4 1

. 4 (. 1. . 1
hV = —? <W” —5511W> + O(E)» (200)
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. 2 2 ¢Oa)6 )
= c? Vot ct ( 34 2w, Y
1 4 4o,
—=Z(1=
TE 73 < 34 2wp
o(=4H@p)* + (3 + 2wp)wp)\ 5
3 o TV

(20d)

with W = W;;. Each PN potential satisfies a flat space-time
wave equation

OV = —-4zGo, (21a)

OV, = —42Go;, (21b)
OW,; = —42G(o;; — 8;j01) — 0; VO,V

= (3 + 2w0) 0w (0)9% (o) (21¢)

Uy ) = +4xGo, (21d)

1

Oy (1) = +162Go,W — 4 (4V,-0,,»1//<0) +2W,;0,% o)
R 1.
(21e)

where we have introduced the compact-support matter
source densities in the point-particle approximation

1 TOO + Tii 1 T()i 1 Tij
C=—"—5—>5—, 6i=——5—, 0;= :
bop® bop® T o’

(22a)
1 —
6y = —— V9 (T - 2(,)—). (22b)
c*Po /(3 + 2wp) (3 + 2w) g

Among these potentials, only (1), which has a noncompact
support source, is new to this paper. Note that the deri-
vatives in Egs. (21e) should be understood as Schwartz
distributional derivatives [33]. Solving these equations does
not introduce new difficulties, and it was achieved using the
techniques already introduced in the literature [32]. In
Table I1, we summarize the orders at which each potential is

TABLE II. Summary of the PN potentials and their required
order for the computation of the NNLO tidal corrections in the
Lagrangian.

\4 Vi Wi V(o) W1
N X X X X X
1PN X X
2PN X

needed in order to derive the Fokker Lagrangian up to the
NNLO in the tidal effects.

We then inject the gravitational and scalar solutions in
the total action in order to get a generalized Lagrangian that
depends on the positions and their successive derivatives.
As we are interested in the tidal corrections only, it is
sufficient to incorporate the point-particle (p.p.) solutions in
the finite-size actions (7), (8), (11). We present the result of
the calculations in Sec. V.

IV. ALTERNATIVE DERIVATION:
PN EFT FORMALISM

In parallel to the traditional post-Newtonian calcula-
tion presented in Sec. III, we have also computed the
Lagrangian using an EFT method [34]. In addition to
paving the way to perform other heavy calculations with
this method, it provided us with an additional check of our
PN results. We recall here the main steps of the EFT
framework and explain how to adapt it to a ST theory.
The core of the calculation, namely, the calculations of
Feynman rules and diagrams, are, respectively, put in
Appendix B and in the supplemental material [22].

Our goal is to work with a worldline theory and
canonically normalized bulk fields so that we can exploit
the PN EFT machinery [35-37]. Specifically, in addition to
the conformal transformation (3), we perform a redefinition
of the scalar field,

v o 342w ¢
= _1/—2 ln¢0, (23)

pl

where we have introduced the effective Planck mass M2, =

P
g;"z;’ following closely the EFT vocabulary but replacing the
gravitational constant by an effective one, % As before, we

expand all the field-dependent couplings around the
asymptotic value ¢, with respect to the canonically
normalized field y, ending up with the following action,
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) } 2 12/df May\/ = (gﬂy)avavaz ( >

(o9

xn(

Zv
—n

4./ ~M§71~ 1~y

V1", ERVES n
3 Gt (- ) B S ()
a=12 G VaVq =0

Y i Ot

VuyViy 1 / (0)
RSO T LA S PO R S
akt ) a
a=1 2/ M.Dl 411:1»2 3+ 20 Mpl (e_ 3*2"0“”’900)
_. /2 v /2 v
0 0,9, (6 ooty ?Joo) o ( ooty 900)
£ 3 [y (24)

2 b
(V)

where, only in this section, we have set ¢ = 1. Note that, for the last three terms we are displaying only the leading-order
contribution needed for this work. From the two last terms in Eq. (24), we directly observe the mixing between the different
kinds of tidal deformability parameters. In particular, the purely gravitational contribution will also contain terms
corresponding to purely scalar and gravitoscalar interactions. The coupling constants, x,, d,,, and f,, are given up to the
order needed for our calculations by the expressions

2 1+n/2 1 (m) m ln—l(_l)l
n <3+2w0> n;( )"y ¢ (;F(I)F(l—i—m—l)) orn=2 X (25)
and
(a) .
(@) _ dn 2\ ey
" 2" \3+42wy) 0 ’
d? =25, -1,
d\¥ = 45, + (25, — 1),
d = 85" + 125,(25, — 1) + (25, — 1)3, (26)
wa) _ o) 2 \M/2 (a)
n — Jn :11
o () s
(1)
(@) _ a
fi @%4'5/2,
“ e ()
/s 450"‘6 0 ¢0+25/4 (27)

instead of the perturbation £**. We derive all the
Feynman rules with respect to the scalar, vector, and tensor
modes of the Kaluza-Klein decomposition and the canoni-
cally normalized massless scalar field y, that we introduced
earlier, which can be found in Appendix B. For complete-
ness, we have also put all the Feynman diagrams and their
values in the supplemental material [22].

Summing together all the diagrams, we get the NNLO
tidal Lagrangian computed from EFT techniques. First, to

The action (24) is the starting point to develop the
machinery of the PN EFT formalism. To do so, we also
perform a Kaluza-Klein decomposition of the metric as

by
. ) e

-1 2A;/M

Py

24;/M,; e Ty —4AA;/ M2,

where y;; = 6;; + 0;;/A. In the following, we will work
with the Kaluza-Klein gravitational fields, (qbg,Al-,aij),

absorb terms nonlinear in the accelerations, we add a
double-zero term of the form [38]
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2.2
G /12 f() ( ) ) (Zna (2na na]l“o)

—a% -a50) +[1 + 2], (29)

where a'-© denotes the replacement of the LO equations of
motion (EOM).

Then, to compare directly our results at the level of the
Lagrangian, we need to make another operation. Indeed, in a
separate computation within PN EFT, we have computed the
2PN-order Lagrangian in the point-particle approximation
in ST theories [39]. We found explicitly that in order to bring
the 2PN ST point-particle Lagrangian to the form displayed
in Ref. [12], we have to add a double-zero term of the form

aGmymyr | LO
Tnl - nay

G
AOMIM (o k0, (30)

where the constants are defined according to Table I. Such a
double-zero term, when we include the tidal effects to the LO
EOM, contributes to the NNLO tidal Lagrangian as

5L2PN —

— (15 + 8)

~(1)~(2), G° 0)%(1) (2
SLIN = 207~ 2V a?) Z m3a” 7y @2

+ m%ﬂ(zo)f(()z)(agl))z] |:m1”al — mpna,

Gmlmz

2

+2

(1+ 2215”215”)} (31)

Finally, after taking into account the above contribution, we
find complete agreement for the Lagrangian computed with
the traditional PN formalism.

V. NNLO CONSERVATIVE LAGRANGIAN

The Lagrangian describing the conservative dynamics of
compact binary systems in ST theories at 3PN order in
harmonic coordinates and the leading-order scalar tidal
correction have been previously derived in Refs. [11,14].
In the present work, we have pushed the computation of the
tidal correction up to the NNLO associated to the 2PN
dynamics. The resulting Lagrangian is displayed below. As
explained in the previous section, it has been obtained both
with the traditional PN formalism and the most recent PN
EFT one. The resulting Fokker Lagrangian is a generalized
one, meaning that it is a function of the positions yi,(7), the
velocities v/, (¢), and also of the accelerations @/,(¢) and their
successive derivatives. To get a Lagrangian that is at most
linear in the acceleration, we have applied a reduction
procedure which consists in iteratively adding total time
derivatives, to remove the dependence in higher-order
derivative of the acceleration, and double-zero terms, to
remove terms nonlinear in acceleration [38]. After this
procedure, the Fokker Lagrangian in its reduced form is
completely equivalent to the original one, meaning that they
both yield to the same equations of motion in a harmonic
gauge. We write the total Lagrangian as
L =L3N+ Liga. Leaa = Lio + Lnio + Lanio.  (32)
where LPN is the 2PN-order Lagrangian in the point-particle
approximation in ST theories displayed in Ref. [12]. The
NNLO result is further split in increasing powers of G as

=0 (2 ~37 (3 a4y (4
Lawio = GPLG 0 + GPLGno + GLGuo.  (33)

The complete result for each component is then

a?G? -2l m
Lio= 734 mlmzl—_é,—zazi” +[1 <2, (34a)
&)
BG ¢ <0 (4mmy*(7 = 4p,) (5= 42)(1 =252\ , 2{m*8,02i” (1 = 25,)
L S P (34 . -2
NLO c4r1251—C( 7’)[21 ( 7(2+7) nmy < T14¢ )) 1+ ¢
2G> ¢
ArA €m2262/1( )<—2(”1201)2+”%"‘4(”12111)(”121)2) "‘2(’712”2)2) +[1 < 2], (34b)
1=
(0) 2 2
2) oo ol L o, 08(I=2s) o (C(1=25)\*\3 _, ¢
L@ = S L R s 2 B M (S 22 I 1+ (1-2
NNLO — @M |:r126 (Cl Vi 1 =2z, 2\ 1-2es, 8( +7) +1—C( 52)
—¢

crid1—

§52/1( ) <2 (—2(0201)(”121}1) + 7(azn1y) (n1201)* = 2(anin)vi + 2(nipv1)(az02) + 2(a0) (n122,)

— 12(ayn12) (n1p01) (n1202) = 2(ay02) (n1202) 4 7(aan 1) (n1202)* +4(azny) (viv,) — 2(“2"12)”%)

1
+4— {4(”1201)21}% — v} = 8(n1pv1) (n1202) v = 24(n1v1)? (n1202)? + 12(n1p07)? v + 48(n1vy ) (n1202)?
2

+16(n1201) (n1202) (v1v2) — 16(n1202)* (01 0) — 16(”12”1)(”12”2)”%})} +[1 < 2], (34c)
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LI(\?IEILO = Cﬁcr{—;sl—fé, (2+7)8, [/150> <m1m22 <— (437 —;?;z_z; 80P2) (npv1)? + 7 ;?;72—1—4;7)16/}2) v
30y —;(1267:? ;; 40/_7)2) (n1201)(n1p0y) — 4(;37? (n12v2)* = % (v10y) — 24137)
+my? <—(”12”1)2 ‘f%”% (2?2;_’_6;;7)(”12”1)("1202) —% (n1202)* = %(vwz)
e ).

¢
1-¢

. -
4 a ¢ |0 a4 3\ 6
L1(\1121L0206hz6 1-¢ [’15 ) (’"12”122 (}’(2+7’)2 (2—0—2—07> -

—|——m23¢0/1(11)(1 —2s,) (‘2(”12”1)2 + 07 4+ 9(n1p01) (n1202) = 2(n1202)* = (v 0,) + ”%)} +[1 < 2], (34d)

227% +127° 4374~ 16078, +207°B, + 160(B,)* +8077>)

57 )

5 1 . _ 13 3
+m24<_(52)2(1_C)C(4§+21¢2_58€/11+40(/11)2—8/12)+52(2+7)2<—Z+m<5€—4ﬁl)(l—2sz))>
+mymy? <(52)2ﬁ6(72+8[32)(55—4x])(1 ~2s1)+5, (_7972 +417° +87°/1 —6742% 247, + 645,

+1i_§52¢oﬂ§” <—4m2452(§6g_5/11)+3(2+7)2m24(1_2s2)+6(2+7)m1m23(;—4ﬂ2)(1—2s2)>
+]_j§mz4(52)2¢02/1§2>] +1<2]. (34e)

Note that the tidal corrections in the Lagrangian do not show directly the PN order to which they contribute. This is a well-
known feature already in GR that comes from the fact that the tidal parameters (4,, u,, v, ¢,) are dimensionful parameters.
It can be better understood by a simple scaling argument. The couplings (A, u,, v, c,), respectively, scale as

(ML?>, ML*, ML?>T?, ML>T?). It leads us to define the dimensionless parameters,

Substituting these parameters in the Lagrangian and using
GaM,
R,
the leading-order contribution of each family of tidal

parameters is indeed O(C—l6 , C% , C% , C—}O) as expected. Hence,

we have computed the correction to the p. p. Lagrangian up
to the NNLO, i.e., SPN order.

We have performed a number of consistency checks
on our results. First, the leading-order Lagrangian (34)
is in total agreement with the leading-order result from
Ref. [14]. Then, by taking the GR limit, i.e., when w, —
oo and ¢y — 1, we have verified that we retrieve the LO tidal
correction in GR computed in Ref. [26]. Finally, we have
checked that the equations of motion for each particle, derived
from the Lagrangian (32), are indeed Lorentz invariant. To
keep this paper short and readable, we have relegated the

the compacity argument, namely, that ~ 1, we see that

0) G(Z

=5 (35)

result for the equations of motion in harmonic coordinates
up to the NNLO in the supplementary material [22].

VI. NOETHERIAN QUANTITIES
AND CENTER-OF-MASS FRAME

In this section, we aim at computing the ten conserved
Noetherian quantities, namely, the energy E, the linear and
angular momenta P’ and J', and the boost K*. We then use
them to define the center-of-mass frame by solving G' = 0
where G is the center-of-mass position. We finally reduce
the expressions of the relative acceleration and the con-
served quantities to the center-of-mass frame. We start by
briefly recalling the reasoning to derive such quantities.

In Sec. V, we have obtained the Lagrangian up to the
NNLO as a function of only the positions y’,(), velocities
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vi (1), and accelerations @’ (). If we consider an infinitesi-
mal transformation for the body A at some time ¢, namely,
Sy, (1) =y, (1) — y,(t), the Lagrangian should transform at
linear order as

_do

SL
sL="215"%5 5v2), 36
dt+25ya Va + O(8y2) (36)

where the function derivative 6L/8y, is zero “on shell.”
The quantity Q is defined as

0 = [(pabya) + (qudv,)], (37)

where pi, and ¢/, are, respectively, the conjugate momenta
to the positions and velocities, namely,

. oL oL d (oL
PSS T o i (wa) (38)
. oL oL
= = —. 39
4a dal, dal, (39)

The Lagrangian is invariant under the Poincaré group.
Hence, under arbitrary infinitesimal time translation
St = 7, spatial translation 8y, = ¢/, and spatial rotation
8y, = w';yl, we have SL = 0. This yields to the conser-
vation on shell of the energy and the linear and angular
momenta, defined as [40]

E= Z[(pava) + (qaaa)] —L. (40)

Pi=>"pi,. (41)

T = e3> [(Pava) + (qava)]. (42)
|
GLO:O’
: ?G? 2 -0
Mo = iy A e 2,
; 2G> 4

NNLO C6r123 1 - C

+20(
2

G ¢

In addition, the Lagrangian is also invariant under an
infinitesimal Lorentz boost. At the linear order in the boost
velocity W', the transformation of the body trajectories reads

. . 1 .
8yl = =Wt — = (Wr,) v, + O(W?), (43)
C

where r, is the distance between the field point and the body a.
Following Ref. [40], under such a linear transformation, there
should exist a functional Z' such that 6L = (WdZ/dt) +
O(W?) plus some “double-zero” terms which give zero on
shell by the Noether theorem. The transformation (43) is
associated with the conservation of the Noetherian integral
K' = G' — P't, where P! is the linear momentum (41) and G*
stands for the center-of-mass position,

- o .
G'=-72+) <—q2 + 3 [(Pava)ya

T (quan)yh + <quva>vz;]). (44)

The existence of such a boost symmetry of the Lagrangian is
confirmed since our equations of motion at the NNLO in the
tidal effects are Lorentz invariant, as mentioned in Sec. V.

In the following, we present the results for the NNLO tidal
correction to all the conserved quantities. To stay concise, we
are only displaying the center-of-mass position G’ in generic
harmonic coordinates while the relative acceleration a’, and
the conserved quantities (E, J%), will be given only in the
center-of-mass frame. The results in the generic coordinates
are displayed in the supplemental material [22].

A. Center-of-mass frame

First, using Eq. (44), we have obtained the position of the
center of mass at NNLO and in a generic harmonic frame,

(45a)

(45b)

125,29 [2n12"<7<num>2 — 202 — 14 (o) (npa0a) + S(1202)? + 4(010) — 20)

—2(n1p01)* 4 07 + 4(n1p01) (n1203) 4 2(n120,)?) = 401" = 02°) ((n1a01) = (”12”2))]

06”1241—C 4

- 2+7)(1-2 e
+52(’{)0/1(11)’”234'( 7)( S2)>+)’_1(52/1§0)

-1+¢ 12

+ my? <—3(2+7) — (5¢ —44) irc

e 2(137 + 872 + 8f
— [mzl (52/120) (mlmz (137 :’_ 87+ 86) +

my? (%(—16 —137) + (5¢ - 4,11)(2—4—77)(;2sz)>>

2(-1+9¢)

_dmymy* (7 = 4p,)

2+7)( =25

v

>> — 1o my? K+~ 2S2))] +[1 2. (45¢)

—1+¢
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We note that at leading order the center of mass is zero and
the first correction enters only at NLO. From this, we
determine the center-of-mass frame by solving the equation
G' = 0 iteratively at each PN order. We obtain the positions
% ey in the center-of-mass frame as

View = (% + I/P) n'r +vQv, (46)
. m] . .
V5w = (_W—’—MP) n'r+vQuv'. (47)
|
PLO == 0,
()CZG2 —C (0)
Prro = Wl——ém(/w)) —064:),
P = 20 &
NNLO ™64 2(=1 4 ¢)
G ¢

2
6P«4+om{y

Dividing the quantities P and Q into a 2PN point-particle
contribution and a tidal one, P = Popy + Piga and Q =
Qopn + Qiiga- The point-particle results up to the 2PN
order Popy and Q,py can be found in Ref. [12], and we
display here the tidal corrections up the NNLO, further
dividing Pgye and Qgga as

Piidga = Pro + Pxro + Panros (48)
Qiidal = Qro + Onro + Onnio- (49)
We then get
(50a)
(50b)

m[v?((=7 = 60)A0 = 5(1 = 60)AY) + (nv)2(2(11 + 100)A0 + 28(—1 + 60)A'V)]

1., - ) B}
—[(16B+ =27 — 37> — 16578 + (64p+ + 127 + 127*)v) A0

+ (=165 + (168" + 547 + 3572)8 + (—645~ — 876)1)A")]

(24 7) (44 (AQ = 40A© = SADY 4+ £(5(=1 + 40)A© + 56AY + 26 (=1 + 4)AD + A1)

+

—1+¢

and
Qo =0, (51&)
Ono =0, (51b)
G 4
Oxnio = Wﬁm(nv)ﬂ@ (51c)
, a?G*m 8¢ o) .
demio = —_in

- n
B 1=

; a?G* ¢
a = —
CM,NLO C4I"5 1— é_,’

G ¢ 2 i

} (50¢)

We have introduced some plus and minus quantities for
the ST and tidal parameters as defined for the notation in
Sec. TA.

B. Acceleration in the CM

Once we have determined the coordinates in the center-
of-mass frame, we can inject it into the relative acceleration
a' = a} — a5. In the CM frame, we get up to the NLO

(52a)

—>_mln'(12(nv)2 (829 = 202”) = 202(52©) +32'Y — 12027)) = 4(nv) v’ (52O 4 2 — 402 D)]

Ars20-¢" " 7

| S(247)(44(=6A0 + A +2(56A0 +2¢05A0 = 5AY —2,A1))

805720 . (80B+ — 967 — 4772 — 5271) A s <(80/§+ +167+ 157220 Soﬁ—zﬁ)))

4 4

—1+¢

] . (52b)

The expression for the NNLO tidal correction to the relative acceleration is displayed in Appendix C 1.
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C. Conserved quantities in the CM

1. Energy

In the center-of-mass frame, the conserved energy at NLO is given by

a?G*m?v 2L

Elo=—"tY =
LO Czr4 1= é, + (533)
202
Enio = 28 8 n(n0)2 (<4510 + 80A) + 02(619 + (=1 + 2)2%)]
A 2(1-0)
3603 B R = + _ n-
@G ¢ [ 8B (65" +72+37)8) ) 165+ — 7(10 + 37) 800
' 1-¢ 7 2y 2y 7
RS (=8A0) + A 4 ¢(56A0) + 2¢,5AD — 5AY — 2p AV ))} (530)
2(-14¢) '

Again, to lighten the main text, we have relegated the NNLO tidal contribution to the CM energy in Appendix C 2

2. Angular momentum

Finally, the tidal correction to conserved angular momentum in the center-of-mass frame up to the NNLO can be

written as

i —
‘]tidal -

where (n x v)! denotes a vector product and with

(Jro + Inio + Innio) (n X v)', (54)

jLO = 07 (553)
@G> ¢ 2 (0) (0)
\7NLO = Wl—_cm l/<—5/1_ + (1 - 21/)/1_;,_ ), (SSb)
j G ¢ 2 2 (0) 0
JTinio = EEEET v(2(nv)?(8(21 + 80)A9) + (23 + 60 — 2002)Ay) + v?(=5(11 + 61)A0)
30 B B+ = =2
—(13-8u+ 18y2)/1<+())))+a6G4 0 H (6+7)5+ <487ﬂ L 166 “;”37 >5>y}z<_0)
. _
+{2_7+( 3(16p +5y2y+33y ﬁ >U+8U}
L 2D+ (44, (=M + Ay + 5(55 AO 4 25p,A0) — 540 — 2¢0A$>))} (550)
—1+¢ '

VII. TIDAL EFFECTS IN EINSTEIN-SCALAR-
GAUSS-BONNET THEORY

While our results have been computed within the simple
framework of generalized Brans-Dicke theories, see Sec. 11,
it can easily be generalized to more involved theories. An
example that has been extensively studied in the past years
is Einstein-scalar-Gauss-Bonnet theory, which arises as a
low-energy limit of several quantum completions of grav-
ity, see Refs. [41-43]. An interesting feature of these
theories is that black hole solutions are different from that
of GR, having nontrivial scalar solutions [44].

In these theories, the scalar field is nonminimally
coupled to gravity through the Gauss-Bonnet topological

invariant, Rgy = R* — 4R, R + R,,,,R**°. The action is

c? 4
— _ (lﬂ A~ A A 2
167rG/d xy/=g[R = 29" 04ropypr + af () Rigg]

+ S8 [m, A (i) gp) (56)

SEsGB =

where a is the coupling constant and has a dimension of
[length]?. The action is directly in the Einstein frame with a
canonical kinetic term for the scalar field and a coupling to
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TABLE IIL

Translation map for tidal coefficients between simple ST and EsGB theories.

Simple ST-Refs. [11-13]

EsGB—Refs. [17,20,44]

LO /L(lo) fT% /1510)\EsGB
(1) A3
MO Aa 8703 (}“‘(?>\E5GB(2% —Sag) = A’E'U\ESGB)
2
NNLO Aa 16(14 (/1 [EsGB (35(10 24ﬂ0 + 8/0 Zﬂ() ) + /‘L( )|EsGB(12aO _ S/jo) + /1( )\ESGB)
(0) A3
Ha 4(1(2) (/42 )\EsGB + 20pc I/L )\ESGB - a%czcﬁl >\EsGB)
(0) A (O 0
va - ﬁ (VEI )\EsGB - OCOCEI )\EsGB)
CS’()) A?)C ((10) [EsGB

matter through the conformal metric A*(f)g,s. As dis-
played in Appendix A of Ref. [45], the action (56) has been
obtained from Eq. (2) by using the redefinitions

w = Az(l/?)g/wv (57)
34 20(¢) = <d;}/’4> ” (58)

where A = 1/1/¢. Note that in this section we call Gy the
metric associated to the ST action (2) in the Jordan frame
and g, the metric associated to the EsGB action (56) in the
Einstein frame. As for the scalar fields, ¢ is the same as the
one displayed in Eq. (2), and we call y the scalar field in
the EsGB theory.

EsGB _
SPP -

a=

_|_UESGB( )(VL )a fal/)’ -

where dr, = A(y)ds, and we have added the super-
script (EsGB) to the masses and tidal deformability
parameters to indicate that they are not the same as in
the rest of the paper. Notably, we use the definition
mCB () = A(@)mST(¢) [45], which highlights the fact
that in this section the matter is coupled to the Einstein
frame metric.

Using the results obtained in the present paper, one can
directly get the NNLO order for tidal effects in EsGB
gravity. To do so, one needs to translate the notation in the
present work to the one used in Refs. [17,45]. Such a map
has already been computed and can be found in
Appendix A of Ref. [45], in which the point-particle

/dS mEsGB
1,2

, c 1
=5y fa {xESGB< TV, + 3

1 G
2 EsGB (l//)G /3 } ,

In recent years, waveform modeling in EsGB theories
has been developed for all the stages of the coalescence.
Advances in the well-posed formulation of initial condi-
tions have allowed performing numerical simulations and
studying the merger of these objects [8,46—48]. Results for
the inspiral evolution of compact binaries have also been
obtained, relying on the fact that the leading-order correc-
tion due to the new GB term is at 3PN order [15—20,45].3
Hence, using previous results in “simple” ST theories and
adding only the leading-order correction allows having the
full dynamics at 3PN order and the waveform up to 2.5PN
order, including the leading tidal effect.

Following the convention in Ref. [20], the matter action
can be further decomposed in a point-particle part and a

tidal one, SESCB = SESGB + SE;GB, with

@) (V) (VL)

(60)

|
Lagrangian at 2PN order is presented for EsGB in
Appendix B. Also, the leading-order tidal correction was
derived in Ref. [20] for EsGB and was found to be in
perfect agreement with Ref. [14]. To derive such a result to
the NNLO, we need to extend the map for the tidal
coefficients. The result is presented in Table III. At this
point, we stress that the parametrization used in Ref. [20] is
not exactly the same as in Ref. [45]. In this section, our
results are presented using the parametrization and the ST

Formally, corrections from the Gauss-Bonnet invariant scale
as -5, but as a has a dimension of [length]?, it reduces to a 3PN
correction when introducing a dlmenswnless coupling constant.
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coefficients introduced in Ref. [45]. However, as the latter
work did not focus on tidal effect, the tidal deformation
parameters are the ones introduced in Ref. [20] or in
Eq. (3.12) of Ref. [28] for the higher-order ones. Note that
there is some mixing between the different types of Love

|

number. This is due to the fact that we are coupling the
matter to the metric in different frames.

To illustrate the use of this map, we present the LO and
NLO tidal corrections to the acceleration in the CM frame
in EsGB:

i GhLM 0 0 ;
4CMLOJESGB — czlzirS [~(-1+m_+ 2’/)52/15 >\ESGB + (1 +m_ - 2’/)51’1(2 )\EsGB]n ’ (61a)
4 _ GLM? [ ([ 80p~ —80p" — 10271, = 7771, N 5(16p~ — 165" + 2715 — 373,)m_
CMNLOIESGB = 046 87712 8712
+8 8 —+— )52’1(1 )\EsGB
v 2
15 _ 5 _ 32 +712)d) =32+ 712)m_a)
+ (g (24 712)ad - 3 2+ 712)m_ad =& P 2 52’1(11)\ESGB
N (80,8‘ + 804" + 10271, + 7773, N 5168~ + 168+ — 271, + 373,)m_
8712 8712
1(=56 -31 +1(=56 = 317;,)m_ 13
g( 712) +5( 712) +_y>5 /1& )‘EBGB
v 2
5 32 +7)d) +3 2+ 7)m_a) ;
(— (2 + ]/12 a, + = 3 (2 + }’12)m a? 8 L 9 51121)“550]3 n'
‘ 3 3m_ 243m_

+ 4 5 |:7’ll (((3 -2 2 + 6l/) 52150)‘ESGB + <3 -2 2 + 6U> 51/’1'20)ESGB> (nv)2

ctr v v

75 I—im_ 0 75 T+im_ 0

+ ((E—Em_ -2 2 —61/>52/15 >\ESGB + (2+2m -2 2 _6U>51/1<2)ESGB> 712>
+ (1 —m_— 4”)52’1(10)\303 + (14 m_—40)8,45 Esc) (1) ] (61b)

The full result for tidal effects in ESGB gravity at NNLO
can be found in the supplementary material [22]. As
expected, the leading-order correction (61) agrees with
Ref. [20], while the higher-order results are new to this paper.

An important point is that there are no specific corrections
coming from the Gauss-Bonnet term as, mimicking the
reasoning performed for tidal corrections in Appendix A,
such a correction would enter at the order O(ezq®) which is
at least a second-order correction.”

VIII. CONCLUSIONS

Tidal effects are one of the most promising tool to
perform tests of gravity with the next generation of
gravitational wave detectors. Indeed, when an additional
scalar field is present in a theory, it will induce a varying
dipole moment that will in turn induce a tidal deformation

“Note, however, that, strictly speaking, it is not really the case,
as in EsGB the scalar charge is sourced by the Gauss-Bonnet
term.

|

of the other body. Such an effect starts at 3PN order, a much
lower effect than in GR, which makes it very important to
include these new effects with a sufficient accuracy.
Notably, by taking into account current constraints on
the ST parameters, coming from the nonobservation of
dipolar emission, it was shown that such an effect could
contribute up to O(1) cycle in the waveform for suitable
binaries in the LISA band [14]. In the case of EsGB, it is
even more important to take those effects into account as
one expects black holes to have a scalar hair and hence to

have nonvanishing tidal Love numbers.
In the present work, we have tackled this program up to

the NNLO in the dynamics both in generalized BD theory
and in EsGB gravity. Such an accuracy allowed us to reach
the order at which the usual gravitational tidal deform-
ability enters. In a subsequent work, we will extend our
result to the computation of the fluxes and waveform
modes at the same NNLO in the tidal corrections [31]. It
will then permit us to perform a more quantitative analysis
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of the impact of tidal effects based on the comparison
between waveforms.

An important other direction to be taken is to compute
the value of the scalar and gravitational Love numbers for
realistic models of compact objects in these theories. Such a
program has been initiated in Ref. [28]. Notably, the
authors found that the / = 1 scalar Love number can be
comparable to the gravitational one, showing the impor-
tance of introducing such terms in the waveforms.

ACKNOWLEDGMENTS

L.B. and S.M. acknowledge financial support by the
ANR PRoGRAM project, Grant No. ANR-21-CE31-
0003-001. L. B. and E. D. acknowledge financial support
from the EU Horizon 2020 Research and Innovation
Programme under the Marie Sklodowska-Curie Grant
Agreement No. 101007855. L.B. and E.D. are also
grateful for the hospitality of Perimeter Institute
where part of this work was carried out. Research at
Perimeter Institute is supported in part by the
Government of Canada through the Department of
Innovation, Science and Economic Development
Canada and by the Province of Ontario through the
Ministry of Colleges and Universities. This research was
also supported in part by the Simons Foundation through
the Simons Foundation Emmy Noether Fellows Program
at Perimeter Institute.

APPENDIX A: THE FOKKER APPROACH

In this Appendix, we present the Fokker reasoning in the
case of a tidal perturbation with respect to the point-particle
contribution. Our goal is to show that it is sufficient to solve
the point-particle field equations [i.e., Eqs. (13), in which
we neglect the tidal contributions] in order to derive the
NNLO tidal corrections to the Fokker Lagrangian. We start
with the action
Sb’a’ Vg hv W] = SST[yw Va, h’ W] + Spp[yav Vg, hv l//]

+Stidal[ya7va’h’l//]’ (Al)

where S;;q, 1s the tidal action defined by Eq. (6). By varying
the action (Al) with respect to the metric and scalar
perturbations, and solving iteratively the field equations

oS
%[yav/ua’ h’l//] =0, (A2a)
oS
- b a’ h? - 0’ Azb
o Va: vas by (A2b)
we obtain the solutions
h = hyy + hiigars (A3a)
v = l//pp + Ytidal - (A3b)

Their tidal correction should be at least of order

00ii 7,01 o, _ tidal ©tidal Ctidal , “tidal
(Miidats iidar Pridar’ Weidal) = O( 2B A )

(A4)

with O(egqa) = 1/, since the tidal effects in ST theories
enter formally at 3PN order [14]. Because Eqs. (A3) are
exact solutions to the field equations (A2), this implies
that the functional derivative of the Fokker action with
respect to the scalar and metric perturbations, evaluated
with the point-particle solutions, will have the orders

oS

(2 .2
5h [Var Vas Hops Wop) = O(C”€gigars CEiidals €idals € Evidat ) »

(A5a)

oS
_ 2 )
@[)’m Ua’hppvl//pp} = O(c”€giqal» CEiidal» Evidal> € Eridal) -

(A5b)

By Taylor expanding the Fokker action around the point-
particle solution, we get

SF[ya’ Va> h, V/] = SF[ya’ Vg, hPP’ WPP]
oS
+ / d4x (% [ya» Vg» hpp7 pr]htidal
oy

+ O(hg g Wiiaar)
= SF[ya’ Vg hpp’ pr] + O(etzidal)‘

S
+— [ya’ Vas hpp, l//pp]l//tidal

(A6)

The contributions of the order of O(ek,,) =1/c'? at
least equivalent to a next-to-next-to-next-to-leading
(NNNLO) or 6PN tidal effect. This shows that it is
sufficient to inject in the action the point-particle sol-
utions to the field equations to know the Fokker action
up to the NNLO in the tidal effects.

APPENDIX B: FEYNMAN RULES FOR THE PN
EFT CALCULATIONS

In this Appendix, we give the Feynman rules that are
relevant for the computation of tidal effects at NNLO.
The starting point for the PN EFT machinery is the action
(24) accompanied with the Kaluza-Klein decomposition
of the metric (28). Since we know that at this sector we
do not encounter divergences, we can readily set d =3
for simplicity. Below, we present the Feynman rules
with respect to the Kaluza-Klein modes and the canoni-
cally normalized scalar field y relevant for the compu-
tation at this order. The propagators for the potential
modes are
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where all the momenta are outgoing. Finally, the bulk interaction vertices are
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i x
} o = = L (8 4 K+ k) = 2000 00y + 0,00y + D1,00) )
M,
k2
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where P = —(6y6; + 6u6 1 + (2 = ¢4)8ii611), Qijre = Lijuy — 661> and Iy = 86, + 8465

APPENDIX C: NNLO RESULTS IN THE CM FRAME

1. Acceleration in the CM frame

The NNLO tidal correction to the relative acceleration in the center-of-mass frame is given, after separating it in powers
of G, by

9(2 +7)?

02 ~n ¢ 0
aC%VI?NNLO = a’G? = Cm [_4(1 — 0 Y

0 0 i 36 i
(Ci) —4V3r))" +Wﬂ+ n

1

T (”i((””)”z (45(18 + 1)A0) — 4(=2 +)(9 + 4)2)

+ (nv)3(=68(23 4 20)A0 + 6(-23 — 2v + 81/2)/19)
+ ()22 (=38(87 + 100)A0) + 3(3 + 20) (=29 + 160)4)

1 1
+ o <§ 5(45 4 4)20) + 5 (45 +20v — 64v2)ﬂ<+0)>

+ (nv)*(485(7 + )40 — 48(=7 — v + 3y2)z<+°))>} , (Cla)

aCM,NNLO:WI—_C 7 7 7 7
2(208" +197) 40B=6 (24081 + 3147 + 2297 80p~&

+{_(ﬁ_+ 7) | 40 +( Bt + 3147 + 2297 é)wszyz}ﬂ@
4 7 4 4

@+ 7u(h (=5A0 + A 4 ¢(56A0) + 25y A1) — 5AL) — 2¢0A$>))>

-1+¢
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4 7 4 7
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2. Energy in the CM frame

The NNLO tidal correction to the conserved energy in the center-of-mass frame is given, after separating it in power
of G, by
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