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The nonisometric holographic model of the black hole interior stands out as a potential resolution of the
long-standing black hole information puzzle since it remedies the friction between the effective calculation
and the microscopic description. In this study, combining the final-state projection model, the nonisometric
model of black hole interior, and Hayden-Preskill thought experiment, we investigate the information
recovery from decoding Hawking radiation and demonstrate the emergence of the Page time in this setup.
We incorporate the effective modes into the scrambling inside the horizon, which are usually disregarded in
Hayden-Preskill protocols, and show that the Page time can be identified as the transition of information
transmission channels from the EPR projection to the local projections. This offers a new perspective on the
Page time. We compute the decoupling condition under which retrieving information is feasible and show
that this model computes the black hole entropy consistent with the quantum extremal surface calculation.
Assuming the full knowledge of the dynamics of the black hole interior, we show how Yoshida-Kitaev
decoding strategy can be employed in the modified Hayden-Preskill protocol. Furthermore, we perform
experimental tests of both probabilistic and Grover’s search decoding strategies on the seven-qubit IBM
quantum processors to validate our analytical findings and confirm the feasibility of retrieving information
in the nonisometric model. This study would stimulate more interest to explore black hole information
problem on the quantum processors.
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I. INTRODUCTION

The most important quantum behavior of the black holes
is that from the effective field theory calculation, it can
radiate particles in the form of thermal spectrum at the
temperature proportional to the surface gravity of the event
horizon [1]. If the collapsing matter that forms the black
hole is initially in a pure state, the whole system will evolve
into a mixed state after the black hole is completely
evaporated according to Hawking’s calculation. This is
incisively inconsistent with the principle of unitarity in

quantum mechanics, and it results in the long-standing
puzzle regarding the conservation of information in black
holes [2]. After the discovery of AdS=CFT correspondence
[3–5], it is generally believed that the dynamical process of
black hole collapsing and evaporating is a unitary one
satisfying the principles of quantummechanics. During this
process, the information inside the black hole is released
through its radiation, and the information conservation is
guaranteed [6,7]. However, this poses the question of how
the information contained in the infalling objects is released
in the evaporating process and also how the information can
be recovered by the observer outside of the black hole from
collecting and decoding the Hawking radiation [8,9].
The biggest obstacle to answering these questions lies in

that the dynamics of the black hole interior is not known
for the outside observer due to the existence of causal
boundary event horizon. Recently, motivated by the theory
of the quantum error correction [10,11] and quantum
computational complexity [12,13], a holographic model
of the black hole interior was proposed to resolve the black
hole information puzzle [14]. In this model, two descrip-
tions of the black hole degrees of freedom, the effective
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field description and the fundamental description from
the quantum gravity, are connected through a nonisometric
map. Although a full quantum gravity theory is not com-
pletely constructed by now and the exact nature of the
fundamental description of the black hole is unknown
to us, from the central dogma of black hole physics [15], we
can treat the area of the event horizon as counting the
fundamental quantum gravity degrees of freedom. From
the effective description of the semiclassical gravity along
with the evaporating process, the entangled pairs of
the outside radiated modes and their inside partners are
generated continuously, and the number of the effective
field theory modes inside the black hole eventually exceeds
the number of the black hole degrees of freedom accounted
by the horizon area from the fundamental description [16]. In
order to resolve this apparent contradiction, Akers,
Engelhardt, Harlow, Penington, and Vardhan (AEHPV)
proposed that there is a nonisometric holographic map from
the effective description to the fundamental description [14].
This means that a large number of “null” states are annihi-
lated by the nonisometric holographic map, which appa-
rently violates the unitarity of the effective description.
However, it is shown that on average, the deviation from
the unitarity in the effective description is negligibly small
in the entropy. Furthermore, the entanglement entropy of
Hawking radiation in the fundamental description was
shown to follow the quantum extremal surface formula
[17–19]. Therefore, it is argued that the AEHPV model of
the black hole interior can give a Hilbert space interpretation
of the Page curve computation from the island rule [20,21].
The nonisometric holographic model of encoding black hole
interiors has inspired many interesting works [22–30].
In the present work, based on the AEHPV model of the

black hole interior and the final-state projection model, we
explore the possibility of treating the nonisometric mapping
as a dual nonunitary dynamics inside the black hole and
investigate the viability of decoding Hawking radiation and
information recovery from the black hole. By studying
its corresponding Hayden-Preskill decoding strategy [8],
we first address the problem of the decoupling condition
under which the information swallowed by the black hole
can be recovered by decoding the Hawking radiation. This
amounts to estimating the operator distance between the
reduced density matrix of black hole and reference system
and the density matrix of their product state [31–33]. In
principle, when the decoupling condition is satisfied, the
entanglement between the reference system and the black
hole is transferred to the entanglement between the refer-
ence system and the Hawking radiation, and the informa-
tion swallowed by the black hole can be recovered.
Furthermore, under the assumption that the black hole
interior dynamics is known to the outside observer, we
discuss how the Yoshida-Kitaev decoding strategies [9]
can be used to decode the Hawking radiation in the
modified version of the Hayden-Preskill protocol. For
the probabilistic decoding strategy, the corresponding

decoding probability and the fidelity on average of the
random unitary group are computed. Importantly, the
probability of the EPR projection demonstrates a phase
transition behavior so that we can identify the Page time
with the phase transition of information channels [34].
We show that by including the scrambling of effective
modes inside the horizon, a transition of information
transmission channels naturally emerges around the Page
time that switches the information transmission from
through the EPR projections to through the local projec-
tions. This offers a new perspective on the nature of the
Page transition. Besides, the decoding strategy using the
Grover’s search algorithm [35] is performed to recover
the initial quantum state of the system swallowed by the
black hole. In addition, we test the decoding strategies on
the seven-qubit IBM quantum processors. The experimen-
tal results validate our analytical findings and show the
feasibility of the information recovery. Finally, inspired by
the work of Kim and Preskill [25], where an infalling agent
interacts with the radiation both outside and inside the
black hole, we further study the effects caused by such
interactions. We argue that the interaction of the infalling
message system with the outside right-going Hawking
radiation causes no additional effect in the modified
Hayden-Preskill protocol.
This paper is arranged as follows. In Sec. II A, we briefly

introduce the nonisometric holographic model of the black
hole interior. In Sec. II B, based on the nonisometric model
of black hole interior, we propose a modified version of
Hayden-Preskill thought experiment. In Sec. II C, we prove
that the black hole entropy calculated from this model is
consistent with the quantum extremal surface calculation.
In Sec. II D, we discuss the decoupling condition to recover
the information swallowed by the black hole. In Sec. III, we
apply the Yoshida-Kitaev decoding scheme to our model
to show that the information can be recovered from the
Hawking radiation, and the transition of information
channels emerges around the Page time. Two types of
decoding strategies are discussed. In Sec. IV, the simulation
experiments of the decoding Hawking radiation are imple-
mented on the IBM quantum processors. In Sec. V, we
comment on the interaction of the infalling message system
with the outside radiation. The conclusion and discussion
are presented in the last section.

II. THE NONISOMETRIC MODELS
OF BLACK HOLE INTERIORS

A. Review of AEHPV model

In this section, we give a brief review of the black hole
interior model proposed by AEHPV [14]. There are two
complementary descriptions for the dynamics of black
hole interior; one is the effective field description and
the other one is the fundamental description from the
quantum gravity.
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The fundamental description gives the viewpoint of the
outside observer. In this description without other external
matters, the Hilbert space can be partitioned into that of the
black hole B and that of the Hawking radiation R, viz.,

HB ⊗ HR: ð2:1Þ

According to the central dogma of the black hole physics
[15], the dimension of HB is proportional to eAEH=4G with
AEH being the horizon area.
In contrast to the outside observer, the infalling observer

will experience another picture. In a “nice slice” [16], the
infalling observer will find that there are the right-moving
modes R in the black hole exterior and the left-moving
modes l and the right-moving modes r in the black hole
interior. Here, R is again the degrees of freedom of the
Hawking radiation, l can be treated as the degrees of
freedom that form the black hole, and r denotes the interior
partners of the Hawking radiation R. In this effective
description of the infalling observer, the Hilbert space is
given by

Hl ⊗ Hf ⊗ Hr ⊗ HR; ð2:2Þ

where f is an additional system that accounts the fixed
degrees of freedom and does not play an essential role in
the analysis. In addition, it is obvious that r and R are in the
maximally entangled state from the effective field theory
calculation.
As claimed in the introduction, there is an apparent

contradiction for the outside observer and the infalling
observer. As the black hole evaporates, the degrees of
freedom of Hawking radiation R increase monotonically
while the degrees of freedom of black hole B decrease.
For the black hole at late time, the number of the degrees
of freedom of Hawking radiation is larger than that of black
hole; i.e., jRj > jBj, or jrj > jBj, where j · j denotes the
Hilbert space dimension of the corresponding system. This
will result in the contradiction that the entanglement
entropy of Hawking radiation in the effective descrip-
tion exceeds the black hole entropy in the fundamental
description.
In order to resolve this conflict, AEHPV proposed that

there is a nonisometric holographic map from the effective
description to the fundamental description

V∶ Hl ⊗ Hr → HB: ð2:3Þ

For the Hilbert space in the effective description
Hl ⊗ Hf ⊗ Hr, we consider its mapping into the funda-
mental Hilbert space by introducing an auxiliary system P
and scrambling unitary U such that

Hl ⊗ Hf ⊗ Hr ⟶
V

HB ⊗ HP: ð2:4Þ

The nonisometric map can be explicitly realized as

ð2:5Þ

Here, jψ0if and j0iP are the fixed states in Hf and HP,

respectively. The prefactor
ffiffiffiffiffiffijPjp

is introduced to preserve
the normalization of the resulting state, which will be
clarified in the next section. The graph gives the intuitive
representation of the nonisometric map. The dynamics of
the effective field theory degrees of freedom l, r, and f in
the black hole interior is modeled by a typical scrambling
unitary operator U. The contradiction between the effective
description and the fundamental description is resolved by
postselecting or projecting certain degrees of freedom on
the auxiliary system P, resulting in a nonisometric mapping
from the black hole interior of much larger degrees of
freedom in the effective description to the black hole B of
much lower degrees of freedom in the fundamental
description.
The postselection or the projection in the holographic

map is reminiscent of the final state proposal by Horowitz
and Maldacena [36] (see also [37]). In the final state
proposal, the postselection comes from a modification of
quantum mechanics, and in the AEHPV model, the post-
selection is a property of the nonisometric holographic map
itself. In addition, in the final state model, the postselection
is supposed to happen at the singularity, while the post-
selection in AEHPV model happens in the black hole
interior. We should also mention another interesting pro-
posal by Wang et al. [38] that is inspired by the Island rule.
In [38], such projections or postselected measurements
occur on the horizon to avoid causal issues, and that the
information is transferred to the outside once it enters the
entanglement island.
Due to the postselection or the projection in the black

hole interior, the unitarity is apparently violated in the
effective description. However, two important observations
from the AEHPV model include: (1) averaged over the
random unitary group, the deviation from the unitarity in
the effective description is negligibly small in the entropy;
and (2) the entanglement entropy of the Hawking radiation
in the fundamental description can be computed by the
quantum extremal surface formula in the effective descrip-
tion. It is therefore argued that the nonisometric holo-
graphic model of the black hole interior gives a Hilbert
space interpretation of the Page curve computation from the
Island rule. This model has also been generalized to include
the effects induced by the infalling agent interacting with
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the radiation both outside and inside the black hole
horizon [25]. It is tested that the unitarity of the S matrix
is guaranteed to a very high precision. Inspired by these
works, a “backward-forward” evolving model was also
introduced to probe the nontrivial interactions between
the infalling modes with the radiation modes outside and
inside the horizon [30].

B. The nonunitary dynamical model
and Hayden-Preskill protocol

In this section, we explore the consequences of a dual
interpretation of treating the nonisometric mapping as an
effective nonunitary dynamics on a set of given effective
modes inside the black hole. We propose a nonunitary
dynamic model of a radiating black hole and consider
its Hayden-Preskill thought experiment. The initial state
consists of a set of prearranged modes in the effective
description, and the outcome of the mapping returns the
fundamental modes on our interested time slice. In addition
to the vacuum modes and their entangled partners shown
in Eq. (2.5), we introduce the information qudit A, which
is thrown into the black hole, and its entangled partner
qudit A0, which stays outside the black hole. The schematic
illustration is provided on Fig. 1. The effective modes
at the initial time are shown by the left panel, and the
modes observed by an outside observer at a later time are
represented on the right panel with the new-generated
radiation R0.
As shown on the left of the Fig. 1, on the Cauchy surface

at the initial time, there are the matter system f that forms
the black hole, the infalling message system A, the
reference system A0 that is maximally entangled with A,
the outside Hawking radiation R, and its interior partner r.
In our model, f denotes the matter system that collapses

to the black hole.1 For simplicity, we also set f to be in
the fixed state jψ0if. The reference system A0 is introduced
to purify the message system A. In addition, from the
effective field viewpoint, R and r are maximally entangled.
In this setup, the state of the total system at the initial time is
given by

jΨii ¼ jEPRiA0A ⊗ jψ0if ⊗ jEPRirR; ð2:6Þ

where EPR represents the maximally entangled state, for
example, jEPRiA0A ¼ 1ffiffiffiffi

jAj
p P

j jj; ji.
By the nonisometric holographic map, after some time,

the state of the whole system evolves into the following
modified Hayden-Preskill state, which is given by

jΨHPi ¼
ffiffiffiffiffiffi
jPj

p
h0jPðIA0 ⊗ UðAfrÞðBPR0Þ ⊗ IRÞjΨii

¼
ffiffiffiffiffiffi
jPj

p
h0jPðIA0 ⊗ UðAfrÞðBPR0Þ ⊗ IRÞjEPRiA0A

⊗ jψ0if ⊗ jEPRirR: ð2:7Þ

In this expression, the dynamical process of the information
scrambling and the black hole radiating are typically
represented by the random unitary operator U. In order
to describe the black hole radiating, we introduce the newly
generated Hawking radiation R0. The subscripts (Afr) and
ðBPR0Þ denote the input systems and the output systems of
the random unitary operator U. It is clear that the Hilbert
space dimension of the input systems Afr is equal to that of
the output system BPR0, i.e., jAjjfjjrj ¼ jBjjPjjR0j ¼ d.
Similar to the nonisometric model, after scrambling, certain
degrees of freedom P are projected onto the fixed state h0jP
in the black hole interior. The factor

ffiffiffiffiffiffijPjp
is introduced to

preserve the normalization. In this setup, jΨHPi describes
the state of the total system in the fundamental description
including the remnant black hole B, the newly generated
Hawking radiation R0, the early Hawking radiation R, and
the reference system A0, which are systematically depicted
in the right panel of Fig. 1.
In this study, calculations are done using the graphical

representation. The modified Hayden-Preskill state (2.7)
can be graphically represented as

ð2:8Þ

FIG. 1. Left panel: an illustration of the systems f, A, A0, r, and
R that appear on the “nice slice” Cauchy surface at the initial
time. Nice slice is a Cauchy surface on which the semiclassical
effective field theory calculations do not break down until a very
late time. A is the message system thrown into the black hole, and
A0 is the reference system maximally entangled with A. The
system R denotes the outside Hawking radiation, and r is its
entangled partner inside the black hole. f is the matter system that
forms the black hole. The corresponding state is given by
Eq. (2.6). Right panel: an illustration of the systems B, R0, R,
and A0 that observed by the outside decoder at a later time. The
degrees of freedom inside the black hole are collectively denoted
by B. The newly generated Hawking radiation is denoted by R0.
The quantum state is given by Eq. (2.7).

1Our notation is different from the AEHPV model, where f
denotes an auxiliary system in the fixed state, while l denotes the
infalling matter system that forms the black hole.
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In this graph, represents the EPR state of A and

A0, and the black dot stands for the normalization factor
1ffiffiffiffi
jAj

p . Similar rules applies to the system r and R. As we

have claimed, in the black hole interior, the infalling
message system A, the matter system f, and the
Hawking partner mode r are scrambled by the random
unitary operator U, resulting in the output system com-
posed by the newly generated Hawking radiation R0, the
remnant black hole B, and an auxiliary system P.
According to the nonisometric map, P is postselected or
projected onto the fixed state j0iP.
With the same rules, we can represent the conjugate state

hΨHPj as

ð2:9Þ

This graph is obtained by flipping the graphical represen-
tation (2.8) of jΨHPi and replacing the random unitary U
with U†.
Because the holographic map from the effective descrip-

tion to the fundamental description is nonisometric, the
modified Hayden-Preskill state is not normalized in gen-
eral. One can see that the graphical representation of the
inner product hΨHPjΨHPi can be obtained by connecting the
open ends of the graphs in Eqs. (2.8) and (2.9)

ð2:10Þ

Note that due to the existence of the postselection on the
fixed state j0iP, the successive action of U and U† cannot
be treated as the identity operator I. In this sense, in general,
hΨHPjΨHPi ≠ 1. However, the normalization is preserved
on the Haar average over the random unitary operatorU. To
realize this aim, we invoke the following integral formula:

Z
dUUijU

†
j0i0 ¼

Z
dUUijU�

i0j0 ¼
δii0δjj0

d
; ð2:11Þ

which can be graphically represented as [25]

ð2:12Þ

Then the average of the inner product hΨHPjΨHPi of
Eq. (2.10) over the random unitary operator U can be
calculated as

ð2:13Þ
In deriving this result, we used the fact that the loop denotes
the trace of identity operator over the Hilbert space of the
corresponding system, which gives rise to the factor of its
Hilbert space dimension. The loop with two dots is equal to
unity. The line that connects the two fixed states (for example,
j0iP and h0jP) represents the normalization condition of the
fixed state and gives rise to the factor of unity.
The normalization condition of the modified Hayden-

Preskill state is preserved on average over the random
unitary operator U. This also implies that the dynamical
process is unitary on average for the observer in the effective
description.

C. Black hole entropy and island formula

In this section, we show that the model gives the island
rule for the entanglement entropy of black holes [19–21].
Using the graphic representation introduced in the previous
section, we can compute the state of the black hole,
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ð2:14Þ

The nth Renyi entropy is related to the density matrix by

SnðBÞ ¼ −
1

n − 1
log TrðρnBÞ: ð2:15Þ

Invoking the integration formula for Haar random unitary matrices, we compute the second Renyi entropy,

ð2:16Þ

where S̄ðBÞ represents the coarse-grained entropy of the remnant black hole. Therefore, for jBj; jRj ≫ 1, the second Renyi
entropy of the black hole B is given by

S2ðBÞ ≃min ðS̄ðBÞ; S̄ðA0RR0ÞÞ; ð2:17Þ

where S̄ðA0RR0Þ is the entropy of the exterior systems in the effective description. This is reminiscent of the island formula.
To compute the von Neumann entropy of the black hole, we extend the calculation to the general nth Renyi entropy,
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For this calculation, we make use of the Weingarten functions given in Appendix B. The leading order contribution of the
integral gives Z

dUe−ðn−1ÞSnðBÞ ≃
jPjn

jRjnjAjnðdnÞ ðjAj
njRjnjR0jnjBj þ jBjnjR0jjAjjRjÞ

≃ e−ðn−1ÞS̄ðBÞ þ e−ðn−1ÞS̄ðA0RR0Þ: ð2:18Þ

Hence,

SnðBÞ ≃min ðS̄ðBÞ; S̄ðA0RR0ÞÞ ð2:19Þ
for all n. The nth Renyi entropy has a well-defined limit as
n → 1. This implies that the von Neumman entropy for the
black hole satisfies SðBÞ ≃min ðS̄ðBÞ; S̄ðA0RR0ÞÞ, which is
the island formula of the black hole. This formula produces
the expected Page curve for the entanglement entropy. To
be specific, at the initial stage of the evaporation, the black
hole entropy is given by the coarse-grained entropy of the
radiation, and at the late times, it is given by the coarse-
grained entropy of the black hole.
Furthermore, we can consider the following situation

where the black hole just radiated out the systemR0 within a
short time interval. We have the freedom to choose the
cutoff surface such that the newly generated radiation R0
near the horizon is inside the cutoff surface, and the rest of
the exterior systems are on the outside of it. Repeating the
above calculation for the density matrix ρBR0 returns the von
Neumann entropy of the systems inside (and outside) the
cutoff surface

SvN ≃min ðlog jBj þ S̄ðR0Þ; S̄ðA0RÞÞ: ð2:20Þ
This is precisely what one should expect from the quantum
extremal surface calculation. The area term is represented
by the coarse-grained entropy log jBj of the black hole, and

the entropy of the states between the cutoff surface and
the quantum extremal surface is represented by S̄ðR0Þ. The
situation of null quantum extremal surface is given by the
entropy of the systems outside the cutoff surface S̄ðA0RÞ.

D. Decoupling condition of the modified
Hayden-Preskill protocol

In this section, with the modified Hayden-Preskill state
given in Eq. (2.8), we now discuss whether the information
contained in the message system A can be recovered by
the outside observer from collecting and decoding the early
and the newly generated Hawking radiation R and R0.
The condition that the aim can be achieved relies on the
decoupling or the disentangling between the reference
system A0 and the remnant black hole B. We refer to this
condition as the decoupling condition. This is to say that
the decoupling condition can be obtained by estimating the
operator distance between the “reduced density matrix”
ρA0B and the product state of A0 and B averaged over the
random unitary operator U.
The “reduced density matrix” for the combined system

of the reference A0 and the remnant black hole B can be
obtained from the density matrix of the modified Hayden-
Preskill state by tracing out the early Hawking radiation R
and the newly generated Hawking radiation R0, which can
be graphically represented by
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ð2:21Þ

where the factor 1
jrj comes from the normalization factor

of the EPR state for the system r and R. The above
graph is obtained by juxtaposing the representation of
jΨHPi in Eq. (2.8) with the representation of hΨHPj in
Eq. (2.9) and then connecting the same legs of the
newly generated radiation R0 and the early radiations R.
Here, taking the trace over a specific system is simply
realized by connecting the corresponding open ends
in the graphical representation of the density matrix
jΨHPihΨHPj.
Note that ρA0B is not a real reduced density matrix in the

usual sense, which can be observed by calculating its trace.

Tracing out the remnant black hole B and the reference A0
of Eq. (2.21) gives us

ð2:22Þ

One can see

TrρA0B ≠ 1: ð2:23Þ
The reason is the samewith hΨHPjΨHPi ≠ 1. The observation
that the trace of ρA0B is not equal to unity explains why we
have put the double quotation marks to denote ρA0B.
However, for an observer in the effective description, the

Haar average of TrρA0B over the random unitary operator U
can be calculated by invoking the graphical representation
in Eq. (2.12)

ð2:24Þ

The technique in Eq. (2.13) is also used in the above
derivation. This result shows that for an observer in the
effective description, ρA0B is a reduced density matrix on
average over the random unitary operator.
Now we estimate the operator distance between the

“reduced density matrix” ρA0B and the product state of the
reference system A0 and the remnant black hole B averaged
over the random unitary operatorU. We should consider the
following quantity [39]:

�Z
dUkρA0B −

1

jA0jjBj IA0 ⊗ IBk1
�

2

; ð2:25Þ

where 1
jA0j IA0 and 1

jBj IB are the maximally mixed density

matrices of the system A0 and B. The operator trace norm
k · k1 is the L1 norm, defined for any operator M as
kMk1 ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
. If the quantity in Eq. (2.25) is small

enough, the correlations between the reference system A0

and the remnant black hole B can be ignored. Therefore,
we try to estimate the upper bound of the quantity
in Eq. (2.25).
By defining theL2 norm as kMk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrM†M

p
, and using

the inequality kMk2 ≤ kMk1 ≤
ffiffiffiffi
N

p kMk2 with N being the
dimensionality of the Hilbert space, one can estimate�Z

dUkρA0B −
1

jA0jjBj IA0 ⊗ IBk1
�

2

≤
Z

dUkρA0B −
1

jA0jjBj IA0 ⊗ IBk21

≤ jA0jjBj
Z

dUkρA0B −
1

jA0jjBj IA0 ⊗ IBk22

¼ jA0jjBj
Z

dUTrρ2A0B − 1; ð2:26Þ

where we have used Jensen’s inequality and the fact
that

R
dUTrρA0B ¼ 1.
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To proceed, we calculate the average value of Trρ2A0B. Using the graphical representations of ρA0B in Eq. (2.21), ρ2A0B can
be obtained by taking two copies of graphical representation of ρA0B and connecting the legs of both the reference system A0

and the remnant black hole system B in the middle. The trace of ρ2A0B is obtained by connecting the remaining legs, which
can be graphically expressed as

ð2:27Þ

Computing the Haar average of Trρ2A0B involves the following formula:

Z
dUUi1j1Ui2j2U

�
i3j3

U�
i4j4

¼ δi1i3δi2i4δj1j3δj2j4 þ δi1i4δi2i3δj1j4δj2j3
d2 − 1

−
δi1i3δi2i4δj1j4δj2j3 þ δi1i4δi2i3δj1j3δj2j4

dðd2 − 1Þ : ð2:28Þ

The details on evaluating such integrals are given in the Appendix A. With this in hand, the average of TrðρA0BÞ2 over the
random unitary operator is given by

Z
dUTrρ2A0B ¼ jPj2

jAj2jrj2
Z

dUUða1fr1Þðb10r01ÞUða2fr2Þðb20r02ÞU
�
ða2fr1Þðb20r01ÞU

�
ða1fr2Þðb10r02Þ

¼ jPj2
jAj2jrj2ðd2 − 1Þ

�
δa1a2δr1r1δa2a1δr2r2δb1b2δr01r01δb2b1δr02r02 þ δa1a1δr1r2δa2a2δr2r1δb1b1δr01r02δb2b2δr02r01

−
1

d
δa1a2δr1r1δa2a1δr2r2δb1b1δr01r02δb2b2δr02r01−

1

d
δa1a1δr1r2δa2a2δr2r1δb1b2δr01r01δb2b1δr02r02

�

¼ jPj2
ðd2 − 1Þ

�jBjjR0j2
jAj þ jBj2jR0j

jrj −
1

d
jBj2jR0j
jAj −

1

d
jBjjR0j2

jrj
�
: ð2:29Þ

Therefore, we have

jA0jjBj
Z

dUTrρ2A0B − 1 ¼ ðjAj2jfj − 1Þðd2 − jR0j2jPjÞ
ðd2 − 1ÞjR0j2jPj

≃
jAj2jfj
jR0j2jPj

�
1 −

1

jBj2jPj
�

≃
jAj2jfj
jR0j2jPj ; ð2:30Þ
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which gives the inequality of the operator distance between
the “reduced density matrix” ρA0B and the decoupled
density matrix 1

jA0jjBj IA0 ⊗ IB

Z
dUkρA0B −

1

jA0jjBj IA0 ⊗ IBk1 ≤
ffiffiffiffiffiffi
jfj
jPj

s
jAj
jR0j : ð2:31Þ

If the following condition is satisfied, i.e.,

jR0j ≫
ffiffiffiffiffiffi
jfj
jPj

s
jAj; ð2:32Þ

then we haveZ
dUkρA0B −

1

jA0jjBj IA0 ⊗ IBk1 ≪ 1: ð2:33Þ

This equation implies that the operator distance between
ρA0B and the product state of the reference system A0 and
the remnant black hole B averaged over the random
unitary operator is small enough. Therefore, the reference
system A0 is decoupled from the remnant black hole B, and
the entanglement between the reference system A and the
message system A0 is transferred to the entanglement
between the reference system A0 and the newly generated
Hawking radiationR0. In this case, the information contained
in the message system A can be recovered by the outside
observer who has the full access of the early Hawking
radiation R and the newly generated Hawing radiation R0. In
this sense, Eq. (2.32) is the decoupling condition to guarantee
the information can be retrieved from the black hole.

III. DECODING HAWKING RADIATION
AND THE PAGE TRANSITION

In this section, we consider how the observer who stays
outside of the black hole can use the Hawking radiation
that one collected and apply the Yoshida-Kitaev decoding
strategy to recover the information thrown into the
black hole. The strategy was firstly proposed by Yoshida
and Kitaev [9] for the original model of Hayden-Preskill
thought experiment. One can refer to [40–43] for the
decoding strategies with the quantum decoherence or noise.
In these strategies, it is assumed that the outside observer
has the full information about the information scrambling
and black hole evaporating, which is usually represented by
an random unitary operator.

A. Probabilistic decoding and transition at Page time

We have claimed that the dynamics of the information
scrambling and the black hole evaporating are represented
by the random unitary matrix. If the message system A,
which is entangled with the reference system A0, is thrown
into the black hole, after some time, the quantum state of
the whole system is described by the modified Hayden-
Preskill state. For the outside observer, he has the full

access to the early Hawking radiation R and the newly
generated Hawking radiation R0. The observer wants to
apply some operations to recover the information that is
contained in the message system A. The probabilistic
decoding strategy can be implemented as follows.
Firstly, we prepare one copy of jΨ0if and one copy of

jEPRiA0A. The copy of jEPRiA0A is denoted as jEPRiFF0 .
Then, with themodifiedHayden-Preskill state in hand, apply
the complex conjugateU� of the random unitary operator on
the composed system of R, f, and F. The resultant state is
denoted as jΨiin, which can be graphically expressed as

ð3:1Þ
where C is the normalization constant. The operator U�
can be treated as the time reversal operator of the
black hole dynamics. The output system of U� consists
of a copy of newly generated radiation R00, a copy
of the remnant black hole B0, and another auxiliary
system P. The output auxiliary system P is postselec-
ted or projected onto the fixed state j0iP. The norma-
lization condition

R
dUinhΨjΨiin ¼ 1 gives the C ¼

min
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jAjjBjjR0j

jrj
q �

¼ min
�
1;

ffiffiffiffiffi
jfj
jPj

q
jAj

�
. For small systems

A and R0 compared with the black hole size, the Page time is
approximately when jBj ¼ jrj. Therefore, roughly speaking,
C ¼ 1 before the Page time andC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jAjjBjjR0j

jrj
q

starting from

some period after the Page time. For generality of discussion
and also the number of qubits used in the quantum simu-
lation, we do not assume the above limit in our study.
Next, we project the system R0 and R00 onto the state

jEPRiR0R00 . This is to act the projecting operator ΠR0R00 ¼
jEPRiR0R00 hEPRjR0R00 on the system R0 and R00. The resulting
state is denoted as jΨiout, which can be graphically
expressed as

ð3:2Þ
where PEPR is the averaged projecting probability. The
projecting operation ΠR0R00 serves to decouple the prepared
system F0 from the remnant black holes B and B0 and
teleports the quantum state of the message system A to the
prepared system F0 owned by the outside decoder.
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The factor 1ffiffiffiffiffiffiffi
PEPR

p is introduced to preserve the normali-

zation of the state jΨiout on the Haar average of the
random unitary operator. Therefore, the conditionR
dUouthΨjΨiout ¼ 1 gives the graphical representation

of the projecting probability,

ð3:3Þ
where the inner product outhΨjΨiout is represented by
connecting the legs of jΨiout in the upper half of the graph
to the corresponding legs of outhΨj in the lower half. After a
rearrangement of the unitary operators, this graph is
equivalent to that of Trρ2A0B in Eq. (2.27), which results
in the following relation:

PEPR ¼ jrjC2

jR0j
Z

dUTrρ2A0B: ð3:4Þ

By using the previous result of
R
dUTrρ2A0B given in

Eq. (2.29), it can be shown that the projecting probability
is given by

PEPR ¼ jPj2C2

ðd2 − 1Þ
�jrjjBjjR0j

jAj þ jBj2 − 1

d
jrjjBj2
jAj −

1

d
jBjjR0j

�

≃ C2

�jPj
jfj

1

jAj2 þ
1

jR0j2 −
1

jfj
1

jAj2jR0j2 −
jPj
d2

�
: ð3:5Þ

Under the decoupling condition (2.32), the projecting
probability can be further approximated as

PEPR ≃min

�
1;
jPj
jfj

1

jAj2
�
: ð3:6Þ

Here, only the leading order term is retained. This result
shows that the projecting probability depends not only on
the dimensionality of the message system A but also
depends on the ratio of the dimensionalities of the projec-
ting system P in the black hole interior and the initial

collapsing matter’s system f. For the case of jPjjfj
1

jAj2 > 1, i.e.,

the late stage of the evaporation, the projection on R0 and
R00 becomes unnecessary. From the decoupling condition,
the new radiation R0 can be completely ignored or made
arbitrarily small in dimension in the extreme case when
jPj ≫ jfj. This suggests that at the very late stage of the
evaporation, the information is transmitted through a
different channel shown in Fig. 2, while before the
transition, information is transmitted through the EPR

projection of R0 and R00. The transition can be shown
through probability of EPR projections as shown in Fig. 3.
Here, we have imposed the information constraint
jAjjfj=jrj ¼ jBjjR0j and rewritten the probability of the

EPR projection as PEPR ≃min ð1; jRj2
jfjjAj2Þ.

The decoding fidelity can be quantified by the derivation
of the out state jΨiout from jEPRiA0F0 . The decoding fidelity
is then defined and graphically expressed as

ð3:7Þ

FIG. 3. The probability of the EPR projection PEPR varies with
the dimension of early radiation jrj. The parameters used are
jfj ¼ 104; jAj ¼ 1. As shown, the transition emerges at the Page
time defined by jrj ¼ ffiffiffiffiffiffijfjp ¼ 100.

FIG. 2. The flow of information through local projections on
system P after the transition around the Page time. Prior to the
transition, the information is transmitted through the EPR
projection on R0 and R00. The information initially stored in
the entanglement between A and A0 is transmitted to the
entanglement between A0 and F0. The arrow indicates the
direction of the information flow.
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where the upper half of the graph represents the state jΨiout,
and the lower half represents outhΨj. The techniques of the
operators acting on the system and tracing out the system
used in the previous calculations are also applied here.
The average of the decoding fidelity over the random

unitary group can be calculated as

Z
dUFEPR

¼ jPj2C2

PEPRjAj3jrjjR0j
Z

dUUða1fr1Þðb10r01ÞUða2fr2Þðb20r02Þ

×U�
ða1fr1Þðb20r01ÞU

�
ða2fr2Þðb10r02Þ

¼ jPj2C2

PEPRjAj3jrjjR0jðd2 − 1Þ

×
�
δa1a1δr1r1δa2a2δr2r2δb1b2δr01r01δb2b1δr02r02

þ δa1a2δr1r2δa2a1δr2r1δb1b1δr01r02δb2b2δr02r01

−
1

d
δa1a1δr1r1δa2a2δr2r2δb1b1δr01r02δb2b2δr02r01

−
1

d
δa1a2δr1r2δa2a1δr2r1δb1b2δr01r01δb2b1δr02r02

�

¼ d2C2

PEPRðd2 − 1ÞjAj2
�jPj
jfj þ

1

jR0j2 −
1

jfjjR0j2 −
jPj
d2

�

≃
jPjC2

PEPRjAj2jfj
: ð3:8Þ

If the decoupling condition (2.32) is satisfied, the

projecting probability is approximated as jPj
jfj

1
jAj2, which

implies that the decoding fidelity achieves the maximal
decoding quality

FEPR ≃
jPjC2

PEPRjAj2jfj
≃ 1: ð3:9Þ

In summary, we have shown that the Yoshida-Kitaev pro-
babilistic decoding strategy can be successfully employed
in our modified Hayden-Preskill protocol to decode the
Hawking radiation and recover the information falling into
the black hole and that the information is transferred to the
outside of the black hole through two different channels
switched at the Page time.

B. Grover’s search strategy

We have shown that the probabilistic decoding strategy
can be applied to recover the initial information. For
jPj ≫ jfjjAj2, no projection is necessary for the decoding
procedure. For jPj≲ jfj, an additional projection proba-
bility is involved. In this subsection, we discuss a decoding
strategy reminiscent of the Grover’s search algorithm for

the modified Hayden-Preskill protocol, which can circum-
vent this probability [35].
Assuming jPj < jfjjAj2, we define the following operator

ð3:10Þ

which operates on the newly generated radiation R0, the
remnant black holeB, and themessage systemA. In the ideal
case, one needs to prove the following relations in order to
apply the Grover’s search algorithm

ðIA0B ⊗ ΠR0R00 ⊗ IB0F0 ÞjΨiin ¼
ffiffiffiffiffiffi
jPj
jfj

s
1

jAj jΨiout;

ðIA0B ⊗ ΠR0R00 ⊗ IB0F0 ÞjΨiout ¼ jΨiout;
ðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiin ¼ jΨiin;

ðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiout ¼
ffiffiffiffiffiffi
jPj
jfj

s
1

jAj jΨiin: ð3:11Þ

The first two relations are apparent. The last two relations
are satisfied only for the typical random unitary operatorU
in the ideal case. The last two relations can be verified by
showing that the distance of the density matrices for the
states on the lhs and the rhs of the equations averaged
over the random unitary group is small. A less rigorous
verification of the last two relations is presented in the
Appendix B, and the proof is presented in the Appendix C.
Consider the two-dimensional plane spanned by jΨiin

and jΨiout. On this plane, we also introduce a state vector
jΨi⊥out that is orthogonal to jΨiout. It is easy to check that

jΨi⊥out ∝ ð1 − IA0B ⊗ ΠR0R00 ⊗ IB0F0 ÞjΨiout: ð3:12Þ

By defining the unitary operator G as

G ¼ 1 − 2Π; ð3:13Þ
one can show that the inner product of jΨiin and jΨi⊥out is
equal to the inner product of ðIA0B ⊗ GR0R00 ⊗ IB0F0 ÞjΨiin
and jΨi⊥out; i.e., the following relation holds

inhΨjΨi⊥out ¼ inhΨjðIA0B ⊗ GR0R00 ⊗ IB0F0 ÞjΨi⊥out: ð3:14Þ

Therefore, the application of the operator G on the state
jΨiin results in a reflection across the state jΨi⊥out.
The reflection angle θ is determined by the equation
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sin
θ

2
¼

ffiffiffiffiffiffi
jPj
jfj

s
1

jAj : ð3:15Þ

Similarly, one can define the G̃ operator

G̃ ¼ 1 − 2Π̃: ð3:16Þ

The application of the operator G̃ on the state
ðIA0B ⊗ GR0R00 ⊗ IB0F0 ÞjΨiin means a reflection across the
state jΨiin. The reflection angle is also given by θ. Such a
procedure is presented in Fig. 4, where the operation of G̃ is
accomplished by U�GUT. Therefore, the application of
the combined operator G̃G on the state jΨiin results in the
rotation of this state on the two-dimensional plane by the
angle θ. Such a procedure is similar to Grover’s search
algorithm. After n times, we have

jΨðnÞi ¼ sin ððnþ 1=2ÞθÞjΨiout þ cos ððnþ 1=2ÞθÞjΨi⊥out:
ð3:17Þ

For our quantum simulation that will be discussed in the
following section, the message system A, the infalling
matter system f, and the projecting system P are repre-
sented by one qubit, respectively. So, we have jPj ¼ jfj ¼
jAj ¼ 2 and θ ¼ π

3
. In this case, the initial quantum state of

the message system A can be successfully recovered by
applying the combined operator G̃G on the state jΨiin only
one time. Such a strategy is presented in Fig. 5. Note that
the operation of G̃ is accomplished by U�GUT. With the
initial state jΨiin in hand, the decoder should apply
sequentially the reflection operator G on the newly gen-
erated radiation R0 and its copy R00, the scrambling operator
UT on the radiation copyR00 and the black hole copy B0, and
again the reflection operator G on the black hole copy B0
and the prepared system F0, and then U� on the radiation

copyR00 and the black hole copyB0. In this way, the decoder
can retrieve the information of the message system A,
namely its quantum state jψiA, on the prepared system F0
outside the black hole.

IV. QUANTUM SIMULATION OF DECODING
HAWKING RADIATION

Recently, works on the quantum processors have
claimed to realize the equivalence of the “traversable
wormholes” on quantum chips and have attracted signifi-
cant attentions [44–49]. These have stimulated researches
on the simulations of quantum gravity in the laboratory.
Benefited by the development of quantum computers, it is
believed that certain essential quantum features of black
holes can be simulated on the quantum computers, which
will provide us a deeper understanding of the nature of
quantum gravity.
In this section, we try to implement the probabilistic and

the Grover’s search decoding strategies for the Hawking
radiation on the IBM quantum processors to verify the
feasibility of the information recovery from the black hole.
To this end, we experimentally realize the decoding
strategies discussed in the last section on the seven-qubit
IBM quantum processors using a three-qubit scrambling
unitary. The key is to realize the typical Haar scrambling
unitary operator on the quantum processors. This is a
difficult task especially in IBM quantum processors
because the seven qubits on the IBM quantum processors
are not fully connected. Some optimization schemes for the
quantum circuit should be taken carefully.

A. A typical scrambling unitary operator

Firstly, we discuss how to realize the scrambling unitary
operator on the IBM quantum processors. We consider the

FIG. 5. Grover’s search decoding strategy of Hawking radiation
in the nonisometric model of black hole interior. The message
system A is set to be in the quantum state jψiA. After applying the
operators G, UT , G, and U� successively, the state jψiA is
recovered by the prepared system F0.

FIG. 4. Grover rotation: an illustration of the application of the
operators G and G̃ on the state jΨiin. The two-dimensional plane
is spanned by jΨiin and jΨiout.
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three-qubit Clifford scrambler [40]. An ideal three-qubit
Clifford scrambling unitary operator should transform
single-qubit operations into three-qubit operations. An
example of such scrambling unitaries satisfying Eq. (4.2)
can be realized using the quantum circuit shown in Fig. 6.
Algebraically, the quantum circuit of the scrambling
unitary in Fig. 6 can be expressed as

U ¼ ðI ⊗ I ⊗ j0ih0j þ I ⊗ σz ⊗ j1ih1jÞðI ⊗ j0i
× h0j ⊗ I þ σz ⊗ j1ih1j ⊗ IÞ
× ðI ⊗ I ⊗ j0ih0j þ σz ⊗ I ⊗ j1ih1jÞðH ⊗ H ⊗ HÞ
× ðI ⊗ j0ih0j ⊗ I þ σz ⊗ j1ih1j ⊗ IÞ
× ðI ⊗ I ⊗ j0ih0j þ I ⊗ σz ⊗ j1ih1jÞðI ⊗ I ⊗ j0i
× h0j þ σz ⊗ I ⊗ j1ih1jÞ;

where σx, σy, σz are Pauli matrices, and I is the two-
dimensional identity matrix. Note that in Fig. 6, the
ordering of the left three controlled-Z gates or
the right three controlled-Z gates does not affect the
scrambling unitary. This unitary operator was used in
[44] to realize the scrambling dynamics of the quan-
tum information. It can be shown that the scrambling
unitary in the computing basis can be expressed in the
matrix form as

U ¼ 1

2
ffiffiffi
2

p

0
BBBBBBBBBBBBB@

1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 1 −1 1

1 1 −1 1 1 −1 1 1

−1 1 1 1 −1 −1 −1 1

1 1 1 −1 −1 1 1 1

−1 1 −1 −1 1 1 −1 1

−1 −1 1 −1 1 −1 1 1

−1 1 1 1 1 1 1 −1

1
CCCCCCCCCCCCCA
:

ð4:1Þ

It is easy to check that the scrambling unitary satisfies the
following gate transformation identities

U†ðσx ⊗ I ⊗ IÞU ¼ σz ⊗ σy ⊗ σy;

U†ðI ⊗ σx ⊗ IÞU ¼ σy ⊗ σz ⊗ σy;

U†ðI ⊗ I ⊗ σxÞU ¼ σy ⊗ σy ⊗ σz;

U†ðσy ⊗ I ⊗ IÞU ¼ σy ⊗ σx ⊗ σx;

U†ðI ⊗ σy ⊗ IÞU ¼ σx ⊗ σy ⊗ σx;

U†ðI ⊗ I ⊗ σyÞU ¼ σx ⊗ σx ⊗ σy;

U†ðσz ⊗ I ⊗ IÞU ¼ σx ⊗ σz ⊗ σz;

U†ðI ⊗ σz ⊗ IÞU ¼ σz ⊗ σx ⊗ σz;

U†ðI ⊗ I ⊗ σzÞU ¼ σz ⊗ σz ⊗ σx; ð4:2Þ

which suggests that all single-qubit operators are dispersed
into three-qubit operators after the operation of the scrambling
unitary. This is the indication of its scrambling property. In the
following,wewill use the three-qubit Clifford scrambler given
in Fig. 6 to simulate the two decoding strategies.

B. Simulation of the probabilistic decoding strategy

The probabilistic decoding strategy is realized in the
quantum circuit presented in Fig. 7. We use the first three
qubits to represent A, f, and r, respectively. In addition,
we use the next three qubits to represent R, f, and F,
respectively. The last qubit represents the prepared system
F0. The seven classical bits are used to record the mea-
surement results. To simplify the model, we set the message
system A to be in a pure state without the reference system
A0. The quantum circuit realizes the probabilistic decoding
strategy in Eq. (3.2).
In Fig. 7, the vertical dashed lines represent the barriers,

which are added just for the convenience of visualization.
It is clear that the whole circuit is divided into five parts. In
the first part, we prepare the entanglement state of the
qubits of q½2� and q½3� and the entanglement state of the
qubits of q½5� and q½6� and set the input states of q1� and
q½4� to be j1i. The qubits q½1� and q½4� represent the
infalling matter system that collapses to the black hole.
Without the loss of generality, the entanglement state is
selected to be the EPR state jEPRi ¼ 1ffiffi

2
p ðj00i þ j11iÞ. The

quantum state of q½0�, which is the state that we want to
recover, can be set to be j0i or j1i. Here, j0i and j1i
represent the eigenstates of the spin operator σz. In Fig. 7,
the initial state of q½0� is set to be j0i. A X gate that added
on the q½0� qubit can change this state to be j1i. The first
part prepares the initial setup of the quantum circuit.
In the second part, the first three qubits and the next three

qubits are processed by the scrambling unitary operators U
and U�, respectively. The scrambling unitary operator U is
given in Fig. 6. Note that U� ¼ U because the scrambling
matrix is real. The second part realizes the scrambling
dynamics in the black hole interior. In the third part, the
qubits q½1� and q½4� are measured. The projection of a part
of degrees of freedom in the black hole interior onto the

FIG. 6. The scrambling unitary operator used to realize the
quantum computation. The scrambling unitary is composed by
six controlled-Z gates and three Hadamard gates. The ordering of
the left or the right three controlled-Z gates does affect the
scrambling unitary.
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system P is realized by postselecting the measured value of
q½1�q½4� to be 00 or 11. In the fourth part, we perform the
EPR projecting measurement on the qubits q½2� and q½3�.
The measured value of q½2�q½3� being 00 means the success
of the EPR projection. In the last part, the qubit q½6� is

measured. If the input state of the first qubit is j0i, the
measured value of the last qubit is 0, meaning the success of
the decoding.
In this quantum circuit, the information contained in

the qubit q½0� is dispersed to the whole system by the

FIG. 7. Quantum circuit for the probabilistic decoding strategy on the IBM quantum processor. This quantum circuit realizes the
decoding strategy presented in Eq. (3.2). The message system A is represented by the qubit q½0�. The infalling matter system f is
represented by the qubit q½1�. The entangled pair q½2� and q½3�, which is prepared in the EPR state, represents the interior mode r and the
exterior mode R of the Hawking radiation. q½4�, q½5�, and q½6� are the qubits owned by the decoder. We use seven classical bits to record
the measurement results. The scrambling dynamics is realized by using the unitary U depicted in Fig. 6. The vertical dashed lines
represent the barriers, which are added just for the convenience of visualization. They will be deleted when executing the circuit on the
quantum processor. In this diagram, the initial state of qubit q½0� is set to be j0i as an example.

FIG. 8. The original experimental results of running the quantum circuit with the initial input of q½0� ¼ j0i. The vertical axis labels the
measurement outcome. For example, the numerical string 1010110 represents the measurement outcome of the qubits
q½6�q½5�q½4�q½3�q½2�q½1�q½0�. The horizontal axis labels the frequency of the specific measurement outcome. The circuit was run on
the IBM-nairobi processor for 20000 shots.
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scrambling unitary and is finally recovered in the qubit q½6�
by the projection operators. Without errors, the quantum
circuit can be regarded as the realization of traversable
wormhole on the quantum computer that teleports the
information from the qubit q½0� to q½6�. We implement the
quantum circuit presented in Fig. 7 on the IBM quantum
processor to verify the probabilistic decoding strategy. The
circuit was run on IBM-nairobi processor, which is a seven-
qubit quantum computer with quantum volume 32.

In Fig. 8, we present the experimental results for the case
that the initial input of q½0� is j0i. In this figure, we have
presented all the measurement outcomes. The meaningful
experimental results from Fig. 8 are presented in Fig. 9. In
the left panel, the measurement outcome of the qubits
q½4�q½1� is selected to be 00, which means that the qubits
q½4�q½1� are projected to the state j00i. The red bars
represent that the measurement outcome of the qubits
q½2�q½3� is 00, which means that the qubits q½2�q½3� are
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FIG. 9. The statistics of the experimental results presented in Fig. 8. The horizontal axis represents the measurement results
of q½6�q½4�q½3�q½2�q½1�, and the vertical axis represents the corresponding frequency. Left panel: the qubits q½4�q½1� are projected to
the state j00i. Right panel: the qubits q½4�q½1� are projected to the state j11i. The red bars represent that the qubits q½2�q½3� are
successfully projected to the EPR state 1ffiffi

2
p ðj00i þ j11iÞ, and the green bars represent that the qubits q½2�q½3� are projected to the other

incorrect EPR states.

FIG. 10. The original experimental results of running the quantum circuit with the initial input of q½0� ¼ j1i. The vertical axis labels
the measurement outcome, and the horizontal axis labels the frequency of the specific measurement outcome. The circuit was also run on
the IBM-nairobi processor for 20000 shots.
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projected to the specific EPR state 1ffiffi
2

p ðj00i þ j11iÞ. The
green bars represent that the qubits q½2�q½3� are projected to
other EPR states, which means the failure of the EPR
projection. From the data presented in the left panel of
Fig. 9, it can be calculated that the probability of projecting
to the specific EPR state 1ffiffi

2
p ðj00i þ j11iÞ is about 25%. In

the ideal case, the projection on the EPR state means the
success of decoding radiation and recovering the informa-
tion. However, due to the noise in the quantum processor,
there are always errors in the circuit outcomes. In the left
panel, the error is represented by the relatively low red
bar where the output of the qubit q½6� is 1. The decoding
efficiency in this case is about 84%. The decoding
efficiency is defined as the ratio between the frequency
of a successful decoding to the frequency of a successful
EPR projection. Therefore, there is the strong signal of
recovering the information by executing the quantum
circuit on the IBM quantum processor. In the right panel
of Fig. 9, the measurement outcome of the qubits q½4�q½1� is
selected to be 11, which means that the qubits q½4�q½1� are
projected to the state j11i. In this case, the EPR projecting
probability is estimated as 27%, and the decoding effi-
ciency is about 87%. This result also implies the success of
decoding the information.
The original experimental results for the case that the

initial input of q½0� is j1i are presented in Fig. 10. Similarly,
we have plotted the meaningful experimental results in
Fig. 11. The red bars represent that the qubits q½2�q½3� are
projected to the correct EPR state 1ffiffi

2
p ðj00i þ j11iÞ, and the

green bars represent that the qubits q½2�q½3� are projected to
other EPR states. In the left panel, the measurement
outcome of the qubits q½4�q½1� is selected to be 00, which
means that the qubits q½4�q½1� are projected to the state j00i.
In this case, the EPR projecting probability is estimated as
27%, and the decoding efficiency is about 79%. In the right
panel of Fig. 11, the measurement outcome of the qubits
q½4�q½1� is selected to be 11, which means that the qubits
q½4�q½1� are projected to the state j11i. From these data, one

can calculate the EPR projecting probability is estimated as
24%, and the decoding efficiency is about 75%. The
decoding efficiencies are smaller than those in the case
that the initial input of q½0� is 0. This is caused by the fact
that the qubit is more likely to decay to the state j0i. These
results indicate that the decoding strategy can also recover
the information when the initial state of q½0� is j1i.

C. Simulation of the Grover’s search decoding strategy

In this subsection, we discuss the experimental realiza-
tion of the Grover’s search decoding strategy of the
Hawking radiation on the IBM-perth quantum processor.
This processor is more suitable for conducting the task of
the Grover’s search decoding since the Grover’s search
decoding algorithm involves more gates operations, and
the decoherence time of the IBM-perth quantum processor
is longer compared to the other machines available to us.
In general, the efficiency of the Grover’s search decoding
strategy depends heavily on the quality of quantum pro-
cessors, and the IBM-perth processor performs better than
the other IBM quantum processors available to us.
The unitary operator G in Fig. 5 can be realized

diagrammatically as shown in Fig. 12. It can be easily
checked that the matrix representation of the operator G in
the computational basis coincides with that of the definition
of G operator in Eq. (3.13). To realize the Grover’s search
decoding strategy with less operating gates, we simplify
the quantum circuit in Fig. 5 with the operator G to the
following circuit shown in Fig. 13. Similar to the prob-
abilistic decoding circuit, in this circuit, the first three
qubits represent A, f, and r with the information to be
recovered denoted by q½0�. The last three qubits representR,
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FIG. 11. The statistics of the experimental results presented in Fig. 10. The horizontal axis represents the measurement results of
q½6�q½4�q½3�q½2�q½1�, and the vertical axis represents the corresponding frequencies.

FIG. 12. The circuit representation of the unitary operator G.
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f, and F, respectively. Ideally, the premeasurement state
coming out from the qubit q½5� should recover the initial
state of q½0�. In Fig. 13, the initial state is set to j0i as an
example, and it can be set to other states as well. The circuit
for the operator G is simplified to a single Y gate for q½2�
after leaving out the swap gate and rewiring the scrambling
unitary UT. Similarly, it is also simplified for q½5� after
we rewire the measurement gate. For the Grover’s search
decoding protocol to work for the nonisometric holo-
graphic model, we need to postselect the measurement
result on q½4� to c½2� to be the same as the initial state of
q½4�, which is chosen to be j1i in this demonstration. The
two measurements whose results are sent to bits c½0� and
c½1� represent the projection onto the system P, and this
projection can be realized by postselecting the measure-
ment results to be either j00i or j11i. We test the decoding

protocol of Fig. 13 on the IBM-perth quantum processor
with 20,000 shots.
In Fig. 14, we present the original data of the test results.

We remind the reader that only the outcomes with the last
three digits 100 and 000 in Fig. 14 are postselected, and
other rows can be disregarded. The postselected results are
shown in Fig. 15 where we include the decoding outcomes
for projections onto both the 00 states (the red bars) and the
11 states (the green bars). For the initial input q½0� ¼ j0i,
when the projection is onto the 00 state, the count for the
successful decodings [labeled by 0100 in Fig. 15(a)] is
1847. This corresponds to the successful decoding rate of
approximately 73%. When the projection is onto the 11
state, the decoding efficiency is about 72%. For the initial
input q½0� ¼ j1i, the data are presented in Figs. 14(b) and
15(b). In this case, the decoding efficiency is about 73%

FIG. 13. Quantum circuit that realizes the Grover’s search decoding strategy. This simplified quantum circuit realizes the decoding
protocol as shown in Fig. 5. In this diagram, the six qubits q½0� to q½5� are arranged the same way as in the case of probabilistic decoding.
The message system A represented by the qubit q½0� is set to be j0i for the demonstration purpose. The measurement results are projected
to the classical bits c½0� to c½3�, which are abbreviated as c4 in the diagram. The information will be at the final state of qubit q½5� before
the measurement on q½5�.

FIG. 14. The original experimental data from executing the Grover’s search decoding circuit on the IBM-perth quantum processor.
Left: the initial input is q½0� ¼ 0. Right: the initial input is q½0� ¼ 1.
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when the projection of system P is onto the 00 state, and
the decoding efficiency is about 72% when the projection
is onto the 11 state. It can be noticed that the decoding
efficiencies for this decoding strategy are slightly com-
promised compared to the probabilistic decoding strategy
due to the higher circuit complexity. However, in this
strategy, there is no additional probabilities of successful
EPR projections on which the probabilistic decoding
efficiencies are conditioned on. Therefore, the overall
decoding efficiencies of the Grover’s search decoding
strategy are much higher than the efficiencies in the
probabilistic decoding.
In summary, we have experimentally verified the fea-

sibility of the probabilistic and the Grover’s search decod-
ing strategies on the IBM quantum processors by using a
typical scrambling unitary operator. It is shown that the
initial quantum states can be recovered on the quantum
circuits for the nonisometric model. Especially, for the
probabilistic decoding, the quantum circuit can be viewed
as a realization of quantum teleportation. On the other
hand, the information recovery from decoding the Hawking
radiation depends heavily on the scrambling dynamics in
the black hole interior. Previous studies have relied on
partial scrambling unitaries in accordance with the con-
necting configurations of the qubits on the IBM quantum
processors to achieve the desired result [50,51]. The issue
with such unitaries is that they do not satisfy the scrambling
properties in Eq. (4.2) so that decoding information from
such partial-scrambling unitaries is often impossible due to
the information loss. In this study, we used a full scram-
bling unitary that satisfies Eq. (4.2). Therefore, the suc-
cessful simulation of the quantum circuits on IBM quantum
processors indicates that high-quality three-qubit scram-
bling dynamics can be realized on IBM quantum process-
ors even though the qubits are not fully connected. This
requires extra effort in the simplification of the quantum
circuits. This study may stimulate further investigations of
black hole information problems on the IBM quantum
processors and provide us more essential understandings of
the nature of quantum gravity.

V. ON THE INTERACTION OF INFALLING
SYSTEM WITH OUTSIDE HAWKING RADIATION

In our previous model, the interaction between the
infalling message system A and the right-moving mode
r of the radiation partner inside of the black hole was
considered, but the interaction of the infalling message
system A with the outside right-going Hawking radiation R
is not taken into account, at least apparently. In this section,
we will make a brief comment on the effect caused by this
type of interaction [25].
In this case, the modified Hayden-Preskill state is

graphically given by

ð5:1Þ

where u represents the interaction between the message
system A and the Hawking radiation R. It is clear that
the modified Hayden-Preskill state can be equivalently
given by

ð5:2Þ

In this graphical representation, the interaction between the
message system A and the Hawking radiation R is properly
transferred into the interaction between the message system
A and the interior Hawking partner mode r. Therefore,
we can further modify the scrambling unitary operator U to
be U0 ¼ UðAfrÞðBPR0Þ · ðvAr ⊗ IfÞ to take this type of the
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FIG. 15. Left: the statistical results for the initial input of q½0� ¼ 0. Right: the statistical results for the initial input of q½0� ¼ 1.
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interaction into account. Finally, the modified Hayden-
Preskill state can be represented by the original state
without this type of interaction

ð5:3Þ

The discussion on the decoupling condition as well as the
decoding strategy considered in Secs. II B and II D can be
properly applied to study this case, and the final conclu-
sions do not change.

VI. CONCLUSION AND DISCUSSION

In the previous studies on Hayden-Preskill thought
experiment of decoding the Hawking radiation [9,40–43],
the full dynamics of the black hole evolution is assumed to be
unitary, and there is no question that under such assumption,
the information will come out from the black hole and can be
decoded at late times. However, whether such decoding
strategy can still be realized in the nonisometricmodelwhere
the map from the fundamental to the effective descriptions
involves nonunitary projections is still unclear. One may
compare this model to the final-state proposal where infor-
mation leaks through quantum teleportation only if the final
state projection is finely tuned. In this study, by reinterpreting
and modifying the nonisometric holographic model, we
investigated the possibility of decoding Hawking radiation
and recovering information from a black hole when local
projections inside the horizon are included.
We firstly investigated the probabilistic decoding prob-

lem in the nonisometric model and presented the new
decoupling condition under which the information can be
retrieved by the outside observer. Under the assumption
that the observer has a full access of the early-time and the
late-time Hawking radiation as well as full knowledge of
the dynamics in the black hole interior, the Yoshida-Kitaev
decoding strategy can be employed to decode the Hawking
radiation and recover the information swallowed by the
black hole. We showed that the new decoupling condition
in this model is dependent on the size of the projected
Hilbert space and is less stringent if a large effective
degrees of freedom is projected out in the fundamental
description. The projection operator in the map from the
fundamental to effective descriptions can be realized by
postselecting the measurement results in the quantum
computer simulations. In the modified Hayden-Preskill
protocol, the success of projection onto the EPR state
indicates the feasibility of recovering the information from
the radiation. Importantly, we demonstrated that by locally
projecting the annihilated states following the unitary
scrambling, the channel for information transmission

transitions from the EPR projections to the local projections
at the Page time, reminiscent of a phase transition induced
by local measurements. This offers a new perspective on
the Page transition. A further improved Grover’s search
decoding algorithm can circumvent the issue of EPR
projections.
Furthermore, we implemented the decoding strategies

through the quantum circuits of qubits and conducted tests
of both decoding strategies on the IBM quantum computer
using a full scrambling unitary circuit. The results from the
quantum computers confirmed our analytical findings and
demonstrated the feasibility of both probabilistic and
Grover’s search decoding strategies on the IBM quantum
computer. At last, we also commented on the case where
the infalling message system interacts with the outside
Hawking radiation. We argued that this type of interaction
causes no additional effect on the decoding or the recovery
of the quantum information.
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APPENDIX A: INTEGRAL FORMULAS
OVER THE HAAR MEASURE

ON RANDOM UNITARY GROUP

In this section, we present the general formula for
evaluating the integral of the product of the 2n operators
in the unitary groupUðdÞwith its normalized Haar measure
dU. We consider the general 2n-operator integral over the
Haar measure, which is given byZ

Ui1j1…UinjnU
�
i0
1
j0
1
…U�

i0nj0n
dU

¼
X

σ;τ∈ Sn

δi1i0σð1Þ…δini0σðnÞδj1j
0
τð1Þ
…δjnj0τðnÞWgðτσ−1; n; dÞ;

ðA1Þ
where σ, τ are the permutations of n letters of the symmetric
group Sn, and Wgðρ; dÞ is the Weingarten function [52,53].
In general, for a 2n-operator integral, there are ðn!Þ2 terms.
For d ≥ n, theWeingarten function takes the following form:

Wgðρ; n; dÞ ¼ 1

ðn!Þ2
X
λ⊢n

χλð1Þ2χλðρÞ
sλ;dð1Þ

; ðA2Þ

where the sum is over all partitions λ of n, χλ is the character
of the symmetric group Sn, and s is the Schur polynomial
of λ.
Below are some explicit examples of the integrals used in

this study. For the two-operator integral, the only relevant
Weingarten function is
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Wgð½1�; 1; dÞ ¼ 1

d
; ðA3Þ

where ½1� is the identity map. Therefore, we have

Z
Ui1j1U

�
i0
1
j0
1
dU¼ δi1i01δjij01Wgð½1�;1;dÞ ¼ δi1i01δjij01

d
: ðA4Þ

This is just the integral formula of Eq. (2.11).
For the four-operator integral,Z
Ui1j1Ui2j2U

�
i0
1
j0
1
U�

i0
2
j0
2
dU

¼ ðδi1i01δi2i02δj1j01δj2j02 þ δi1i02δi2i01δj1j02δj2j01ÞWgð½1; 1�; 2; dÞ
þ ðδi1i01δi2i02δj1j02δj2j01 þ δi1i02δi2i01δj1j01δj2j02ÞWgð½2�; 2; dÞ;

ðA5Þ

where ½2� denotes the permutation (12), and

Wgð½1; 1�; 2; dÞ ¼ 1

d2 − 1
;

Wgð½2�; 2; dÞ ¼ −1
dðd2 − 1Þ : ðA6Þ

This result is just the integral formula of Eq. (2.28).
For the six-operator integral of our interest, the relevant

Weingarten functions are

Wgð½1; 1; 1�; 3; dÞ ¼ d2 − 2

dðd2 − 1Þðd2 − 4Þ ;

Wgð½2; 1�; 3; dÞ ¼ −1
ðd2 − 1Þðd2 − 4Þ ;

Wgð½3�; 3; dÞ ¼ 2

dðd2 − 1Þðd2 − 4Þ : ðA7Þ

Equation (A1) can be written out explicitly using the above
functions as follows:

Z
Ui1j1Ui2j2Ui3j3U

�
i0
1
j0
1
U�

i0
2
j0
2
U�

i0
3
j0
3
dU ¼

X
σ

δi1i0σð1Þδi2i
0
σð2Þ
δi3i0σð3Þδj1j

0
σð1Þ
δj2j0σð2Þδj3j

0
σð3Þ

·
ðd2 − 2Þ

dðd2 − 1Þðd2 − 4Þ
þ
X
σ

fδi1i0σð1Þδi2i0σð2Þδi3i0σð3Þδj1j0σð2Þδj2j0σð1Þδj3j0σð3Þ
þ δi1i0σð1Þδi2i

0
σð2Þ
δi3i0σð3Þδj1j

0
σð3Þ
δj2j0σð2Þδj3j

0
σð1Þ

þ δi1i0σð1Þδi2i
0
σð2Þ
δi3i0σð3Þδj1j

0
σð1Þ
δj2j0σð3Þδj3j

0
σð2Þ
g · ð−1Þ

ðd2 − 1Þðd2 − 4Þ
þ
X
σ

fδi1i0σð1Þδi2i0σð2Þδi3i0σð3Þδj1j0σð2Þδj2j0σð3Þδj3j0σð1Þ

þ δi1i0σð1Þδi2i
0
σð2Þ
δi3i0σð3Þδj1j

0
σð3Þ
δj2j0σð1Þδj3j

0
σð2Þ
g · 2

dðd2 − 1Þðd2 − 4Þ : ðA8Þ

For d ≫ 1, the dominant contribution out of the 36 terms comes from the ones associated with Wgð½1; 1; 1�; 3; dÞ, which
corresponds to identical permutations σ ¼ τ. Therefore, the leading order of the integral is given by

Z
Ui1j1Ui2j2Ui3j3U

�
i0
1
j0
1
U�

i0
2
j0
2
U�

i0
3
j0
3
dU ≃

X
σ

δi1i0σð1Þδi2i
0
σð2Þ
δi3i0σð3Þδj1j

0
σð1Þ
δj2j0σð2Þδj3j

0
σð3Þ

·
1

d3
; ðA9Þ

where σ is the permutation on three letters, and there are six
choices of σ’s in this summation.
For a general 2n-operator integral with n ≥ 4, direct

computations of the Weingarten functions can be extremely
involved. In this case, we can refer to the asymptotic
behaviors of Weingarten functions in the limit d ≫ 1,

Wgðρ; n; dÞ ≃ d−n−jρjΠið−1ÞjCij−1cjCij−1; ðA10Þ

where ρ is a product of cycles of lengths Ci, cj ¼
ð2jÞ!=ðj!ðjþ 1Þ!Þ is the Catalan number, and jρj is the

smallest number of transpositions of the products. The
leading order in 1=d of the Weingarten functions is
obtained when ρ ¼ ½1n�, which indicates that jρj ¼ 0 and
the Catalan number c1 ¼ 1. Therefore, we have the
asymptotic approximation

Wgð½1n�; n; dÞ ≃ d−n; ðA11Þ

and the 2n-operator integral over the Haar measure can be
approximated by
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Z
Ui1j1…UinjnU

�
i0
1
j0
1
…U�

i0nj0n
dU

≃
X
σ

δi1i0σð1Þ…δini0σðnÞδj1j
0
σð1Þ
…δjnj0σðnÞ ·

1

dn
; ðA12Þ

where σ is the permutation on n letters. Given a particular
diagram, usually only one term contributes dominantly in
this study. The above formulae are exploited to evaluate the
integrals in Appendices B and C below.

APPENDIX B: A QUICK CHECK OF THE LAST
TWO RELATIONS IN EQ. (3.11)

In this appendix, we show a not very rigorous demon-
stration of the last two relations in Eq. (3.11) by using
the integral formulas discussed in Appendix A. We have
claimed that the two relations are satisfied only in the ideal
case. This is to say that the unitary operator U should be a
typical one.
A not-so-rigorous check can be made by showing the

following relations hold

Z
dUinhΨjðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiin ¼ 1;

Z
dUinhΨjðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiout ¼

ffiffiffiffiffiffi
jPj
jfj

s
1

jAj : ðB1Þ

The two integrals involve the six-order unitary integral
formula that is given in Eq. (A9). In the ideal case, only one
term contributes the final result. In the following, we will
calculate the integral by using the graphical representation.
Firstly, the first integral of Eq. (B1) can be graphically

represented and approximately evaluated as

ðB2Þ
where we have considered the ideal case of d ≫ 1,
jPj < jfjjAj2. In this calculation, only one particular choice
of σ in Eq. (A9) returns the dominant contribution toR
dUinhΨjðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiin of Eq. (B1). In addition,

we have omitted the lines that represent the normalization
conditions hψ0jψ0if ¼ 1 and h0j0iP ¼ 1 in the graphical
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representation. Note that in deriving the above result, we
also used the fact that jAj ¼ jFj and jBj ¼ jB0j.
The second integral can be graphically represented and

evaluated in the ideal case as

ðB3Þ

As we remarked, the above calculations serve as a simple
demonstration that the last two relations in Eq. (3.11) hold.
However, a rigorous proof of them is much more tedious
and should be carried out by showing that the operator
distance of the density matrices for the states on the lhs and
the rhs of the equations averaged over the random unitary
group is small. This procedure involves the operator

integrals of higher n over the random unitary group, which
will be presented in the Appendix C.

APPENDIX C: PROOF OF THE LAST TWO
RELATIONS IN EQ. (3.11)

The last two relations in Eq. (3.11) can be rewritten as

ðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiin ¼ jΨiin;
1ffiffiffiffiffiffiffiffiffiffi
PEPR

p ðIA0BR0 ⊗ Π̃R00B0F0 ÞjΨiout ¼ jΨiin: ðC1Þ

We now prove that the above relations are satisfied in the
ideal case. Define the following three density matrices as

ρin ¼ jΨiin inhΨj;
ρ1 ¼ Π̃jΨiin inhΨjΠ̃;

ρ2 ¼
1

PEPR
Π̃jΨiout outhΨjΠ̃; ðC2Þ

where we have omitted the identity operators and the
subscripts for simplicity. The last two relations in Eq. (3.11)
can be proved by estimating that the operator distances
between ρ1 and ρin and between ρ1 and ρin are small enough
in the ideal case. To our aim, only the dominant contri-
bution from the unitary integral is considered.
Firstly, we evaluate the operator distance between ρ1 and

ρin. Let us consider�Z
dUjjρ1 − ρinjj1

�
2

≤
Z

dUjjρ1 − ρinjj21

≤ 2N
Z

dUjjρ1 − ρinjj22

¼ 2N
Z

dUTrðρ21 þ ρ2in − 2ρ1ρinÞ

¼ 2N
Z

dUðinhΨjΠ̃2jΨi2in
þ inhΨjΨi2in − 2inhΨjΠ̃jΨi2inÞ;

ðC3Þ
where N is the normalization factor. For a typical scram-
bling unitary, which we consider or the normalized pure-
state density matrices ρ1 and ρin, the normalization factor
is 1. The factor of 2 in the second line comes from the
operator inequality

jjXjjp ≤ ðRankðXÞÞ1p−1
qjjXjjq: ðC4Þ

For simplicity, we consider the ideal case and jPj ≪
jfjjAj2. Then only the leading order’s contribution to the
integral on the right-hand side of the inequality needs to be
evaluated. Using the graphical representation, the first term
can be calculated as
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ðC5Þ

Note that we have omitted the lines that represent the
normalization conditions hψ0jψ0if ¼ 1 and h0j0iP ¼ 1 in
this graphical representation.
The second term can be calculated as

ðC6Þ

The third term can be calculated as

ðC7Þ
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Putting it together, the leading order contribution to the
integral on the right-hand side of the inequality is zero.
Therefore, we have

Z
dUjjρ1 − ρinjj1 ≤ Oð1Þ; ðC8Þ

which implies that in the ideal case, the operator
distance between ρ1 and ρin is small enough when averaged
over the random unitary matrix. This gives that the first
relation in Eq. (C1).
For the operator distance between ρ2 and ρin,

we have

�Z
dUjjρ2 − ρinjj1

�
2

≤
Z

dUjjρ2 − ρinjj21

≤ 2C
Z

dUjjρ2 − ρinjj22

¼ 2C
Z

dUTrðρ22 þ ρ2in − 2ρ2ρinÞ

¼ 2C
Z

dU

�
1

P2
EPR

outhΨjΠ̃2jΨi2out

þ inhΨjΨi2in −
2

PEPR
outhΨjΠ̃jΨi2in

�
:

We also evaluate the leading order contribution to the
integral on the right-hand side of the inequality. The first
term can be calculated as

ðC9Þ
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The third term can be calculated as

ðC10Þ

Finally, we find that the leading order’s contribution is also zero. Therefore, we haveZ
dUjjρ2 − ρinjj1 ≤ Oð1Þ: ðC11Þ

We can conclude that the operator distance between ρ2 and ρin is also small enough in the ideal case. This gives the second
relation in Eq. (C1). In summary, we have proved the equations used in the Grover’s search decoding strategy.
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