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Theories of gravity with auxiliary fields are of particular interest since they are able to circumvent
Lovelock’s theorem while avoiding the introduction of new degrees of freedom. This type of theories
introduces derivatives of the stress-energy tensor in the modified Einstein equation. This peculiar structure
of the field equations was shown to lead to spacetime singularities on the surface of stars. Here we focus on
yet another problem afflicting gravity theories with auxiliary fields. We show that such theories can
generically introduce parametrically large deviations to the Standard Model unless one severely constrains
the parameters of the theory, preventing them to produce significant phenomenology at large scales. We
first consider the specific case of Palatini fðRÞ gravity, to clarify the results previously obtained in Ref. [1].
We show that the matter fields satisfy the Standard Model field equations which reduce to those predicted
by general relativity in the local frame only at tree level, whereas at higher orders in perturbation theory
they are affected by corrections that percolate from the gravity sector regardless of the specific fðRÞmodel
considered. Finally, we show that this is a more general issue affecting theories with auxiliary fields
connected to the same terms responsible for the appearance of surface singularities.
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I. INTRODUCTION

Although general relativity (GR) is widely accepted as a
classical theory of gravity, there is both theoretical and
experimental motivation to go beyond GR. On the theo-
retical side, GR is not renormalizable and does not offer a
quantum description of gravitation. Furthermore, it predicts
the appearance of spacetime singularities, in the vicinity of
which GR itself breaks down. On the experimental side,
GR is challenged by the rich and overwhelming astro-
nomical evidence for the existence of a large amount of
unseen dark matter [2–4] and dark energy [5–8].
To go beyond GR, one needs to evade Lovelock’s unique-

ness theorem [9,10] by abandoning one of its assumptions,
namely introduce extra dimensions, allow for higher-order
equations, break diffeomorphism invariance, explicitly

include additional fields, or abandon the idea that gravity
can be described by a field theory whose equations involve
local differential operators [11]. Although dropping any one
of these assumptions could lead to a very different quantum
gravity theory, if one focuses on a local, classical effective
field theory (as a low-energy limit), dropping any of the
assumptions leads to the same outcome [12]: additional
fields. Typically, these fields will be dynamical and would
propagate. Searches for such new fields are one of the main
ways to test GR and have so far not given any detection. The
dynamical behavior of these additional fields has also given
strong theoretical bounds on deviation from GR, as they are
prone to the Ostrogradski instability [13].
It is then particularly interesting to consider theories with

nondynamical extra fields. Such theories circumvent
Lovelock’s theorem without adding any extra propagating
degrees of freedom. The extra fields are instead auxiliary;
i.e. one does vary the action with respect to them but they
can be determined algebraically from the field equations.1Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1Note that auxiliary fields differ from background fields, as the
latter are kept fixed when varying the action.
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In Ref. [14], it was shown that, once auxiliary fields have
been eliminated, one obtains the following field equations:

Gμν þ Λgμν ¼ κ2Tμν þ Sμν; ð1Þ

where κ2 ¼ 8πG (henceforth we use ℏ ¼ c ¼ 1 units), Tμν

is the matter stress-energy tensor, and Sμν is a divergence-
free tensor that depends on the matter fields, the metric, and
their derivatives. The precise form of Sμν will depend on the
specific form of the auxiliary field and how it enters the
Lagrangian. However, a characteristic feature of this kind
of theories is that Sμν contains derivatives of the stress-
energy tensor, and hence the theory inevitably includes
higher-order derivatives of the matter fields in the field
equations. As a consequence, the metric is overly sensitive
to abrupt discontinuities in the matter energy density
leading to spacetime singularities, e.g. on the surface of
stars. This was explicitly shown for specific classes of
gravity with auxiliary fields, first for Palatini fðRÞ gravity
in Refs. [15,16] and more recently for Eddington-inspired
Born-Infeld gravity [17].
Palatini fðRÞ gravity is perhaps the most characteristic

and well-studied example of gravity with an auxiliary field
[18–22,22–33]. It became popular as a potential explan-
ation of the accelerated cosmic expansion [5–7]. It consists
of a generalization of the Einstein-Hilbert action by
allowing the Lagrangian to be a generic function of the
Ricci scalar R, while also assuming that the metric and
the connection are independent variables. By doing so, the
Ricci tensor and, consequently, the Ricci scalar present in
the action are constructed with the independent connection.
A crucial assumption in this formalism is that the matter
action does not contain the independent connection [34].
The issue with surface singularities is not the only

problem with Palatini fðRÞ gravity.2 While the theory
satisfies the weak equivalence principle, in the sense that
the matter couples minimally to the metric and is not
coupled to the independent connection, eliminating this
connection from the field equations introduces matter
corrections to them in perturbation theory. This was pointed
out in Ref. [1], where a dynamical equivalent scalar-tensor
theory was used to show that a specific model of Palatini
fðRÞ gravity exhibits such corrections and that this is in
conflict with particle-physics observations. There has been
debate about this result in the literature [38–40] and, in
particular, about whether it is specific to the choice of
conformal frame [38].

In this paper, we revisit this issue and attempt to clarify it
and demonstrate that the conflict with the Standard Model
is indeed there and it is not specific to the model studied in
Ref. [1], or even Palatini fðRÞ gravity. It is instead more
generic to theories with auxiliary fields and indeed is linked
to the same terms that are responsible for the appearance of
surface singularities in such theories. For what regards the
confusion between different conformal frames, it appears to
be due to the fact that the effect appears at different orders
in perturbation theory in different conformal frames, as we
discuss in more detail below.
The paper is organized as follows. In Sec. II, we give a

general review of Palatini fðRÞ gravity. Then, in Sec. III, we
recast Palatini fðRÞ gravity as a scalar-tensor theory, and we
report the results obtained inRef. [1]. Section IVis devoted to
the perturbative analysis of the field equations, and we
present our results for the case of a massless scalar field
for a specific model of Palatini fðRÞ gravity. In Sec. V, we
generalize these results to the broader class of theories
presented in Ref. [14]. Finally, we conclude in Sec. VI.

II. PALATINI f ðRÞ GRAVITY

The action for Palatini fðRÞ gravity takes the form

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðRÞ þ LMðgμν;ψÞ�; ð2Þ

where g is the determinant of the metric gμν andR¼gμνRμν,
where Rμν is the Ricci tensor constructed with the inde-
pendent connection Γρ

μν. As we mentioned before, in the
Palatini approach, the matter Lagrangian LM generically
depends on the matter fields ψ and on the metric tensor,
but not on the independent connection. This implies that
the parallel transport is defined only by the Levi-Civita
connection [31], and that the stress-energy tensor,
Tμν ¼ −2ffiffiffiffi−gp δLM

δgμν , is divergence-free with respect to the metric

covariant derivative. Thus, the above theory is expected to
satisfy the weak equivalence principle.
The field equations stemming from action (2) read [31]

f0ðRÞRμν −
1

2
gμνfðRÞ ¼ κ2Tμν; ð3Þ

∇ρð
ffiffiffiffiffiffi
−g

p
f0ðRÞgμνÞ ¼ 0; ð4Þ

where we have defined the covariant derivative constructed
with the independent connection as ∇ρ. In the special case
fðRÞ ¼ R, Eq. (3) reduces to Einstein’s equations,
whereas Eq. (4) becomes the definition of the Levi-Civita
connection for Γρ

μν.
Taking the trace of Eq. (3) yields an algebraic equation

between R and T ≡ Tμνgμν,

f0ðRÞR − 2fðRÞ ¼ κ2T: ð5Þ

2Note that it was also recently shown in Refs. [35–37] how the
shape of the fðRÞ function and the matter potential are strongly
related to each other; as a consequence not all possible configu-
rations allow for a real solution of the auxiliary field equation, and
higher-order Palatini fðRÞ produces divergences in the kinetic
terms of matter.
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Thus, the Ricci scalar is determined in terms of the matter
fields, i.e.R ¼ RðTÞ. In particular, when T ¼ 0, the above
equation reduces to f0ðRÞR − 2fðRÞ ¼ 0, andR has to be
a constant defined by the root of this equation. Replacing
this in Eq. (3), one effectively solves GR with an effective
cosmological constant.
Finally, it is useful to define a metric conformal to gμν,

hμν ≡ f0ðRÞgμν: ð6Þ

Using this relation, Eq. (4) becomes the definition of the
Levi-Civita connection of hμν, Γ

ρ
μν ¼ 1

2
hρσð∂μhνσ þ ∂νhμσ −

∂σhμνÞ. Substituting Eq. (6), the independent connection
can be written in terms of R and of the metric gμν.
Therefore, since Eq. (5) relatesR to T, one can completely
eliminate Γρ

μν from the field equations and rewrite the latter
only in terms of the metric and of the matter fields. Indeed,
first note that the Ricci tensor transforms under the
conformal transformation (6) as

Rμν ¼ Rμν þ
3

2

1

ðf0ðRÞÞ2∇μf0ðRÞ∇νf0ðRÞ

−
1

f0ðRÞ
�
∇μ∇ν þ

1

2
gμν□

�
f0ðRÞ; ð7Þ

where Rμν ¼ Rα
μαν and Rα

μβν is the Riemann tensor con-
structed with the Levi-Civita connection. Since the Ricci
scalars constructed with the independent connection and
the Levi-Civita connection are, respectively, defined as
R ¼ gμνRμν and R ¼ gμνRμν, we contract Eq. (7) with the
metric finding

R ¼ Rþ 3

2

1

ðf0ðRÞÞ2∇μf0ðRÞ∇μf0ðRÞ − 3

f0ðRÞ□f0ðRÞ:

ð8Þ

Thus, we can rewrite the field equation (3) as

Gμν ¼
κ2

f0
Tμν −

1

2

1

f0
gμν

�
R −

f
f0

�
þ 1

f0
ð∇μ∇νf0 − gμν□f0Þ

−
3

2

1

f02

�
ð∇μf0Þð∇νf0Þ −

1

2
gμνð∇λf0Þð∇λf0Þ

�
; ð9Þ

where once again we stress that this is a function of only the
metric and the matter fields, since, due to Eq. (5), we have
R ¼ RðTÞ and fðRÞ ¼ fðRðTÞÞ. Note that the fact that
we can eliminate Γλ

μν in terms of the metric and the matter
fields indicates that, in Palatini fðRÞ gravity, the indepen-
dent connection is an auxiliary field and does not propagate
any additional degree of freedom. In the specific case when
fðRÞ ¼ R, we find from Eq. (6) that hμν ¼ gμν, since
f0 ¼ 1. Therefore,Rμν ¼ Rμν, R ¼ R, and Eq. (9) reduces
to the Einstein field equation, showing once again that the

Palatini formalism applied to the Einstein-Hilbert action
yields GR.
The differential structure of Eq. (9) is clearly a cause for

concern. This field equation is a second-order partial
differential equation in the metric, as in GR, but at the
same time it includes up to second derivatives of f0ðRÞ, and
consequently of T, since from Eq. (5) we haveR ¼ RðTÞ.
Note that the matter action usually contains derivatives of
the matter field ψ , so that one has T ¼ Tðψ ; ∂μψÞ; hence
Eq. (9) contains up to third-order derivatives of the matter
field. In GR, the higher differential order in the metric with
respect to the differential order in the matter fields
guarantees that the metric comes as an integral over the
matter fields, so that any discontinuities in the matter are
“smoothed out” and not inherited by the metric. However,
in Palatini fðRÞ gravity this does not happen. Indeed, since
the differential order in the matter fields is higher than in the
metric, the latter is no longer an integral over the matter
fields, but it is related to them and their derivatives. For
example, the problem of surface singularities discussed in
Refs. [15,16] is related to this mechanism: a discontinuity
in the matter fields or in their derivatives can lead to
curvature singularities.
We stress that while Palatini fðRÞ gravity exemplifies

this peculiar differential structure, the latter is a more
general feature of gravity theories with auxiliary fields. As
we have mentioned, this is due to the fact that the
“sourcelike” term Sμν in Eq. (1) contains a derivative of
the stress-energy tensor.
In this paper, we focus on potential deviations from the

Standard Model of Palatini fðRÞ gravity, and more in
general of gravity theories with auxiliary fields. We will
discuss this issue after we introduce in the next section the
scalar-tensor formulation of action (2), where the auxiliary
field is simply represented by a scalar field.

III. PALATINI f ðRÞ GRAVITY
AND SCALAR-TENSOR FORMULATION

Palatini fðRÞ gravity can be cast in the form of a scalar-
tensor theory in the presence of a nondynamical scalar
field, obtaining [19,25,30–32]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕRþ 3

2ϕ
∂μϕ∂

μϕ − VðϕÞ
�

þ SMðgμν;ψÞ; ð10Þ

where we have defined the scalar field ϕ ¼ f0ðRÞ and the
scalar potential VðϕÞ ¼ RðϕÞϕ − fðRðϕÞÞ. Note that in
the above equation R is the Ricci scalar constructed from
the metric gμν, as in the standard definition of scalar-tensor
theories. Action (10) is equivalent to a Brans-Dicke theory
in the Jordan frame with ω ¼ −3=2 and a potential V.
Varying the action with respect to the metric and the

scalar field yields
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Gμν ¼
κ2

ϕ
Tμν −

3

2ϕ2

�
∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ

�

þ 1

ϕ
ð∇μ∇νϕ − gμν□ϕÞ − V

2ϕ
gμν; ð11Þ

□ϕ ¼ ϕ

3
ðR − V0Þ þ 1

2ϕ
∇λϕ∇λϕ: ð12Þ

Taking the trace of Eq. (11), we can eliminate the Ricci
scalar in Eq. (12), obtaining an algebraic relation,

2VðϕÞ − ϕV 0ðϕÞ ¼ κ2T; ð13Þ

that determines the (auxiliary) field ϕ in terms of T. Note
that Eqs. (11) and (13) are equivalent respectively to Eq. (9)
and to the algebraic relation Eq. (5).
Finally, action (10) can be written in the Einstein

frame as

S̃ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−UðϕÞ
�
þ SMðϕ−1g̃μν;ψmÞ; ð14Þ

whereUðϕÞ¼ VðϕÞ
2κ2ϕ2 and g̃μν¼f0ðRÞgμν≡ϕgμν. (Henceforth,

tilded quantities will refer to the Einstein frame.) In this
frame, the field equations read

G̃μν ¼ κ2T̃μν − κ2g̃μνUðϕÞ; ð15Þ

U0ðϕÞ ¼ −
1

2
T̃ϕ−1; ð16Þ

and the scalar field is manifestly auxiliary.
Let us now briefly review the results of Ref. [1], where

the theory is studied in the Einstein frame choosing the
specific model corresponding to fðRÞ ¼ R − μ4=R, where
one takes μ to be a mass scale of order the Hubble scale, i.e.
μ ∝ H0, in order to describe the present acceleration of the
universe. They considered the case where the matter action
is described by the Dirac action. The auxiliary scalar field ϕ
is canonically renormalized as

Φ ¼
ffiffiffi
6

p

2κ
logϕ; ð17Þ

so that the total action written in the Einstein frame is

S̃ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−UðΦÞ þ ie2αðΦÞψ̄ γ̃μ∂μψ

− e3αðΦÞmψ̄ψ

�
; ð18Þ

where ψ is a Dirac spinor, with massm, and γμ are the Dirac
matrices in the local frame. The field Φ is then written
explicitly in terms of the matter fields solving its field
equation, namely Eq. (16). Since for the model taken into

consideration the solution to this equation is not analytical,
it is necessary to solve it perturbatively.
In this model one can perform two different expansions,

one assuming that μ2=κ2T ≪ 1 and one considering
κ2T=μ2 ≪ 1. In Ref. [1], only the latter has been consid-
ered. This applies assuming that μ4=R ≫ R or equivalently
μ2 ≫ R ∼ κ2T. Hence, in this case one does not retrieve
GR. Using this expansion in order to solve the field
equation of the scalar Φ yields

κΦ ¼ κΦmax −
3

4
ffiffiffi
2

p Mþ 1

2
ffiffiffi
2

p KþOðK2;M2;MKÞ;

ð19Þ

where κΦmax ¼
ffiffi
3
2

q
logð4

3
Þ andK andM are dimensionless

quantities defined asK¼ iκ2ψ̄ γ̃μ∂μψ=μ2,M¼ κ2mψ̄ψ=μ2.
Substituting Eq. (19) back into the action allows one to
integrate out the scalar field Φ. The action so obtained
contains new matter interaction vertices, each one charac-
terized by the factor 1=m4�, where m� ¼

ffiffiffiffiffiffiffiffi
μ=κ

p
. Since κ2 ¼

8πG and μ is assumed to be ∝ H0 to address the dark
energy problem, it turns out that m4� is roughly the geo-
metric mean of the Planck and the Hubble scales if
expressed in natural units, of order 10−3 eV. Therefore,
Flanagan states that this model is in severe conflict with
particle-physics experiments.
We note that these corrections are present at the tree level

in the Einstein frame. This point was the subject of the
discussion in Ref. [38]. It was claimed there that the Jordan
frame is the “physical” frame and that these new matter
interactions are absent in that frame (at tree level), since the
matter-field equations do not present any correction terms.
We chose here to revisit this discussion to address the issue
of performing calculations in different conformal frames,
which not only affects Palatini fðRÞ gravity, but more in
general gravity theories with auxiliary fields. In the next
section, we will look at the perturbed field equations in the
two conformal frames, Jordan and Einstein, and we show
that, as expected, both conformal frames can be used to do
the calculation, but the change of frame affects the order in
perturbation theory in which the corrections first appear.

IV. MATTER FIELDS IN PALATINI f ðRÞ
GRAVITY: A SPECIFIC EXAMPLE

In this section we shall show that the matter-field
equations in Palatini fðRÞ gravity are affected by correc-
tions with respect to their GR counterpart in the local frame.
We do not consider the 1=R model as in Ref. [1], but
instead we study the R2 model. Working with the latter,
which has been used to describe inflationary scenarios,
does not only simplify the calculations but also allows us to
demonstrate that this issue is not strictly related to the 1=R
model. For completeness, we also report in Appendix C the
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analysis done for the specific theory studied in Ref. [1] and
reach the same conclusion.

A. Generic considerations

We wish to study the scalar-tensor representation of the
theory fðRÞ ¼ Rþ βR2. First of all, wewrite explicitly the
auxiliary scalar field as ϕ≡ f0ðRÞ ¼ 1þ 2βR. Solving
Eq. (5), one finds R ¼ −κ2T, and hence

ϕ ¼ 1 − 2βκ2T: ð20Þ
Note that one could get the same result by rewriting R and
fðRÞ as functions of ϕ and solving Eq. (13). Using now
Eq. (20), one can rewrite the potentialVðϕÞ and its derivative
V 0ðϕÞ in terms of the matter source,

V ¼ βκ4T2; V 0 ¼ −κ2T: ð21Þ
Substituting the above relations into the modified

Einstein equation (11) yields

Gμν ¼
κ2Tμν

1 − 2βκ2T
−
1

2

βκ4gμνT2

1 − 2βκ2T

− 3β2κ4
2∇μT∇νT − gμν∇λT∇λT

ð1 − 2βκ2TÞ2

þ 2βκ2
gμν□T −∇μ∇νT

1 − 2βκ2T
: ð22Þ

Since∇μGμν ¼ 0, the right-hand side of Eq. (22) must be
divergence-free. One can show this by employing the
relation ð□∇ν −∇ν□ÞT ¼ Rμν∇μT and by rewriting the
Ricci tensor Rμν in terms of the matter fields only, by taking
the trace of Eq. (22). Then, the right-hand side of Eq. (22)
vanishes identically provided ∇μTμν ¼ 0.
For completeness, let us consider the same theory in the

Einstein frame. In order to find an equivalent to Eq. (20) in
this frame, we solve Eq. (16), finding

ϕ ¼ Δ − 1

4βκ2T̃
; ð23Þ

where we defined Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8βκT̃

p
. Using now Eq. (23),

one can rewrite the potential UðϕÞ in terms of the matter
source,

U ¼ 1þ 8β2κ4T̃2 − Δþ 4βκ2T̃ð2 − ΔÞ
4βκ2ðΔ − 1Þ2 : ð24Þ

We can now write the Einstein modified equation (16)
using the relation just found, and the result is

G̃μν ¼ κ2T̃μν − κ2g̃μν

�
1þ 8β2κ4T̃2

4βκ2ð1 − ΔÞ2
�

þ κ2g̃μν

�
Δþ 4βκ2T̃ðΔ − 2Þ

4βκ2ð1 − ΔÞ2
�
: ð25Þ

The modified Einstein equation derived in the Jordan frame
is dynamically equivalent to the one derived in the Einstein
frame, and Eq. (25) conformally transforms to Eq. (22).
So far, we performed an exact analysis of the Einstein

modified equations. We are now going to study this model
by performing an expansion in terms of the dimensionless
parameter βκ2T ≪ 1. This procedure is necessary to derive
the matter-field equations in the Einstein frame in a simple
form. Indeed, substituting in action (14) the relation for the
scalar field in terms of the matter source, i.e. Eq. (23),
yields a complicate expression. Moreover, the conformal
transformation of the resulting equation back into the
Jordan frame yields a cumbersome expression, unless
the limit βκ2T ≪ 1 is considered. Furthermore, this per-
turbative expansion also enlightens other properties of the
field equations, as we shall see.
The modified Einstein equations in the Jordan frame,

Eq. (22), reduce to

Gμν ¼ κ2Tμν þ Sμνβ þOðβ2Þ; ð26Þ
where Sμν is the correction to the matter source defined as

Sμν ¼ 2κ4TTμν − 2κ2∇μ∇νTþ 2κ2gμν□T −
κ4

2
gμνT2: ð27Þ

Let us now focus on the Einstein frame. Since T̃μν ¼ ϕ−1Tμν

and T̃ ¼ ϕ−2T, from Eq. (20) we have T ¼ ϕ2T̃ ¼
T̃ þOðβÞ, and therefore

ϕ ¼ 1 − 2βκ2T̃ þOðβ2Þ: ð28Þ
We can use this relation to rewrite the potentialUðϕÞ and its
derivative U0ðϕÞ as

U ¼ βκ2T̃2

2ð1 − 2βκ2T̃Þ2 ; ð29Þ

U0 ¼ −
1

2

T̃

ð1 − 2βκ2T̃Þ2 −
βκ2T̃2

ð1 − 2βκ2T̃Þ3 : ð30Þ

Substituting these results into the modified Einstein
equation (15) and keeping terms up to OðβÞ yields

G̃μν ¼ κ2T̃μν −
κ2

2
βκ2g̃μνT̃2 þOðβ2Þ; ð31Þ

while Eq. (16) is identically satisfied, as one would expect.
Once again, the modified field equations derived in the
Einstein frame are dynamically equivalent to those derived
in the Jordan frame, namely Eq. (26).
The above considerations are valid for a generic matter

stress-energy tensor. In the next section, we specialize to
the specific case of a massless scalar field. This particular
choice not only allows us to obtain more straightforward
outcomes but also suffices to prove that matter corrections
in Palatini fðRÞ gravity are a general result not only
specific to the Dirac field, i.e. the case considered in
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Ref. [1]. Nevertheless, in Appendix B, we extend our result
to the case of a Dirac field, reaching the same conclusion.

B. Massless scalar field

We consider the case of a massless scalar field described
by the standard Klein-Gordon action,

SM ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μψ∂νψ ; ð32Þ

so that Tμν ¼ 1
2
gμν∂λψ∂λψ − ∂μψ∂νψ and T ¼ ∂

λψ∂λψ . Part
of the debate regarding the analysis of Ref. [1] was related to
whether corrections to the behavior ofmatter were specific to
the Einstein frame. The Jordan and Einstein frames are
equivalent, and this has already been shown in Sec. III in the
formulation in which the auxiliary field ϕ is present. A
subtlety can arisewhen one decides to eliminate the auxiliary
field. One can always do so at the level of the field equations
in both frames and obtain dynamically equivalent equations,
as we show below. However, attempting to use the field
equations to eliminate ϕ from the action in the Jordan frame
will not yield the correct field equations, as the Jordan
frame action (10) contains derivatives of ϕ (despite the fact
that ϕ can be algebraically determined from the field
equations). Hence, discussing the equivalence of the two
frames at the level of this action‘ after attempting to eliminate
ϕ is misleading. In Appendix A, we present a simple
Lagrangian model to elucidate this point. Below we dem-
onstrate it explicitly for our model.
Let us consider the modified Einstein equation in the

Jordan frame, namely Eq. (22), and let us substitute the
explicit definition of the stress-energy tensor directly at
the level of the equation. The resulting equation is

Gμν¼
1

2
κ2gμν∂λψ∂λψ −κ2∂μψ∂νψþ1

2
βκ4gμν∂λψ∂λψ∂σψ∂σψ

−2βκ4∂λψ∂λψ∂μψ∂νψ −4βκ2∇μ∂λψ∇ν∂
λψ

−4βκ2∂λψ∇ðμ∇νÞ∂λψþ4βκ2gμν∇λ∂σψ∇λ
∂
σψ

þ4βκ2gμν∂σψ□∂
σψþOðβ2Þ: ð33Þ

However, integrating out the scalar field at the level of
the action, using the algebraic relation (20), and varying the
action with respect to the metric and the matter field yields
a different field equation, respectively,

Gμν ¼
1

2
κ2gμν∂λψ∂λψ − κ2∂μψ∂νψ þ 2βκ2R∂μψ∂νψ

− 2βκ2∇μ∇λ∂νψ∂
λψ − 2βκ2∇ν∇λ∂μψ∂

λψ

þ 2βκ2Gμν∂λψ∂
λψ þ 2βκ4∂λψ∂

λψ∂μψ∂νψ

− 4βκ2∇λ∂νψ∇λ
∂μψ −

1

2
βκ4gμν∂λψ∂λψ∂σψ∂σψ

þ 4βκ2gμν∂λψ□∂λψ þ 4βκ2gμν∇λ∂σψ∇λ
∂
σψ

þOðβ2Þ ð34Þ

and

□ψ − 2βR□ψ − 2β∇λψ∇λR − 2βκ2∇λψ∇λψ□ψ

− 4βκ2∇λψ∇σψ∇λ∇σψ þOðβ2Þ ¼ 0: ð35Þ

Clearly, Eq. (34) is not equivalent to Eq. (33). As we
previously emphasized, substituting ϕ in terms of the matter
field ψ in order to write the action explicitly in terms of the
latter is not appropriate, and, aswe showed, leads to incorrect
field equations. We stress that we do not expect the set of
Eqs. (34) and (35) to give the same dynamics as Eq. (33)
coupled with its respective matter-field equation. This would
be hard to show more explicitly, but, as we pointed out,
Eqs. (34) and (35) describe a different theory. We refer to the
simple model in Appendix A to clarify this aspect.3 A
consistent procedure is to derive the matter-field equation
in the Einstein frame, wherewe can substitute the expression
of ϕ in terms of ψ directly in the action, since the auxiliary
scalar field has no kinetic term in the action, and then
transform the equation back into the Jordan frame. This
allows us to use the action in the Einstein frame to draw an
initial conclusion about the theory.
Let us then consider our model in the Einstein frame. The

Klein-Gordon action (32) can be written as

S̃M ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
ϕ−1g̃μν∂μψ∂νψ ; ð36Þ

so that T̃μν ¼ 1
2
g̃μνϕ−1

∂
λψ∂λψ − ϕ−1

∂μψ∂νψ and T̃ ¼
ϕ−1g̃μν∂μψ∂νψ . Thus, Eq. (31) can be written explicitly
in terms of the matter field ψ as

G̃μν¼
κ2

2
g̃μν∂σψ∂σψ −κ2∂μψ∂νψþ1

2
g̃μνβκ4∂σψ∂σψ∂λψ∂λψ

−2βκ4∂σψ∂
σψ∂μψ∂νψþOðβ2Þ: ð37Þ

As mentioned before, in the Einstein frame the auxiliary
field ϕ has no kinetic term in the action. Thus, in this frame
we can substitute the solution (28) for ϕ in terms of ψ
directly into the action. Varying with respect to the metric
and the matter field, we obtain the correct field equations.
Indeed, action (14) can be written explicitly in terms of the
matter field ψ as

S̃¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

þ ∂σψ∂
σψ

2ð1− 2βκ2∂σψ∂
σψÞ

−
βκ2∂σψ∂

σψ∂λψ∂
λψ

2ð1− 4βκ2∂σψ∂
σψ þ 4β2κ4∂σψ∂

σψ∂λψ∂
λψÞ

�
; ð38Þ

3Note that, in the context of effective field theory where
operators above a certain mass dimension or order in derivatives
could be neglected, it might be possible to reconcile Eq. (33) and
Eq. (34), via field redefinitions as discussed in Refs. [41,42].
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varying the action with respect to the metric and keeping
terms up toOðβÞ, we retrieve exactly the field equation (37).
Finally, varying the action with respect to ψ instead, we
obtain the modified matter-field equation,

□̃ψ þ 2βκ2□̃ψ∂λψ∂
λψ þ 4βκ2∂λψ∂σψ∇̃σ∂λψ þOðβ2Þ ¼ 0:

ð39Þ
As expected, in the Einstein frame the standard Klein-
Gordon equation is modified by OðβÞ terms due to the
nonminimal coupling in the Einstein frame. These correc-
tions are evident in Eq. (39), but can already be identified
as modifications to the standard kinetic term in the third
term of action (38) (note that at order β the numerator is
simply a constant). These terms are suppressed by a mass
scale proportional toM ∝ 1=ðβ1=4 ffiffiffi

κ
p Þ, instead of the usual

Planck mass scale, that is, MPlanck ∝ 1=κ. Hence, as
discussed in more detail below, to guarantee that these
corrections do not appear at a larger scale one must severely
constrain the parameter β.
We now show that these terms persist in the Jordan frame

field equations as well, i.e. the frame where we want to
verify if one locally retrieves the correct behavior of the
matter fields predicted by the Standard Model. Let us
perform a conformal transformation on the field equa-
tions (37) and (39). It is straightforward to show that
Eq. (37) becomes exactly the same field equation previ-
ously found in the Jordan frame, i.e. Eq. (33) and not the
wrong one, namely Eq. (34). Finally, a conformal trans-
formation of Eq. (39) yields

□ψð1þ 4βκ2∂λψ∂
λψÞ þOðβ2Þ ¼ ϕ−2

□ψ þOðβ2Þ ¼ 0:

ð40Þ
Since we are working perturbatively in the regime
βκT ≪ 1, this equation implies that □ψ ¼ 0. However,
the matter field is on-shell only at tree level, i.e. at first
order in perturbation theory. Indeed, performing an expan-
sion in the field around a flat background, that is, gμν ¼
ημν þ ϵδg1μν þ � � � and ψ ¼ ϵδψ1 þ � � �,4 the modified
Einstein equation and the matter-field equation at first
order, respectively, are

Ogðδg1Þ≡ 2∂λ∂ðμδg1νÞλ − ∂μ∂νδg1 − ηλσ∂
λ
∂
σδg1μν

− ημν∂
λ
∂
σδg1λσ þ ημνηλσ∂

λ
∂
σδg1 ¼ 0; ð41Þ

Omðδψ1Þ≡ ημν∂
μ
∂
νδψ1 ¼ 0; ð42Þ

where we identifiedOg andOm as the differential operators
acting on δg1 and δψ1, respectively. Equation (42) is the
field equation for a Klein-Gordon massless field in the local
frame predicted by the Standard Model. The fact that, in the

Jordan frame, no modifications appear at tree level was the
source of the confusion in the debate on the results of
Ref. [1]. However, these corrections do appear at higher
order in perturbation theory, as we now show.
Indeed, at higher order the two perturbed equations have,

respectively, the following structure:

OgðδgnÞ ¼ Sgðδg0;…; δgn−1; δψ1;…; δψn−1Þ; ð43Þ

OmðδψnÞ ¼ Smðδg0;…; δgn−1; δψ1;…; δψn−1Þ; ð44Þ

where Og and Om are the same differential operators
defined in Eqs. (41) and (42), n is the order of perturbation
considered, and the terms in the right-hand side act as a
source for δgn and δψn; e.g. δg2 is sourced by δψ1 and
in turn sources δψ3. This mixing mechanism introduces
matter corrections to the matter-field equation that can be
big and therefore are in conflict with particle physics.
Indeed, some of the terms that source δg2 and percolate to
the matter sector already at third order are not Planck
suppressed. These corrections come from the gravity sector
and are already manifest in the last four terms on the right-
hand side of Eq. (33). They introduce modifications to the
perturbation of the metric δg with a mass scale M ∝ 1=
ðβ1=4 ffiffiffi

κ
p Þ, which in turn will source higher-order correc-

tions in perturbation theory in δψ . We do not report here the
resulting lengthy equations; we instead refer the reader to a
Mathematica notebook including the perturbed equations
which is publicly available at Ref. [43]. For example, this
mechanism introduces a correction to the d’Alembertian of
δψ3 proportional to ðβκ2∇δψ1∇δψ1Þ∇2δψ1, a term that
lacks an additional κ2 factor that would guarantee that this
is a correction at the Planck scale. To avoid the appearance
of this term at a larger scale, which would invalidate the
whole perturbation scheme, one must then severely con-
strain the parameter β to guarantee that the theory is in
agreement with current particle observations. Providing
precise constraints on β goes beyond the scope of our
analysis, but we can give a simple order-of-magnitude
estimate as follows. Schematically, the problematic terms
introduce correction factors of the form

ð1þ βκ2TÞ; ð45Þ

and the standard-model result is obtained when β → 0. The
second term in the above parentheses should be much
smaller than unity, both to be consistent with our pertur-
bative expansion and also because otherwise it would
introduce Oð1Þ corrections incompatible with particle-
physics experiments. Thus, we can estimate that if

βκ2T ∼ 1; ð46Þ

or higher, the corrections will drastically modify the usual
dynamics. The trace T is dimensionally an energy density4We have assumed that ψ0 ¼ const ¼ 0 for simplicity.
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and, working in c ¼ 1 units, T ∼m4=ℏ3, where m is the
mass scale of a given standard-model particle. Since
κ2 ¼ ℏ=M2

Planck, we get

β ∼
M2

Planck

m4
ℏ2 ∼ 0.2

�
GeV
m

�
4

km2; ð47Þ

where we have normalized m to a typical standard-model
scale. This value of β corresponds to a very low-energy
scale

ℏ

β1=2
∼ 4 × 10−10

�
m

GeV

�
2

eV: ð48Þ

In other words, already at sub-eV scales the corrections
to the usual standard-model dynamics are dominant and
incompatible with particle-physics experiments.
To restore compatibility with experiments, the only

possibility is to push the energy scale of these corrections
at least at the Oð10 TeVÞ level. This requires decreasing β
by 40 orders of magnitude relative to the scale in Eq. (47),
in which case the correction would not have any impact on
the macroscopic dynamics relevant for gravitational theo-
ries (e.g. compact objects or cosmological evolution).
Thus, we have demonstrated that Palatini fðRÞ gravity is

incompatible with the Standard Model, unless the param-
eters of the theory are carefully fine-tuned to a level in
which they are phenomenologically irrelevant.
Note that the problematic terms responsible for the

appearance of new matter corrections are already manifest
in Eq. (9), or equivalently in Eq. (11), and they correspond
to those terms proportional to derivatives of the stress-
energy tensor and of its trace.
Although we anticipate that the results just obtained are

valid in general, for completeness, in Appendix B we
extend our analysis to the case of a Dirac field which was
also considered in Ref. [1], finding agreeing conclusion.

V. GRAVITY WITH AUXILIARY FIELDS

The mechanism affecting the field equations of Palatini
fðRÞ gravity is a more general problem regarding theories
with auxiliary fields.
As previously mentioned, this generic class of theories

has been studied in Ref. [14], where a general parametri-
zation has been proposed such that, to the next-to-leading
order in derivatives of the matter fields, this class of theories
can be described with only two parameters. However, the
presence of higher-order derivatives of the matter fields in
the field equations causes the metric to be overly sensitive
to abrupt discontinuities in the matter energy density
leading to spacetime singularities, e.g. on the surface of
stars. This phenomenon puts severe constraints on the
parameters of the theory.

In this section we show that the same terms causing
spacetime singularities, studied in Ref. [14], can also lead
to conflicts with the Standard Model.
The modified Einstein field equations for generic gravity

theories with auxiliary fields up to fourth order in derivative
is [14]

Gμν ¼ Tμν −Λgμν − β1ΛgμνTþ 1

4
ð1− 2β1ΛÞðβ1− β4ÞgμνT2

þ½β4ð1− 2β1ΛÞ− β1�TTμνþ
1

2
β4gμνTλκTλκ

− 2β4Tκ
μTκνþ β1∇μ∇νT − β1gμν□T − β4□Tμν

þ 2β4∇κ∇ðμTνÞκ þ� � � ; ð49Þ

where β1 and β4 are coefficientswith appropriate dimensions
parametrizing the theory and where κ2 ¼ 1. Known theories
with auxiliary fields are indeed described by Eq. (49).
Palatini fðRÞ gravity corresponds to β4 ¼ 0 with Λ and
β1 depending on the specific model taken into consider-
ations. For example, the quadratic model we considered in
Sec. IV is retrieved by takingΛ ¼ 0 and β1 ¼ −2β, whereas
the model studied in Ref. [1], i.e. fðRÞ ¼ R − μ4=R,
performing the expansion κ2T ≫ μ2 corresponds to Λ ¼ 0

and β1 ¼ μ4=T3, after the rescaling κ2 ¼ 1.5

Let us now perform an expansion in the fields around a
flat background for the case when matter is described by a
massless scalar field. At first order, we retrieve Eqs. (41)
and (42), with the addition of a cosmological constant term
to the modified Einstein equation. Nonetheless, at higher
order we recover the same behavior we highlighted for the
specific case of Palatini fðRÞ gravity; that is, the field
equations follow the structure of Eqs. (43) and (44). For the
complete set of perturbed equations we refer to the publicly
availableMathematica notebook at Ref. [43]. For example,
at second order δg2 is sourced by terms proportional to
β1∇2δψ1∇2δψ1 and β4∇2δψ1∇2δψ1. In turn, δg2 appears at
third order in the matter-field equations. We thus have δψ3

sourced by terms proportional to ðβ1∇δψ1∇δψ1Þ∇2δψ1

and ðβ4∇δψ1∇δψ1Þ∇2δψ1, which are contributions that are
not Planckian suppressed. As for the specific case of
Palatini fðRÞ gravity, the terms responsible for these
new matter-field corrections are those proportional to
derivatives of the stress-energy tensor and its trace in
Eq. (49). Guaranteeing that the theory is in agreement
with particle-physics observations would require tight
constraints on the parameters describing the theory, i.e.

5In Ref. [1], the opposite expansion is performed, that is,
μ2 ≫ κ2T. This is more interesting from a late-time cosmology
perspective. In this case, however, a mapping to Eq. (49) is not
possible, as the latter is obtained as a gradient expansion and by
assigning T to be equivalent to two derivatives for the purposes of
that expansion [14]. This turns out to be incompatible with the
μ2 ≫ κ2T expansion.
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β1 and β4. It then seems challenging to construct a theory
with auxiliary fields that can introduce effects at large
scales, while being in agreement with the Standard Model.

VI. DISCUSSION

We have shown that Palatini fðRÞ gravity introduces
new matter-field interactions incompatible with current
particle-physics observation unless one severely constrains
the parameters of the theory. This prevents Palatini fðRÞ
gravity from producing significant phenomenology at large
scales, confirming and elucidating the results obtained
in Ref. [1].
Palatini fðRÞ gravity can be recast as a particular scalar-

tensor theory, where the scalar can be algebraically deter-
mined by the field equations. Hence it carries no dynamics
and is an auxiliary field. In the Einstein frame, where this
field couples directly to matter but only couples minimally
to gravity, one can eliminate it at the level of the action.
This changes the matter action and hence the field
equations of the matter fields, as shown in Ref. [1] and
verified here.
In the Jordan frame, where the scalar couples non-

minimally to gravity but does not couple to matter, one is
tempted to think that eliminating it cannot introduce
modifications to the matter-field equations. Indeed, this
has been the subject of debate [38,39]. Considering the
effects on matter in the Jordan frame is subtle, because one
cannot formally eliminate the auxiliary scalar at the level of
the action without affecting the dynamics. This is because
the action contains derivatives of the scalar. We have
performed a perturbative analysis of the field equations
instead, where the scalar can be consistently eliminated.
The matter-field equations are retrieved unaffected at tree
level, but at higher order new matter interactions do
percolate from the gravity into the matter sector, in agree-
ment with the Einstein frame analysis. We explicitly
showed this mechanism for the specific case of a quadratic
fðRÞ model, i.e. fðRÞ ¼ Rþ βR2, considering a mass-
less scalar field. In Appendix B, we explore the case of a
Dirac field, finding agreeing results. We also performed a
similar analysis for the case considered in Ref. [1], which
we report in Appendix C.
Our analysis also clearly demonstrated that the correc-

tions to the matter-field equations are not suppressed by the
Plank scale, as would happen for correction to the Standard
Model coming from gravitons. Instead, the additional
interaction terms contain the scale of the coupling that
controls the correction to the Einstein-Hilbert actions, e.g. β
in the case of fðRÞ ¼ Rþ βR2. Hence, if that energy scale
is low in order to produce deviation from GR at low
energies, it is bound to produce sizable deviations from the
Standard Model as well.
We have shown that this shortcoming is not specific to

Palatini fðRÞ gravity but instead it is a general feature for
theories with auxiliary fields. Interestingly, the same terms

responsible for the appearance of new matter-field inter-
actions were shown to introduce spacetime singularities,
e.g. on the surface of stars, in Ref. [14]. Requiring that
such theories are in agreement with the Standard Model of
particle physics would severely constrain the parameters of
these models, preventing them from producing significant
phenomenology at large scales. It is worth noting that
similar conclusions were reached in Refs. [44–46] in the
context of a wide class of metric-affine theories of gravity,
also known as Ricci-based gravity, which includes fðRÞ
gravity. In this class of theories the metric and the
connection are two independent fields, while the latter is
also allowed to contain torsion. The nonmetricity of the
theory produces nontrivial effective interactions which can
be used to impose tight constraints on the model param-
eters, hinting that this might be a generic feature of theories
where the dynamical metric is built through a field
redefinition of some auxiliary fields.
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APPENDIX A: A LAGRANGIAN TOY MODEL
WITH A NONDYNAMICAL DEGREE

OF FREEDOM

We propose here a simple one-dimensional Lagrangian
model with 2 dynamical degrees of freedom, q ¼ qðtÞ and
u ¼ uðtÞ, and a nondynamical one, h ¼ hðtÞ, which is
algebraically related to q and u. Our goal is to show that if
the Lagrangian contains a kinetic term of the auxiliary
degree of freedom, one cannot substitute the explicit
expression of hðq; uÞ directly in the Lagrangian, since it
would lead to the wrong equations of motion.
Let us consider the following model:

L ¼ 1

2
q̇2 þ 1

2
q2 þ 1

2
ḣ2 þ qhþ q̇ ḣþqu̇2: ðA1Þ

The Euler-Lagrange equations give

d
dt

∂L
∂q̇

−
∂L
∂q

¼ q̈þ ḧ − q − h − u̇2 ¼ 0; ðA2Þ

d
dt

∂L

∂ḣ
−
∂L
∂h

¼ ḧþ q̈ − q ¼ 0; ðA3Þ
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d
dt

∂L
∂u̇

−
∂L
∂u

¼ 2q̇ u̇þ2qü ¼ 0: ðA4Þ

From Eq. (A2), one finds

q̈ ¼ −ḧþ qþ hþ u̇2; ðA5Þ
and substituting this back into Eq. (A3) yields an algebraic
relation between h and u, namely

h ¼ −u̇2: ðA6Þ
Using this equation to rewrite Eqs. (A2)–(A4) yields

q̈ − q − 2ü2 − 2u̇ ⃛u ¼ 0; ðA7Þ

2q̇ u̇þ2qü ¼ 0: ðA8Þ

It is clear that q and u are dynamical, whereas h is just an
auxiliary degree of freedom.
Let us now show that substituting the relation (A6)

directly in the Lagrangian (A1) leads to a different theory;
i.e. the equations of motion derived from the new
Lagrangian are not equivalent to Eqs. (A7) and (A8).
We first substitute the algebraic relation between h and u in
Eq. (A1). The new Lagrangian L0 so obtained is

L0 ¼ 1

2
q̇2 þ 1

2
q2 þ 2u̇2ü2 − 2q̇ u̇ ü : ðA9Þ

Note that L0 does not contain the function u, but only its
first and second derivatives. We then proceed to define a
new function v≡ u̇, so that L0 can be written as

L ¼ 1

2
q̇2 þ 1

2
q2 þ 2v2v̇2 − 2q̇vv̇: ðA10Þ

The equations of motion for this Lagrangian are

q̈ − q − 2v̇2 − 2vv̈ ¼ 0; ðA11Þ
4vv̇2 þ 4v2v̈ − 2q̈v ¼ 0; ðA12Þ

v − u̇ ¼ 0: ðA13Þ

We now use Eq. (A13) to simplify the system of equations
and write it only in terms of q and u as

q̈ − q − 2ü2 − 2u̇ ⃛u ¼ 0; ðA14Þ
4u̇ü2 þ 4u̇2 ⃛u − 2q̈ u̇ ¼ 0: ðA15Þ

Note that, while Eq. (A14) is equivalent to Eqs. (A7) and
(A15) is different from the one previously retrieved, namely
Eq. (A8). Therefore, the two Lagrangians (A1) and (A10)
are not dynamically equivalent.
The problem with this derivation can be traced back to the

fact that, in the original Lagrangian (A1), the nondynamical
nature of h is not manifest. Indeed, only after having derived

andmanipulated the equations ofmotion does one find that h
is an auxiliary degree of freedom. Forcing this information
a priori into the Lagrangian, 1 degree of freedom is lost,
modifying the original theory.
The model described by Eq. (A1) mimics, in a very

simplified way, the action in the Jordan frame for a scalar-
tensor version of Palatini fðRÞ theory. In the Lagrangian
(A1), q, h, and u play the role of the metric, the scalar, and
the matter field, respectively.
Finally, we note that substituting the explicit expression,

obtained from the equations of motion, of a nondynamical
degree of freedom in terms of a dynamical one directly into
the Lagrangian does not always lead to a different theory. As
an example, let us consider the Lagrangian

L ¼ 1

2
q̇2 −

1

2
q2 þ 1

2
ḣ2 þ qhþ q̇ ḣ : ðA16Þ

In this case the Euler-Lagrange equations yield h ¼ 2q, and,
upon substitution in L, it is easy to see that the equa-
tion for q derived from the new Lagrangian is equivalent to
the one derived from Eq. (A16); i.e. the two theories are
dynamically equivalent. Therefore, the aforementioned
problem in deriving the equations of motion seems to arise
from the fact that the auxiliary field h is algebraically related
to the derivatives of another dynamical field. This, upon
direct substitution in the Lagrangian, introduced higher-
order derivatives for the dynamical field, which affect the
Euler-Lagrange equations.

APPENDIX B: DIRAC FIELD

We now extend the results obtained for the fðRÞ ¼
Rþ βR2 model to the case of a Dirac field. In the Jordan
frame the Dirac matter action is6

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄ðiγμ∂μ −mÞψ : ðB1Þ

Deriving the stress-energy tensor and its trace from
action (B1) leads to Tμν ¼ gμνψ̄ði∂ −mÞψ − ψ̄iγμ∂νψ and
T ¼ 3ψ̄i∂ψ − 4mψ̄ψ .
We now focus on the field equations. We shall derive

only the matter-field equation, since we have already
showed in Sec. IVA that the modified Einstein equations
in the two conformal frames are dynamically equivalent,
keeping the stress-energy tensor implicit. As in the previous
case, we rewrite the theory in the Einstein frame,

6We stress that in action (B1) we used the partial derivative ∂μψ
instead of the covariant derivative usually defined for spinors, that
is, Dμψ ¼ ∇μψ − Γμψ ¼ ∂μψ − Γμψ . The reason for this sub-
stitution is to be found in one of the initial assumptions of Palatini
fðRÞ theory. Indeed, we imposed that the independent connec-
tion is not present in the matter action, and for a spinor this
implies that there is no torsion. Therefore, in our case, the
covariant derivative coincides with the partial derivative, i.e.
Dμψ ¼ ∂μψ .
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S̃M ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ψ̄ðiϕ−3=2γ̃μ∂μ − ϕ−2mÞψ ; ðB2Þ

where γ̃μ are the Dirac matrices7 in the frame described by
the metric g̃μν. Then, substituting the solution for ϕ in the
total action (14) and keeping terms up to OðβÞ yields

S̃ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
1

2
βκ2T2 þ ψ̄ðiγ̃μ∂μ

þ 3iβκ2T γ̃μ∂μ −m − 4βκ2TmÞψ þOðβ2Þ
�
: ðB3Þ

Substituting the expression of T and varying the action with
respect to ψ̄ gives

iγ̃μ∂μψ −mψ þ βκ2½−9ðψ̄ γ̃μ∂μψÞðγ̃μ∂μψÞ
− 12iðmψ̄ψÞðγ̃μ∂μψÞ − 12iðmψÞðψ̄ γ̃μ∂μψÞ
þ 16ðmψ̄ψÞðmψÞ� þOðβ2Þ ¼ 0: ðB4Þ

Since γ̃μ∂μψ ¼ γμ∂μ þ 3iβκ2ðψ̄γμ∂μψÞγμ∂μψ − 4βκ2 ×
ðmψ̄ψÞγμ∂μψ , we transform Eq. (B4) back into the
Jordan frame and, after some manipulations, we obtain
the matter-field equation

ði∂ψ −mψÞ½1þ 4βκ2ð3ψ̄i∂ψ − 4mψ̄ψÞ� þOðβ2Þ
¼ ði∂ψ −mψÞ½1þ 4βκ2T� þOðβ2Þ ¼ 0: ðB5Þ

Note that, once again, the matter equation in the Jordan
frame can be written as ϕ−2ði∂ψ −mψÞ ¼ 0. As in the
previous case, the above equation has two solutions,
namely i∂ψ −mψ ¼ 0 and T ¼ const. The latter is not
acceptable, as mentioned before, and thus the only viable
solution is i∂ψ −mψ ¼ 0, which locally reduces to the
Dirac equation at tree level. However, as in the case of the
massless scalar field, due to the mixing between gravity and
matter perturbations, at third order in perturbation theory
the matter-field equation is affected by corrections that are
lacking a κ2 factor, thus is less suppressed with respect to
other terms, and can lead to measurable effects. Once again,
we refer to the publicly availableMathematica notebook at
Ref. [43] for the explicit perturbed field equations.

APPENDIX C: THE CASE OF f ðRÞ =R− μ4=R
Although framed for simplicity for the case of

fðRÞ ¼ Rþ βR2, the discussion of Sec. IV applies in
general. To confirm this statement, here we study the same
Palatini fðRÞ theory considered in Ref. [1] and show that

—in agreement with the latter reference—the field equa-
tions for matter fields in the Jordan frame are affected by
corrections to the Standard Model that percolate from the
gravity sector at third and higher orders in perturbation
theory and are not Planckian suppressed. For simplicity, we
focus only on the case of the massless scalar field, which
suffices to make our point.
We focus on the expansion performed in Ref. [1],

namely μ4=R ≫ R or, equivalently, μ2=κ2T ≫ 1. This
model admits de Sitter solutions also in the absence of a
cosmological constant, with μ ∝ H0 ≃ 70.9 ðkm=sÞ=Mpc
[1]. Thus, the expansion μ2=κ2T ≫ 1 implies T ≪
10−27 kg=m3, which is satisfied for late-time cosmological
solutions. It is clear that, under this expansion, we do not
retrieve the Einstein equations as a limit of the theory.
To proceed with our analysis, we write the scalar field ϕ

in terms of the trace of the stress-energy tensor. Since

ϕ ¼ f0ðRÞ ¼ 1þ μ4

R2, we need to find the relation between
the Ricci scalar and T. As in the previous case, from the
algebraic Eq. (5), we findR ¼ 1

2
ð−κ2T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ4T2 þ 12μ4

p
Þ,

where we consider the positive sign of the root to allow
for de Sitter solutions when T ¼ 0. Substituting this
solution into the definition of ϕ and expanding up to terms
Oðμ−4Þ yields

ϕ ¼ 4

3
þ κ2T

3
ffiffiffi
3

p
μ2

þ κ4T2

18μ4
þO

�
1

μ6

�
: ðC1Þ

We can now use this relation to integrate out the auxiliary
scalar field from the field equations in the Jordan frame and
from the action in the Einstein frame. Using Eq. (C1), we
can rewrite the potential V in terms of the matter source.
Expanding and keeping terms up to Oðμ−4Þ, we get

V ¼ 2μ2ffiffiffi
3

p þ κ2T
3

þ κ4T2

12
ffiffiffi
3

p
μ2

þO
�
1

μ6

�
: ðC2Þ

With these relations at hand, we can derive the modified
Einstein equation in the Jordan frame. Substituting
Eqs. (C1) and (C2) into Eq. (11) yields

Gμν ¼
3

4
κ2Tμν −

1

16
gμνκ2T −

ffiffiffi
3

p

4
μ2gμν −

ffiffiffi
3

p

16

κ4TTμν

μ2

þ 1

4
ffiffiffi
3

p κ2∇μ∇νT

μ2
−

1

4
ffiffiffi
3

p κ2gμν□T

μ2
þ 1

64
ffiffiffi
3

p κ4gμνT2

μ2

þO
�
1

μ4

�
: ðC3Þ

We now consider the modified Einstein equation in the
Einstein frame. We first have to rewrite the potential U in
terms of the matter fields. Using T ¼ ϕ2T̃ and the expres-
sion for ϕ derived in Eq. (C1), we obtain

7The Dirac matrices associated with the metric gμν satisfy
fγμ; γνg ¼ 2gμν, whereas the Dirac matrices in the Einstein frame
satisfy fγ̃μ; γ̃νg ¼ 2g̃μν. Thus, since g̃μν ¼ ϕ−1gμν, the relation
between the two Dirac matrices is γμ ¼ ϕ1=2γ̃μ.

INCOMPATIBILITY OF GRAVITY THEORIES WITH … PHYS. REV. D 109, 044002 (2024)

044002-11



U ¼ 3
ffiffiffi
3

p
μ2

16κ2
−

κ2T̃2

9
ffiffiffi
3

p
μ2

þO
�
1

μ4

�
: ðC4Þ

Using this relation we can write Eq. (15) explicitly in
terms of T̃μν and T̃, namely

G̃μν ¼ κ2T̃μν −
3

ffiffiffi
3

p

16
μ2g̃μν þ

1

9
ffiffiffi
3

p g̃μνκ4T̃

μ2
þO

�
1

μ4

�
; ðC5Þ

which is dynamically equivalent to Eq. (C3), as expected.
Let us focus now on the matter sector, in order to

check whether new matter interactions appear, as it was
claimed in Ref. [1]. For simplicity, we focus on the case
of a massless scalar field. In the Einstein frame, the action
reads

S̃ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
3

ffiffiffi
3

p
μ2

16κ2
þ 3

8
g̃μν∂μψ∂νψ

−
κ2g̃μν∂μψ∂νψ g̃λσ∂λψ∂σψ

16
ffiffiffi
3

p
μ2

�
þO

�
1

μ4

�
: ðC6Þ

Varying the action with respect to the matter field ψ yields

3

4
□̃ψ −

κ2g̃λσ∂λψ∂σψ□̃ψ

4
ffiffiffi
3

p
μ2

−
κ2∂λψ∂σψ∇̃λ∂σψ

2
ffiffiffi
3

p
μ2

þO
�
1

μ4

�
¼ 0: ðC7Þ

As before, we perform a conformal transformation to the
Jordan frame. After some manipulations, the outcome is

□ψ

�
9

16
−
3

ffiffiffi
3

p

32

κ2∂λψ∂
λψ

μ2

�
þO

�
1

μ4

�

¼ □ψ

�
9

16
−
3

ffiffiffi
3

p

32

κ2T
μ2

�
þO

�
1

μ4

�

¼ ϕ−2
□ψ ¼ 0: ðC8Þ

Again, the only acceptable solution to this equation is
□ψ ¼ 0, which is the massless scalar field equation in
curved spacetime. However, performing an expansion
around a flat background, one finds corrections to the
leading order that appear from the third order onward and
can be big, invalidating the perturbation scheme, unless one
severely constrains the parameter of the theory. For
example, at third order the leading term is corrected by
a dimensionless term proportional to κ2

μ2
∇δψ1∇δψ1, which

lacks a κ2 suppression term. The perturbed field equations
are publicly available at Ref. [43].
One obtains a similar outcome even when considering a

Dirac field, whichwas the case studied in Ref. [1].We do not
report the analysis here, since the mechanism that leads to
matter corrections is the same as the cases considered pre-
viously (the results are available at Ref. [43]). We only stress
that when one maps these problematic terms to the Einstein
frame, one retrieves the corrections found in Ref. [1].
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