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In this paper, we elaborate and extend our proposal [1] of the cosmological bouncing model in which a
chiral condensate violates the null energy condition and induces a bounce. The condensate formation is
caused by the gravitational effects that arise in the effective action when the curvature of space-time is
nonzero. As the chiral condensation is a vacuum effect, the symmetries of the Friedmann-Robertson-
Walker space-time are not violated. We explicitly calculate the spinor effective action in the presence of a
background gravitational field up to second order in curvature and with derivative corrections and also
derive the initial conditions of the condensate. In addition, a new interaction term between the condensate
and the scalar field is introduced that might be relevant for producing the adiabatic perturbations during the
contraction phase. The curvature/energy density stays far from Planckian values throughout this evolution.
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I. INTRODUCTION

Explaining the isotropy, homogeneity, and flatness of
the Universe in a self-consistent way is the main challenge
of modern cosmology. Recently, using numerical rela-
tivity, a novel method has been identified to solve these
problems [2–6]: rather than invoke exponential expansion,
utilize ultraslow contraction of space. The matter content to
achieve such dynamics consists of a canonical scalar with
negative potential. This mechanism is robust, meaning that
smoothness and flatness are achieved even if the initial state
is far from smooth and flat, and it is rapid, meaning that the
goal is achieved within a few e-folds [2–6]. The most
remarkable feature of this mechanism is its simplicity, as it
relies only on one large parameter, the largeness of which is
a natural consequence of its definition.
From the observations, we have overwhelming evidence

that the Universe is expanding today. If one invokes the
ultraslow contraction at the initial state to smooth and
flatten the Universe, then to match the current observations,
the space must stop the contraction and start to expand at
some moment in time. That moment is called the cosmo-
logical bounce or simply the bounce. The singularity
theorems by Penrose and Hawking [7–9] state that, unless
the matter driving the contraction violates the null energy
condition (NEC), the space will crunch (the scale factor
a → 0) and singularities will develop. One way to avoid
these is to argue that, before the (big) crunch happens, new
degrees of freedom associated with quantum gravity will
emerge and prevent the development of singularities.
Another way out is to introduce some form of matter to

violate the NEC. The latter is the foundation for singularity
theorems, and its violation might help avoid the crunching
of space and, as a result, the quantum gravity regime. In this
case, the scale factor a will decrease to some minimal value
and then start to increase. This paper will refer to such an
event as the classical bounce because the gravitational field
stays classical during the evolution as the energies involved
never hit the Planckian regime. Ijjas and Steinhardt [10,11]
showed that a classical and stable bounce could be achieved
with a Galileon, a scalar field, the action of which involves
higher derivative interactions; however, the equation of
motion is still of the second order, i.e., no Ostrogradski
instabilities. Earlier attempts to achieve a classical bounce
using a Galileon were made in [12–14], though these
models experience instabilities [15] that are avoided
in [10,11].
In this paper, we elaborate and extend the results of [1]

and study the evolution of the Universe where a scalar field
smoothes and flattens the Universe while the bounce is
achieved using spinor condensates. So, the matter part
of our model consists of a scalar field with negative
exponential potential, a Dirac spinor, and a mixing term
between these two. No on-shell particles are present, i.e.,
the chemical potential is zero. The latter is sufficient
to avoid the inconsistencies in the previous works
[16–19] that include the direct violation of Friedmann-
Robertson-Walker (FRW) symmetries and incompatibility
of even a tiny spatial curvature with the physical fermions.
The Dirac spinors source the torsion of space-time, which
has to be accounted for by expanding ordinary Einstein’s
general relativity into Einstein-Cartan-Sciama-Kibble
theory [20–23]. In this formalism, torsion can be integrated
out. Its remnants—the four-Fermi interactions [24]—can be*giorgit@princeton.edu
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brought to Nambu–Jona-Lasinio (NJL) form [25] by
including nonminimal couplings between spinor currents
and torsion [19,26] and by properly choosing their
coupling constants. The coupling constant in front of
the NJL potential ξ has tuned to be slightly smaller than its
critical value (in flat space-time). We do not have justi-
fication for this tuning, which may be considered a
downside of the model. Since the NJL coupling constant
is less than its critical value, the chiral symmetry is not
broken, spinor bilinears have zero vacuum expectation
value (VEV) and do not contribute to space-time evolu-
tion. The NJL condensation in our model is induced
through the gravitational field. In Appendix B, we calcu-
late the effective action for the NJL model in the presence
of a background gravitational field up to 2 orders in the
curvature and with the derivative corrections. This gen-
eralizes the results of [27], in which a similar calculation
was done, but only to linear order in the curvature and
without including the condensate derivatives. The calcu-
lation is done using both the Riemann normal coordinates
and the heat kernel method. Both results coincide in the
UV limit. Our result shows that the negative values of
the Ricci curvature can induce chiral symmetry breaking
even if the NJL attraction is insufficient to form the
condensates.
The only assumptions we are making about the initial

phase are that the space is contracting and the curvature
is not large enough to induce the chiral symmetry
breaking. During this phase, spinor bilinears have zero
VEV and do not contribute to the energy budget. The
dynamics is governed by the scalar field alone, which
will take care of smoothing and flattening of the
space [2–6]. After a few e-folds, the space will become
homogeneous and isotropic, described by the spatially
flat FRW metric. Using the scalar field to achieve
smoothness and flatness is important because we can
avoid having to rely on unjustified high-power spinor
bilinears to do this job [26]. The Ricci curvature is
negative and its absolute value increases as space
contracts. The curvature will eventually reach the critical
value at which it causes chiral symmetry to break. The
scalar bilinear formed from the spinors acquire a non-
zero VEV, while the VEVs of pseudoscalar and vector
bilinears remain zero. Soon after this happens, the scalar
field is no longer dominant, as within the energy budget,
the contribution of the condensate becomes comparable
to it. The bounce is what follows. Interestingly, the sign
of ξ that causes attractive interaction between the
spinors also guarantees the classicality of the bounce.
Compared to [1], the main differences in the model

building are the potential for the scalar field, a new
interaction that mixes the scalar and spinor bilinear, and
the absence of a rigid mass for the spinor. In [1], we used a
potential bounded from below. Here we use a negative
exponential potential that transitions into the Morse

potential after the chiral condensate formation due to the
scalar-spinor mixing. All effective field theory limits are
respected throughout the evolution.
This paper is organized as follows: In Sec. II, the action

for our model is described, and the matter content and
interactions are explained. Section III is dedicated to
discussing and demonstrating the curvature induced NJL
condensation. In Sec. IV, the timeline of the events is
discussed, and the existence of the bounce is shown
using the numerical solutions; in addition, the initial
conditions for the fields are derived. Appendix A shows
how to integrate out the torsion and obtain the NJL
potential. Finally, the calculation of the NJL effective
action in the presence of the gravitational field is presented
in Appendix B.
Conventions used throughout this paper are ðþ;þ;þÞ

from Misner et al. [28]. Explicitly, the Minkowski metric is
mostly plus, ημν ¼ ð−1; 1; 1; 1Þ, and the Riemann tensor is
defined as Rρ

μλν ¼ þ∂λΓ
ρ
μν þ � � �. The Planck constant will

be assumed to have the unit value unless otherwise stated
ℏ ¼ 1. The Planck mass is defined as Mpl ¼ ð8πGÞ−1=2 ≈
2.5 × 1018 GeV, with G being the gravitational Newton’s
constant. The Levi-Civita tensor ϵ0123 ¼ 1. For the γ

matrices, the Weyl representation is used, γA ¼ ð 0
σ̄A

σA

0
Þ

and γ5 ¼ ð−1
0

0
1
Þ, with σA ¼ ð1; σaÞ and σ̄A ¼ ð1;−σaÞ.

Here σa are the Pauli matrices. The capital Latin letters
represent the local Lorentz indices having values 0, 1, 2, 3,
while the lowercase Latin letters represent the local Lorentz
indices having values 1, 2, 3.

II. OVERVIEW OF OUR MODEL

This section defines the action on which our model is
based, and the interactions and matter content are justified.
First, since the spinors are present, the first-order formalism
of general relativity must be used. Fundamental variables of
the gravitational field are the 1-forms: the tetrad eA ¼
eAμdxμ and the spin connection ω̃IJ. The metric tensor is
defined using the tetrads gμν ¼ ηABeAμeBν , where ηAB is the
Minkowski metric. The spinor sector consists of a Dirac
spinor with one color/flavor. Then, to justify using the FRW
metric during the bounce phase, we need a field during the
initial phase of contraction that enables smoothing and
flattening. We entrust this mission to the scalar field with a
negative exponential potential, as commonly used in
models of ultraslow contraction [2–5]. Finally, there should
exist a mixing between the scalar and spinor. The latter
should be responsible for the scalar to condensate energy
transfer and, ideally, cause an effective friction for the
scalar field, which is required to produce the adiabatic
perturbations during the contraction [29,30]. Once the
condensate is formed, the mixing term also contributes
to the potential of the scalar and bounds it from below [see
Fig. 3(b)]. Our action
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S ¼ −
M2

pl

4
ϵABMNeA ∧ eB ∧ R̃MN −

i
2 · 3!

ϵABMNeA ∧ eB ∧ eM ∧ ðΨ̄γND̃Ψ − D̃ Ψ̄ γNΨÞ

þ
ffiffiffi
ξ

6

r
ϵIJKLD̃eI ∧ eJ ∧ eKVL þ

�
1

4
−

ffiffiffi
ξ

6

r �
D̃eI ∧ eI ∧ eJAJ

þ 1

4!
ϵABMNeA ∧ eB ∧ eM ∧ eN

�
1

2
ð∂ϕÞ2 þ VðϕÞ þ FðϕÞΨ̄Ψ

�
: ð2:1Þ

The integration sign is implicit in front of each term. The
quantities with a tilde are introduced to distinguish them
from torsion-free ones (without a tilde). The first term is the
torsion-modified Einstein-Hilbert action, and the second is
the action for the massless Dirac spinor in the presence of
the gravitational field. The Dirac field is assumed to have
one color and one flavor, but generalization to N colors/
flavors is straightforward. The third and fourth terms are the
nonminimal couplings between the torsion and spinor
currents. The third line describes a scalar field with the
potential VðϕÞ coupled minimally to gravity. The very last
term is the coupling between the spinor and the scalar. FðϕÞ
is not necessarily a linear function, i.e., Yukawa. The
coupling constants on the second line are chosen so that,
after the torsion is integrated out, they induce chiral
symmetry. This choice is not unique. The covariant
derivatives and the currents are defined as

D̃Ψ ¼
�
d −

1

8
ω̃AB½γA; γB�

�
Ψ;

D̃Ψ̄ ¼ Ψ̄
�
d⃖þ 1

8
ω̃AB½γA; γB�

�
; ð2:2Þ

D̃eI ¼ deI þ ω̃I
J ∧ eJ ¼ TI: ð2:3Þ

VM ≡ Ψ̄γMΨ; AM ≡ Ψ̄γ5γMΨ: ð2:4Þ

Since, in the absence of a source, the torsion TI vanishes
and we recover the ordinary Einstein-Hilbert action, it is
possible to postulate that the connection ω̃IJ consists of two
parts: ω̃IJ ¼ ωIJ þ CIJ. The first part is the torsion-free
connection ωIJ, while the second part is the tensor CIJ,
related to the torsion as TI ¼ CI

J ∧ eJ. From now on, the
quantities without tilde will be defined with respect to the
torsion-free connection ωIJ. Since, by definition, TI and
CIJ are linearly related, we will refer to both as torsion.
Once this philosophy is adopted, if the gravitation (curva-
ture) is turned off, (2.1) will not just reduce to the action of
a spinor field coupled to a scalar. Additional interactions
arise because torsion stays nonzero even when the curva-
ture vanishes. The tensor CIJ enters algebraically into the
action (2.1); in addition, its highest degree is quadratic.
This allows us to integrate it out from (2.1). The equivalent
action takes the following form (see Appendix A):

S ¼ −
M2

pl

4
ϵABMNeA ∧ eB ∧ RMN −

i
2 · 3!

ϵABMNeA

∧ eB ∧ eM ∧ ðΨ̄γNDΨ−DΨ̄γNΨÞ

−
ξ

4!M2
pl

ϵABMNeA ∧ eB ∧ eM ∧ eN ½ðΨ̄ΨÞ2 þ ðiΨ̄γ5ΨÞ2�

þ 1

4!
ϵABMNeA ∧ eB ∧ eM

∧ eN
�
1

2
ð∂ϕÞ2 þVðϕÞ þFðϕÞΨ̄Ψ

�
: ð2:5Þ

The action (2.5) is fully equivalent to (2.1). Torsion was
exchanged for the four Fermi interactions. The specific
form of these interactions is a consequence of the choice of
coupling constants on the second line of (2.1) and the Fierz
identity,

VKVK − AKAK ¼ 2½ðΨ̄ΨÞ2 þ ðiΨ̄γ5ΨÞ2�: ð2:6Þ

Ignoring the mixing with scalar, the spinor content of (2.5)
is equivalent to the NJL model. The Einstein and scalar
equations are obtained by taking the variation of (2.5) with
respect to eA and ϕ, respectively (diffeomorphism and local
Lorentz indices can be mapped between each other by
using eAμ ; e

μ
A),

−M2
pGX

A þ iδXAΨ̄γNDNΨ − iΨ̄γXDAΨ

þ δXA
ξ

M2
pl

½ðΨ̄ΨÞ2 þ ðiΨ̄γ5ΨÞ2� þ ∂Aϕ∂
Xϕ

− δXA

�
1

2
ð∂ϕÞ2 þ VðϕÞ þ FðϕÞΨ̄Ψ

�
¼ 0; ð2:7Þ

−∇2ϕþ dV
dϕ

þ dF
dϕ

Ψ̄Ψ ¼ 0: ð2:8Þ

In the simplest setup of Einstein-Cartan-Sciama-Kibble
theory, if the Dirac spinor sources the torsion, the spin-spin
interaction is AμAμ [21,24], where Aμ is the axial current of
the spinor. Trautman [16] noticed that if the axial current
vector is timelike, then these interactions can source NEC
violation, and the cosmic singularity can be avoided.
The phenomenological implications of torsion were

studied in [31–33]. It turns out that its presence induces
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a potential similar to the electromagnetic field. Within the
hydrogen atom, torsion interacting with the electron’s spin
will cause the splitting of spectral lines, similar to the
Zeeman effect. In [32], this fact was used to constrain the
coupling constant related to the torsion. In our notation,
their constraint roughly translates to

ffiffiffi
ξ

p
< 1017. A more

stringent constraint can be achieved by considering the
interaction between polarized test mass and paramagnetic
salt [32,34], in this case,

ffiffiffi
ξ

p
< 1014. In the numerical

calculations done in Sec. IVA, ξ ≈ 200, which easily
satisfies these constraints.

III. CURVATURE INDUCED SPINOR
CONDENSATION

Through this paper, the gravitational field is treated
classically. To have a self-consistent description, the spinor
bilinears that interact with gravity must be averaged with
respect to the vacuum state. The average of these bilinears
is nonzero if the spinor number density is itself nonzero,
but in this case, unless these spinors are arranged in a
specific way, the symmetries of the FRW space will not be
respected. To get around this problem, the spinor number

density will be assumed to vanish hΨ̄γ0Ψi ¼ 0. Instead,
since the four Fermi interactions are present, the NJL
mechanism is invoked to justify the nonzero VEV (quan-
tum average) of hΨ̄Ψi. We will assume hðΨ̄ΨÞ2i ¼ hΨ̄Ψi2
to be a good approximation, even though the equality
strictly holds in the large N limit, with difference scaling as
N−2 [35].
Since the background space-time is not flat, the correc-

tions from the nonzero curvature within the effective action
need to be accounted for. Appropriate calculation of the
effective action is done in Appendix B, where the Riemann
normal coordinates are used to show that the effective
action up to 2 orders in the Riemann curvature is given by
the formula (B27). Even though these corrections have a
quantum nature (proportional to ℏ), Planck’s constant arises
from the spinor loop, while the gravitational field is
classical. Also, these new terms should not be understood
as corrections to Einstein-Hilbert action. The curvatures in
(B27) act as a background field that can cause or prevent
condensate formation (the latter can be compared to the
Cooper pairs in an external magnetic field). The gap
equation with the curvature corrections,

−
M2

pl

Λ2

8π2

ξ
uþ ∂f4

∂u
−

2

Λ2
f0∇2u −

1

Λ2
ð∂uÞ2 ∂f0

∂u
þ R
6Λ2

�
2uf1 þ u2

∂f1
∂u

�
þ 2

Λ4

�
−

1

120
∇2Rþ 1

288
R2 −

1

180
RμνRμν −

7

1440
RμνρσRμνρσ

�
∂f1
∂u

−
2

Λ4

�
1

12
∇2Rþ 1

36
RμνRμν þ 1

144
RμνρσRμνρσ

�
∂f2
∂u

þ 2

Λ4

�
1

10
∇2Rþ 1

72
R2 þ 7

180
RμνRμν þ 1

60
RμνρσRμνρσ

�
∂f3
∂u

¼ 0: ð3:1Þ

The functions fi and the dimensionless variables are
defined in (B4), (B15)–(B18), and (B26). The derivative
terms are necessary as it is no longer valid in a dynamic
space-time to assume the condensate to be constant. Note
that this equation and (B27) involve a new parameter
y≡ ϵ=Λ, where ϵ is the infrared cutoff. The necessity of IR
cutoff can be seen from the fact that the effective action

Seff ∝ log
det ði=D − σÞ
det ði=DÞ ð3:2Þ

involves the loop of a massless spinor. In the zeroth- and
first-order curvature part of (B27), the IR scale plays no
role and can be set to zero, while in the part proportional to
the curvature squared, the IR scale is necessary for
the effective action to be regular at σ ¼ 0, see (3.2). The
necessity of the IR cutoff disappears if one accounts for the
effect of explicit chiral symmetry breaking already present
within (2.5). The explicit symmetry breaking was ignored

while calculating the effective action (B27). As the role of ϵ
is to partially replace FðϕÞ in (B27), it is fair to assume
these two to be of the same order of magnitude at the time
of spontaneous chiral symmetry breaking.
In the absence of gravity, condensate formation is

determined by the ratio ξc=ξ, where ξc ≡ 2π2M2
pl=Λ2 is

the critical value of the four Fermi interactions when space-
time is flat and y ¼ 0. For ξc=ξ < 1, the chiral symmetry is
spontaneously broken. Once gravity is introduced into the
picture, the story might change. If this ratio is tuned to be
near 1, then in the presence of positive Ricci curvature, the
chiral symmetry might be restored even if ξc=ξ < 1; while
in the presence of negative Ricci curvature, the chiral
symmetry can be broken with ξc=ξ > 1. The value of Ricci
curvature at which the chiral symmetry breaking happens
is referred to as the critical curvature Rc. The critical
curvature depends on the value of NJL coupling, RcðξÞ. If
this coupling is taken to be its critical value (in flat space-
time), then even a tiny negative curvature can induce the
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chiral symmetry breaking, RcðξcÞ ¼ 0. Figure 1 shows the
phase diagrams when the space-time is spatially flat FRW
for different Hubble parameters.
The dynamical symmetry breaking due to the curvature

contributions within the radiative corrections in the mass-
less scalar model with quartic self-interactions was studied
in [36]. The curvature induced NJL condensation should
not be confused with BCS condensation by Alexander and
Biswas [18] (see also [37]). Similar to [16], in [18], there is
an initial nonzero density of physical particles. In [18], the
condensation catalyst is the shrinking volume, while in our
case it is the increasing curvature.

IV. CHIRAL CONDENSATE MEDIATED
COSMOLOGICAL BOUNCE

In the last section, we showed that the negative Ricci
curvature could induce chiral symmetry breaking in the NJL
model even when the four-Fermi coupling strength is insuffi-
cient to form the condensate. In this section, this fact is used,

together with the assumption that the four-Fermi coupling is
slightly less than its critical value, such that, when the curva-
ture is small, the chiral symmetry is not broken and hΨ̄Ψi ¼ 0.
At this point, we are ready to present the cosmological

bounce scenario. Following [1], the only assumption about
the initial state is that space is contracting; otherwise, the
initial conditions are inhomogeneous and anisotropic,
nonperturbatively far from FRW. The universe can be
partitioned into different patches with approximately the
same Ricci curvature; see Fig. 2(a). If the Ricci curvature of
the patch is positive (R > 0) or negative, but larger than the
critical curvature ð0 > R > RcðξÞÞ, then within this patch
the chiral symmetry is not broken, the spinor bilinears have
zero VEV, and the scalar field entirely defines the dynam-
ics. These regions are colored with the blue þ pattern in
Fig. 2. If, on the other hand, the Ricci curvature of the patch
is less than the critical value ðR < RcðξÞÞ, then within
this patch, the chiral symmetry is broken, and the dyna-
mics are defined by both the scalar and the spinor fields.
These regions are colored with the red × pattern in Fig. 2.

FIG. 2. (a) Initial state of the universe is partitioned into different patches with approximately the same curvature. (b) The Universe
after undergoing the supersmoothing mechanism [2–6]. Most of the space, depicted by the blueþ pattern, can be well approximated by
the flat FRW metric.

FIG. 1. Phase diagrams of the NJL model in an external gravitational field according to (B14). Orange, the variation of (B14) has a
nontrivial solution, meaning that the chiral symmetry is broken. Green, the chiral symmetry is unbroken. If the curvature corrections are
ignored, the two phases will be separated with a vertical line ξ=ξc ¼ 1. In both cases, the space-time is spatially flat FRW. Left: the
Hubble parameter ¼ 2=ðκ2τÞ with κ ¼ 10, y ¼ 10−3, and θ ¼ 10−3; see (4.6) and (4.7). Right: the Hubble parameter has Trautman
ansatz, 2τ=κ2ð10−2 þ τ2Þ. In both cases, the backreaction of the condensate to space-time and the limits of the curvature expansion in
(B27) are ignored.
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Within the blue regions, the scalar field controls the
dynamics, and by using the results of [2–6], these regions
will rapidly converge to FRW. Once this happens, these
regions shrink very slowly a ∝ ðt2Þ1=ð2ϵϕÞ, as ϵϕ ≫ 1. The
dynamics of the red regions are completely different, and to
get the complete picture, one needs to perform numerical
studies similar to [2–6]. The latter goes beyond the scope of
this paper, but to get a glimpse of what might happen, let us
assume that the space is flat, homogeneous, and aniso-
tropic. Here are three possible scenarios:
(1) The equation of state of the dominant matter

ϵ < 3; in this case, the mixmaster behavior will
develop, and anisotropy will dominate. Parametriz-
ing the anisotropies with the Kasner-like metric
gμν ¼ ð−1; a2e2β1 ; a2e2β2 ; a2e2β3Þ, the Ricci scalar
gets a new contribution,

R ¼ 6

�
ȧ2

a2
þ ä
a

�
þ β̇21 þ β̇22 þ β̇23: ð4:1Þ

This formula shows that the anisotropy contributes
positively, and the growth of this term favors the

restoration of the chiral symmetry. Once this hap-
pens, the red region becomes light blue; we have
already discussed what occurs next.

(2) The equation of state of the dominant matter ϵ ≫ 3.
Even though the results of [2–6] are based on a scalar
field with a large equation of state, the smoothing is
likely to happen with any type of matter with a large
equation of state [38], so the same outcome →
spatially flat FRW after a few e-folds is expected.

(3) The equation of state of the dominant matter
ϵ≳ 3. This case is more complicated, and even
the assumptions we made about the initial state are
insufficient to make any predictions.

In any case, since the equation of state of the dominant
matter is ϵ ≈ 3, red regions shrink faster than blue regions.
After a while, Fig. 2(a) evolves into Fig. 2(b), where the
blue regions dominate the space.
The remaining paper will focus solely on the blue

regions in Fig. 2(b), which are homogeneous and isotropic
(FRW) to a good approximation. Within these regions, the
following system of equations determines the dynamics of
the fields ðH ≡ ȧ=aÞ:

ϕ̈þ 3
ȧ
a
ϕ̇þ dV

dϕ
þ dF

dϕ
hΨ̄Ψi ¼ 0; ð4:2Þ

3M2
plH

2 ¼ −
ξ

M2
p
hΨ̄Ψi2 þ 1

2
ϕ̇2 þ VðϕÞ þ FðϕÞhΨ̄Ψi; ð4:3Þ

−
4ξc
ξ

uþ ∂f4
∂u

þ 2

Λ2
f0ðüþ 3Hu̇Þ þ 1

Λ2
u̇2

∂f0
∂u

þ 1

Λ2
ð2H2 þ ḢÞ

�
2uf1 þ u2

∂f1
∂u

�
þ 2

Λ4

�
1

20
H
… þ 7

20
HḦ þ 47

60
H2Ḣ þ 1

5
Ḣ2 þ 11

60
H4

�
∂f1
∂u

−
2

Λ4

�
−
1

2
H
…
−
7

2
HḦ −

29

6
H2Ḣ −

19

12
Ḣ2 þ 7

6
H4

�
∂f2
∂u

þ 2

Λ4

�
−
3

5
H
…
−
21

5
HḦ −

17

5
H2Ḣ −

37

30
Ḣ2 þ 19

5
H4

�
∂f3
∂u

¼ 0: ð4:4Þ

The latter is the gap equation (3.1) in the FRW space-time
and u ¼ −2ξhΨ̄Ψi=ðΛM2

plÞ.

A. Numerical solutions

The potential for the scalar field is a negative exponen-
tial, which allows us to achieve a smooth and flat space.
The ansatz of the mixing function F is also chosen to be an
exponent,

VðϕÞ ¼ −M2
plV

2
0 exp

�
−

κ

Mpl
ϕ

�
;

FðϕÞ ¼ F0 exp

�
−n

κ

Mpl
ϕ

�
: ð4:5Þ

The parameter κ ≡Mpl=Λϕ controls the number of e-folds of
contraction of the Hubble radius required to achieve the
smooth and flat state. The large value of κ is a consequence
of its definition, and increasing this value enhances both
rapidity and robustness. F0 has the dimension of mass, and
n ≥ 1. To solve the Eqs. (4.2)–(4.4) numerically, it is
convenient to define dimensionless variables andparameters,

φ≡ ϕ

Mpl
; h≡ a0

a
; τ≡ V0t; 0 ≡ d

dτ
; ð4:6Þ

θ≡ V2
0

Λ2
; F̄0 ≡ F0

2ξθΛ
; ξc ≡ 2π2

M2
pl

Λ2
: ð4:7Þ

In terms of the newvariables, the system (4.2)–(4.4) takes the
following shape:
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φ00 þ 3hφ0 þ κe−κφ þ nκF̄0e−nκφu ¼ 0; ð4:8Þ

3h2 ¼ −
1

4ξθ
u2 þ 1

2
ðφ0Þ2 − e−κφ − F̄0e−nκφu; ð4:9Þ

u00 þ 3hu0 þ ðu0Þ2 1

2f0

∂f0
∂u

þ 1

2θf0

∂f4
∂u

−
2ξc
ξθf0

uþ 1

2
ð2h2 þ h0Þ

�
2u

f1
f0

þ u2

f0

∂f1
∂u

�
þ θ

�
1

20
h000 þ 7

20
hh00 þ 47

60
h2h0 þ 1

5
ðh0Þ2 þ 11

60
h4
�

1

f0

∂f1
∂u

− θ

�
−
1

2
h000 −

7

2
hh00 −

29

6
h2h0 −

19

12
ðh0Þ2 þ 7

6
h4
�

1

f0

∂f2
∂u

þ θ

�
−
3

5
h000 −

21

5
hh00 −

17

5
h2h0 −

37

30
ðh0Þ2 þ 19

5
h4
�

1

f0

∂f3
∂u

¼ 0: ð4:10Þ

As the background space-time is FRW after a period of
slow contraction, the curvature is entirely determined by
the time τ, which has a negative value and is decreasing.
At some moment τc, the curvature will reach its critical
value Rc, and the chiral symmetry will break. In our
case, the condensate u is a dynamical field and its evolution
from u ¼ 0 to u ≠ 0 is not spontaneous. We start the
numerical evolution soon after the symmetry breaking, at
τi ≳ τc ðjτcj ≳ jτijÞ. Before symmetry breaks, the solutions
to the field equations are known analytically; see, for
example, [39] Chap. 4.2. These solutions can be used to fix
the initial values of φ and φ0,

φðτiÞ ¼
1

κ
log

�
κ4

2

τ2i
κ2 − 6

�
; φ0ðτiÞ ¼

2

κτi
: ð4:11Þ

Before the chiral symmetry breaking, u sits in the minimum
of the effective potential, so uðτÞ ¼ u0ðτÞ ¼ 0 for τ ≤ τc. To
set initial conditions at τ ¼ τi, the explicit breaking of the

chiral symmetry needs to be accounted for. The explicit
symmetry breaking [scalar-spinor mixing in (2.5)] tilts the
effective potential and forces condensate to move away
from u ¼ 0, see Fig. 3(a). Ignoring the curvature correc-
tions and accounting for the effect of explicit symmetry
breaking within the effective potential ðτ > τcÞ,

u00ðτÞ ¼ −2ξF̄0e−nκφ
�
log

�
enκφ

2ξθF̄0

��
−1 ≡ dduðτÞ: ð4:12Þ

Since τi ≈ τc, this equation can be approximately integrated
and used to set the initial conditions for u,

uðτiÞ ¼
1

2
dduðτiÞðτi − τcÞ2; u0ðτiÞ ¼ dduðτiÞðτi − τcÞ:

ð4:13Þ

To set up the initial condition for h, (4.9) can be used,
together with (4.11) and (4.13),

FIG. 3. (a) NJL effective potential in the spontaneously broken phase. Solid blue: without explicit symmetry breaking, the effective
potential is Z2 symmetric. Dashed red: with explicit symmetry breaking, the potential is tilted, and negative values of u are favored.
(b) Total potential of the scalar field (4.19) at different times τ ¼ τc; < τ0; < τ00; < τB. At τ < τc, V tot is just a negative exponent. After
the chiral symmetry breaking, V tot transitions into the Morse potential (n ¼ 2), which has an exponentially increasing wall from which
the scalar field bounces and continues to move toward increasing positive values.
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hðτiÞ ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

κ4τ2i
−
F̄0

3
e−nκφðτiÞuðτiÞ−

1

12ξθ
u2ðτiÞ

s
: ð4:14Þ

The scale standing in front of the negative exponent is
chosen in the following way:

M2
plV

2
0 ¼ ð10−1MplÞ4; → V0 ¼ 10−2Mpl: ð4:15Þ

In the numerical calculations κ ¼ 1000. Since the value
of V0 is fixed, fixing the value of θ is equivalent
to fixing the values of Λ or ξc. In the calculations
θ ¼ 10−3 is used, which corresponds to Λ ¼ Mpl=

ffiffiffiffiffi
10

p
and ξc ¼ 2π2 × 10 ≈ 200. The four-Fermi coupling, ξ, will
be tuned to be just below its critical value: ξ=ξc ¼ 1–10−5.
The IR cutoff scale ϵ ¼ yΛ and explicit chiral symmetry
breaking scale F0 expð−nκφðτiÞÞ should be related and
within an order of magnitude of each other,

y ∼ 2F̄0ξθ expð−nκφðτiÞÞ ≪ 1: ð4:16Þ
The last inequality ensures the validity of the approxima-
tion we took by ignoring the explicit symmetry breaking in
Appendix B. Explicitly,

y ¼ 10−3;
F0

ϵ
expð−nκφðτiÞÞ ¼ 10; → F̄0 ≈ 92.38:

ð4:17Þ

The approximation (4.16) breaks down and the value of
F0 expð−nκφÞ becomes trans-Planckian when φ becomes
negative. This problem does not exist in [1], where a rigid
mass of the spinor was used. Note that compared to [2–5],
we had to add three additional parameters: two of them are
associated with the NJL part of the action (θ; ξ) and one
with the scalar-spinor mixing (F̄0). In this sense, the model
is very minimal. We do not count FðτiÞ=ϵ and n as

additional parameters, as their values do not affect the
model’s outcome.
For the mentioned values of κ, ξ, y, and θ, the chiral sym-

metry breaking happens at approximately τc¼−0.0355.
The choice of τi does affect the outcome of the model. Even
though it does not affect the violation of NEC, it does affect
the bounce. We solved the system (4.8)–(4.10) for 100
different τi evenly distributed between the interval
½−0.0119;−0.0109� (chosen randomly). We observed the
NEC violation for all values of τi, but the bounce took place
only in five cases. If τi is chosen randomly at different
patches of space, those patches that bounce will dominate
the volume, as they are the ones expanding. In contrast,
those patches that do not bounce will continue to shrink and
eventually crunch to a point. One of the choices for which
the bounce does happen is τi ¼ −0.01099. The numerical
solutions for the dimensionless Hubble parameter h, its
derivative h0, the condensate u, the Ricci scalar curvature R,
the scalar field φ, and the derivative of the scalar field
energy density ∂τð12 ðφ0Þ2 − expð−κφÞÞ are shown in
Figs. 4(a), 4(b), 5(a), 5(b), 6(a), and 6(b), respectively.
At the moment of bounce, the velocity of the condensate

must be zero, u̇ ¼ 0. This is indeed the case as in Fig. 5(a).
The reason is that derivatives of the Hubble parameter
contain terms proportional to u̇=H, and their signs are such
that their large values favor chiral symmetry restoration. As
an example for the dimensionless Ḣ, we have

h0 ¼ −
1

2
ðφ0Þ2 − u0

6h

�
1

2ξθ
uþ F̄0e−nκφ

�
: ð4:18Þ

As H → 0, derivatives of the Hubble parameter grow, and
the wall the effective potential u is climbing becomes
steeper. At the moment of bounce τB, u̇ ¼ 0, but u̇=H is
finite, so the process is self-consistent, and singularity is
never reached.

0.010 0.005 0.005 0.010 0.015 t V0

1.2

1.0

0.8

0.6

0.4

0.2

102 H V0

0.010 0.005 0.005 0.010 0.015 t V0

1

1

2

3

4

5

6

H V02

FIG. 4. (a) The Hubble parameter, h ¼ H=V0, as a function of τ ¼ tV0. (b) Derivative of the Hubble parameter as a function of τ.
The violation of the NEC happens at around τ ≈ 0.012. At this moment, the Hubble parameter starts to grow. At around τ ≈ 0.015,
the derivative of the Hubble parameter reaches its maximum value and starts to decrease, but before Ḣ reaches zero, the bounce
(H ¼ 0) happens.
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The scalar field effectively moves through the following
potential:

V tot ¼ M2
plV

2
0ð−e−κφ − F̄0ue−nκφÞ: ð4:19Þ

When the chiral symmetry is unbroken, u ¼ 0, and V tot
coincides with the negative exponential potential. Once
the chiral symmetry breaks, V tot effectively becomes a
Morse potential (n ¼ 2). Figure 3(b) shows V tot at different
moments of the evolution. After the symmetry breaks, the
total potential of the scalar becomes bounded from below

and exponentially increasing for negative values of ϕ. ϕ,
which before the chiral symmetry breaking was moving on a
negative exponential potential from positive to negative
values, after the chiral symmetry breaking encounters an
exponential wall, bounces from it and continues tomove on a
plateau; see Fig. 6(a). After the bounce, the field ϕ will
decelerate due to the Hubble friction and will freeze at some
positive value ofϕ. Before the chiral symmetry breaking, the
energy density of the scalar field ρφ is increasing due to the
Hubble antifriction. From Eq. (4.8), it follows that

0.010 0.005 0.005 0.010 0.015 t V0

2

2

4

103 Mpl

0.010 0.005 0.005 0.010 0.015 t V0

3

2

1

1

2

3

10 4

FIG. 6. (a) The scalar field φ ¼ ϕ=Mpl as a function of τ. The dynamics is consistent with ϕ moving under the influence of the (4.19)
potential. After the chiral symmetry breaking, the negative exponent effectively becomes a Morse potential, so the scalar field ϕ, which
was moving from positive to negative values, finds an exponential wall and bounces from it. This happens at around τ ≈ 0. Then ϕ
continues to move along the exponential plateau. After the bounce, it stops at some positive value due to the Hubble friction (not shown
here). (b) Change of the scalar field energy density ρϕ as a function of τ. The negative values of ρ0ϕ follow from the fact that, as ϕ is
climbing the exponential wall, it is decelerating. After it reaches the top of the wall and its velocity changes sign, ϕ starts to slide down
and ρ0ϕ becomes positive again. At the same time as h → 0, the Hubble antifriction is decreasing, so ρ0ϕ approaches zero from positive
values.

0.010 0.005 0.005 0.010 0.015 t V0

0.5

1.0

1.5

2.0

2.5
102 u

0.010 0.005 0.005 0.010 0.015 t V0

0.01

0.02

0.03

R 2

FIG. 5. (a) The condensate u as a function of τ. After the chiral symmetry breaking, the condensate evolves with initial velocity
defined by the explicit symmetry breaking (4.13). Soon after this, the chiral symmetry gets restored, but due to the Hubble antifriction,
the absolute value of u continues to increase. At around τ ≈ 0.00125, the chiral symmetry breaks again and we observe a sharp rise of u.
As h → 0, chiral symmetry gets restored and the wall the effective potential u is climbing becomes steeper and steeper, and this
decelerates u; its velocity becomes zero at the moment of bounce, while u0=h is finite. The latter guarantees finiteness of h0, as in any
other case, it would blow up, see (4.18). (b) Ricci scalar curvature as a function of τ. Its maximum value is reached at around τ ≈ 0.015
and is R ≈ 0.04Λ2 ¼ 0.004M2

pl. This value is several orders below the Planck mass, so calling the bounce classical is justified, as the
quantum gravity regime is never reached. It is also ≪ Λ2, so ignoring higher-order curvature corrections in (B27) is justified too.
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ρ0φ ¼ ∂τ

�
1

2
ðφ0Þ2 − expð−κφÞ

�
¼ −3hðφ0Þ2 − nκF̄0φ

0e−nκφu: ð4:20Þ
The first term on the rhs of (4.20) is positive during the
contraction and becomes zero at the moment of bounce,
while the sign of the second term depends on the sign
of φ0. After chiral symmetry breaking, while the scalar is
climbing the exponential wall, its velocity is negative and
decreasing. Since u is also negative, the second term
contributes negatively. As a result, ρφ decreases; see
Fig. 6(b). One can argue that the scalar-condensate
mixing causes effect of Hubble friction (deceleration of
φ), whichmight be relevant in the production of the adiabatic
perturbations [29,30]. Keep in mind that, in our case, the
deceleration happens not during the slow contraction, but
after that and just before thebounce, so the decelerationof the
scalar field by itself might not be sufficient to achieve
that goal.
During the bounce, the Hubble parameter h ¼ 0 and the

total energy density ρ ¼ 0, the most reliable candidate
to control the validity of the effective theory is the Ricci
scalar curvature. From Fig. 5(b), we see that the maxi-
mum value of Ricci curvature during the evolution is
Rmax ≈ 0.04Λ2 ¼ 0.004M2

pl, which is small enough for
both the curvature expansion in (B27) to be valid and
gravity to stay in the classical regime.

V. DISCUSSION AND UNANSWERED QUESTIONS

In this paper, we have extended our proposal [1] that a
chiral condensate might induce a cosmological bounce.
We explicitly showed that, under certain conditions, the
Nambu–Jona-Lasinio condensation can be triggered with a
gravitational field when the absolute value of the Ricci
curvature exceeds a certain value. The NJL condensation is
a vacuum effect and preserves the symmetries of space-
time. This is a significant improvement compared to earlier
works in the literature that attempted to use a dense gas
of spin-aligned fermions to induce a bounce, which can

destroy the FRW symmetries that must be preserved.
Using the numerical solutions, it was demonstrated that
this condensate can act as the source of NEC violation
and ultimately lead to a cosmological bounce. We also
addressed several points not discussed in [1]; these include
the derivation of the initial conditions for the condensate
and derivation of the NJL effective action in the presence of
a gravitational field. Compared to [1], a different potential
for the scalar field was used. The fact that the mechanism
works in both cases hints at its robust nature. We have yet
to address what might happen after the bounce or the
perturbative stability of the solutions. This will be the
subject of future works.
The four Fermi interactions that cause condensation

create an attractive force between the spinors. Gravity
always creates attractive force, so including gravitational
effects should always enhance the condensation process.
According to the analysis and arguments of Sec. III, this is
not the case, as a positive Ricci curvature can restore the
chiral symmetry even when the NJL coupling constant
exceeds its (flat space) critical value. One of the mysteries
that will be explored in future work is explaining how
gravity can act to prevent chiral symmetry breaking.
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APPENDIX A: INTEGRATING OUT
THE TORSION

First of all, let us split the action (2.1) into torsion-
dependent ST and torsion-independent S0 parts as follows:

S ¼ S0 þ ST; ðA1Þ

S0 ¼ −
M2

pl

4
ϵABMNeA ∧ eB ∧ RMN −

i
2 · 3!

ϵABMNeA ∧ eB ∧ eM ∧ ðΨ̄γNDΨ −DΨ̄γNΨÞ

þ 1

4!
ϵABMNeA ∧ eB ∧ eM ∧ eN

�
1

2
ð∂ϕÞ2 þ VðϕÞ þ FðϕÞΨ̄Ψ

�
;

ST ¼ −
M2

pl

4
ϵABMNeA ∧ eB ∧ CMK ∧ CK

N −
1

4!
ϵABMNϵIJ

NKeA ∧ eB ∧ eM ∧ CIJAK

þ
ffiffiffi
ξ

6

r
ϵIJKLCI

M ∧ eM ∧ eJ ∧ eKVL þ
�
1

4
−

ffiffiffi
ξ

6

r �
CI

K ∧ eK ∧ eI ∧ eJAJ: ðA2Þ
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Expressions without the tilde are defined with respect to
ωAB and satisfy the following Cartan structure equations:

DeA ¼ deA þ ωA
B ∧ eB ¼ 0; ðA3Þ

0 ¼ DDeA ¼ RA
B ∧ eB: ðA4Þ

Relation between the different spin connections and cur-
vature two forms,

ω̃AB ¼ ωAB þ CAB; R̃ ¼ RAB þDCAB þ CAK ∧ CK
B:

ðA5Þ

Since CAB is a difference between the connections, it is a
tensor. Variation of the ST with respect to C yields an
algebraic equation,

CX
MN − CX

NM þ δXMC
K
NK − δXNC

K
MK

þ 1

M2
pl

ffiffiffiffiffi
2ξ

3

r
ðδXMVN − δXNVM − ϵXMNKAKÞ ¼ 0: ðA6Þ

Tracing this equation gives

CK
MK ¼ −

1

M2
pl

ffiffiffiffiffi
3ξ

2

r
VM: ðA7Þ

The following ansatz is chosen for C:

CX
MN ¼ ϵXMNKPK þ δXNQM − ηMNQX: ðA8Þ

Note that this is not the most general ansatz for C.
There should also be a three-index term [31]. From
(A6), we see that nothing can source the three-index term,
so we set it to zero from the beginning. Using (A8) into
(A7) gives

QM ¼ −
1

M2
pl

ffiffiffi
ξ

6

r
VM: ðA9Þ

After plugging this into (A6),

PM ¼ 1

M2
pl

ffiffiffi
ξ

6

r
AM: ðA10Þ

Using (A9) and (A10) into (A8) and plugging the latter into
(A2), the torsion-dependent part of the action can be
expressed in terms of spinor currents,

ST ¼−
1

4!
ϵABIJeA ∧ eB ∧ eI ∧ eJ

�
ξ

2M2
pl

ðVMVM−AMAMÞ
�
:

ðA11Þ

The latter can be further simplified with the help of the
Fierz identity (2.6). The final expression for the torsion-
dependent part

ST ¼ −
ξ

4!M2
pl

ϵABIJeA ∧ eB ∧ eI ∧ eJ½ðΨ̄ΨÞ2 þ ðiΨ̄γ5ΨÞ2�

ðA12Þ

does not involve any spinor current vectors, just the scalar
and the pseudoscalar bilinears.

APPENDIX B: FERMION LOOP IN EXTERNAL
GRAVITATIONAL FIELD

This appendix aims to calculate the spinor loop correc-
tions due to the gravitational field’s presence up to the
second order in the Riemann curvature tensor. The
Riemann normal coordinates are used to achieve this goal,
but in the third part of this appendix, the same calculation is
done using the more rigorous heat kernel method, and the
two results are compared.

1. Riemann normal coordinates

Given a curved space-time, one can always find inertial
frames at a given event P0. Free particles move along
straight lines within these frames, meaning Γρ

μν ¼ 0. This
all is true only locally. The geodesics coming out of P0 can
be used to define the neighboring points. This is the main
idea in defining the Riemann normal coordinates. The
Riemann normal coordinates xμ can be chosen in a way that
xμðP0Þ ¼ 0 and gμνðP0Þ ¼ ημν. In addition, if P is a point
in the neighborhood of P0, then xμðPÞ ¼ upμ, where pμ ¼
dxμ=duðP0Þ is the tangent vector atP0 to the geodesicP0P
and u is the proper time (assuming P0P is timelike) [40].
Using these properties, one can expand the metric at P in
“powers” of the Riemann curvature tensor [28,41,42],

gμνðPÞ ¼ ημν −
1

3
Rμανβxαxβ −

1

6
∇γRμανβxαxβxγ

þ
�
−

1

20
∇γ∇δRμανβ þ

2

45
RαμβλRλ

γνδ

�
xαxβxγxδ

þO
�
ð∂gÞ5

�
: ðB1Þ

From now on, I will suppress P from the left-hand
side. Having the expression for the metric (B1), one
can evaluate the Christoffel Gamma, the spin connection,
the tetrad, the determinant of the metric, etc., as a series in
the Riemann curvature tensor. Obtaining these expressions
is a tedious but straightforward task and they will not be
shown here due to their length.
Calculation of the effective action for spinors involves

evaluation of the functional trace (Tr) from the spinor two-
point function S,
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TrSðx; z; sÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
lim
x→z

trSðx; z; sÞ: ðB2Þ

Here tr stands for the trace over the Dirac, flavor, color, etc.
indices. Since Sðx; z; sÞ depends only on the difference
x − z, and since this procedure involves taking the limit
x → z, using Riemann normal coordinates to evaluate the
effective action is perfectly justified.
Let us focus on the spinor part of the action and ignore

the terms that explicitly break the chiral symmetry by
making the usual assumptions. The relevant part of the
action

SNJL¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
iΨ̄γμ∇μΨþ ξ

M2
pl

ððΨ̄ΨÞ2þðiΨ̄γ5ΨÞ2Þ
�
;

ðB3Þ

with γμ ¼ eμAγ
A. By introducing the auxiliary fields

σ ¼ −
2ξ

M2
pl

Ψ̄Ψ; π ¼ −
2ξ

M2
pl

ðiΨ̄γ5ΨÞ; ðB4Þ

one can rewrite this action as

SNJL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Ψ̄ðiγμ∇μ − σ − iπγ5ÞΨ

−
M2

pl

4ξ
ðσ2 þ π2Þ

�
: ðB5Þ

The chiral symmetry allows us to set π ¼ 0. After integrat-
ing out the spinor fields, the effective action is obtained,

Z
DσDπDΨ̄DΨexpðiSNJLÞ ¼

Z
DσDπ expðiSeffÞ; ðB6Þ

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
i
Z

σ

0

ds trSðx; x; sÞ −M2
pl

4ξ
σ2
�
: ðB7Þ

A few words need to be said about the scalar σ. When
the space-time is uniform and static, so must be σ, but since
one is dealing with a dynamical space-time ∂σ ≠ 0. For
now, let us (wrongly) assume that σ is uniform and static.
The corrections involving nonzero ∂σ will be accounted
for later.
The spinor Green’s function in a curved space-time

satisfies the following equation:

ðiγμ∇μ − sÞSðx; z; sÞ ¼ 1ffiffiffi
g

p δð4Þðx − zÞ: ðB8Þ

Let us define an auxiliary function,

ðiγμ∇μ þ sÞFðx; z; sÞ ¼ Sðx; z; sÞ; ðB9Þ

satisfying

ffiffiffiffiffiffi
−g

p �
gμν∇μ∇ν−

1

4
R− s2

�
Fðx;z;sÞ ¼ δð4Þðx− zÞ: ðB10Þ

At this point, one can use the Riemann normal coordinates
to expand the lhs in the series of Riemann curvatures and
solve this equation iteratively in the Fourier space. After a
lengthy calculation, we arrive [43,44] at

FðpÞ ¼ −
1

p2 þ s2
−

1

12

R
ðp2 þ s2Þ2 þ

2

3

Rμνpμpν

ðp2 þ s2Þ3 þ
i
2

∇αRpα

ðp2 þ s2Þ3 −
i
12

∇αRαβpβ

ðp2 þ s2Þ3 − 2i
∇γRαβpαpβpγ

ðp2 þ s2Þ4

−
1

ðp2 þ s2Þ3
�
3

20
∇2Rþ 1

144
R2 þ 2

45
RμνRμν þ 1

15
RμνρσRμνρσ þ 1

128
RμνRμν

�
þ 1

ðp2 þ s2Þ4
�
4

5
∇2Rαβ þ

7

5
∇α∇βRþ 1

6
RRαβ þ

8

5
RαρR

ρ
β −

4

5
RμνRμανβ

þ 8

15
Rμνρ

αRμνρβ −
1

4
∇α∇ρRρ

β þ
1

32
RμαRμ

β

�
pαpβ

−
1

ðp2 þ s2Þ5
�
24

5
∇γ∇δRαβ þ

16

15
RμανβRμ

γ
ν
δ þ

4

3
RαβRγδ

�
pαpβpγpδ;

where

Rμν ≡ RABμν½γA; γB�: ðB11Þ

Using the auxiliary function FðpÞ, the effective action can
be written as

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
i
Z

σ

0

ds s
Z

d4p
ð2πÞ4 trFðpÞ −

M2
pl

4ξ
σ2
�
:

ðB12Þ
From this point, one can proceed as follows. First,
symmetrize the integrals by making the replacements
(odd powers of p do not contribute to the integration)
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pαpβ →
p2

4
ηαβ; pαpβpγpδ →

p4

4ð4þ 2Þ ðη
αβηγδ þ ηαγηβδ þ ηαδηβγÞ; ðB13Þ

after which the Wick rotation p0 → ip0E is done, and the momentum integrals are cut at the UV scale p2
E ¼ Λ2 and IR scale

p2
E ¼ ϵ2. Then the final integration with respect to s is performed. The flat space invariant cutoff is used because the

curvature is treated as a perturbation over the flat space. The necessity of the IR scale is discussed in Sec. III. Finally, the
effective action involving corrections up to the second order in curvature is obtained,

SCCeff ¼ Λ4

16π2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
M2

pl

Λ2

4π2

ξ
u2 þ f4 þ

Ru2

6Λ2
f1

þ 2

Λ4

�
−

1

120
∇2Rþ 1

288
R2 −

1

180
RμνRμν −

7

1440
RμνρσRμνρσ

��
f1 þ log

�
1

y2

��
−

2

Λ4

�
1

12
∇2Rþ 1

36
RμνRμν þ 1

144
RμνρσRμνρσ

�
f2

þ 2

Λ4

�
1

10
∇2Rþ 1

72
R2 þ 7

180
RμνRμν þ 1

60
RμνρσRμνρσ

�
f3

�
; ðB14Þ

with

f1 ≡ 1

1þ u2
−

y2

y2 þ u2
− log

�
1þ u2

y2 þ u2

�
; f2 ≡ 1

2ð1þ u2Þ2 −
y4

2ðy2 þ u2Þ2 ; ðB15Þ

f3 ≡ 1

3ð1þ u2Þ3 −
y6

3ðy2 þ u2Þ3 ; ðB16Þ

f4 ≡ ð1 − y2Þu2 þ log ð1þ u2Þ − y4 log

�
1þ u2

y2

�
− u4 log

�
1þ u2

y2 þ u2

�
: ðB17Þ

u≡ σ

Λ
; y≡ ϵ

Λ
: ðB18Þ

The first line of (B14) was also obtained in [27] (with
y ¼ 0), while the second, third, and fourth lines, i.e., the
curvature2 corrections, are new.

2. Derivative corrections
to the NJL effective action

To capture the derivative corrections to the NJL effective
action, the algorithm developed by Gaillard [45] is used.
Her metric is mostly minus, so the formulas below have
been modified to fit our conventions. The goal is to
calculate corrections up to the second order in derivatives,
and since these derivatives act on a scalar, the curvature of
the space-time will be ignored. The spinor action is once
again the starting point,Z

d4xΨ̄ði∂ − σÞΨ: ðB19Þ

After integrating out the spinor field, the one-loop effective
Lagrangian is

L ∝
Z

d4p tr logðp2 þ M̂2 − id=DMÞ; ðB20Þ

where

M̂ ¼
Xþ∞

n¼0

in

n!
ð∂μ1 � � � ∂μnσÞ

∂
n

∂pμ1 � � � ∂pμn

¼ σ þ i∂μσ
∂

∂pμ
−
1

2
∂μ∂νσ

∂
2

∂pμ∂pν
þOð∂3σÞ; ðB21Þ

d=DM ¼
Xþ∞

n¼0

in

n!
ð∂μ1 � � � ∂μn∂σÞ

∂
n

∂pμ1 � � � ∂pμn

¼ ∂σ þ i∂μ∂σ
∂

∂pμ
þOð∂3σÞ: ðB22Þ

Note that the presence of imaginary unit i in front of the
last term in (B20) is essential; without it, the kinetic term
for σ one gets as a result of this procedure would have
the wrong sign when u ¼ σ=Λ ≪ 1. This imaginary unit
is missing in the original formula (4.21) in [45]. The
reason is that, while transitioning from formula (4.7) to
(4.14), using (4.8) and (4.10)–(4.12), the imaginary
unit is dropped, and then the typo/mistake propagates.
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After recovering it, one indeed arrives to (B20). The
presence of the imaginary unit can also be justified from
the following reasoning: dropping all ∂=∂p corrections in
(B21) and (B22), one has

p2 þ M̂2 − id=DM ¼ p2 þ σ2 − i∂σ → −∂2 þ σ2 − i∂σ;

ðB23Þ

which does coincide with the “square” of the Dirac
operator,

ði∂ − σÞði∂ − σÞ† ¼ −ði∂ − σÞði∂þ σÞ ¼ −∂2 þ σ2 − i∂σ:

ðB24Þ
The integrand in (B20) has to be understood in the
following way:

logðp2 þ M̂2 − id=DMÞ ¼ log

�
p2 þ σ2 −

1

2
∂μ∂νσ

2
∂
2

∂pμ∂pν
þ 2iσ∂μσ

∂

∂pμ
− i∂σ þ ∂μ∂σ

∂

∂pμ

�
¼ log ðp2 þ σ2Þ þ log

�
1þ

�
−
1

2
∂μ∂νσ

2
∂
2

∂pμ∂pν
þ 2iσ∂μσ

∂

∂pμ
− i∂σ þ ∂μ∂σ

∂

∂pμ

�
1

p2 þ σ2

�
:

The second logarithm has to be Taylor expanded up to the
second order in ∂σ. After performing symmetrization of the
momentum integral, Wick rotating the p0, and imposing IR
and UV cutoffs,

1

Λ4
L ∝ f4 þ

1

Λ2
ð∂uÞ2f0; ðB25Þ

with

f0 ≡ f1 þ 4f3 þ 8u2
�

1

ð1þ u2Þ3 −
y4

ðy2 þ u2Þ3
�
: ðB26Þ

In (B25), the first term is the usual loop contribution, while
the second term is the kinetic correction to it. We are after the
latter since the first term is already present in (B14). The next
order corrections to (B25) would involve terms like ð∂σÞ4,
∂
2σð∂σÞ2, and ∂σ∂σ∂∂σ, as well as Rð∂σÞ2 and Rμν∂

μσ∂νσ
when the curvature of the space-time is taken into account.
These terms will be ignored in the current analysis.

3. Comparison with the heat kernel results

Combining the results of the two previous subsections,
one arrives at the final NJL action involving both the kinetic
and the curvature corrections,

Seff ¼
Λ4

16π2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
M2

pl

Λ2

4π2

ξ
u2 þ f4 þ

1

Λ2
ð∂uÞ2f0 þ

Ru2

6Λ2
f1

þ 2

Λ4

�
−

1

120
∇2Rþ 1

288
R2 −

1

180
RμνRμν −

7

1440
RμνρσRμνρσ

��
f1 þ log

�
1

y2

��
−

2

Λ4

�
1

12
∇2Rþ 1

36
RμνRμν þ 1

144
RμνρσRμνρσ

�
f2

þ 2

Λ4

�
1

10
∇2Rþ 1

72
R2 þ 7

180
RμνRμν þ 1

60
RμνρσRμνρσ

�
f3

�
: ðB27Þ

Setting the IR scale y ¼ 0, and going in the limit Λ → þ∞, the action (B27) simplifies significantly,

Seff ¼
1

16π2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−M2

pl
4π2

ξ
σ2 þ 2ℏσ2Λ2 − 2ℏ

�
1

2
σ4 þ 1

2
ð∂σÞ2 þ Rσ2

12

−
1

120
∇2Rþ 1

288
R2 −

1

180
RμνRμν −

7

1440
RμνρσRμνρσ

�
log

�
Λ2

σ2

��
: ðB28Þ

In the last formula, ℏ was recovered to highlight the
quantum nature of the relevant terms, and only those were
kept that diverge as Λ → þ∞.
Terms proportional to ℏ can also be calculated using the

heat kernel method. Let us follow the papers by Barvinsky
et al. [46,47]. The loop contribution can be written as the

logarithm from the functional determinant of the Dirac
operator, i.e.,

log det

�
gμν∇μ∇ν −

1

4
Rþ iγμð∇μσÞ − σ2

�
: ðB29Þ

GIORGI TUKHASHVILI PHYS. REV. D 109, 043536 (2024)

043536-14



According to [46,47],

log det

�
gμν∇μ∇ν þ P̂ −

1

6
R

�
¼ −

Z
dτ
τ
KðτÞ; ðB30Þ

where KðτÞ is the heat kernel and τ is the proper time. The
lower limit of τ corresponds to the UV limit in momentum.
In the limit τ → 0 (Schwinger-DeWitt), the heat kernel can
be Taylor expanded in powers of τ,

KðτÞ ¼ 1

ð4πÞ2τ2
Z

d4x
ffiffiffiffiffiffi
−g

p
tr

�
1þ τP̂

þ τ2
�
1

2
P̂2 −

1

120
∇2Rþ 1

768
RμνRμν

−
1

180
RμνRμν þ 1

180
RμνρσRμνρσ

��
: ðB31Þ

Note that, in [46,47], the term ∇2R is neglected as it is a
total derivative. This term can be recovered by consulting
[48]. Comparing (B29) with (B30) yields

P̂≡ −
1

12
R − σ2 þ iγμ∇μσ: ðB32Þ

After plugging this into (B31),

KðτÞ ¼ 1

ð4πÞ2τ2
Z

d4x
ffiffiffi
g

p �
1 − τ

�
σ2 þ 1

12
R

�
þ τ2

�
1

2
σ4 þ 1

2
ð∂σÞ2 þ 1

12
σ2R −

1

120
∇2R

þ 1

288
R2 −

1

180
RμνRμν −

7

1440
RμνρσRμνρσ

��
tr1:

ðB33Þ

In the heat kernel regularization, the loop integrals are
finite, and the UV divergences manifest themselves in the
lower limit of the proper time integrals. Cutting the proper
time integral at τ ¼ Λ−2 in the lower limit and at τ ¼ σ−2 in
the upper limit and keeping only the terms that diverge as
Λ → þ∞, one finally obtains

log det

�
gμν∇μ∇ν −

1

4
Rþ iγμð∇μσÞ − σ2

�
¼ 1

ð4πÞ2
Z

d4x
ffiffiffiffiffiffi
−g

p �
Λ2σ2 −

�
1

2
σ4 þ 1

2
ð∂σÞ2

þ 1

12
σ2R −

1

120
∇2Rþ 1

288
R2 −

1

180
RμνRμν

−
7

1440
RμνρσRμνρσ

�
log

�
Λ2

σ2

��
tr1:

This formula is identical to the ℏ part of (B28).
Given the function FðpÞ, one can guess that the next

order curvature corrections to it, symbolically, must have
the following form:

FðpÞ ∼ Rn

10nðp2 þ s2Þðnþ1Þ þ � � � : ðB34Þ

The “of order” factor 10−n can be observed from formu-
las (4.47)–(4.49) in [47]. At the level of effective action,
these corrections translate as

ΔSeff ∼ Λ4

Z
d4x

ffiffiffiffiffiffi
−g

p 1

10n
Rn

Λ2n qn

�
σ2

Λ2

�
: ðB35Þ

For n > 2, the functions qn are polynomials of their
argument when this argument is small and satisfy
qnð0Þ ¼ 0. The main difference with the case we studied
in detail is that the linear and quadratic curvature correc-
tions are additionally multiplied by the logðσ2=Λ2Þ, so
when σ ≪ Λðu ≪ 1Þ they are less suppressed.
From the analysis above, it follows that several hier-

archies take place when expanding the effective action as a
series in curvature. When u ≪ 1, the smallness of R=Λ2

is not necessary for the curvature truncation we made
in (B14) to work. The latter is a feature of the four-
dimensional space-time. For the solutions presented in
Sec. IVA, both conditions R=Λ2 ≪ 1 and u ≪ 1 are
satisfied, so ignoring terms of a higher degree in curvature
is perfectly justified.

[1] G. Tukhashvili and P. J. Steinhardt, Cosmological bounces
induced by a fermion condensate, Phys. Rev. Lett. 131,
091001 (2023).

[2] W. G. Cook, I. A. Glushchenko, A. Ijjas, F. Pretorius, and
P. J. Steinhardt, Supersmoothing through slow contraction,
Phys. Lett. B 808, 135690 (2020).

[3] A. Ijjas, W. G. Cook, F. Pretorius, P. J. Steinhardt, and E. Y.
Davies, Robustness of slow contraction to cosmic initial
conditions, J. Cosmol. Astropart. Phys. 08 (2020) 030.

[4] A. Ijjas, A. P. Sullivan, F. Pretorius, P. J. Steinhardt, and
W. G. Cook, Ultralocality and slow contraction, J. Cosmol.
Astropart. Phys. 06 (2021) 013.

TORSION, GRAVITY INDUCED CHIRAL SYMMETRY … PHYS. REV. D 109, 043536 (2024)

043536-15

https://doi.org/10.1103/PhysRevLett.131.091001
https://doi.org/10.1103/PhysRevLett.131.091001
https://doi.org/10.1016/j.physletb.2020.135690
https://doi.org/10.1088/1475-7516/2020/08/030
https://doi.org/10.1088/1475-7516/2021/06/013
https://doi.org/10.1088/1475-7516/2021/06/013


[5] A. Ijjas, F. Pretorius, P. J. Steinhardt, and A. P. Sullivan, The
effects of multiple modes and reduced symmetry on the
rapidity and robustness of slow contraction, Phys. Lett. B
820, 136490 (2021).

[6] T. Kist and A. Ijjas, The robustness of slow contraction and
the shape of the scalar field potential, J. Cosmol. Astropart.
Phys. 08 (2022) 046.

[7] R. Penrose, Gravitational collapse and space-time singular-
ities, Phys. Rev. Lett. 14, 57 (1965).

[8] S. Hawking, The occurrence of singularities in cosmology.
II, Proc. R. Soc. A 295, 490 (1966).

[9] S. W. Hawking and R. Penrose, The singularities of gravi-
tational collapse and cosmology, Proc. R. Soc. A 314, 529
(1970).

[10] A. Ijjas and P. J. Steinhardt, Classically stable nonsingular
cosmological bounces, Phys. Rev. Lett. 117, 121304 (2016).

[11] A. Ijjas and P. J. Steinhardt, Fully stable cosmological
solutions with a non-singular classical bounce, Phys. Lett.
B 764, 289 (2017).

[12] D. A. Easson, I. Sawicki, and A. Vikman, G-bounce,
J. Cosmol. Astropart. Phys. 11 (2011) 021.

[13] Y.-F. Cai, D. A. Easson, and R. Brandenberger, Towards a
nonsingular bouncing cosmology, J. Cosmol. Astropart.
Phys. 08 (2012) 020.

[14] Y.-F. Cai, R. Brandenberger, and P. Peter, Anisotropy in a
nonsingular bounce, Classical Quantum Gravity 30, 075019
(2013).

[15] M. Libanov, S. Mironov, and V. Rubakov, Generalized
Galileons: Instabilities of bouncing and Genesis cosmolo-
gies and modified Genesis, J. Cosmol. Astropart. Phys. 08
(2016) 037.

[16] A. Trautman, Spin and torsion may avert gravitational
singularities, Nature (London) 242, 7 (1973).

[17] C. J. Isham and J. E. Nelson, Quantization of a coupled
Fermi field and Robertson-Walker metric, Phys. Rev. D 10,
3226 (1974).

[18] S. Alexander and T. Biswas, The cosmological BCS
mechanism and the big bang singularity, Phys. Rev. D
80, 023501 (2009).

[19] J. a. Magueijo, T. G. Zlosnik, and T. W. B. Kibble, Cosmol-
ogy with a spin, Phys. Rev. D 87, 063504 (2013).

[20] D. Sciama, On a nonsymmetric theory of the pure gravi-
tational field, Proc. Cambridge Philos. Soc. 54, 72 (1958).

[21] T. W. B. Kibble, Lorentz invariance and the gravitational
field, J. Math. Phys. (N.Y.) 2, 212 (1961).

[22] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M.
Nester, General relativity with spin and torsion: Foundations
and prospects, Rev. Mod. Phys. 48, 393 (1976).

[23] I. L. Shapiro, Physical aspects of the space-time torsion,
Phys. Rep. 357, 113 (2002).

[24] H. Weyl, A remark on the coupling of gravitation and
electron, Phys. Rev. 77, 699 (1950).

[25] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. 1., Phys. Rev. 122, 345 (1961).

[26] S. Farnsworth, J.-L. Lehners, and T. Qiu, Spinor driven
cosmic bounces and their cosmological perturbations, Phys.
Rev. D 96, 083530 (2017).

[27] T. Inagaki, T. Muta, and S. D. Odintsov, Nambu–Jona-
Lasinio model in curved space-time, Mod. Phys. Lett. A 08,
2117 (1993).

[28] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973).

[29] A. Ijjas and R. Kolevatov, Nearly scale-invariant curvature
modes from entropy perturbations during the graceful exit
phase, Phys. Rev. D 103, L101302 (2021).

[30] A. Ijjas and R. Kolevatov, Sourcing curvature modes with
entropy perturbations in non-singular bouncing cosmolo-
gies, J. Cosmol. Astropart. Phys. 06 (2021) 012.

[31] V. G. Bagrov, I. L. Buchbinder, and I. L. Shapiro, On the
possible experimental manifestations of the torsion field at
low-energies, arXiv:hep-th/9406122.

[32] R. T. Hammond, Upper limit on the torsion coupling
constant, Phys. Rev. D 52, 6918 (1995).

[33] R. T. Hammond, Helicity flip cross-section from gravity
with torsion, Classical Quantum Gravity 13, 1691 (1996).

[34] T. C. P. Chui and W.-T. Ni, Experimental search for an
anomalous spin spin interaction between electrons, Phys.
Rev. Lett. 71, 3247 (1993).

[35] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,
QCD and resonance physics. Theoretical foundations, Nucl.
Phys. B147, 385 (1979).

[36] L. H. Ford and D. J. Toms, Dynamical symmetry breaking
due to radiative corrections in cosmology, Phys. Rev. D 25,
1510 (1982).

[37] S. Alexander, Y.-F. Cai, and A. Marciano, Fermi-bounce
cosmology and the fermion curvaton mechanism, Phys.
Lett. B 745, 97 (2015).

[38] J. K. Erickson, D. H. Wesley, P. J. Steinhardt, and N. Turok,
Kasner and mixmaster behavior in universes with equation
of state w >¼ 1, Phys. Rev. D 69, 063514 (2004).

[39] S. Weinberg, Cosmology (Oxford University Press, Oxford,
UK, 2008).

[40] F. A. E. Pirani, Invariant formulation of gravitational radi-
ation theory, Phys. Rev. 105, 1089 (1957).

[41] A. Z. Petrov, Einstein Spaces (Pergamon Press, Oxford, UK,
1969).

[42] L. Brewin, Riemann normal coordinates, smooth lattices
and numerical relativity, Classical Quantum Gravity 15,
3085 (1998).

[43] T. S. Bunch and L. Parker, Feynman propagator in curved
space-time: A momentum space representation, Phys. Rev.
D 20, 2499 (1979).

[44] L. Parker and D. J. Toms, Renormalization group analysis of
grand unified theories in curved space-time, Phys. Rev. D
29, 1584 (1984).

[45] M. K. Gaillard, The effective one loop Lagrangian with
derivative couplings, Nucl. Phys. B268, 669 (1986).

[46] A. O. Barvinsky and G. A. Vilkovisky, Covariant perturba-
tion theory. 2: Second order in the curvature. General
algorithms, Nucl. Phys. B333, 471 (1990).

[47] A. O. Barvinsky, Y. V. Gusev, V. V. Zhytnikov, and G. A.
Vilkovisky, Covariant perturbation theory. 4. Third order in
the curvature, arXiv:0911.1168.

[48] B. S. DeWitt, Dynamical theory of groups and fields, Conf.
Proc. C 630701, 585 (1964); Les Houches Lect. Notes 13,
585 (1964).

GIORGI TUKHASHVILI PHYS. REV. D 109, 043536 (2024)

043536-16

https://doi.org/10.1016/j.physletb.2021.136490
https://doi.org/10.1016/j.physletb.2021.136490
https://doi.org/10.1088/1475-7516/2022/08/046
https://doi.org/10.1088/1475-7516/2022/08/046
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1966.0255
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.117.121304
https://doi.org/10.1016/j.physletb.2016.11.047
https://doi.org/10.1016/j.physletb.2016.11.047
https://doi.org/10.1088/1475-7516/2011/11/021
https://doi.org/10.1088/1475-7516/2012/08/020
https://doi.org/10.1088/1475-7516/2012/08/020
https://doi.org/10.1088/0264-9381/30/7/075019
https://doi.org/10.1088/0264-9381/30/7/075019
https://doi.org/10.1088/1475-7516/2016/08/037
https://doi.org/10.1088/1475-7516/2016/08/037
https://doi.org/10.1038/physci242007a0
https://doi.org/10.1103/PhysRevD.10.3226
https://doi.org/10.1103/PhysRevD.10.3226
https://doi.org/10.1103/PhysRevD.80.023501
https://doi.org/10.1103/PhysRevD.80.023501
https://doi.org/10.1103/PhysRevD.87.063504
https://doi.org/10.1017/S030500410003320X
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/S0370-1573(01)00030-8
https://doi.org/10.1103/PhysRev.77.699
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevD.96.083530
https://doi.org/10.1103/PhysRevD.96.083530
https://doi.org/10.1142/S0217732393001835
https://doi.org/10.1142/S0217732393001835
https://doi.org/10.1103/PhysRevD.103.L101302
https://doi.org/10.1088/1475-7516/2021/06/012
https://arXiv.org/abs/hep-th/9406122
https://doi.org/10.1103/PhysRevD.52.6918
https://doi.org/10.1088/0264-9381/13/7/002
https://doi.org/10.1103/PhysRevLett.71.3247
https://doi.org/10.1103/PhysRevLett.71.3247
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1103/PhysRevD.25.1510
https://doi.org/10.1103/PhysRevD.25.1510
https://doi.org/10.1016/j.physletb.2015.04.026
https://doi.org/10.1016/j.physletb.2015.04.026
https://doi.org/10.1103/PhysRevD.69.063514
https://doi.org/10.1103/PhysRev.105.1089
https://doi.org/10.1088/0264-9381/15/10/014
https://doi.org/10.1088/0264-9381/15/10/014
https://doi.org/10.1103/PhysRevD.20.2499
https://doi.org/10.1103/PhysRevD.20.2499
https://doi.org/10.1103/PhysRevD.29.1584
https://doi.org/10.1103/PhysRevD.29.1584
https://doi.org/10.1016/0550-3213(86)90264-6
https://doi.org/10.1016/0550-3213(90)90047-H
https://arXiv.org/abs/0911.1168

