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We investigate the cosmological collider (CC) signal arising from the tree-level exchange of a scalar
spectator particle with a non-Bunch-Davies (BD) initial state. We decompose the inflaton correlators into
seed integrals, which we compute analytically by solving the bootstrap equations. We show that the
non-BD initial state eliminates the Hubble-scale Boltzmann suppression e−πm=H that usually affects the CC
signal. Consequently, in this scenario, the CC can probe an energy scale much higher than the inflationary
Hubble scale H.
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I. INTRODUCTION

Inflation is a widely accepted paradigm of the early
Universe that resolves various cosmological puzzles, such
as the horizon problem [1,2]. Moreover, inflation predicts
the cosmic non-Gaussianity (NG) [3] that offers a window
into the deep UV physics that is inaccessible to any terres-
trial particle collider. This paradigm, known as cosmologi-
cal collider (CC) [4–51], has attracted broad attention in
recent years. In CC, the inflaton is coupled to other
spectator fields whose masses are above the inflationary
Hubble scale. The interaction between the spectator fields
and the inflaton leaves a distinctive imprint on the NG,
which encodes the information of the mass and spin of
the spectator fields. Despite its potential, CC is limited by
the observational capability. The Planck satellite has con-
strained NG to a level of fNL ≲Oð10Þ [52], and in the
coming decades, SPHEREx can improve the sensitivity up
to fNL ∼Oð1Þ [53]. Furthermore, through the probe of the
21 cm line, we can eventually reach the resolution of fNL ∼
Oð0.01Þ that touches the gravitational floor [54]. Therefore,
inflation models that predict large CC signals become more
interesting experimentally, as they can be tested by CC.
The CC is subject to two constraints. In the standard

inflation models, the initial state is assumed to be the
Bunch-Davies (BD) vacuum, and the particles observed at
late times are solely produced by the cosmic expansion
with an energy scale set by the inflationary Hubble scaleH.
Hence, the magnitude of the CC signals, often denoted as
fNL, is suppressed by the Hubble-scale Boltzmann factor

fNL ∝ e−πm=H. Moreover, one-particle states (here we
consider scalar particles with s ¼ 0) in de Sitter (dS) are
divided into two series: the principal series for particles
with m > 3H=2 and the complementary series for particles
with 0 < m < 3H=2. Only the particles in the principal
series generate oscillatory signals. Therefore, the CC is
insensitive to light particles. These two factors limit the
detection window of the CC to the energy scale around the
Hubble scale H.
In this article, we explore a class of inflation models

that predict large cosmological collider signals for heavy
spectator fields with mass much larger than the Hubble
scale H. Unlike previous models that rely on an effective
chemical potential [55–58] to overcome the Hubble-scale
Boltzmann factor e−πm=H that suppresses the CC signals,
we consider the scenario where inflation begin with the
non-BD state. The initial state we consider is the α
vacuum [59–61], which is related to the BD state [62]
by a Bogoliubov transformation with a parameter α. These
initial states preserve the dS symmetry, and the case α ¼ 0
corresponds to the BD state. We show that, in such inflation
models, the cosmological collider signals are free from the
Hubble-scale Boltzmann suppression. This implies a higher
energy scale for the CC in this scenario. Moreover, this
inflation model has a theoretical advantage of evading the
swampland conjecture [63], which imposes constraints on
low-energy effective theories compatible with quantum
gravity. However, for a general α vacuum, the deviation
from the BD state implies that it is excited. For a genuine α
vacuum, the condition that the extra energy from the
excited states is smaller than the vacuum energy imposes
a strict constraint on α. In this paper, we will adopt a
flexible point of view as in [64], where α depends on the
momentum of the mode considered. Physically, such an
initial state can be realized in inflation models such as
warm inflation [65], where a thermal bath is generated
during inflation due to rapid interactions.
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In this paper, we adopt the Schwinger-Keldysh (SK)
formalism [66] to compute the inflaton correlator in de
Sitter space. We show that the choice of the non-BD initial
state modifies the Schwinger-Keldysh propagators of the
inflaton. With the modified SK propagators, we can, in
principle, calculate the non-BD inflaton correlators that
contain the CC signals.
Apart from the phenomenological implication, the ana-

lytical properties of the inflaton correlators have attracted
considerable attention in recent years, along with the
interest in exploring the quantum field theory in dS. How-
ever, the dS correlators are still poorly understood. The
computation of the inflaton correlators analytically faces
several challenges. First, the dS propagator of massive field
typically involves special functions that are difficult to
integrate analytically. Second, the SK formalism introduces
complex time ordering into the calculation.
In recent years, some progress has been made in

computing the inflaton correlators analytically. Two main
methods are available: the Melin-Barnes (MB) forma-
lism [67] and the bootstrap method [68–71]. The MB
formalism transforms the conformal time integral into an
integral over the MB variables, which can be solved using
the residue theorem. However, this method usually yields
an infinite series expansion as the final result. The bootstrap
method, which we adopt in this article, converts the
integration problem into a differential equation. The infla-
ton correlator can be obtained analytically in certain limits,
and these results serve as the boundary condition for the
bootstrap equation. By solving this equation, we can obtain
the closed-form expression for the inflaton correlator.
These two methods have been used to compute the inflaton
correlators involving tree exchange of scalar particles and
gauge bosons under the BD initial condition. In this article,
we extend the result to the non-BD case.
The rest of this paper is structured as follows. In Sec. II,

we provide a brief overview of the model and the initial
state. We also derive the mode function of the real scalar
spectator field in a non-BD scenario, which differs from
the BD case by an additional negative frequency term. In
Sec. III, we briefly review the SK formalism and compute
the non-BD propagators of the spectator field. Next, we
demonstrate that the seed integrals are the basic compo-
nents of the tree-level inflaton correlators. By calculating
the CC signal contributions from the seed integrals, we
can extract the general features of the tree-level inflaton
correlators that are insensitive to the specific interactions.
We employ the bootstrap method to calculate the tree-level
exchange of the scalar particle. Section IV includes our
concluding remark. The technical details of the calculation
are presented in the Appendix.

II. THE MODEL

In our model, the inflaton interacts with the scalar
spectator field which has a non-BD initial state through

the following action:

S ¼ Sgravity −
Z

d4xfLϕ þ Lσ þ Lintg; ð1Þ

where Lϕ, Lσ, and Lint denote the Lagrangian for the
inflaton, the spectator field, and the interaction, respec-
tively. The Lagrangian of the inflaton takes the simplest
form, which reads

Lϕ ¼ ffiffiffiffiffiffi
−g

p �
1

2
ð∂μϕÞ2 þ VðϕÞ

�
; ð2Þ

and the Sgravity is the Hilbert-Einstein action of general
relativity that reads

Sgravity ¼
M2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R: ð3Þ

We assume the inflaton has the BD initial state; there-
fore, at leading order, our model give the conventional scale
invariant power spectrum

PζðkÞ ¼
H4

ð2πÞ2ϕ̇2
; ð4Þ

whose value was measured through CMB by Planck [52] to
be Pζ ∼ 2 × 10−9.
Most of the previous studies on inflation that started from

a non-BD initial state focused on the scenario where the
inflaton field had a α-vacuum-type initial state [72–85]. Our
scenario differs from theirs, as we consider the initial state of
the inflaton to be BD while the spectator field has the non-
BD initial state. This is based on the physical consideration
that a non-BD initial condition for the inflaton would alter
the leading-order expression for the power spectrum and
entail additional constraints on the α parameter. To explore
the scenario where the α parameter and, hence, the magni-
tude of the CC signal are least restricted, we adopt the
scenario where the inflaton has BD initial condition and the
spectator has non-BD condition. However, we anticipate that
our results can also be extended to the scenario where both
the inflaton and the spectator have non-BD initial states, as
will be clear through our calculation.

A. Massive scalar in dS

We assume the simplest scenario in which the spectator
field is a scalar with a nonzero mass term. Therefore,
the action for the free spectator field has the following
expression:

Sσ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
gμν∂μσ∂νσ þm2σ2

� ð5Þ

¼ 1

2

Z
dτd3x

�
a2σ02 − a2ð∂iσÞ2 − a4m2σ2

�
: ð6Þ
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The equation of the motion can be derived by taking the
variation of the action (6). The result is

σ00ðτ;xÞ − 2

τ
σ0ðτ;xÞ − ∂

2
i σðτ;xÞ þ

m2

H2τ2
σðτ;xÞ ¼ 0: ð7Þ

Subsequently, the equation of motion for each Fourier
mode can be obtained by substituting σ ¼ R

d3k
ð2πÞ3 σke

ik·x

into (7), which reads

σ00kðτÞ −
2

τ
σkðτÞ þ

�
k2 þ m2

H2τ2

�
σkðτÞ ¼ 0: ð8Þ

In the case of BD vacuum, we keep only the solution with
positive frequency as the mode function. Once the mode
function is normalized by the Wronskian condition, it
eventually takes the form of

uðk; τÞ ¼ π

2
e−ν̃π=2Hð−τÞ3=2Hð1Þ

iν̃ ð−kτÞ; ð9Þ

where ν̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=H2 − 9=4

p
. Canonically, the Fourier mode

of the scalar field then can be quantized as

σkðτÞ ¼ uðk; τÞbk þ u�ðk; τÞb†−k; ð10Þ

where bk is the annihilation operator that annihilates
the BD vacuum, bkj0iBD ¼ 0. In this paper, we instead
consider the non-BD initial state for the spectator field.
Note that there are infinitely many states that satisfy the dS
symmetry; therefore, they can also become the candidates
of the vacuum state. These vacuum, often called α vacuum,
are linked to the BD vacuum by a Bogoliubov trans-
formation as follows:

vðk; τÞ ¼ cosh αuðk; τÞ þ eiϕ sinh αu�ðk; τÞ; ð11Þ

ak ¼ cosh αbk − e−iϕ sinh αb†−k; ð12Þ

where ak is the annihilation operator that annihilates the α
vacuum, akj0iα ¼ 0.

B. Backreaction constraints

The α-vacuum initial state poses a challenge for inflation
models, as it deviates from the BD state and implies an
excited state. To prevent the energy of the α vacuum from
spoiling inflation, a stringent constraint on α is required.
Following [64], we assume that the parameter α is
accompanied with a cutoff; that is, the α vacuum applies
only to modes with −kτ < zΛ=H. Here, we will comment
on the role of the cutoff zΛ that is usually considered in the
context of the non-BD initial state [64,73]. Depending on
the inflation model with non-BD initial condition, the cut-
off zΛ can have a clear physical meaning that is connected

to the origin of the non-BD vacuum. For instance, in the
case of warm inflation, where the initial state is thermal,
the cutoff zΛ is set by the physical scale of the thermal
bath [65]. However, our aim is not to investigate the
physical origin of the α vacuum but to explore the pheno-
menological consequences of the α vacuum. Thus, we will
treat zΛ as a free parameter of our model, and we will show
in Fig. 4 that the magnitude of the CC signal is robust to the
choice of the cutoff. Taking the cutoff into account, the
energy density can be evaluated as

E ∼
Z
jkj<zΛ

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
sinh 2α: ð13Þ

As argued, the inflation requires that the vacuum energy
dominates. Therefore, we reach the first constraint:

E ≲ 3M2
PlH

2: ð14Þ

Using (13), the constraint (14) can be rewritten as

e2α ≲H2M2
Pl

z4Λ
; ð15Þ

which is the constraint derived in [64]. The constraint on
the parameter α depends on the Hubble scale. For example,
we consider the scenario where H=MPl ∼ 10−10, that is,
H ∼ 108 GeV. As in [64], we denote eR ≡ zΛ=H, which is
required to be much greater than unity to make our
calculation valid, and it is severed as the second constraint.
Then (15) implies that

eα ≪ 1010e−2R; ð16Þ

that is, α ≪ 23 − 2R. Therefore, the constraint of the small
backreaction still leaves us a large parameter space for α
given that R ≫ 1. In the next section, we will show that the
cosmological collider signals obtain significant enhance-
ment even with α ∼ 1.

III. COSMOLOGICAL COLLIDER SIGNALS

A. Schwinger-Keldysh formalism

Conventionally, the cosmic correlator is calculated
canonically by adopting the in-in formalism, the expect-
ation value of an arbitrary operator Q can be computed
through

hQðτÞi ¼ hΩj
�
T̄ exp

�
i
Z

τ

τ0

HIðτÞdt
�
QðτÞ

× T exp

�
i
Z

τ

τ0

HIðτÞdt
��

jΩi; ð17Þ
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where HI is the Hamiltonian in the interaction picture. The
correlator can be also calculated in the Lagrangian formal-
ism as follows:

hΩjφðτf;x1Þ…φðτf;xnÞjΩi

¼
Z

DφþDφ−φþðτf;x1Þφþðτf;xnÞ

× exp

	
i
Z

τf

τ0

d4xðL½ϕþ� − L½ϕ−�Þ



×
Y
x

δ½φþðτf;xÞ − φ−ðτf;xÞ�: ð18Þ

The calculation admits a diagrammatic approach, which
is analogous to the Feynman diagram. Similar to the flat
spacetime, the basic ingredient of the calculation is the
following SK propagators:

Dþþðk; τ1; τ2Þð2πÞ3δ3ðkþ qÞ ¼ h0αjTfσkðτ1Þσqðτ2Þgj0αi;
ð19Þ

D−−ðk; τ1; τ2Þð2πÞ3δ3ðkþ qÞ ¼ h0αjT̄fσkðτ1Þσqðτ2Þgj0αi;
ð20Þ

Dþ−ðk; τ1; τ2Þð2πÞ3δ3ðkþ qÞ ¼ h0αjσkðτ1Þσqðτ2Þj0αi;
ð21Þ

D−þðk; τ1; τ2Þð2πÞ3δ3ðkþ qÞ ¼ h0αjσkðτ1Þσqðτ2Þj0αi;
ð22Þ

where Tf…g and T̄f…g denote the time ordering and anti–
time ordering. In contrast to the conventional BD initial
state, the propagators here are obtained by taking the
expectation value with respect to the α vacuum. Note that
the four SK propagators are not independent but related
through

Dþþðk; τ1; τ2Þ ¼ D>ðk; τ1; τ2Þθðτ1 − τ2Þ
þD<ðk; τ1; τ2Þθðτ2 − τ1Þ; ð23Þ

D−−ðk; τ1; τ2Þ ¼ D<ðk; τ1; τ2Þθðτ1 − τ2Þ
þD>ðk; τ1; τ2Þθðτ2 − τ1Þ; ð24Þ

Dþ−ðk; τ1; τ2Þ ¼ D<ðk; τ1; τ2Þ; ð25Þ

D−þðk; τ1; τ2Þ ¼ D>ðk; τ1; τ2Þ; ð26Þ

where the Wightman functions D> and D< are defined as

D>ðk; τ1; τ2Þ ¼ vðk; τ1Þv�ðk; τ2Þ; ð27Þ

D<ðk; τ1; τ2Þ ¼ v�ðk; τ1Þvðk; τ2Þ; ð28Þ

respectively, where vðk; τÞ is the mode function defined
in (11). In terms of the BD mode function, the Wightman
function can be rewritten as

D>ðk; τ1; τ2Þ ¼ cosh2 αuðk; τ1Þu�ðk; τ2Þ
þ sinh2 αu�ðk; τ1Þuðk; τ2Þ
þ e−iθ coshα sinh αuðk; τ1Þuðk; τ2Þ
þ eiθ cosh α sinh αu�ðk; τ1Þu�ðk; τ2Þ; ð29Þ

D<ðk; τ1; τ2Þ ¼ cosh2 αu�ðk; τ1Þuðk; τ2Þ
þ sinh2 αuðk; τ1Þu�ðk; τ2Þ
þ eiθ cosh α sinh αu�ðk; τ1Þu�ðk; τ2Þ
þ e−iθ coshα sinh αuðk; τ1Þuðk; τ2Þ: ð30Þ

For clarity, we will decompose the propagator into four
parts and analyze them respectively. We define the follow-
ing four Wightman functions:

Dð1Þ
> ðk; τ1; τ2Þ≡ uðk; τ1Þu�ðk; τ2Þ; ð31Þ

Dð2Þ
> ðk; τ1; τ2Þ≡ u�ðk; τ1Þuðk; τ2Þ; ð32Þ

Dð3Þ
> ðk; τ1; τ2Þ≡ e−iθuðk; τ1Þuðk; τ2Þ; ð33Þ

Dð4Þ
> ðk; τ1; τ2Þ≡ eiθu�ðk; τ1Þu�ðk; τ2Þ: ð34Þ

In the following, we will compute the contribution of the
four parts of the propagator separately. For simplicity, we
will take θ ¼ 0 from now on.

B. Trispectrum

We consider the simplest possibility of the interaction
between the inflaton and the spectator and the inflaton
which reserves the shift symmetry of the inflaton, which is
given by

Lint ⊃
1

2
λa2ðφ0Þ2σ þ κa3φ0σ; ð35Þ

where φ denotes the inflaton fluctuation. Note that the
dimension-5 operator 1

2
λ5ð∂μϕÞ2σ gives rise to both of the

FIG. 1. The Feynman diagrams of the three-point correlator
(77) and the four-point correlator (36) following the Feynman
rules listed in [66].
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couplings we considered in (35). Specifically, the κ term
emerges from the evaluation of the λ5 coupling in the
presence of the inflaton background. However, the cou-
pling 1

2
λ5ð∂μϕÞ2σ is not complete, as it also generates a

tadpole term 1
2
λ5ϕ̇

2σ, which destabilizes the potential of the
σ field. Nevertheless, we can regard it as an effective
description of a more comprehensive model. For instance, a
model that incorporates a quartic term 1

4
λ4σ

4, where the σ
field is fixed at some background value σ0, and we are
simply perturbing the full action around σ0 [39]. Such
interaction generates the tree-level four-point correlator
(see Fig. 1) that can be computed using the SK formalism
and takes the following form:

hφk1
φk2

φk3
φk4

i0σ ¼−λ2
X
a;b¼�

ab
Z

0

−ks=ðHzΛÞ

dτ1
ð−Hτ1Þ2

dτ2
ð−Hτ2Þ2

×G0
aðk1;τ1ÞG0

aðk2;τ1ÞG0
bðk3;τ2Þ

×G0
bðk4;τ2ÞDabðks;τ1;τ2Þ; ð36Þ

where Ga ¼ H2

2k3 ð1 − iakτÞeiakτ is the inflaton propagator.
As we previously argued, we have to impose a cutoff on
the integration (36), implying the k dependence of α. To
avoid the unphysical and cumbersome hard cutoff on the
α-vacuum contribution of the correlator, we adopt a soft
cutoff instead. We define the seed integral with a soft cutoff
as follows:

hφk1
φk2

φk3
φk4

i0σ ¼ −
H4λ2

16k1k2k3k4

X
a;b¼�

ab

×
Z

0

−∞
dτ1dτ2eiak12aτ1þibk34bτ2

×Dabðks; τ1; τ2Þ; ð37Þ

where we have denoted k12a ≡ k12 − iaHks=zΛ and
k34b ≡ k34 − ibHks=zΛ with k12 ≡ jk1j þ jk2j and k34 ≡
jk3j þ jk4j. Note that the imaginary part of the new
external momentum suppresses the contribution from the
region −ksτ1;2 ≫ zΛ=H. The integration appears in (37)
is generally encountered in the tree-level calculation of
the inflaton four-point correlator and is not restricted to the
interaction (35). Therefore, it motivate us to analyze the
following seed integrals instead:

I ðnÞ;p1p2

ab ≡ −abk5þp1þp2
s

Z
0

−∞
dτ1dτ2ð−τ1Þp1ð−τ2Þp2

× eiak12aτ1þibk34bτ2DðnÞ
ab ðks; τ1; τ2Þ: ð38Þ

The seed integrals determine the tree-level inflaton corre-
lator of any interaction, and we can infer its properties

from them. The seed I ð1Þ;p1p2

ab is the integral that will be
encountered in BD calculation, while others are non-BD

contribution. For instance, in term of the seed integrals, the
four-point correlator (37) can be written as

hφk1
φk2

φk3
φk4

i0σ ¼
H4λ2

16k1k2k3k4k5s

X
a;b¼�

n
cosh2 αI ð1Þ;00

ab

þ sinh2 αI ð2Þ;00
ab þ coshα sinh αI ð3Þ;00

ab

þ cosh α sinh αI ð4Þ;00
ab

o
: ð39Þ

We obtain these seed integrals by solving the bootstrap
equation, which we derive in detail in the Appendix. The
general solution of the bootstrap equation has the form

I ðnÞ;p1p2

ab ðu1a; u2bÞ ¼ VðnÞ;p1p2

ab ðu1a; u2bÞ
þ

X
c;d¼�

αðnÞ;p1p2

abjcd Yp1
a ðu1aÞYp2

b ðu2bÞ

× ðn ¼ 1;…; 4Þ; ð40Þ

where u1a ≡ u1ðk12 → k12aÞ, u2b ≡ u2ðk34 → k34bÞ [we
also define u1;2 ≡ 2r1;2=ðr1;2 þ 1Þ and r1;2 ≡ ks=k12;34],
and Yp1

� ðuÞ are the homogeneous solution of the boot-
strapping equations that are defined as follows:

Yp
�ðuÞ ¼ 2∓iν̃

�
u
2

�
5=2þp�iν̃

Γð5=2þ p� iν̃ÞΓð∓iν̃Þ

× 2F1

�
5=2þ p� iν̃; 1=2� iν̃

1� 2iν̃

����u
�
; ð41Þ

where

2F1

�
5=2þ p1 � iν̃; 1=2� iν̃

1� 2iν̃

����u
�

denotes the hypergeometric function. VðnÞ;p1p2

ab denotes the
particular solution, and the α coefficients are the integration
constants of the bootstrap equation. Following the
Appendix, we can further decompose (40) into

I ðnÞ;p1p2

abjbg ðu1a; u2bÞ≡ VðnÞ;p1p2

ab ðu1a; u2bÞ; ð42Þ

that exclusively contribute to the background, and

I ðnÞ;p1p2

abjsignalðu1a;u2bÞ≡
X
c;d¼�

αðnÞ;p1p2

abjcd Yp1
a ðu1aÞYp2

b ðu2bÞ; ð43Þ

which contain all the contributions to the oscillatory signal.
We can uniquely determine the particular solutions and the
integration constants by imposing the collapsed limit result
as the boundary condition (see the Appendix); results are as
follows.
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For I ð1Þ
ab ,

αð1Þ;p1p2

þ−jcd ¼ αð1Þ;p1p2�
−þjcd ¼ H2e−iπðp1−p2Þ=2

4π
; ð44Þ

αð1Þ;p1p2

þþjþ� ¼ αð1Þ;p1p2�
−−j−� ¼ iH2e−iπðp1þp2Þ=2eπν̃

4π
; ð45Þ

αð1Þ;p1p2

þþj−� ¼ αð1Þ;p1p2�
−−jþ� ¼ iH2e−iπðp1þp2Þ=2e−πν̃

4π
: ð46Þ

For I ð2Þ
ab ,

αð2Þ;p1p2

þ−j�� ¼ αð2Þ;p1p2�
−þj�� ¼ H2e−iπðp1−p2Þ=2

4π
; ð47Þ

αð2Þ;p1p2

þ−j�∓ ¼ αð2Þ;p1p2�
−þj∓� ¼ H2e−iπðp1−p2Þ=2e�2πν̃

4π
; ð48Þ

αð2Þ;p1p2

þþj�þ ¼ αð2Þ;p1p2�
−−j�− ¼ iH2e−iπðp1þp2Þ=2eπν̃

4π
; ð49Þ

αð2Þ;p1p2

þþj�− ¼ αð2Þ;p1p2�
−−j�þ ¼ iH2e−iπðp1þp2Þ=2e−πν̃

4π
: ð50Þ

For I ð3Þ
ab ,

αð3Þ;p1p2

þ−j�� ¼ αð3Þ;p1p2�
−þj∓∓ ¼ −

H2eiπðp1−p2Þ=2e∓πν̃

4π
; ð51Þ

αð3Þ;p1p2

þ−j�∓ ¼ αð3Þ;p1p2�
−þj∓� ¼ −

H2e−iπðp1−p2Þ=2e�πν̃

4π
; ð52Þ

αð3Þ;p1p2

þþj�� ¼ αð3Þ;p1p2�
−−j∓∓ ¼ −

iH2e−iπðp1þp2Þ=2e�2πν̃

4π
; ð53Þ

αð3Þ;p1p2

þþj�∓ ¼ αð3Þ;p1p2�
−−j�∓ ¼ −

iH2e−iπðp1þp2Þ=2

4π
: ð54Þ

For I ð4Þ
ab ,

αð4Þ;p1p2

þ−j�� ¼ αð4Þ;p1p2�
−þj�� ¼ −

H2e−iπðp1−p2Þ=2e�πν̃

4π
; ð55Þ

αð4Þ;p1p2

þ−j�∓ ¼ αð4Þ;p1p2�
−þj�∓ ¼ −

H2e−iπðp1−p2Þ=2e�πν̃

4π
; ð56Þ

αð4Þ;p1p2

þþj�� ¼ αð4Þ;p1p2�
−−j�� ¼ −

iH2e−iπðp1þp2Þ=2

4π
; ð57Þ

αð4Þ;p1p2

þþj�∓ ¼ αð4Þ;p1p2�
−−j�∓ ¼ −

iH2e−iπðp1þp2Þ=2

4π
: ð58Þ

We plot the signal contribution (43) from the seed integral

in Fig. 2, where we define I00
signal ≡

P
n;a;b I

ðnÞ;00
abjsignal. We

find that the seed integral is significantly enhanced by the
non-BD contribution.

FIG. 2. The effect of different values of α andm on the rescaled
seed integral ð 2r1

r1þ1
Þ−5=2ð 2r2

r2þ1
Þ−5=2I00

signal. The blue and magenta
curves correspond to α ¼ 0 and α ¼ 1 with zΛ=H ¼ 20, respec-
tively. The first and second plots show the case of m=H ¼ 5,
while the third and fourth plots show the case of m=H ¼ 10. The
seed integral is a measure of the cosmological collider signal from
the non-BD initial state. We have taken H ¼ 1 in these plots.
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1. Signal size estimation

We will estimate the size of the CC signal from the
bispectrum in the following. Conventionally, the trispec-
trum is captured through a dimenionless shape function
defined as follows [86]:

T ðk1; k2; k3; k4Þ ¼
1

ð2πÞ6P3
ζ

H4

ϕ̇4

ðk1k2k3k4Þ3
K3

× hφk1
φk2

φk3
φk4

i0; ð59Þ

where Pζ is the power spectrum. The trispectrum is
quantified by tNL ≡ jT j, which depends on the shape of
the quadrangle formed by k1;k2;k3;k4. Therefore, differ-
ent values of tNL should be used for different quadrangle
configurations. We focus on the case where one of the wave
vectors is much smaller than the others, i.e., ks ≪ k12; k34,
i.e., the collapsed limit; see Fig. 3.
This limit exhibits nonanalytic oscillations in the

momentum ratios, which can be used to probe the presence
of beyond standard model particles from the CMB/LSS
observations. We call this the CC signal and denote its

amplitude by tðoscÞNL . From these definitions, it follows that

tðoscÞNL ∼ T ðks ≪ k12; k34Þ and can be estimated as [56]

tðoscÞNL ∼
1

ð2πÞ2Pζ
hφk1

φk2
φk3

φk4
i0: ð60Þ

At the tree level, the four-point correlators can be generally
decomposed into seed integrals, which have signal and
background parts as shown in (42) and (43). Therefore, the

magnitude of tðoscÞNL depends exclusively on the signal parts
of the seed integrals (43). We will focus on analyzing
these seed integrals as proxies for the oscillatory signals.
We will use the following asymptotic behavior of the
gamma function:

Γða� ibÞ ≃
ffiffiffiffiffiffi
2π

p
ba−1=2e−πb=2e�iðb log bþπa=2Þ;

a; b∈R; b ≫ 1: ð61Þ

Note that, even for moderately large values of jbj greater
than 1, this asymptotic behavior remains valid. For BD

initial state, tðoscÞNL is suppressed by the factor e−πm=H at large
mass which set the energy scale of the cosmological

collider to H. This suppression can be found in the BD

seed I ð1Þ;p1p2

ab . In the collapsed limit ks ≪ k12; k34, we can
perform the following large mass expansion:

Yp1

� ðuÞ ∼ Γ
�
5

2
þ p1 � iν̃

�
Γð∓iν̃Þ ∝ e−πm=H

× ðm ≫ HÞ; ð62Þ

where in the second step of (62) we have applied (61).
Among the coefficients in the BD seeds, the leading terms
in the asymptotic expansion for large mass are given by

αð1Þ;p1p2

þþjþ� ∼ αð1Þ;p1p2

−−j−� ∼ eπm=H; ð63Þ

while the rest of the coefficients are further suppressed by
the Boltzmann factor. Note that any physical calculation
will require the summation over the Schwinger-Keldysh
indices a and b. Hence, from the combination of equa-
tions (62) and (63), it is evident that the signal contribution
from the BD seed is always governed by the factor e−πm=H,
which is consistent with our expectation.
In contrast to the BD seeds, the leading coefficients from

the non-BD seed are given by

αð2Þ;p1p2

þ−jþ− ¼ αð2Þ;p1p2

−þj−þ ∼ e2πm=H; ð64Þ

αð3Þ;p1p2

þþjþþ ¼ αð3Þ;p1p2

−−j−− ∼ e2πm=H: ð65Þ

These coefficients in the non-BD seed cancel out the

suppression factors in (62). Hence, the non-BD seed I ð2Þ
ab ,

I ð3Þ
ab does not suffer from the Hubble-scale Boltzmann

suppression e−πm=H. Here, we will comment on the role
of the θ parameter that we have chosen to be 0. Observe
that the parameter θ indeed influences the magnitude of
the signal. As an example, consider the trispectrum in (39),
where there are two terms that are enhanced, which
correspond to the contributions from the seed integrals

I ð2Þ;p1p2

�∓ and I ð3Þ;p1p2

�� , respectively. Only the latter term
oscillates with θ. However, by applying the late-time
expansion for (41) and plugging this expansion into the
seed integral (43), we can see that the enhancements of

the CC signal from I ð2Þ;p1p2

�∓ and I ð3Þ;p1p2

�� belong to two
different types. The former seed corresponds to the local
type, where the signal oscillates like ðk12k34

Þ�iν̃, and the latter
seed corresponds to the nonlocal type, where the signal

oscillates like ð k2s
k12k34

Þ�iν̃. Thus, it is clear that the choice of
the θ parameter will not result in the cancellation of the CC
signal in trispectrum. On the other hand, for the case of
the bispectrum, the nonlocal and local signals combine
together. However, only for the fine-tuned θ such that the
coefficients sinh2 α and fðθÞ cosh α sinh α match can the

FIG. 3. Left panel: the momentum configuration for the four-
point correlator. Right panel: the collapsed limit configuration.
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potential cancellation of the CC signal occur. Therefore,
without loss of generality, we will maintain θ ¼ 0 as the
typical value of our analysis.
To elucidate this phenomenon, we investigate the

asymptotic behavior of the scalar mode function in the
late-time regime and insert it into the four-point seed
integrals. The BD mode function has the following form
in the late-time expansion:

lim
k→0

uðk; τÞ ¼ −i
ffiffiffiffiffiffiffi
2

πk3

r
H

�
eν̃π=2Γðiν̃Þ

�
−
kτ
2

�
3=2−iν̃

þ e−ν̃π=2Γð−iν̃Þ
�
−
kτ
2

�
3=2þiν̃

�
: ð66Þ

On the other hand, as in Sec. III A, the non-time-ordered
BD propagators are defined as

Dð1Þ
−þðk; τ1; τ2Þ ¼ uðk; τ1Þu�ðk; τ2Þ; ð67Þ

Dð1Þ
þ−ðk; τ1; τ2Þ ¼ u�ðk; τ1Þuðk; τ2Þ: ð68Þ

Using (66), we observe that both (67) and (68) contain a
term that is free from the exponential suppression in the
late-time limit, which originates from the product of the
first term in the bracket of (66) and its complex conjugate,
that is,

Dð1Þ
ab ðk; τ1; τ2Þ ⊃ Oð1Þðτ1Þ3=2−iaν̃ðτ2Þ3=2−ibν̃; ð69Þ

where a and b take opposite sign. We take seed integral I ð1Þ
ab

as an example, which is defined in (38) as

I ð1Þ;p1p2

ab ≡ −abk5þp1þp2
s

Z
0

−∞
dτ1dτ2eiak12aτ1þibk34bτ1

× ð−τ1Þp1ð−τ2Þp2Dð1Þ
ab ðks; τ1; τ2Þ: ð70Þ

Substituting (69) into (70), we obtain a term in the seed
integral that originates from (69) and is given by

I ð1Þ;p1p2

ab ⊃ Oð1ÞΓð1þ iν̃ÞΓð1 − iν̃Þ: ð71Þ

From (61), this indicates that the seed integral is exponen-
tially suppressed by the mass much larger than H, even
though the propagator is not. However, for non-BD initial
condition, we will encounter the non-BD seed (here we

consider I ð2Þ
ab as an example; the same holds for I ð3Þ

ab ) that
has the following form:

I ð2Þ;p1p2

ab ≡ −abk5þp1þp2
s

Z
0

−∞
dτ1dτ2eiak12aτ1þibk34bτ2

× ð−τ1Þp1ð−τ2Þp2Dð2Þ
ab ðks; τ1; τ2Þ: ð72Þ

In contrast to (69), in the non-BD propagator, we have

Dð2Þ
ab ðk; τ1; τ2Þ ¼ Dð1Þ

−a−bðk; τ1; τ2Þ
⊃ Oð1Þðτ1Þ3=2þiaν̃ðτ2Þ3=2þibν̃: ð73Þ

It follows that (73) gives rise to the term

I ð2Þ;p1p2

ab ⊃ Oð1Þeπν̃Γð1þ iν̃ÞΓð1 − iν̃Þ; ð74Þ

which is free from the Hubble-scale Boltzmann suppres-
sion. In conclusion, the absence of the suppression in the
non-BD seed is a result of the Schwinger-Keldysh index
mismatch; namely, the BD propagator that carries inverse

SK indicesDð1Þ
−a−b is matched with eiak12τ1þibk34τ1 in the non-

BD seed (72). We remark that the late-time truncation of the
propagator (66) is not applicable for computing the three-
point seed integrals, but this analysis still yields the correct
exponential factor.

2. Physical interpretation

In the following, we will elucidate the physical mecha-
nism behind the amplification of the signal that was
obtained from the preceding computation. Prior to inves-
tigating the case of non-BD initial condition, we will revisit
the physical origin of the CC signal in the BD initial state. It
is evident that the inflaton and the spectator fields have
different dispersion relations at late time, which are time
dependent and time independent, respectively, namely,

(i) the inflaton (m ≪ H): ω ¼ k=a and

(ii) the spectator (m≳H): ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkaÞ2 þm2

q
∼m.

The resonance between the inflaton and the spectator
arises from the difference in their dispersion relations,

which is reflected in the seed integral I ð1Þ;p1p2

ab that we will
examine below. We can assume without loss of generality
that we are dealing with the non-time-ordered seed, where
the SK indices a and b have opposite signs. Applying the
late-time expansion (66) of the spectator mode, we obtain

the dominant term in the non-time-ordered seed I ð1Þ;p1p2

ab as
the one that includes the saddle point and is proportional
to the product of

Z
dτf�ðτÞe�ik12;34τe∓imt; ð75Þ

where f�ðτÞ represents some real power of τ. This term
corresponds to the physical phenomenon of the resonance
of the inflaton and the spectator at both of the vertices of the
right panel in Fig. 1; that is, it includes the saddle point at
k12=aðτ1Þ ∼m and k34=aðτ2Þ ∼m. However, from (66) and
the definition of the propagator (32), we can observe that
only the positive frequency term of (66) participates in the
resonance process, and, hence, such a process is suppressed
by the coefficient
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e−ν̃πjΓð−iν̃Þj2 ∼ e−2πm=H; ð76Þ

which indicates that the particle number of the spectator
field generated by gravitational effects has a distribution
similar to a thermal distribution for a massive state with
mass m ≫ H and a temperature T ¼ m=ð2πÞ in BD
initial state.
On the other hand, from the Bogoliubov transformation

(12), it follows that the spectator field in the α vacuum has
an initial particle number nσ ¼ sinh2 α, which escapes the
Boltzmann suppression (76). Therefore, for the α-vacuum
case, the resonant term in the CC signal is not suppressed
for masses much larger than the Hubble scale; rather, it is
controlled by the parameter α.

C. Bispectrum

The Feynman diagram in the left panel in Fig. 1 leads to
the CC signal in bispectrum and can be calculated using SK
formalism. The expression for the three-point correlator
reads

hφk1
φk2

φk3
i0σ ¼ −

H4λκ

8k1k2k43

X
a;b¼�

ab
Z

0

−∞
dτ1dτ2ð−τ2Þ−2

× eiak12aτ1þibk34bτ2Dabðks; τ1; τ2Þ: ð77Þ

Analogous to the four-point case, the tree-level three-point
correlator can be generally constructed from the three-point
seed integral that takes the following form:

I ðnÞ;p1p2

ab ≡ −abk5þp1þp2

3

Z
0

−∞
dτ1dτ2ð−τ1Þp1ð−τ2Þp2

× eiak12aτ1þibk3bτ2DðnÞ
ab ðk3; τ1; τ2Þ: ð78Þ

The three-point seed can be obtained from the four-point
seed by applying the folded limit, k4 → 0. As in the tri-
spectrum case, our result for the bispectrum is not restricted
to the specific interaction (35), but rather it is applicable
to any tree-level exchange process of the scalar particle,
as it relies on seed integrals that can be combined in
various ways.
As an example, we consider the seed integral that

appeared in (77), where p1 ¼ 0 and p2 ¼ −2. We define
a quantity that capture this seed integral’s contribution to
the CC signal as

I0;−2
signalðrÞ ¼

X
ab

I0;−2
abjsignalðuaðrÞ; 1bÞ; ð79Þ

where uaðrÞ≡ u1aðks → k3Þ, 1b ≡ u2bðk4 → 0Þ, and r≡
k3=k12. We plot I0;−2

signal in Fig. 4. We see that the magnitude
of the CC signal is substantially enhanced by the non-BD
contribution.

1. Signal size estimation

To quantify the oscillatory signal in the bispectrum, we
can employ the same method that we utilized for the
trispectrum. Analogous to to the trispectrum case, we can
introduce a dimensionless shape function for the bispec-
trum as follows [56]:

Sðk1; k2; k3Þ≡ −
ðk1k2k3Þ2
ð2πÞ4P2

ζ

�
H

ϕ̇

�
3

hφk1
φk2

φk3
i0: ð80Þ

We can also introduce the analog of tNL for the
bispectrum as fNL ≡ jSj. For the bispectrum, the oscilla-
tory signal appears in the squeezed limit, namely, k3 ≪ k12,
which is illustrated in the right panel in Fig. 5. Hence, we
can estimate the magnitude of this signal by using a

FIG. 4. Upper panel: the seed integral as a function of the
momentum configuration with m=H ¼ 10 and zΛ=H ¼ 20.
Middle panel and lower panel: the seed integral with different
cutoff scales zΛ. We have taken H ¼ 1 in these plots.
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parameter foscNL that satisfies foscNL ∼ jSðk3 ≪ k12Þj and can
be estimated as

fðoscÞNL ∼
1

2πP1=2
ζ

hφk1
φk2

φk3
i0: ð81Þ

As argued, the tree-level three-point correlator can be
decomposed into seed integrals. Note that the three-point
seed integral can be obtained from the four-point seed
integral by applying the single folded limit, k4 → 0.
Therefore, the non-BD contribution to the three-point seed
inherits the leading coefficients from the four-point seed,
given by (64) and (65). These coefficients cancel out the
exponential suppression factor e−πm=H that appears in the
mode function Yp

�.

IV. CONCLUSIONS AND DISCUSSIONS

Each collider has a characteristic energy scale, which also
applies to the cosmological collider. Usually, the energy

scale of CC is limited by the fact that fðoscÞNL ∝ e−πm=H, which
suppresses the signal from particles with mass much larger
than the Hubble scale H.
The energy scale of CC can be enhanced by considering

models where the spectator field has an effective chemical
potential [55–57]. These models still have a Hubble-scale
suppression, but it is offset by another exponential factor.
We find that this suppression is absent if the spectator’s
initial state is α vacuum, a class of vacua that preserve dS
symmetry and are characterized by a parameter α. We show
that the magnitude of the oscillatory signal depends on α in
this scenario. We argue that CC can probe a wider range of
particle masses in this case.
The inflaton correlator captures the cosmic non-

Gaussianity, which can be computed systematically by
using the SK formalism. We demonstrate that the SK
formalism can accommodate the non-BD initial state by
replacing the SK propagators.
We have shown that the inflaton correlators can be

expressed as a combination of seed integrals at tree level.
By analyzing the seed integrals, we can reveal the general
features of the CC signal that are independent of the
interaction details. We obtained the analytical expression
for the full momentum configuration by solving the boot-
strap equation with the boundary condition given by the

collapsed limit. Our analysis reveals that the absence of
the Hubble-scale Boltzmann suppression originates from
the non-BD part of the propagator. Since our result relies
on the seed integrals, it is applicable to general tree-level
process and not restricted to a specific model. We empha-
size that the α vacuum of the spectator field favors
low-scale inflation. However, our result indicates that the
cosmological collider can probe a much broader range of
particle masses if the spectator has an α-vacuum ini-
tial state.
Note that our calculation focus solely on tree-level

processes. In contrast, in some prominent inflation models,
such as axion inflation [57], features a spin-1 spectator
field, and the dominant contribution comes from a bosonic
loop. The generalization to loop calculation is intricate.
Nevertheless, it has been shown that the loop process can
also be tackled by the bootstrap method [87]; we expect
that our results can be extended to such a process, which we
will explore in future studies.
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APPENDIX: SCALAR SEED INTEGRALS

In this appendix, we present a detailed derivation of the

second seed integral I ð2Þ
ab that appeared in (39), following

the method of [69,70]. The first seed integral I ð1Þ
ab is derived

in [70], and the rest of the seed integrals I ð3Þ
ab and I ð4Þ

ab

can be derived in a similar way. The seed integral I ð2Þ
ab is

defined as

I ð2Þ;p1p2

ab ðu1; u2; zΛÞ≡ −abk5þp1þp2
s

Z
0

−∞
dτ1dτ2ð−τ1Þp1

× ð−τ2Þp2eiak12aτ1þibk34bτ2

×Dð2Þ
ab ðks; τ1; τ2Þ: ðA1Þ

The propagator Dð2Þ
ab ðks; τ1; τ2Þ satisfies the following

equation of motion:

ðτ21∂2τ1 − 2τ1∂τ1 þ k2sτ21 þm2ÞDð2Þ
�∓ðks; τ1; τ2Þ ¼ 0; ðA2Þ

ðτ21∂2τ1 − 2τ1∂τ1 þ k2sτ21 þm2ÞDð2Þ
��ðks; τ1; τ2Þ

¼ �iτ21τ
2
2δðτ1 − τ2Þ: ðA3Þ

To proceed, we define two new dimensionless variables as
z1a ≡ −k12aτ1 and z2b ≡ −k34bτ2. In terms of those vari-
ables, the equations of motion become

ðr21�∂2r1� − 2r1�∂r1� þ r21�z
2
1� þm2Þ

×Dð2Þ
�∓ðr1�z1�; r2∓z2∓Þ ¼ 0; ðA4Þ

FIG. 5. Left panel: the momentum configuration for the three-
point correlator. Right panel: the squeezed limit configuration.
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ðr21�∂2r1� − 2r1�∂r1� þ r21�z
2
1� þm2ÞDð2Þ

��ðr1�z1�; r2�z2�Þ
¼ �ir21�r

2
2�z

2
1�z

2
2�δðr1�z1� − r2�z2�Þ; ðA5Þ

where Dð2Þ
ab ðr1az1a; r2bz2bÞ≡ k3sDð2Þðks; τ1; τ2Þ and r1a ≡

ks=k12a, r2b ≡ ks=k34b. To derive the differential equation
satisfied by the seed integrals, we apply the operator
r21a∂

2
r1a − 2r1a∂r1a þ r21az

2
1a þm2 to the propagator inside

the seed integrals (A1) and extract it from the integral. The
main challenge arises from the term r21az

2
1a, which requires

repeated integration by parts to be pulled out of the integral.
The first step of this process is given by

Z
k12a·∞

0

dz1az
p
1ae

−iaz1az1aD
ð2Þ
ab ðr1az1a; r2bz2bÞ

¼ −iaðpþ 1þ r1a∂r1aÞ
Z

k12a·∞

0

dz1az
p
1ae

−iaz1a

×Dð2Þ
ab ðr1az1a; r2bz2bÞ: ðA6Þ

Applying (A6) twice yields the following result:

Z
k12a·∞

0

dz1az
p
1ae

−iaz1az21aD
ð2Þ
ab ðr1az1a; r2bz2bÞ

¼ −ðpþ 2þ r1a∂r1aÞðpþ 1þ r1a∂r1aÞ

×
Z

k12a·∞

0

dzzp1ae
−iaz1aDð2Þ

ab ðr1az1a; r2bz2bÞ: ðA7Þ

Therefore, by applying (A7), we can extract the term
proportional to r21az

2
1a from the integral and obtain the

following differential equation for the seed integral:

�ðr21� − r41�Þ∂2r1� − ð2r1� þ ð4þ 2p1Þr31�Þ∂r1�
þ ððν̃2 þ 9=4Þ − ðp1 þ 1Þðp1 þ 2Þr21�Þ

�
×
�
r−1−p1

1� r−1−p2

2∓ I ð2Þ;p1p2

�∓ ðr1�; r2∓Þ
� ¼ 0; ðA8Þ

�ðr21� − r41�Þ∂2r1� − ð2r1� þ ð4þ 2p1Þr31�Þ∂r1�
þ ððν̃2 þ 9=4Þ − ðp1 þ 1Þðp1 þ 2Þr21�Þ

�
×
�
r−1−p1

1� r−1−p2

2� I ð2Þ;p1p2

�� ðr1�; r2�Þ
�

¼ e�ip12π=2
r4þp2

1� r4þp1

2�
ðr1� þ r2�Þ5þp12

Γð5þ p12Þ; ðA9Þ

where p12 ≡ p1 þ p2. In terms of u1a ¼ 2r1a=ðr1a þ 1Þ,
(A8) and (A9) can be rewritten as

�ðu21� − u31�Þ∂2u1� −
�ð4þ 2p1Þ − ð1þ p1Þu21�

�
∂u1�

þ ½ν̃2 þ ðp1 þ 5=2Þ2�I ð2Þ;p1p2

�∓ ðu1�; u2∓Þ
¼ 0; ðA10Þ

�ðu21� − u31�Þ∂2u1� −
�ð4þ 2p1Þ − ð1þ p1Þu21�

�
∂u1�

þ ½ν̃2 þ ðp1 þ 5=2Þ2�I ð2Þ;p1p2

�� ðu1�; u2�Þ

¼ e�ip12π=2Γð5þ p12Þ
�

u1�u2�
2ðu1� þ u2� − u1�u2�Þ

�
5þp12

:

ðA11Þ

To cover the whole parameter space, we have to consider
another ratio r2b ≡ ks=k34b. This leads to two more differ-
ential equations for the propagator, which have the same
form as (A10) and (A11). We omit them in the following
discussion for brevity.

1. Boundary conditions

To find the general solutions of (A10) and (A11) in the
form of (40), we need to specify their boundary conditions.
These can be obtained from the late-time expansion (66),
which applies when ks is much smaller than k12 and k34 (or,
equivalently, when u1a and u2b approach zero). Using this
expansion, we can obtain the asymptotic expression for the
BD scalar Wightman function:

lim
ks→0

Dð2Þ
> ðks; τ1; τ2Þ ¼

H2

4ν̃
ðτ1τ2Þ3=2ðcothðπν̃Þ þ 1Þ

�
τ1
τ2

�
iν̃

þH2

4ν̃
ðτ1τ2Þ3=2Γ2ð−iν̃Þ

�
k2sτ1τ2

4

�
iν̃

þ ðν̃ → −ν̃Þ: ðA12Þ

By substituting the late-time expansion into the seed
integral, we are able to reach an analytical expression at
the squeezed limit. The results are

lim
u1þ;u2−→0

I ð2Þ;p1p2þ− ¼ H2e−ip12π=2e3πν̃

4ν̃
· Gp1;p2þ− ðν̃Þ

�
k34−
k12þ

�
iν̃
�

k2s
k12þk34−

�
5=2þp12 þH2e−ip̄12π=2e−πν̃

4ν̃
· Gp1;p2

−þ ðν̃Þ
�
k34−
k12þ

�
−iν̃

×

�
k2s

k12þk34−

�
5=2þp12 þH24−iν̃e−ip̄12π=2eπν̃

4ν̃

Γð−iν̃Þ
Γðiν̃Þ · Gp1;p2þþ ðν̃Þ

�
k2s

k12þk34−

�
iν̃þp12þ5

2

þH24iν̃e−ip̄12π=2eπν̃

4ν̃
·
Γðiν̃Þ
Γð−iν̃Þ · G

p1;p2−− ðν̃Þ
�

k2s
k12þk34−

�−iν̃þp12þ5
2

; ðA13Þ
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where Gp1;p2

ab ðν̃Þ≡ ðcothðπν̃Þ − 1ÞΓðp1 þ iaν̃þ 5=2ÞΓðp2 þ ibν̃þ 5=2Þ, and for the time-ordered seed integral, we have

lim
u1þ≫u2−→0

I ð2Þ;p1p2þþ ¼ iH2e−ip12π=2

4ν̃
·A−ðν̃ÞBp1;p2þ− ðν̃Þ

�
k34−
k12þ

�
iν̃
�

k2s
k12þk34−

�
5=2þp12 þ iH2e−ip12π=2

4ν̃
·Aþðν̃ÞBp1;p2

−þ ðν̃Þ

×

�
k34−
k12þ

�
−iν̃

�
k2s

k12þk34−

�
5=2þp12 þ iH24−iν̃e−ip12π=2

4ν̃

Γð−iν̃Þ
Γðiν̃Þ ·Aþðν̃ÞBp1;p2þþ ðν̃Þ

�
k2s

k12þk34−

�
iν̃þp12þ5

2

þ iH24iν̃e−ip12π=2e−2πν̃

4ν̃
·
Γðiν̃Þ
Γð−iν̃Þ ·Aþðν̃ÞBp1;p2−− ðν̃Þ

�
k2s

k12þk34−

�−iν̃þp12þ5
2

; ðA14Þ

where A�ðν̃Þ≡�1þ cothðπν̃Þ, Bp1;p2

ab ðν̃Þ≡ Γðp1 þ iaν̃þ
5=2ÞΓðp2 þ ibν̃þ 5=2Þ. The other seed integrals are ob-
tained through

I ð2Þ;p1p2

−þ ¼ I ð2Þ;p1p2�þ− ; ðA15Þ

I ð2Þ;p1p2−− ¼ I ð2Þ;p1p2�þþ : ðA16Þ

We note that the non-BD seed has a term that escapes
the Hubble-scale Boltzmann suppression, as shown by the
Gamma function asymptotics in (61). Equations (A13)–(A16)
give the boundary conditions for the bootstrap equations and
fix the integration constants in (40).

2. The particular solution

The last piece of the solution is the particular solution.
This can be find by power expanding both sides and
matching the coefficients. The Taylor expansion of the
inhomogeneous term in the bootstrap equation (A11) takes
the form of

e�ip12π=2Γð5þ p12Þ
�

u1�u2�
2ðu1� þ u2� − u1�u2�Þ

�
5þp12

¼
X∞
n¼0

C�

�−5 − p12

n

�
u5þp12þn
1�

�
1

u2�
− 1

�
n
; ðA17Þ

where
�−5 − p12

n

�

denotes the combinatorial number. The constant C� is
defined as

C� ≡ e�ip12π=2

25þp12
Γð5þ p12Þ: ðA18Þ

Equation (A17) indicates us to take the following ansatz:

Vp1;p2

� ðu1�; u2�Þ ¼
X∞
m;n¼0

Vp1;p2

m;nj�u
5þp12þmþn
1�

�
1

u2�
− 1

�
n
:

ðA19Þ

Plugging the ansatz into (A11) and matching the coef-
ficients with (A17) at each order, we reach the following
recursion equations:

�
ðnþ p12 þ 5Þðnþ p12 − 2p1Þ þ ν̃2 þ

�
p1 þ

5

2

�
2
�

× Vp1;p2

0;nj� ¼ C�

�−5 − p12

n

�
ðA20Þ

and

Vp1;p2

mþ1;nj� ¼ Rp1;p2
m;n Vp1;p2

m;nj�; ðA21Þ

where

Rp1;p2
m;n ≡Mp1p2

m;n

N p1p2
m;n

; ðA22Þ

with Mp1p2
m;n ¼ ðmþ nþ p12 þ 5Þðmþ nþ p2 þ 3Þ and

N p1p2
m;n ¼ ðmþnþp12þ 6Þðmþnþp12− 2p1þ 1Þþ ν̃2þ

ðp1þ 5
2
Þ2. The solution of the recursion equations reads

Vp1;p2

m;nj� ¼ ðnþp2þ3Þðnþp12þ5Þ
ν̃2þðnþp12þ6Þðn−2p1þp12þ1Þþðp1þ 5

2
Þ2

×C� ·Fp1;p2
m;n ·Vp1;p2

0;nj�; ðA23Þ

where

Fp1;p2
m;n ≡ ðnþ p2 þ 4Þm−1ðnþ p12 þ 6Þm−1

ðn − iν̃þ p2 þ 9
2
Þm−1ðnþ iν̃þ p2 þ 9

2
Þm−1

×

�−5 − p12

n

�
ðA24Þ

and ð…Þm denotes the Pochhammer function with Vp1;p2

0;nj�
given in (A20). This completes the calculation for the
particular solution. Note that there is no ð…Þiν̃ like non-
analytical oscillation in the particular solution. Therefore,
our separation of signal and background in (42) and (43) is
justified.
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