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We place observational constraints on a dark energy (DE) model in which a quintessence scalar field ϕ is
coupled to dark matter (DM) through momentum and energy exchanges. The momentum transfer is
weighed by an interaction between the field derivative and DM four velocity with a coupling constant β,
whereas the energy exchange is characterized by an exponential scalar-field coupling to the DM density
with a coupling constant Q. A positive coupling β leads to the suppression for the growth of DM density
perturbations at low redshifts, whose property offers a possibility for resolving the σ8 tension problem. A
negative coupling Q gives rise to a ϕ-matter-dominated epoch, whose presence can reduce the sound
horizon around the cosmic microwave background (CMB) decoupling epoch. Using the data of the Planck
2018, 12th Sloan Digital Sky Survey, Phantheon supernovae samples, and 1-year dark energy survey, we
find that the two couplings are constrained to be β ¼ 0.332þ1.246

−0.237 and Q ¼ −0.0312þ0.0312
−0.0085 at a

68% confidence level (CL). Thus, there is an interesting observational signature of the momentum
exchange (β ≠ 0) between DE and DM, with a peak of the probability distribution of the energy transfer
coupling at Q < 0.

DOI: 10.1103/PhysRevD.109.043533

I. INTRODUCTION

Revealing the origin of the dark sector in our Universe is
an important challenge for the modern cosmology [1–7].
Dark energy (DE) accelerates the current Universe, while
cold dark matter (CDM) is the main source for the
formation of large-scale structures. The origin of DE can
be a cosmological constant Λ [8–11], but it is theoretically
challenging to naturally explain its small value from the
vacuum energy arising from particle physics [12,13].
Instead, there have been many attempts for constructing
DE models with dynamical propagating degrees of freedom
such as scalar fields, vector fields, and massive gravitons
(see Refs. [14–19] for reviews). Among them, the scalar-
field DE, which is dubbed quintessence [20–27], is one of
the simplest models which can be distinguished from the
cosmological constant through its time-varying equation of
state (EOS) wDE.
From the observational side, we have not yet found

compelling evidence that quintessence is favored over the
cosmological constant. In particular, the joint analysis
based on the data of supernovae Ia (SN Ia), baryon acoustic
oscillations, and the cosmic microwave background (CMB)

showed that the quintessence EOS needs to be close to −1
at low redshifts [28–32]. Hence it is difficult to distinguish
between quintessence and Λ from the information of wDE
alone. At the level of perturbations, the ΛCDMmodel has a
so-called σ8 tension for the amplitude of matter density
contrast between the Planck CMB data [31] and low-
redshift probes like shear-lensing [33–35] and redshift-
space distortions [36,37]. For both Λ and quintessence, the
effective gravitational coupling Geff on scales relevant to
the growth of large-scale structures is equivalent to the
Newton constant G. Then, the problem of the σ8 tension
cannot be addressed by quintessence either. Moreover, for
both Λ and quintessence, there is the tension of today’s
Hubble expansion rate H0 between the CMB data and low-
redshift measurements [38–45].
If we allow for a possibility of interactions between DE

and dark matter (DM), the cosmic expansion and growth
histories can be modified in comparison to the ΛCDM
model. One example of such couplings corresponds to an
energy exchange between DE and DM through an interact-
ing Lagrangian LE ¼ −ðeQϕ=MPl − 1Þρc [46–49], whereQ is
a coupling constant,MPl is the reduced Planck mass, and ρc
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is the CDM density. The similar type of couplings arises
from Brans-Dicke theories [50] after transforming the
Jordan-frame action to that in the Einstein frame [51–53].
In the presence of such an energy transfer, it is possible to
realize a so-called ϕ-matter-dominated epoch (ϕMDE) [47]
in which the DE (scalar field) density parameter takes a
nonvanishing constant valueΩDE ¼ 2Q2=3. The presence of
the ϕMDE can reduce the sound horizon at CMB decou-
pling [54–56], which may offer a possibility for alleviating
theH0 tension. On the other hand, the effective gravitational
coupling of CDM is given by Geff ¼ Gð1þ 2Q2Þ [57,58],
which is larger than G. This property is not welcome for
reducing the σ8 tension, as we require that Geff < G to
address this problem.
The scalar field can also mediate the momentum

exchange with CDM through a scalar product Z ¼
uμc∇μϕ [49,59–70], where uμc is a CDM four velocity
and ∇μϕ is a covariant derivative of ϕ. If we consider
an interacting Lagrangian of the form LM ¼ βZ2, where β
is a coupling constant, the modification to the background
equations arises only through a change of the kinetic
term ϕ̇2=2 → ð1þ 2βÞϕ̇2=2 in the density and pressure
of ϕ [59,63]. At the level of perturbations, the Euler
equation is modified by the momentum transfer, while the
continuity equation is not affected. For β > 0, the con-
ditions for the absence of ghosts and Laplacian instabilities
of scalar and tensor perturbations are consistently satis-
fied [66]. In this case, the effective gravitational coupling of
CDM is smaller than G at low redshifts [49,59,63,66].
Then, there is an intriguing possibility for reducing the σ8
tension by the momentum transfer [63,65,67,70].
An interacting model of DE and DM with both momen-

tum and energy transfers was proposed in Ref. [68] as a
possible solution to the problems of σ8 and H0 tensions.
This is described by the interacting Lagrangian Lint ¼
βZ2 − ðeQϕ=MPl − 1Þρc with a canonical scalar field ϕ
having a potential VðϕÞ. Since the model has an explicit
Lagrangian, the perturbation equations of motion are
unambiguously fixed by varying the corresponding action
with respect to the perturbed variables. We would like
to stress that this is not the case for many interacting
DE and DM models in which the background equations
alone are modified by introducing phenomenological coup-
lings [71–86]. We note however that there are some other
models with concrete Lagrangians or energy-momentum
tensors based on interacting fluids of DE and DM [87–90]
or on vector-tensor theories [91].
In Ref. [68], it was anticipated that the momentum

transfer associated with the coupling β may address the σ8
tension due to the suppression of growth of matter
perturbations and that the energy transfer characterized
by the couplingQ may ease the H0 tension by the presence
of the ϕMDE. While the gravitational attraction is
enhanced by the energy transfer, the decrease of Geff
induced by the coupling β can overwhelm the increase

of Geff induced by the coupling Q [68,69]. We also note
that the coupling β does not remove the existence of the
ϕMDE at the background level. These facts already imply
that nonvanishing values of couplings may be favored, but
we require a statistical analysis with actual observational
data to see the signatures of those couplings.
In this paper, we perform the Markov chain Monte Carlo

(MCMC) analysis of the interacting model of DE and DM
with momentum and energy transfers mentioned above.
For this purpose, we exploit the recent data of the Planck
CMB [92], 12th Sloan Digital Sky Survey (SDSS) [93],
Phantheon supernovae samples [94], and 1-year dark
energy survey (DES) [95]. We show that the nonvanishing
value of β is statistically favored over the case β ¼ 0, so
there is an interesting signature of the momentum transfer
between DE and DM. For the energy transfer, the prob-
ability distribution of the coupling has a peak atQ < 0. The
Q ¼ 0 case is also consistent with the data at 68% con-
fidence level (CL), so the signature of energy transfer is not
so significant compared to that of momentum transfer.
Today’s Hubble constant is constrained to be H0 ¼
68.20þ0.54

−0.55 km=s=Mpc (68% CL), which is not much
different from the bound derived for the ΛCDM model
with the above datasets. Like most of the models proposed
in the literature, our coupled DE-DM scenario does not
completely resolve the Hubble tension problem present in
the current observational data.
This paper is organized as follows. In Sec. II, we revisit

the background dynamics in our interacting model of DE
and DM. In Sec. III, we show the full linear perturbation
equations of motion and discuss the stability and the
effective gravitational couplings of nonrelativistic matter.
In Sec. IV, we explain the methodology of how to implement
the background and perturbation equations in the CAMB

code. We also discuss the impact of our model on several
observables. In Sec. V, we present our MCMC results and
interpret constraints on the model parameters. Section VI is
devoted to conclusions. Throughout the paper, we work in
the natural unit system, i.e., c ¼ ℏ ¼ kB ¼ 1.

II. BACKGROUND EQUATIONS OF MOTION

We consider a DE scalar field ϕ interacting with CDM
through energy andmomentum transfers.We assume thatϕ is
a canonical field with the kinetic term X ¼ −ð1=2Þ∇μϕ∇μϕ

and the exponential potential VðϕÞ ¼ V0e−λϕ=MPl , where V0

and λ are constants. The choice of the exponential potential is
not essential for thepurposeofprobing theDE-DMcouplings,
but we can choose other quintessence potentials like the
inverse power-law type VðϕÞ ¼ V0ϕ

−p [54–56]. The energy
transfer is described by the interacting Lagrangian
LE ¼ −ðeQϕ=MPl − 1Þρc, where Q is a coupling constant
and ρc is the CDM density. In the limit that Q → 0, we have
LE → 0. The momentum transfer is weighed by the interact-
ingLagrangianLM ¼ βZ2,whereβ is a couplingconstant and
Z is defined by
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Z ¼ uμc∇μϕ; ð2:1Þ

where uμc is the CDM four velocity. For the gravity sector, we
consider Einstein gravity described by the Lagrangian of a
Ricci scalar R. Then, the total action is given by [68]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ X − V0e−λϕ=MPl

− ðeQϕ=MPl − 1Þρc þ βZ2

�
þ Sm; ð2:2Þ

where g is a determinant of the metric tensor gμν, Sm is the
matter action containing the contributions of CDM, baryons,
and radiation with the energy densities ρI , EOSs wI , and
squared sound speeds cI , which are labeled by I ¼ c, b, r
respectively.We assume that neither baryons nor radiation are
coupled to the scalar field. The actionSm of perfect fluids can
be expressed as a form of the Schutz-Sorkin action [96–98],

Sm ¼ −
X

I¼c;b;r

Z
d4x½ ffiffiffiffiffiffi

−g
p

ρIðnIÞ þ JμI ∂μlI�; ð2:3Þ

where ρI depends on the number density nI of each fluid. The

current vector field JμI is related to nI as nI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνJ

μ
I J

ν
I=g

q
,

with lI being the Lagrangemultiplier. The fluid four velocity
is given by

uμI ¼
JμI

nI
ffiffiffiffiffiffi−gp ; ð2:4Þ

which satisfies the normalization uμI uIμ ¼ −1. Varying the
action (2.2) with respect to lI, it follows that ∂μJ

μ
I ¼ 0.

In terms of the four velocity, this current conservation
translates to

uμI ∂μρI þ ðρI þ PIÞ∇μu
μ
I ¼ 0; ð2:5Þ

where PI ¼ nIρI;n − ρI is the pressure of each fluid.
We discuss the cosmological dynamics on the spatially

flat Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground given by the line element

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2:6Þ

where aðtÞ is the time-dependent scale factor. On this
background we have uμI ¼ ð1; 0; 0; 0Þ and ∇μu

μ
I ¼ 3H,

where H ¼ ȧ=a is the expansion rate of the Universe
and a dot denotes the derivative with respect to the cosmic
time t. From Eq. (2.5), we have

ρ̇I þ 3HðρI þ PIÞ ¼ 0; ð2:7Þ

which holds for each I ¼ c, b, r. We consider the
cosmological dynamics after the CDM and baryons started

to behave as nonrelativistic particles. At this epoch, we
have wc ¼ 0, wb ¼ 0, c2c ¼ 0, and c2b ¼ 0. The radiation
has a usual relativistic EOS wr ¼ 1=3 with c2r ¼ 1=3. The
gravitational field equations of motion are given by

3M2
plH

2 ¼ ρϕ þ eQϕ=MPlρc þ ρb þ ρr; ð2:8Þ

M2
plð2Ḣ þ 3H2Þ ¼ −Pϕ −

1

3
ρr; ð2:9Þ

where ρϕ and Pϕ are the scalar-field density and pressure
defined, respectively, by

ρϕ ¼ 1

2
qsϕ̇

2 þ V0e−λϕ=MPl ; Pϕ ¼ 1

2
qsϕ̇

2 − V0e−λϕ=MPl ;

ð2:10Þ

with

qs ≡ 1þ 2β: ð2:11Þ

We require that qs > 0 to have a positive kinetic term in ρϕ.
The scalar-field equation can be expressed in the form

ρ̇ϕ þ 3Hðρϕ þ PϕÞ ¼ −
Qϕ̇

MPl
ρ̂c; ð2:12Þ

where

ρ̂c ≡ eQϕ=MPlρc: ð2:13Þ

Note that ρ̂c is the CDM density containing the effect of an
energy transfer, and the energy flows from CDM to ϕ if
ϕ̇ > 0 with Q < 0. From Eq. (2.7), CDM obeys the
continuity equation ρ̇c þ 3Hðρc þ PcÞ ¼ 0. In terms of
ρ̂c, this equation can be expressed as

˙̂ρc þ 3Hρ̂c ¼ þQϕ̇

MPl
ρ̂c: ð2:14Þ

From Eqs. (2.12) and (2.14), it is clear that there is the
energy transfer between the scalar field and CDM, but the
momentum exchange between DE and DM does not occur
at the background level. The effect of the coupling β
appears only as the modification to the coefficient of ϕ̇2.
To study the background cosmological dynamics, it

is convenient to introduce the following dimensionless
variables:

x1 ¼
ϕ̇ffiffiffi

6
p

MPlH
; x2 ¼

ffiffiffiffiffiffi
V0

3

r
e−λϕ=ð2MPlÞ

MPlH
; ð2:15Þ

and
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Ωϕ ¼ qsx21 þ x22; Ωc ¼
eQϕ=Mplρc
3M2

plH
2
;

Ωb ¼
ρb

3M2
plH

2
; Ωr ¼

ρr
3M2

plH
2
: ð2:16Þ

From Eq. (2.8), the density parameters are subject to the
constraint

Ωc ¼ 1 −Ωϕ −Ωb −Ωr: ð2:17Þ

The variables x1, x2, Ωb, and Ωr obey the differential
equations

dx1
dN

¼ 1

2
x1ð6qsx21 − 6þ 3Ωc þ 3Ωb þ 4ΩrÞ

þ
ffiffiffi
6

p

2qs
ðλx22 −QΩcÞ; ð2:18Þ

dx2
dN

¼ 1

2
x2ð6qsx21 −

ffiffiffi
6

p
λx1 þ 3Ωc þ 3Ωb þ 4ΩrÞ; ð2:19Þ

dΩb

dN
¼ Ωbð6qsx21 − 3þ 3Ωc þ 3Ωb þ 4ΩrÞ; ð2:20Þ

dΩr

dN
¼ Ωrð6qsx21 − 4þ 3Ωc þ 3Ωb þ 4ΩrÞ; ð2:21Þ

where N ¼ ln a. The scalar-field EOS wϕ ¼ Pϕ=ρϕ and
effective EOS weff ¼ −1 − 2Ḣ=ð3H2Þ are

wϕ ¼
qsx21 − x22
qsx21 þ x22

; weff ¼ −1þ 2qsx21þΩc þΩb þ
4

3
Ωr:

ð2:22Þ

The fixed points with constant values of x1, x2, Ωb, and
Ωr relevant to the radiation, matter, and dark-energy
dominated epochs are given, respectively, by

(1) Radiation point (A)

x1 ¼ 0; x2 ¼ 0; Ωb ¼ 0; Ωr ¼ 1; Ωϕ ¼ 0; weff ¼
1

3
: ð2:23Þ

(2) ϕMDE point (B)

x1 ¼ −
ffiffiffi
6

p
Q

3qs
; x2 ¼ 0; Ωb ¼ 0; Ωr ¼ 0; Ωϕ ¼ weff ¼

2Q2

3qs
; wϕ ¼ 1: ð2:24Þ

(3) Accelerated point (C)

x1 ¼
λffiffiffi
6

p
qs

; x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ2

6qs

s
; Ωb ¼ 0; Ωr ¼ 0; Ωϕ ¼ 1; wϕ ¼ weff ¼ −1þ λ2

3qs
: ð2:25Þ

The couplingQmodifies the standard matter era through the
nonvanishing values ofΩϕ and weff . To avoid the dominance
of the scalar-field density over the CDM and baryon
densities during the ϕMDE, we require that Ωϕ ≪ 1, i.e.,

Q2 ≪
3

2
ð1þ 2βÞ: ð2:26Þ

To have the epoch of late-time cosmic acceleration driven by
point (C), we need the condition weff < −1=3, i.e.,

λ2 < 2ð1þ 2βÞ: ð2:27Þ

Under this condition, we can show that point (C) is stable
against the homogeneous perturbation if [68]

λðλþQÞ < 3ð1þ 2βÞ: ð2:28Þ

Provided that the conditions (2.26)–(2.28) hold, the cosmo-
logical sequence of fixed points ðAÞ → ðBÞ → ðCÞ can be
realized. We refer the reader to Ref. [68] for the numerically
integrated background solution. Taking the limits Q → 0,
β → 0, and λ → 0, we recover the background evolution in
the ΛCDM model.

III. PERTURBATION EQUATIONS OF MOTION

In Ref. [68], the scalar perturbation equations of motion
were derived without fixing particular gauges. The per-
turbed line element containing four scalar perturbations α,
χ, ζ, and E on the spatially flat FLRW background is
given by

ds2 ¼ −ð1þ 2αÞdt2 þ 2∂iχdtdxi

þ a2ðtÞ½ð1þ 2ζÞδij þ 2∂i∂jE�dxidxj: ð3:1Þ
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Tensor perturbations propagate in the same manner as in
the ΛCDM model, so we do not consider them in the
following. The scalar field ϕ is decomposed into the
background part ϕ̄ðtÞ and the perturbed part δϕ, as

ϕ ¼ ϕ̄ðtÞ þ δϕðt; xiÞ; ð3:2Þ

where we omit the bar from background quantities in the
following.
The spatial components of four velocities uIi ¼

JIi=ðnI ffiffiffiffiffiffi−gp Þ in perfect fluids are related to the scalar
velocity potentials vI , as

uIi ¼ −∂ivI: ð3:3Þ

The fluid density is given by ρI ¼ ρIðtÞ þ δρIðt; xiÞ, where
the perturbed part is [49,66,69]

δρI ¼
ρI;nI
a3

½δJI −N Ið3ζ þ ∂
2EÞ�; ð3:4Þ

where ρI;nI ¼ ∂ρI=∂nI, and N I ¼ nIa3 is the background
particle number of each fluid (which is conserved).
We can construct the following gauge-invariant

combinations:

δϕN ¼ δϕþ ϕ̇ðχ − a2ĖÞ; δρIN ¼ δρI þ ρ̇Iðχ − a2ĖÞ; vIN ¼ vI þ χ − a2Ė;

Ψ ¼ αþ d
dt
ðχ − a2ĖÞ; Φ ¼ ζ þHðχ − a2ĖÞ: ð3:5Þ

We also introduce the dimensionless variables

δIN ¼ δρIN
ρI

; δφN ¼ H

ϕ̇
δϕN; VIN ¼ HvIN; K ¼ k

aH
; ð3:6Þ

where k is a comoving wave number. In Fourier space, the linear perturbation equations of motion are given by [68]

6qsx21
dδφN

dN
− 6

dΦ
dN

þ 6ð1 − qsx21ÞðξδφN þΨÞ − 2K2Φþ 3ð3Ωc þ 3Ωb þ 4ΩrÞδφN

þ 3ðΩcδcN þ ΩbδbN þΩrδrNÞ ¼ 0; ð3:7Þ

dΦ
dN

−Ψ − ξδφN þ 3

2
ðΩc þ 4βx21ÞðVcN − δφNÞ þ

3

2
ΩbðVbN − δφNÞ þ 2ΩrðVrN − δφNÞ ¼ 0; ð3:8Þ

dδIN
dN

þ 3ðc2I − wIÞδIN þ ð1þ wIÞ
�
K2VIN þ 3

dΦ
dN

�
¼ 0; ðfor I ¼ c; b; rÞ; ð3:9Þ

ðΩc þ 4βx21Þ
dVcN

dN
− ½ξðΩc þ 4βx21Þ − 4βx21ð3þ 2ϵϕÞ −

ffiffiffi
6

p
Qx1Ωc�VcN − ΩcΨ

− 4βx21
dδφN

dN
þ ½4βx1ðξ − 3 − 2ϵϕÞ −

ffiffiffi
6

p
QΩc�x1δφN ¼ 0; ð3:10Þ

dVIN

dN
− ðξþ 3c2I ÞVIN −Ψ −

c2I
1þ wI

δIN ¼ 0; ðfor I ¼ b; rÞ; ð3:11Þ

d2δφN

dN2
þ ð3 − ξþ 2εϕÞ

dδφN

dN
þ
�
ĉ2sK2 −

dξ
dN

− 3ξþ dϵϕ
dN

þ ϵ2ϕ þ ð3 − ξÞϵϕ þ
3

qs
ðλ2x22 þQ2ΩcÞ

�
δφN

þ 3ĉ2s
dΦ
dN

−
dΨ
dN

− 2ð3þ ϵϕÞΨ −
2β

qs

dδcN
dN

þ
ffiffiffi
6

p
QΩc

2qsx1
δcN ¼ 0; ð3:12Þ

Ψ ¼ −Φ; ð3:13Þ

where

OBSERVATIONAL CONSTRAINTS ON INTERACTIONS BETWEEN … PHYS. REV. D 109, 043533 (2024)

043533-5



ξ ¼ −3qsx21 −
3

2
Ωc −

3

2
Ωb − 2Ωr;

ϵϕ ¼ −3þ
ffiffiffi
6

p

2qsx1
ðλx22 −QΩcÞ; ĉ2s ¼

1

qs
: ð3:14Þ

We can choose any convenient gauges at hand in the
perturbation of Eqs. (3.7)–(3.13). For example, the
Newtonian gauge corresponds to χ ¼ 0 ¼ E, in which
case Eqs. (3.7)–(3.13) can be directly solved for the
gravitational potentials Ψ, Φ and the scalar-field perturba-
tion δφN. For the unitary gauge δϕ ¼ 0 ¼ E, we can
introduce the curvature perturbation R ¼ Φ − δφN and
the CDM density perturbation δρcu ¼ δρcN − ρ̇cδϕN=ϕ̇
as two propagating degrees of freedom. These dynamical
perturbations have neither ghost nor Laplacian instabilities
under the following conditions [49,66,69]:

qs ≡ 1þ 2β > 0; ð3:15Þ

qc ≡ 1þ 4βx21
Ωc

> 0; ð3:16Þ

c2s ≡ ĉ2s þ
8β2x21

qsð4βx21 þ ΩcÞ
> 0: ð3:17Þ

Since the CDM effective sound speed vanishes for
c2c → þ0, it does not provide an additional Laplacian
stability condition. The conditions (3.15)–(3.17) are inde-
pendent of the gauge choices.
The evolution of perturbations after the onset of the

ϕMDE can be analytically estimated for the modes deep
inside the sound horizon. Under the quasistatic approxi-
mation, the dominant terms in Eqs. (3.7)–(3.13) are those
containing K2, δcN, dδcN=dN, and δbN. From Eqs. (3.7),
(3.12), and (3.13), it follows that

Ψ ¼ −Φ ≃ −
3

2K2
ðΩcδcN þ ΩbδbNÞ;

δφN ≃
1

qsĉ2sK2

�
2β

dδcN
dN

−
ffiffiffi
6

p
QΩc

2x1
δcN

�
: ð3:18Þ

We differentiate Eq. (3.9) with respect to N and then use
Eqs. (3.10) and (3.11) for CDM and baryons, respectively.
On using Eq. (3.18) together with the quasistatic approxi-
mation, we obtain the second-order differential equations of
CDM and baryons, as [68]

d2δcN
dN2

þ ν
dδcN
dN

−
3

2G
ðGccΩcδcNþGcbΩbδbNÞ≃ 0; ð3:19Þ

d2δbN
dN2

þ ð2þ ξÞ dδbN
dN

−
3

2G
ðGbcΩcδcN þ GbbΩbδbNÞ ≃ 0;

ð3:20Þ

where

Gcc ¼
1þ r1
1þ r2

G; Gcb ¼
1

1þ r2
G; Gbc ¼ Gbb ¼ G;

ð3:21Þ

with

r1 ¼
2Q½3QΩc þ 2

ffiffiffi
6

p
βx1ð2þ ϵϕ þ

ffiffiffi
6

p
Qx1Þ�

3Ωc
;

r2 ¼
4βð1þ 2βÞx21

Ωc
; ð3:22Þ

and

ν ¼ 4βð1þ 2βÞð5þ ξþ 2ϵϕÞx21 þ ð2þ ξþ ffiffiffi
6

p
Qx1ÞΩc

4βð1þ 2βÞx21 þΩc
:

ð3:23Þ

Since Gbc and Gbb are equivalent to G, the baryon
perturbation is not affected by the DE-DM couplings.
On the other hand, Gcc and Gcb are different from G for
nonvanishing values of Q and β.
During the ϕMDE, we obtain

Gcc ¼
�
1þ 2Q2

1þ 2β

�
G;

Gcb ¼
�
1 −

8βQ2

3 − 2Q2 þ 2ð3þ 4Q2Þβ
�
G: ð3:24Þ

Under the no-ghost condition (3.15), we have Gcc > G. So
long as the coupling Q is in the range Q2 ≪ 1, Gcb is
smaller than G.
After the end of the ϕMDE, we do not have a simple

formula for Gcc. However, assuming that jβj ≪ 1 and
jQj ≪ 1, we find

Gcc ≃
�
1þ 2Q2 −

4βx21
Ωc

�
G: ð3:25Þ

Since Ωc decreases and x21 increases at low redshifts, the
third term in the parenthesis of Eq. (3.25) dominates over
2Q2 to realize the value of Gcc smaller than G. Indeed, the
numerical simulation in Ref. [68] shows that the growth
rate of δcN can be less than the value for β ¼ 0 even in the
presence of the coupling Q. This suppressed growth of δcN
at low redshifts should allow the possibility of reducing the
σ8 tension.

IV. METHODOLOGY

We implement our model into the public code CAMB [99]
and simulate the evolution of density perturbations with the
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background equations to compute the CMB and matter
power spectra. In this section, we rewrite the background
and perturbation equations of motion in the language of the
CAMB code. For this purpose, we use the conformal time
defined by τ ¼ R

a−1dt. The background Eqs. (2.7)–(2.9)
and (2.12) can be expressed as

ρ0I þ 3HðρI þ PIÞ ¼ 0; ðfor I ¼ c; b; rÞ; ð4:1Þ

3M2
PlH

2 ¼ 1

2
qsϕ02þa2ðV0e−λϕ=MPl þ eQϕ=MPlρcþ ρbþ ρrÞ;

ð4:2Þ

2M2
PlðH0 −H2Þ ¼ −qsϕ02 − a2

�
eQϕ=MPlρc þ ρb þ

4

3
ρr

�
;

ð4:3Þ

qsðϕ00 þ 2Hϕ0Þ þ a2

MPl
ðQρceQϕ=MPl − λV0e−λϕ=MPlÞ ¼ 0;

ð4:4Þ

where a prime represents the derivative with respect to τ,
and we have introduced the conformal Hubble parameter
H as

H≡ aH ¼ ȧ ¼ a0

a
: ð4:5Þ

For perturbations, we adopt the synchronous gauge
conditions

α ¼ 0; χ ¼ 0: ð4:6Þ

Following Ma and Bertschinger [100], we use the notations

ζ ¼ −η; E ¼ −
hþ 6η

2k2
; θI ¼

k2

a
vI: ð4:7Þ

Then, some of the gauge-invariant variables defined in
Eqs. (3.5) and (3.6) reduce to

Ψ ¼ 1

2k2
ðh00 þHh0 þ 6η00 þ 6Hη0Þ; Φ ¼ −ηþ H

2k2
ðh0 þ 6η0Þ;

δIN ¼ δI −
3H
2k2

ð1þ wIÞðh0 þ 6η0Þ; δφIN ¼ H
�
δϕ

ϕ0 þ
h0 þ 6η0

2k2

�
; VIN ¼ H

k2

�
θI þ

1

2
h0 þ 3η0

�
; ð4:8Þ

where δI ≡ δρI=ρI and wI ≡ PI=ρI . In the presence of perfect fluids of CDM (wc ¼ 0 ¼ c2c), baryons (wb ¼ 0 ¼ c2b), and
radiation (wr ¼ 1=3 ¼ c2r), we can express the perturbation Eqs. (3.7)–(3.13) in the forms

k2η −
H
2
h0 þ a2

2M2
Pl

�
qs
a2

ϕ0δϕ0 þ 1

MPl
ðQρceQϕ=MPl − λV0e−λϕ=MPlÞδϕþ eQϕ=MPlρcδc þ ρbδb þ ρrδr

�
¼ 0; ð4:9Þ

k2η0 −
a2

2M2
Pl

�
k2

a2
ϕ0δϕþ

�
ρceQϕ=MPl þ 2βϕ02

a2

�
θc þ ρbθb þ

4

3
ρrθr

�
¼ 0; ð4:10Þ

δ0c þ θc þ
1

2
h0 ¼ 0; ð4:11Þ

δ0b þ θb þ
1

2
h0 ¼ 0; ð4:12Þ

δ0r þ
4

3
θr þ

2

3
h0 ¼ 0; ð4:13Þ

θ0c þHθc −
1

qsqcϕ02M2
Pl

½qsðqc − 1Þϕ0MPlk2δϕ0 þ fQϕ02 þ a2ðqc − 1ÞλV0e−λϕ=MPlgk2δϕ

þ fQðqs − 2Þϕ03 þ 3qsðqc − 1ÞHϕ02MPl − 2a2ðqc − 1Þϕ0λV0e−λϕ=MPlgθc� ¼ 0; ð4:14Þ

θ0b þHθb ¼ 0; ð4:15Þ
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θ0r −
k2

4
δr ¼ 0; ð4:16Þ

δϕ00 þ 2Hδϕ0 þ k2M2
Pl þ a2ðλ2V0e−λϕ=MPl þQ2ρceQϕ=MPlÞ

qsM2
Pl

×δϕþ ϕ0

2
h0 þ 2β

qs
ϕ0θc þ

a2QρceQϕ=MPl

qsMPl
δc ¼ 0; ð4:17Þ

h00 þ 6η00 þ 2Hðh0 þ 6η0Þ − 2ηk2 ¼ 0; ð4:18Þ

where qs and qc are defined by Eqs. (3.15) and (3.16),
respectively. The perturbation equations of motion for
baryons and radiation are the same as those in the
ΛCDM model. Thus we modify the equations for CDM
and gravitational field equations in the CAMB code. We also
take into account the background and perturbation equa-
tions of motion for the scalar field, i.e., Eqs. (4.4) and
(4.17). Note that the CDM velocity is usually set to zero all
the time as a result of the gauge fixing condition in CAMB

based on the synchronous gauge. In the models considered
here, CDM has nonzero velocity due to the coupling to ϕ in
the late Universe. However, we will set θc ¼ 0 as the initial
condition to eliminate the gauge degree of freedom,
assuming that CDM streams freely in the early Universe
(i.e., we neglect the interaction between DE and CDM) as
in the standard scenario.
In the background Eqs. (4.2)–(4.4), the coupling β

appears through the positive no-ghost parameter
qs ¼ 1þ 2β. In the limit qs → ∞, Eq. (4.4) shows that
ϕ approaches a constant after the onset of the ϕMDE. This
limit corresponds to the ΛCDM model with a constant
potential energy. Since the parameter space for large values
of qs spreads widely, the MCMC chains tend to wander in
such regions. This actually leads to the loss of information
about the evolution of the scalar field itself. To avoid this,
we introduce a set of new variables, ps; λ̂; Q̂, defined by

ps ≡ q−1=2s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β

p ; λ̂≡ psλ; Q̂≡ psQ:

ð4:19Þ

As we discussed in Sec. III, the growth of matter pertur-
bations is suppressed for positive values of β. In the MCMC
analysis, we will set the prior

β ≥ 0: ð4:20Þ

In this case, the stability conditions (3.15)–(3.17) are
automatically satisfied. Then, the parameter ps is in the
range 0 < ps ≤ 1. We will choose the uniform prior for ps.
In this case, unlike the flat prior for β, the MCMC chain
does not wander in the region of unphysically large values
of β.
For the parameter λ, we choose the value

λ > 0; ð4:21Þ

without loss of generality. In Eq. (4.4), we observe that, for
Q > 0, the background scalar field can approach the
instantaneous minima characterized by the condition
QρceQϕ=MPl ¼ λV0e−λϕ=MPl even during the matter era.
Since we would like to study the case in which the
ϕMDE is present, we will focus on the coupling range

Q ≤ 0: ð4:22Þ

The same prior was chosen in the MCMC analysis of
Refs. [54–56]1 for the coupled DE-DM model with Q ≠ 0
and β ¼ 0.
To implement our model in the CAMB code, we use the

unit MPl ¼ 1 and replace ϕ and δϕ with the following new
variables:

ϕ≡ psϕ̂; δϕ≡ psδϕ̂: ð4:23Þ

Then, the background scalar-field equation can be
expressed as

ϕ̂00 þ 2Hϕ̂0 þ a2ðρ̂c;ϕ̂ þ V;ϕ̂Þ ¼ 0; ð4:24Þ

where ρ̂c ¼ ρceQ̂ ϕ̂ and V;ϕ̂ ¼ dV=dϕ̂. The energy density

and pressure of ϕ̂ read as ρϕ ¼ ϕ̂02=ð2a2Þ þ V0e−λ̂ ϕ̂ and

Pϕ ¼ ϕ̂02=ð2a2Þ − V0e−λ̂ ϕ̂, respectively. This means that,
at the background level, the effect of the momentum
transfer can be absorbed into the redefined canonical scalar
field ϕ̂. We note that ϕ̂ mediates the energy with CDM
through the term a2ρ̂c;ϕ̂ in Eq. (4.24). Using the variables
and parameters defined above, the perturbation equations
of motion for θc and δϕ are now expressed as

θ0c þHθc −
1 − p2

s

a2ρ̂cqc
½k2ϕ̂0δϕ̂0 − a2k2δϕ̂V;ϕ̂ þ ð3Hϕ̂0 þ 2a2V;ϕ̂Þϕ̂0θc� −

Q̂
qc

½k2p2
sδϕ̂þ ð1 − 2p2

sÞϕ̂0θc� ¼ 0; ð4:25Þ

δϕ̂00 þ 2Hδϕ̂0 þ ½p2
sk2 þ a2ðV;ϕ̂ ϕ̂ þ ρ̂c;ϕ̂ ϕ̂Þ�δϕ̂þ ½kZ þ ð1 − p2

sÞθc�ϕ̂0 þ a2ρ̂c;ϕ̂δc ¼ 0; ð4:26Þ

1In these papers, the sign convention of Q is opposite to ours.
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where Z ≡ h0=ð2kÞ. We will also express the other pertur-
bation equations of motion in terms of the new variables
introduced above and numerically solve them with the
background equations.
In Fig. 1, we plot the density parameters Ωϕ, Ωr, Ωc, Ωb

(left panel) and weff , wϕ (right panel) for the model
parameters Q ¼ −0.04, λ ¼ 0.5, and β ¼ 0.4. We observe
that the solution temporally approaches the ϕMDE char-
acterized by Ωϕ ¼ weff ¼ 2Q2=½3ð1þ 2βÞ�, which is a
distinguished feature compared to the ΛCDM model.
The ϕMDE is followed by the epoch of cosmic acceleration
(weff < −1=3) driven by the fixed point (C).
In left panel of Fig. 2, we show the CMB angular power

spectra of temperature anisotropies for several different
values of Q and β, with λ ¼ 0.3. Compared to the
uncoupled quintessence, there are two main effects on

CMB induced mostly by the coupling Q. The first is the
shift of acoustic peaks toward larger multipoles l. The
multiple lA corresponding to the sound horizon rs� at
decoupling (redshift z�) is given by

lA ¼ π
DAðz�Þ
rs�

; ð4:27Þ

where

DAðz�Þ ¼
Z

z�

0

1

HðzÞ dz ð4:28Þ

is the comoving angular diameter distance, and

FIG. 1. Left: evolution of Ωϕ, Ωr, Ωc, Ωb versus zþ 1 (z is the redshift) for Q ¼ −0.04, λ ¼ 0.5, and β ¼ 0.4 with today’s density
parameters Ωc0 ¼ 0.25, Ωb0 ¼ 0.05, and Ωr0 ¼ 1.0 × 10−4. Right: evolution of the effective equation of state weff and the scalar-field
equation of state wϕ for the same model parameters and initial conditions as those used on the left.

FIG. 2. Left: theoretical CMB temperature anisotropies versus the multipole l for three different model parameter sets: (i) β ¼ 0,
λ ¼ 0.3, Q ¼ 0, (ii) β ¼ 0, λ ¼ 0.3, Q ¼ −0.2, and (iii) β ¼ 0.4, λ ¼ 0.3, Q ¼ −0.1. Right: evolution of fσ8 versus the redshift z for
three different cases: (i) β ¼ 0.42, λ ¼ 0.5, Q ¼ −0.04, (ii) β ¼ 0.2, λ ¼ 0.5, Q ¼ −0.04, and (iii) β ¼ 0, λ ¼ 0.5, Q ¼ 0.
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rs� ¼
1ffiffiffi
3

p
Z

a�

0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RsðaÞ

p
a2HðaÞ ; ð4:29Þ

with RsðaÞ¼ð3Ωb0=4Ωγ0Þa and a� ¼ð1þz�Þ−1 [101,102].
Here, Ωb0 and Ωγ0 are today’s density parameters of
baryons and photons, respectively. In our model, there is
the ϕMDE in which the CDM density grows faster toward
the higher redshift (ρc ∝ ð1þ zÞ3þ2Q2=ð1þ2βÞ) in compari-
son to the uncoupled case (Q ¼ 0). Moreover, the scalar-
field density ρϕ scales in the same manner as ρc during
the ϕMDE. These properties lead to the larger Hubble
expansion rate before the decoupling epoch, so that the
sound horizon (4.29) gets smaller in comparison to the
uncoupled case.
The coupling Q can increase the value of HðzÞ from the

end of the ϕMDE toward the decoupling epoch z ¼ z�,
which results in the decrease ofDAðz�Þ. However, for fixed
H0, the increase of 1=rs� induced by the same coupling
typically overwhelms the reduction of DAðz�Þ in the
estimation of lA in Eq. (4.27). For the model parameters
Q ¼ 0 with β ¼ 0 and λ ¼ 0.5, we obtain the numerical
values DAðz�Þ ¼ 13.84 Gpc and rs� ¼ 144.40 Mpc. If we
change the couplingQ to −0.2, the two distances change to
DAðz�Þ ¼ 12.95 Gpc and rs� ¼ 127.20 Mpc, respectively.
Clearly, the reduction of rs� induced by the coupling Q is
stronger than the decrease of DAðz�Þ, which leads to the
increase of lA from 301.17 (for Q ¼ 0) to 319.85 (for
Q ¼ −0.2). Hence the larger coupling jQj leads to the shift
of CMB acoustic peaks toward smaller scales. This effect
tends to be significant especially for jQj≳ 0.1. We note that
the positive coupling β works to suppress the factor
2Q2=ð1þ 2βÞ in the (1þ z)-dependent power of ρc during
the ϕMDE. In comparison to the case β ¼ 0, we need to
choose larger values of jQj to have the shift of acoustic
peaks toward smaller scales.
The second effect of the coupling Q on the CMB

temperature spectrum is the suppressed amplitude of
acoustic peaks. The existence of the ϕMDE gives rise to
the larger CDM density ρc at decoupling, while the baryon
density ρb is hardly affected. Then, the coupling Q gives
rise to a smaller ratio ρb=ρc around z ¼ z�. ForQ ¼ 0 with
β ¼ 0 and λ ¼ 0.5, we obtain the numerical value
ρb=ρc ¼ 0.186, while, for Q ¼ −0.2 with the same values
of β and λ, this ratio decreases to ρb=ρc ¼ 0.116. This is the
main reason for the reduction of the height of CMB
acoustic peaks seen in Fig. 2. We note that, in the
MCMC analysis performed in Sec. V, the best-fit value
of today’s density parameterΩc0 is slightly smaller than the
one in the ΛCDM model. However, for Q ≠ 0, the increase
of ρc toward the past during the ϕMDE results in the larger
CDM density at decoupling in comparison to the
uncoupled case, suppressing the early integrated Sachs-
Wolfe contribution around the first acoustic peak.
From the above discussion, the coupling jQj of order 0.1

can reduce the sound horizon at decoupling, whose

property is required to ease the H0 tension. However,
the same order of Q strongly suppresses the amplitude of
CMB acoustic peaks. To avoid the latter suppression, we
require that jQj does not exceed the order of 0.1. In Sec. V,
we will show that the best-fit value of Q constrained from
the observational data is around −0.03. In this case, the
sound horizon does not decrease significantly in compari-
son to the caseQ ¼ 0, and hence the complete resolution to
the H0 tension problem is limited.
In the right panel of Fig. 2, we show the evolution of fσ8

for several different model parameters, where f ¼
δ̇m=ðHδmÞ is the growth rate of matter density contrast
(incorporating both CDM and baryons) and σ8 is the
amplitude of matter overdensity at the comoving
8 h−1Mpc scale (h is the normalized Hubble constant
H0 ¼ 100 h km=s=Mpc). We find that the large coupling β
induces the suppression for the growth rate of matter
perturbations at low redshifts. This is also the case even
in the presence of the coupling Q of order −0.01. This
result is consistent with the analytic estimation for the
growth of perturbations discussed in Sec. III.

V. RESULTS AND DISCUSSION

We are now going to place observational constraints on
our model by using the MCMC likelihood CosmoMC [103].
In our analysis, we will exploit the following datasets.
(i) The CMB data containing TT, TE, EEþ lowE from

Planck 2018 [92], and the full-shape large-scale structure
data from the 12th data release of SDSS [93]. We also run
the MCMC code by using the 16th SDSS data, but we did
not find any obvious difference from the constraints
derived below.
(ii) The Phantheon supernovae samples containing 1048

type Ia supernovae magnitudes with redshift in the range of
0.01 < z < 2.3 [94], which are commonly used to con-
strain the property of late-time cosmic acceleration.
(iii) The 1st year DES results [95], which are the

combined analyses of galaxy clustering and weak gravi-
tational lensing.
We stop the calculations when the Gelman-Rubin

statistic R − 1 ∼ 0.01 is reached. In Fig. 3 and Table I,
we present the results of observational constraints on our
model parameters.
First, let us discuss constraints on the parameter β. In

Table I, the bounds on β (68% CL) constrained by different
datasets are presented in terms of the log prior. From the
joint analysis based on the datasets ðiÞ þ ðiiÞ þ ðiiiÞ, this
bound translates to

β ¼ 0.332þ1.246
−0.237 ð68% CLÞ; ð5:1Þ

where 0.332 is the mean value. Since β is constrained to be
larger than 0.095 at 1σ, there is an interesting observational
signature of the momentum exchange between DE and
DM. Even with the analysis of the dataset (i) or with the
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datasets ðiÞ þ ðiiÞ, the 1σ lower limits on β are close to the
value 0.1. In other words, adding the DES data to the
datasets ðiÞ þ ðiiÞ hardly modifies the constraint on β.
Hence the Planck CMB data combined with the SDSS data
already show the signature of the momentum transfer. We
note that this result is consistent with the likelihood
analysis of Refs. [63,65,67,70] performed for the model
Q ¼ 0, where the joint analysis based on the CMB and
galaxy clustering data favor nonvanishing values of β.

With the datasets ðiÞ þ ðiiÞ þ ðiiiÞ, we also obtain the
following 2σ bound:

0.011 < β < 7.526 ð95% CLÞ: ð5:2Þ

Since the lower limit of β is as small as 0.01, this value is
not significantly distinguished from β ¼ 0. This means that
the evidence for the momentum transfer can be confirmed
at 68% CL, but not firmly at 95% CL, with the current

FIG. 3. Triangle plot for the one-dimensional marginalized distributions on individual parameters and the 1σ and 2σ two-dimensional
contours. The blue dashed lines represent constraints by the Planck 2018 [104] and 12th SDSS datasets, which we call (i). The red and
green solid lines correspond to constraints when the datasets (ii) and ðiiÞ þ ðiiiÞ are combined with (i), respectively.
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observational data. We note that the mean value of σ8
constrained by the datasets ðiÞ þ ðiiÞ þ ðiiiÞ is 0.8026,
which is smaller than the Planck 2018 bound σ8 ¼
0.8111� 0.0060 [31] derived for the ΛCDM model.
Thus, in our model, the σ8 tension between the CMB
and other measurements is alleviated by the momentum
transfer. This property is mostly attributed to the fact that
the growth rate of δc at low redshifts is suppressed by the
positive coupling β.
The other coupling constant Q, which mediates the

energy transfer between DE and DM, is constrained to be

Q ¼ −0.0312þ0.0312
−0.0085 ð68% CLÞ; ð5:3Þ

where −0.0312 is the mean value. With the datasets
(i) alone, the one-dimensional probability distribution of
Q does not have a particular peak at Q < 0. As we see in
Fig. 3, the MCMC analysis based on the full datasets gives
rise to a peak in the one-dimensional distribution of Q
around −0.03. Since the vanishing coupling (Q ¼ 0) is
within the 1σ contour, we do not have strong observational
evidence that the nonvanishing value of Q is favored over
the Q ¼ 0 case. However, it is interesting to note that the
current data give rise to the probability distribution of Q
with a peak at Q < 0.
In Refs. [54–56], the couplings jQj slightly smaller than

the mean value of (5.3) were obtained by the MCMC
analysis with several datasets for the coupled dark energy
model with β ¼ 0. In our model, we have Ωϕ ¼ weff ¼
2Q2=½3ð1þ 2βÞ� during the ϕMDE, so both Ωϕ and weff

are suppressed by the positive coupling β. This allows the
larger values of jQj in comparison to the case β ¼ 0. Still,
the coupling jQj exceeding the order 0.1 is forbidden from
the data because of the significant changes of heights and
positions in CMB acoustic peaks (see Fig. 2).
The parameter λ is related to the slope of the scalar-field

potential. To realize the DE equation of state closer to −1 at
late times, we require that λ cannot be significantly away
from 0. From the MCMC analysis with the datasets
ðiÞ þ ðiiÞ þ ðiiiÞ, we obtain the upper limit

λ < 0.5412 ð68% CLÞ: ð5:4Þ

The upper limit on λ is mostly determined by the Planck
and SN Ia datasets. We also remark that, for larger λ, the
distance to the CMB last scattering surface is reduced. To
compensate this property, we require smaller values of H0.
This explains the tendency for blue contours seen in the
λ −H0 plane. Thus, the smaller values of λ are favored
from the viewpoint of increasing H0.
In Fig. 3, we find that today’s CDM density parameter

Ωc0 is constrained to be smaller than the Planck 2018
bound Ωc0h2 ¼ 0.120� 0.001 derived for the ΛCDM
model [31]. In spite of this decrease of Ωc0, the CDM
density evolves as ρc ∝ ð1þ zÞ3þ2Q2=ð1þ2βÞ during the
ϕMDE and hence Ωc at decoupling can be increased by
the nonvanishing coupling Q. We note that today’s baryon
density parameter Ωb0 is only slightly larger than the
Planck 2018 bound Ωb0 ¼ 0.0224� 0.0001 (see Fig. 3).
Then, the nonvanishing coupling Q hardly modifies the
value of Ωb at z ¼ z� in comparison to the case Q ¼ 0.
Since the ratio Ωb=Ωc at decoupling is decreased by the
coupling jQj larger than the order 0.01, this suppresses the
height of CMB acoustic peaks. The MCMC analysis with
the CMB data alone already places the bound jQj < 0.1
at 95% CL.
As we discussed in Sec. IV, the nonvanishing couplingQ

reduces the sound horizon rs� at z ¼ z�. This leads to the
shift of CMB acoustic peaks toward smaller scales. To
keep the position of the multipole lA corresponding to
the sound horizon, we require that the comoving angular
diameter distance DAðz�Þ appearing in the numerator
of Eq. (4.27) should be also reduced. We can
express Eq. (4.28) as DAðz�Þ ¼ H−1

0

R z�
0 E−1ðzÞdz, where

EðzÞ ¼ HðzÞ=H0. In the ΛCDM model we have EðzÞ ¼
½Ωm0ð1þ zÞ3 þΩΛ þ Ωr0ð1þ zÞ4�1=2, where Ωm0 ¼
Ωc0 þ Ωb0. In our model, the CDM density parameter
during the ϕMDE has the dependence Ωc0ð1þ
zÞ3þ2Q2=ð1þ2βÞ instead of Ωc0ð1þ zÞ3, together with the
scaling behavior of ρϕ with ρc. Then, the coupling Q leads
to the increase of EðzÞ from the end of ϕMDE to the

TABLE I. Priors, mean values, best-fit values and 1σ errors of the model parameters ln β, λ, Q and cosmological parameters H0,
Ωc0h2;Ωb0h2, σ8, where Ωc0 and Ωb0 are today’s density parameters of CDM and baryons respectively. The third, fourth, and fifth
columns correspond to the constraints derived by the datasets (i), ðiÞ þ ðiiÞ, and ðiÞ þ ðiiÞ þ ðiiiÞ, respectively.
Parameters Priors Mean (best fit) (i) Mean (best fit) ðiÞ þ ðiiÞ Mean (best fit) ðiÞ þ ðiiÞ þ ðiiiÞ
H0 [km=s=Mpc] [20, 100] 67.52ð67.17Þþ0.76

−0.64 67.84ð67.87Þþ0.56
−0.61 68.20ð67.84Þþ0.54

−0.55
Ωc0h2 [0.001, 0.99] 0.11848ð0.11861Þþ0.00155

−0.00105 0.11850ð0.11904Þþ0.00132
−0.00106 0.11735ð0.11882Þþ0.00122

−0.00092
Ωb0h2 [0.005, 0.1] 0.02237ð0.02240Þþ0.00015

−0.00014 0.02238ð0.02235Þþ0.00015
−0.00014 0.02248ð0.02241Þþ0.00014

−0.00014
ln β * −1.1546ð−2.7365Þþ1.6471

−1.2185 −0.9538ð1.0231Þþ1.5897
−1.1714 −1.1012ð0.4111Þþ1.5576

−1.2456
λ ½0.1;∞� 0.4650ð0.5043Þþ0.1421

−0.4459 0.3517ð0.2875Þþ0.0987
−0.3391 0.4042ð0.3376Þþ0.1370

−0.3673
Q ½−∞; 0� −0.0347ð−0.0209Þþ0.0347

−0.0093 −0.0366ð−0.0716Þþ0.0366
−0.0096 −0.0312ð−0.0036Þþ0.0312

−0.0085
σ8 * 0.8084ð0.8065Þþ0.0140

−0.0130 0.8118ð0.8101Þþ0.0118
−0.0132 0.8026ð0.8002Þþ0.0114

−0.0112
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decoupling epoch, so that the integral
R z�
0 E−1ðzÞdz is

decreased. This property is different from the early DE
scenario of Ref. [105], where the energy density of early
DE quickly decays after the recombination epoch.
In our model, increasing the value of H0 also reduces

DAðz�Þ, so it can compensate for the reduction of rs�.
However, the integral

R z�
0 E−1ðzÞdz is already decreased at

some extent by the existence of the ϕMDE. In this sense,
there is the limitation for realizing H0 significantly larger
than the value obtained for Q ¼ 0. The observational
constraint on H0 derived by the dataset (i) for the model
with Q ¼ 0 is consistent with the Planck 2018 bound
H0 ¼ 67.27� 0.60 km=s=Mpc. In the presence of the
negative coupling Q, the likelihood region in the Q −
H0 plane shown in Fig. 3 shifts toward larger values of H0.
This is particularly the case for adding the datasets (ii) and
(iii) to the Planck data. With the full datasets
ðiÞ þ ðiiÞ þ ðiiiÞ, the Hubble constant is constrained to be

H0 ¼ 68.20þ0.54
−0.55 km=s=Mpc ð68% CLÞ; ð5:5Þ

whose mean value is larger than the one derived for the
ΛCDMmodel with the Planck 2018 data alone. However, it
is not possible to reach the region H0 > 70 km=s=Mpc
due to the limitation of reducing DAðz�Þ by increasing
the value of H0. We also carried out the MCMC analysis
for the ΛCDM model and obtained the bound H0 ¼
68.16þ0.37

−0.38 km=s=Mpc. The 1σ upper limit of the con-
straint (5.5) is only slightly larger than that of the ΛCDM
bound. In Fig. 4, we plot the evolution of the Hubble
expansion rate versus zþ 1 for the best-fit model param-
eters constrained from the Planck 2018 data alone and from
the SN Ia data alone. Clearly, there are discrepancies for the

low-redshift values of HðzÞ obtained from the CMB
and SN Ia data. This is related to the fact that the coupling
jQj of order 0.01 is not sufficient to reduce the sound
horizon at decoupling significantly for the purpose of
obtaining large values of H0. Hence the Hubble tension
problem between the Planck 2018 data and those con-
strained by the direct measurements of H0 still persists in
our coupled DE scenario.
Despite the difficulty of resolving the Hubble tension

problem, the fact that the probability distribution ofQ has a
peak around −0.03 is an interesting property of our model.
Moreover, there are observational signatures of the momen-
tum transfer with β > 0 between DE and DM at 68% CL.
The coupling β can alleviate the σ8 tension without spoiling
the existence of the ϕMDE.

VI. CONCLUSIONS

In this paper, we put observational constraints on an
interacting model of DE and DM given by the action (2.2).
Since our model has a concrete Lagrangian, the background
and perturbation equations of motion are unambiguously
fixed by the variational principle. This is not the case for
many coupled DE-DM models studied in the literature, in
which the interacting terms are added to the background
equations by hands. In our model, the DE scalar field ϕ and
the CDM fluid mediate both energy and momentum
transfers, whose coupling strengths are characterized by
the constants Q and β, respectively. We considered an
exponential potential VðϕÞ ¼ V0e−λϕ=MPl of the scalar field
to derive late-time cosmic acceleration, but the different
choice of quintessence potentials should not affect the
observational constraints on Q and β significantly.
The couplingQ can give rise to the ϕMDE during which

the scalar-field density parameter Ωϕ and the effective
equation of state weff are nonvanishing constants, such that
Ωϕ ¼ weff ¼ 2Q2=½3ð1þ 2βÞ�. In this epoch, the CDM

density grows as ρc ∝ ð1þ zÞ3þ2Q2=ð1þ2βÞ toward the past,
and hence the value of ρc at CMB decoupling can be
increased by the coupling Q. Since this enhances the
Hubble expansion rate in the past, the sound horizon rs�
at decoupling (redshift z�) gets smaller. Moreover, the ratio
between the baryon and CDM densities, ρb=ρc, is sup-
pressed at z ¼ z� due to the increase of ρc induced by the
presence of the ϕMDE. These modifications shift the
positions and heights of acoustic peaks of CMB temper-
ature anisotropies, so that the coupling Q can be tightly
constrained from the CMB data.
The effect of momentum transfers on the dynamics of

perturbations mostly manifests itself for the evolution of
CDM density contrast δc at low redshifts. For β > 0, the
growth of δc is suppressed due to the decrease of an
effective gravitational coupling Geff on scales relevant to
the galaxy clustering. The couplingQ enhances the value of
Geff through the energy transfer between DE and DM.
However, the reduction of Geff induced by positive β

FIG. 4. Evolution of the Hubble expansion rate HðzÞ at low
redshifts for the best-fit model parameters constrained from the
Planck 2018 data alone (blue) and from the SN Ia data
alone (red).

OBSERVATIONAL CONSTRAINTS ON INTERACTIONS BETWEEN … PHYS. REV. D 109, 043533 (2024)

043533-13



typically overwhelms the increase of Geff for the redshift
z≲ 1. Hence the growth rate of CDM perturbations is
suppressed in comparison to the ΛCDM model.
We carried out the MCMC analysis for our model by

using the observational data of Planck 2018 [92], 12th
SDSS, Phantheon supernovae samples, and 1-year DES.
The coupling β is constrained to be in the range β ¼
0.332þ1.246

−0.237 (68% CL) by using all the datasets. Since the
β ¼ 0 case is outside the 1σ observational contour, there is
an interesting observational signature of the momentum
transfer between DE and DM. This is an outcome of the
suppressed growth of δc at low redshifts, thereby easing the
σ8 tension. Indeed, we found that the mean value of σ8
constrained by the full data is 0.8026, which is smaller than
the best-fit value 0.8111 derived for the ΛCDMmodel with
the Planck data alone.
For the coupling characterizing the energy transfer, we

obtained the bound Q ¼ −0.0312þ0.0312
−0.0085 (68% CL) by the

analysis with full datasets. While the Q ¼ 0 case is within
the 1σ observational contour, there is a peak for the
probability distribution of the coupling at a negative value
of Q. This result is consistent with the likelihood analysis
performed for the model with β ¼ 0 [54–56], but now the
constrained values of jQj get larger. This increase of jQj is
mostly attributed to the fact that the effective equation of state
during the ϕMDE is modified to weff ¼ 2Q2=½3ð1þ 2βÞ�
through the coupling β. In comparison to the momentum
transfer, we have not yet detected significant observational
signatures of the energy transfer, but the future high-
precision data will clarify this issue.
The presence of the coupling Q reduces the sound

horizon rs� at decoupling, thereby increasing the multipole
lA defined in Eq. (4.27). To keep the position of CMB
acoustic peaks, we require that the comoving angular

diameter distance DAðz�Þ from z ¼ 0 to z ¼ z� decreases.
During the ϕMDE, the Hubble expansion rate increases
due to the enhancement of ρc induced by the energy
transfer. Since this leads to the decrease of DAðz�Þ,
the further reduction of DAðz�Þ by the choice of larger
values of H0 is quite limited in our model. From the
MCMC analysis of full datasets we obtained the bound
H0 ¼ 68.20þ0.54

−0.55 km=s=Mpc, whose mean value is larger
than the one derived for the ΛCDM model with the Planck
2018 data alone. However, the Hubble constantH0 does not
exceed the value 70 km=s=Mpc, so the Hubble tension
problem is not completely resolved in our scenario.
It is still encouraging that the current data support

signatures of the interaction between DE and DM. We
expect that upcoming observational data like those from the
Euclid satellite will place further tight constraints on the
couplings β andQ. Along with theH0 tension problem, we
hope that we will be able to approach the origins of DE and
DM and their possible interactions in the foreseeable future.
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