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Weak gravitational lensing of the cosmic microwave background (CMB) carries imprints of the physics
operating at redshifts much lower than that of recombination and serves as an important probe of
cosmological structure formation, dark matter physics, and the mass of neutrinos. Reconstruction of the
CMB lensing deflection field through use of quadratic estimators has proven successful with existing data,
but is known to be suboptimal on small angular scales (l > 3000) for experiments with low-noise levels.
Future experiments will provide better observations in this regime, but these techniques will remain
statistically limited by their approximations. We show that correlations between fluctuations of the large-
scale temperature gradient power of the CMB sourced by l < 2000 and fluctuations of the local small-
scale temperature power reveal a lensing signal that is prominent in even the real-space pixel statistics
across a CMB temperature map. We present the development of the small-correlated-against-large
estimator (SCALE), a novel estimator for the CMB lensing spectrum that offers promising complementary
analysis alongside other reconstruction techniques in this regime. The SCALE method computes
correlations between both the large-/small-scale temperature gradient power in harmonic space, and it
is able to quantitatively recover unbiased statistics of the CMB lensing field without the need for map-level
reconstruction. SCALE can outperform quadratic estimator signal-to-noise by a factor of up to 1.5 in

current and upcoming experiments for CMB lensing power spectra Cϕϕ
6000<L<8000.
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I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground (CMB) by cosmological structures along the line of
sight has become a standard observational tool to probe the
content and evolution of the Universe; see Ref. [1] for a
review. Improvements in measurements of the CMB with
telescopes like the Atacama Cosmology Telescope (ACT)
[2], the South Pole Telescope (SPT) [3], and the Planck
satellite [4] have unveiled the fluctuations in the temper-
ature and polarization signal of this primordial light down
to arc minute scales. Gravitational lensing distorts our view
of this primordial radiation, imparting nonstationary sta-
tistics that can be teased apart from the primordial fluctua-
tions [5–7].
Extracting (or “reconstructing”) this signal from CMB

temperature T and/or polarizationE andBmaps can proceed
via a number of approaches. The pioneering work of
Refs. [8,9] developed the concept of the quadratic estimator
(QE) for the lensing signal, which combines pairs of
observed maps TT, EE, BB, TE, TB, and EB to reconstruct
the lensing potential field. Lensing reconstruction via the QE

has been successful with existing data. The iterative EB
estimator [10,11] is especially effective at large angular
scales (L≲ 1000) due to the transfer of power fromEmodes
into B modes, the latter of which contains only a meager
signal in the primary CMB caused by a possible epoch of
cosmic inflation. Application of the QE on Planck data has
allowed for a 40σ detection of gravitational lensing [6], and
there has also been recent success from ACT [12,13].
However, the effectiveness of the QE may soon be limited
as experiments push to smaller scales and lower noise.
Indeed, the recent analysis of a set of very deep SPTpol
data showed improved results compared with the more
standard QE approach [14]. The QE formalism, which
approximates the full maximum likelihood estimate of the
signal, is statistically suboptimal on small angular scales and
in low-noise regimes [10,11,15–18].
The derivation of the QE procedure relies on the

assumption that lensing is a weak effect, in the sense that
it has only a small effect on the statistics of the CMB sky.
This is an appropriate approximation for most of the
regimes in which the QE has historically been applied,
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but at lower noise levels, this approximation quickly begins
to break down. On small angular scales, at l ≫ 2000, the
power resulting from gravitational lensing dominates over
the primordial unlensed power spectrum, as can be seen in
Fig. 1. In this lensing-dominated regime, QE techniques are
suboptimal in the limit of low-noise levels. Figure 1 also

shows that the additive biasNð0Þ
L from the TT reconstruction

noise becomes lower than that of the iterativeEB estimator at
small angular scales (L≳ 2000) due to increasing noise from
the EB estimator. The noise power is greater than the signal
power at these scales; however, this bias can be removedwith
well-established methods [19,20]. Bias from higher-order

reconstruction noise Nð1Þ
L also needs to be estimated and

removed at small angular scales [21]. Recent advances in

computation and statistical methodology allow for the
computation of the full maximum likelihood lensing map
[15,17,22] thereby surpassing the performance of QE tech-
niques in simulated data.
Quadratic estimators can also be shown to be suboptimal

in the small-scale, low-noise limit because they are
weighted by the sky-averaged variance of the large-scale
modes, despite precise measurement of the large-scale
modes. Because of cosmic variance on large scales, this
weighting contributes to excess variance in the lensing
reconstruction. This limitation can be circumvented with
the so-called “gradient inversion” approach to reconstruction
[16,18,24] which, unlike the QE technique, is not limited by
cosmic variance exhibited by the large-scale temperature
fluctuations.
Quadratic estimators and other estimators like the

gradient inversion estimator aim to reconstruct a map of
the underlying lensing potential explicitly. A reconstructed
map of the lensing field is valuable for delensing [21,25–
28] and for cross-correlation with other maps of large-scale
structure [e.g. [7,29–37]], but the lensing power spectrum
carries valuable information even without an associated
map-level reconstruction. Phenomena that impact matter
clustering can be constrained using measurements of the
matter power spectrum, without requiring a map of over-
densities. Examples include the effects of neutrino mass
and related quantities [38–41], dark matter interactions
[42–44], ultralight dark matter [45,46], warm dark matter
[47], and baryonic feedback [48].
Our goal is to devise a simple estimator that can leverage

the low-noise and high-resolution maps expected from
future CMB surveys to measure the small-scale lensing
power spectrum. We present the small-correlated-against-
large estimator (SCALE), a new method of obtaining the
small-scale lensing power constructed from the cross-
correlation between maps of the local large- and small-
scale temperature power. It was previously shown in
Ref. [49] how cross-correlating the large-scale temperature
gradient with the small-scale temperature power can be
used to estimate the lensing power. We discuss some key
differences between SCALE and the method used in
Ref. [49] in Sec. IV. This estimator is complementary to
reconstruction techniques aimed at estimating a map of the
lensing potential. It is similar in spirit to the maximum
likelihood, maximum a posteriori, gradient inversion, and
Bayesian techniques [15,17,18,22] in that it aims to make
optimal use of lensing information at small scales of a CMB
temperature map. In contrast to the QE method, SCALE is
designed to work on small angular scales, which leverages
the ongoing improvements to detectors and telescopes in
the coming decade [50–54]. SCALE specifically aims to
avoid the extra variance incurred by QE techniques due to
cosmic variance of the large-scale CMB temperature
gradient, while also circumventing the highly correlated
nature of QE errors at small angular scales. In contrast to

FIG. 1. Top: the input power spectrum for simulated raw CMB
maps is shown in solid purple. The resulting lensed CMB power
spectrum after applying a lensing field corresponding to the
spectrum below is shown in solid teal. Noise spectra correspond-
ing to different experiments are shown in black, and the lensed/
unlensed spectra combined with configuration-D (defined below,
in Table II) noise are shown in their respective colors and dense
dotted lines. Bottom: the input lensing convergence power
spectrum for simulated lensing potential fields. Also shown is
the optimal reconstruction noise Nð0Þ

L for the Hu-DeDeo-Vale TT
(HDV) [23] and iterativeHu andOkamotoEB quadratic estimators
(HuOk) [8,9] computed with noise from configuration D.
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the gradient inversion method described above, the SCALE
pipeline consists of high- and low-pass filtered maps that
are squared and then cross-correlated to estimate the
lensing power spectrum directly, rather than a map of
the lensing potential.
We start with a brief review of CMB lensing in Sec. II

and develop a simple test in real space to illustrate the
principles of our proposed method in Sec. III. We further
develop this method and present the SCALE procedure in
Sec. IV. After introducing our data simulations in Sec. V,
we present our results in Sec. VI and conclude in VII.

II. REVIEW OF CMB LENSING

In the absence of foregrounds and noise, the observed
CMB temperature field T̃ at a particular line of sight n̂ is the
unlensed temperature T at a lensing deflection angle dðn̂Þ
away from the line of sight. The lensing deflection angle
d ¼ ∇ϕ is the gradient of the lensing potential ϕ when
working within the Born approximation. We denote a
gradient across the sky (i.e., along the plane perpendicular
to the line of sight) with ∇. The lensed temperature is

T̃ðn̂Þ ¼ Tðn̂þ ∇ϕðn̂ÞÞ ¼ Tðn̂Þ þ ∇ϕðn̂Þ · ∇Tðn̂Þ þ…:

ð1Þ

The lensing potential is directly related to the lensing
convergence κ ¼ −∇2ϕ=2, with power spectra related by
Cκκ
L ¼ ðLðLþ 1ÞÞ2Cϕϕ

L =4. In our conventions, the Fourier
transform of the temperature gradient is

∇Tðn̂Þ ¼ i
Z

d2l
2π

lTðlÞeil·n̂: ð2Þ

Note that the majority of the CMB temperature gradient
comes from modes with l≲ 2000 [23]. Taking Eq. (1) into
Fourier space, we apply Eq. (2) in combination with the
convolution theorem to get

T̃ðlÞ¼
Z

dn̂T̃ðn̂Þe−il·n̂

¼TðlÞ−
Z

d2l0

2π
l0 ·ðl−l0Þϕðl−l0ÞTðl0ÞþOðϕ2Þ:

ð3Þ

In Eq. (3), we see that at first order in ϕ the lensed
temperature field T̃ is a convolution between the lensing
potential field ϕ and the original unlensed temperature field
T. Taking the two-point autocorrelation of the temperature
field [e.g., steps (4.7)–(4.11) in Ref. [1]] yields the lensed
power spectrum,

C̃TT
l ≈

�
1 −

Z
d2l0

ð2πÞ2 C
ϕϕ
l0 ðl · l0Þ2

�
CTT
l

þ
Z

d2l0

ð2πÞ2 ½l
0 · ðl − l0Þ�2CTT

l0 C
ϕϕ
jl−l0j: ð4Þ

Note that the first term is a cross term between the zeroth-
and second-order terms of Eq. (3), and the second term is a
product of the first-order term with itself. Similar to Eq. (3),
it expresses that the lensed CMB temperature power
contains a convolution between the lensing potential power
and the original CMB temperature power. The effects of
weak gravitational lensing on the CMB do not add or
remove from the total CMB temperature varianceR
dllCTT

l =2π across the sky. Instead, lensing serves to
redistribute power CTT

l between angular modes l in a way
that “smooths out” the peaks and troughs in the observed
power spectrum (as can be seen in Fig. 1); the power
redistributed to scales l≳ 4000 dominates the signal
compared to the unlensed temperature modes that are
suppressed by diffusion damping. Traditional estimators
of the lensing potential take advantage of the correlations
between angular modes that have been introduced, and they
work to reconstruct the lensing potential field through
measurement of these off-diagonal couplings. We can make
approximations to simplify Eq. (4) in the small-scale limit
l ≫ 2000. The CMB temperature gradient variance, which
we denote hj∇TLj2i, is made up of an integral over the
larger-scale modes CTT

l≲2000 of the original CMB temper-
ature field, given by

R
dll2CTT

l =2π. This background
temperature gradient is approximately constant at small
scales, which can be enforced with l0 ≪ l in Eq. (4). One
can apply these approximations to arrive at a simplified
representation of the lensed CMB temperature power on
small scales (e.g., Sec. 4.1.3 of Ref. [1]),

C̃TT
l≫2000 ≈ l2Cϕϕ

l

Z
dl0

l0
l04CTT

l0

4π
þ CTT

l;r

¼ 1

2
hj∇TLj2il2Cϕϕ

l þ CTT
l;r: ð5Þ

Here, we define CTT
l;r, which represents all remaining

contributions to the observed temperature power that are
not expected to strongly correlate with the large-scale
gradient of the CMB temperature field. This includes the
first term of Eq. (4), which contains a small amount of the
unlensed CMB temperature power suppressed by diffusion
damping crossed with a second-order lensing contribution.
We may also include contributions from instrument noise,
foregrounds, and other secondaries in CTT

l;r.
A straightforward method to estimate the small-scale

lensing power is to simply divide the observed excess
small-scale temperature power by the average unlensed
temperature gradient power on large scales. That is, we can
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rework Eq. (5) and estimate the small-scale lensing power
spectrum as

Cϕϕ
l ≈

C̃TT
l − CTT

l;r

l2ð1
2
hj∇Tj2iÞ ; ð6Þ

for l ≫ 2000. The motivation for our SCALE technique is
that we can do better than Eq. (6), even without recon-
structing a map of the lensing field. In any given patch of
sky, the large-scale temperature gradient power around the
line of sight n̂ will deviate from the sky average due to
random fluctuations. As a consequence, the local small-
scale temperature power that results from lensing will also
deviate from the sky average. By correlating the spatial
variations in the locally measured large-scale temperature
gradient power with the spatial variations in the small-scale
temperature power, we can construct an improved estimate
of the small-scale lensing power. Furthermore, variations in
the observed small-scale temperature power that are due to
sources other than lensing (such as nonstationary noise or
astrophysical foregrounds) are not expected to correlate
with variations in the large-scale temperature gradient
power, since these effects result from survey choices or
local physics unrelated to the long wavelength fluctuations
responsible for the large-scale temperature gradients.
In summary, we propose a new lensing estimator with a

similar form to Eq. (6). The key difference is allowing the
local small-scale lensed temperature power to fluctuate
according to the steepness of the background temperature
gradient in the same part of the sky,

C̃TT;local
l≫2000ðn̂Þ ≈

1

2
j∇TLðn̂Þj2l2Cϕϕ

l þ CTT
l;r: ð7Þ

Equation (6) is recovered by taking the sky average of this
version. We consider combinations of CMB temperature
maps because temperature-based lensing reconstruction
outperforms polarization-based estimators on small angular
scales, due to the fact that polarization maps become
dominated by noise at these angular scales (see Fig. 1).
The lensing estimator we propose shares some similarities
with techniques used to measure the kinetic Sunyaev-
Zel’dovich (kSZ) effect through variations in small-scale
temperature power [55].
In the following section, we present a simple proof of

concept that takes advantage of the local map-space
correlations between the small-scale temperature power
and the square of the observed temperature gradient
amplitude in order to tease out the statistics of the under-
lying lensing potential field.

III. INTRODUCTORY CONCEPTS IN REAL SPACE

Before describing the harmonic-space implementation of
SCALE in this work, we start with an illustrative real-space

description of the concept to provide the intuition and
motivation for the techniques we develop in the following
section. We introduce the notation X̄ðn̂Þ along with short-
hand X̄ to indicate the local average of a quantity X near a
line of sight n̂.
The total observed small-scale CMB power along a

given line of sight T2
Sðn̂Þ is given by the two-dimensional

(2D) angular integral over Eq. (7). We also specify the
large-scale temperature gradient amplitude j∇TLðn̂Þj to still
be approximately constant near each single line of sight
while allowing for the small fluctuations between different
lines of sight as described in the previous section. Since we
do not expect the lensing potential field to strongly
correlate with the remaining contributions to the small-
scale temperature power, we generally expect

T2
Sðn̂Þ ≃ a1j∇TLðn̂Þj2 þ a0; ð8Þ

where we have the following contributions:
(1) A term containing the lensing contribution that

scales with the amplitude of the large-scale CMB
temperature gradient j∇TLðn̂Þj2.

(2) A term containing all remaining contributions which
do not scale with the CMB temperature gradient.

Equation (8) motivates a simple, map-space approach to

gather local statistics for T2
Sðn̂Þ and j∇TLðn̂Þj2 and to take

advantage of their correlations to bring out the lensing
signal. The expectation is that a1 → 0 in a CMB temper-
ature map without lensing, and a1 should increase with
a stronger lensing signal [i.e., a1 ∝ Cϕϕ

L , cf. (7)].
Contributions to the temperature map such as noise and
foregrounds that do not come from lensing should directly
contribute to a0, but not a1 because they are not expected to
correlate with the large-scale CMB temperature gradient.
We should therefore be able to infer the small-scale lensing
power from the measured value of a1.

A. Map reduction to local patches

Of the two observable quantities in Eq. (8), we begin with
measuring background temperature gradient ∇TL as well as
the small-scale temperature TS from a single input CMB

temperaturemap. Local statistics of j∇TLj2 and T2
S then need

to be gathered in small cutouts of the observed field.
To ensure that we are only including the smooth

component of the temperature gradient, we filter the maps
in Fourier space. We compute maps of the observed CMB
temperature gradient using

∇TLðlÞ ¼ ilTðlÞ: ð9Þ

We apply a low-pass top hat filter before returning the map
to pixel space: ∇TLðl > l∇TÞ ¼ 0.
It is not immediately obvious what scale l∇T should be

used in the low-pass filter. Enough modes should be
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included such that the resulting ∇TL maps contain enough
information about the background temperature gradient,
and l∇T should be small enough such that there are no
direct correlations from similar shared modes between ∇TL
and the small-scale temperature Tðl ≫ 2000Þ. The large-
scale CMB temperature gradient ∇TLj that we are looking
for is mostly constituted by modes l≲ 2000, so we
consider a low-pass cutoff at l∇T ¼ 3000. It is important
to keep in mind that pixels near the boundary of the ∇TL
map may be unusable if the original T map does not have
the appropriate repeating boundary conditions.
In order to pick out only the small-scale lensing power

contributions that we wish to correlate with the background
temperature gradient, the original CMB temperature map
also needs to be filtered, this time with a high-pass window
(lmin < l < lmax) for the scales relevant to the analysis. A
variety of choices for lmin and lmax can be made as long as
scales are in a regime where lensing is dominant
(l ≫ 2000), and we require lmin > l∇T to ensure that
any correlations between the large-scale gradient and small-
scale power fields are strictly from lensing. The choice in
lmin and lmax affect the expected a1 and a0 in Eq. (8)
through the angular integral for the total CMB temper-
ature power.
We then split both filtered maps into patches in order to

estimate the quantities j∇TLj2 and T2
S along different lines

of sight n̂. The required patch size is also not obvious, but
needs to be small such that the assumption of j∇TLj2 being
constant within a patch is reasonable. In considering the
characteristic angular scale θ ∼ 2π=l for l ¼ 2000, the
patches should be ≲10 arc minutes wide. The patches also
need to be large enough that there are sufficient pixels of
the map within each patch to make good estimates of

j∇TLj2 and T2
S. This is also dependent on the resolution of

the original map, which will be discussed further in Sec. V.
For the example shown here, we choose a patch size of
10 × 10 arc minutes, which is 20 × 20 pixels in our
simulated maps with resolution 0.5 arc minutes.
The quantity j∇TLðn̂Þj2 can now be computed for every

patch across the map. For each of the two perpendicular
directions on the map x̂ and ŷ, we first compute the average
gradient across each patch ∇TLðn̂Þ ¼ ∇xTL x̂þ∇yTL ŷ.

We can then readily compute j∇TLðn̂Þj2 ¼ ð∇xTLÞ2 þ
ð∇yTLÞ2 for each patch.

B. Lensing from patch statistics

The remaining quantity to compute within each patch is

T2
Sðn̂Þ. We compute the autovariance of the high-pass

filtered TS map within each patch. The j∇TLj2 and T2
S

from each patch, in principle, provides a very noisy and
approximate estimate of the overall small-scale lensing
power present in the map, following a distribution about
Eq. (8). By combining the statistics of many noisy patches

across the map, there is opportunity to more rigorously
quantify the slope in Eq. (8) and relate it to the 2D angular
integral of Eq. (5) in the appropriate space of chosen l∇T ,
lmin, and lmax. A flowchart visualizing the steps in our real-
space method is presented in Fig. 2.
The outputs of this real-space procedure applied to both a

lensed and unlensed realization of the CMB temperature
are shown in Fig. 3 to illustrate the relationship between

them. A positive correlation between T2
S and j∇TLj2 can be

clearly seen in the ensemble of lensed patches, while no
significant correlation is seen in the sample of unlensed
patches. Two example patches are also highlighted in
Fig. 3, and the corresponding cutouts of the lensed
CMB temperature filtered to the relevant scales of the
small-scale temperature and the large-scale gradient are
shown. The cutouts show that, even upon visual inspection,

FIG. 2. Schematic of a procedure to reduce a CMB temperature
map to local, real-space statistics which can then be correlated to
infer lensing effects. Maps in the original resolution are denoted
in green borders, and the light brown borders indicate a degraded
resolution after computing relevant statistics within local patches
of width 40 arc minutes. Note that the patches shown here are for
visual presentation, and they are larger than those chosen later on.
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typical areas on the lensed CMB with a steep background
temperature gradient usually have a higher small-scale
temperature power than typical areas with a relatively
weak background temperature gradient.
There are several challenges that must be overcome in

order to use this real-space method as a reliable estimator of
CMB lensing. First, it is important to note that the strictly
positive nature of the autovariance forces the observed
distribution of T2

Sðn̂Þ across the map to be positively
skewed. It is also nontrivial to determine a choice in patch
size that optimally includes as many pixels per patch while
keeping the large-scale gradient and lensing statistics
consistent within each patch. In fact, we show in
Sec. IV and Figs. 4 and 5 that there is no single patch
size that can be chosen to effectively capture all the
correlations between the large- and small-scale temperature
fluctuations. These factors, combined with the fact that the
temperatures observed in neighboring real-space pixels
across each patch are highly correlated, suggests that the

expected distribution of observed T2
Sðn̂Þ about Eq. (8) is

nontrivial. One option to make this distribution better
behaved is to compute the covariance of two observations
of the same CMB temperature field. By splitting up time-
ordered CMB observations into two or more maps of the

same area of sky, one can take advantage of the fact that the
maps contain the same CMB realization (which should
contain the same lensing information and correlations) and
different noise realizations (which should not covary
across maps).
One more challenge with quantifying this method is the

loss of information coming from the local large-scale
gradient direction when computing j∇TLðn̂Þj2. One may
choose to construct individual filters for each real-space
patch and its observed gradient direction in order to focus
on the expected lensing signal(s). Directional filtering is
motivated by the fact that lensing induces small-scale
temperature gradient fluctuations proportional to the local
large-scale gradient amplitude and direction. One such
example is choosing a filter fl ¼ cos α ¼ ∇̂ · l̂ in addition
to the high-pass filter for the small-scale temperature. In
practice, this means that the small-scale temperature
patches must each be filtered separately and uniquely
based on the observed gradient direction in each patch
∇̂TLðn̂Þ. This approach once again faces the previous
challenge of the large-scale temperature gradient fluctua-
tions not being fully represented within a single patch size.
We find that applying such a filter introduces edge effects
along the borders of each patch, which alters information

FIG. 3. Local small-scale (6000 < l < 8000) temperature variance T2
S vs average large-scale (l < 3000) temperature gradient

amplitude squared j∇TLj2 for lensed (teal) and unlensed (purple) realizations are shown here as faint, small points. A low-variance/
small-gradient patch from the lensed realization (orange x), and a high-variance/large-gradient patch from the lensed realization
(maroonþ) are highlighted. The larger points are centered on the medians within bins of j∇TLj2 containing an equal number of patches,
with error bars corresponding to 68% quantiles. The lines of best fit through the binned points are also shown. Left: 10 × 10 arc minutes
cutouts of the lensed CMB temperature map filtered for small scales (6000 < l < 8000) corresponding to the highlighted patches.
Bottom: 10 × 10 arc minutes cutouts of the lensed CMB temperature map filtered for large scales (l < 3000) corresponding to the
highlighted patches. The average gradient direction and relative amplitudes across each patch are shown with the overlaid arrows.
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from an already limited set of pixels within each patch.
For these reasons, we choose to present Fig. 3 without
additional gradient information in the filtering of the small-
scale temperature field.
While we limit our current presentation of this real-space

procedure to a qualitative analysis, it provides significant
intuition and motivation for the development of SCALE.
Figure 3 demonstrates that the small-scale CMB temper-
ature fluctuations are intricately tied to the statistics of the
underlying lensing field as well as the large-scale temper-
ature fluctuations of the CMB itself. In other words,
information about the lensing field naturally comes out
when correlating small-scale CMB temperature fluctua-
tions to large-scale CMB temperature fluctuations. While
the observed CMB temperature field is expected to be
contaminated by foregrounds and noise, we do not expect
such contributions to be strongly correlated between small
and large scales. These properties of a lack of noise
correlation and the direct lensing correlation between the
large-scale gradient and small-scale temperature are central
to SCALE. This estimator overcomes the weaknesses of the
real-space method, and we will show that it provides a
quantitative estimate of the underlying small-scale lensing
statistics in the following section.

IV. THE SCALE METHOD

The small-scale lensing signal is reflected in CMB
temperature maps through local correlations between the
small- and large-scale temperature power fluctuations
across the sky. For a given map of the observed CMB
temperature field TðlÞ, we begin by constructing the fields
containing the relevant information at small and large
scales. Here, we will sketch the procedure of forming
the optimal direct estimate of the lens-induced correlation
between small-scale gradient power and large-scale gra-
dient power, in a way that minimizes the variance of the
result. The full details of the derivation are presented in the
Appendix.
We begin by constructing large-scale temperature gra-

dient fields for two perpendicular directions on the map
∇TLðlÞ by applying the top hat filter WλðlÞ combined
with a Wiener filter to the original temperature field,

WλðlÞ ¼
�
1; l2;min ≤ jlj < l2;max;

0; else;
ð10Þ

∇TLðlÞ ¼
ilWλðlÞCTT

l TðlÞ
CTT;obs
l

: ð11Þ

Note that a fiducial temperature power spectrum CTT
l is

required for theWiener filter in this step. It is not imperative
that the assumed model exactly matches the underlying
cosmology, as the results are not sensitive to this choice.
The observed CMB temperature power spectrum CTT;obs

l of

the map is also required for our filters. We construct a field
containing the large-scale temperature power fluctuations
after returning each gradient component to real space,
squaring each component, and then adding them together,

λðn̂Þ ¼ ð∇xTLðn̂ÞÞ2 þ ð∇yTLðn̂ÞÞ2: ð12Þ
Similarly, we construct small-scale temperature gradient

fields in two perpendicular directions on the map ∇TSðlÞ
by applying a top hat filter WςðlÞ combined with an
inverse-variance filter to the observed temperature field,

WςðlÞ ¼
�
1; l1;min ≤ jlj < l1;max

0; else;
ð13Þ

∇TSðlÞ ¼
ilWςðlÞTðlÞ

CTT;obs
l

: ð14Þ

We construct a field containing the small-scale temperature
power fluctuations after returning each gradient component
to real space, squaring each component, and then adding
them together,

ςðn̂Þ ¼ ð∇xTSðn̂ÞÞ2 þ ð∇yTSðn̂ÞÞ2: ð15Þ

The field ς strictly contains the small-scale temperature
power fluctuations at the scales allowed by the filterWςðlÞ.
We expect this field to correlate with the large-scale
temperature power fluctuations captured by the field λ.
Such correlations are only expected as a result of lensing on
the original CMB temperature field because the filters are
chosen to have disjoint support in l. As a result the cross-
spectrum between each field Cςλ

Ľ
is a four-point function

FIG. 4. A comparison of a CMB temperature realization before
and after lensing in the absence of noise and foregrounds. The
same area of sky is shown for all panels, including a visualization
of the λ and ςmaps derived from each version. Panels on the same
row are shown with the same color map and limits. A grid with
20 arc minutes spacing is overlaid, which illustrates patches twice
the width of the chosen patches for the real-space proof of
concept.
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that estimates the power of the lensing potential Cϕϕ
L .

Each mode Ľ of the cross-spectrum represents a particular
scale over which the fields λ and ς correlate. This is
illustrated in Figs. 4 and 5. The λ fields look visually similar
between unlensed and lensed realizations of the CMB, but
in the absence of noise, the ς fields show much stronger
fluctuations in the lensed realization (unlensed small-scale
power is suppressed by diffusion damping). Fluctuations in
the lensed ς field visibly correlate with the λ field. Further
filtering the λ and ς fields illustrates the Ľmodes probed by
the cross-spectrum, and the lensing-induced correlation
between λ and ς becomes striking.
Figure 5 also visualizes how the real-space method from

Sec. III was combining the information from many modes
of Ľ≳ 500 within each patch and was including informa-
tion from modes Ľ≲ 500 when performing the fit with
many patches.

The introduction of noise (and foregrounds) adds power
to both λ and ς fields, and it can become the dominant
source of power in the ς field. Noise contributions to λ and ς
are not expected to correlate with each other, meaning the
cross-spectrum Cςλ

Ľ
is expected to be largely insensitive to

noise (though noise will contribute to its variance).
For the SCALE cross-spectrum to be an unbiased

estimate of the lensing power, it needs to be normalized
to take into account the filtering that was applied, as well as
the expected action of lensing on the fields,

ΨĽ ¼ AĽC
ςλ
Ľ
: ð16Þ

The normalization AĽ is computed as a double integral of
both the observed temperature power spectrum CTT;obs

l and
the fiducial temperature power spectrum CTT

l used in the
Wiener filter above,

AĽ ¼
�
2

Z
d2l1

ð2πÞ2Wςðl1ÞWςðĽ − l1Þðl1 · ðl1 − ĽÞÞ 1

CTT;obs
l1

1

CTT;obs
jĽ−l1j

Z
d2l2

ð2πÞ2 Wλðl2ÞWλðĽ − l2Þðl2 · ðl2 − l1ÞÞ

× ððĽ − l2Þ · ðl1 − l2ÞÞðl2 · ðl2 − ĽÞÞ ðC
TT
l2
Þ2

CTT;obs
l2

ðCTT
jĽ−l2jÞ

2

CTT;obs
jĽ−l2j

�
−1
: ð17Þ

The bounds of each integral correspond to the scales allowed by the small-scale window function Wς and the large-scale
window function Wλ. See the Appendix for the steps leading to the definition of AĽ in Eq. (A10). The expected value of

hΨĽi can be similarly computed with the lensing power Cϕϕ
l ,

hΨĽi ¼ 2AĽ

Z
d2l1

ð2πÞ2Wςðl1ÞWςðĽ − l1Þðl1 · ðl1 − ĽÞÞ 1

CTT;obs
l1

1

CTT;obs
jĽ−l1j

×
Z

d2l2

ð2πÞ2 Wλðl2ÞWλðĽ − l2Þðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞðl2 · ðl2 − ĽÞÞ ðC
TT
l2
Þ2

CTT;obs
l2

ðCTT
jĽ−l2jÞ

2

CTT;obs
jĽ−l2j

Cϕϕ
jl1−l2j:

ð18Þ

FIG. 5. A visualization of several Ľ bands of width ΔĽ ¼ 300 centered at each Ľ highlights the correlations between λ and ς induced
by lensing. The same lensed CMB realization from Fig. 4 is shown, with the same color maps and limits for λ and ς. SCALE quantifies
the correlations between the top and bottom panels in its estimates of the underlying lensing statistics. A grid with 20 arc minutes
spacing is overlaid, which illustrates patches twice the width of the chosen patches for the real-space proof of concept.
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Note that unlike for, e.g., the QE estimator, with the
SCALE estimator we do not directly recover the signal
of immediate interest (namely, Cϕϕ

l in this case). This
means that nontrivial physical changes toCϕϕ

l , such as from
extensions to the cosmological model, would appear in the
ΨĽ statistic in the SCALE estimator only indirectly, via this
integral relation. Nevertheless, we will show below that the
expected ΨĽ is readily computed for any cosmological
model and shows excellent agreement with simulated
reconstructions.
The expected noise variance of ΨĽ, i.e., the variance in

the absence of any lensing, is NĽ ≈ 4AĽ, and the expected
minimum uncertainty on an estimated Ψ̂Ľ in the limit of
low covariance between Ľ modes is

ΔΨ̂Ľ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ψ2
Ľ
þ 4AĽ

fskyΔĽð2Ľþ 1Þ

s
: ð19Þ

The details of AĽ, hΨĽi, and its expected variances are
derived in the Appendix leading up to Eq. (A25). We also
demonstrate that the inverse variance and Wiener filters are
the optimal filters to minimize the noise variance NĽ of the
SCALE estimator. Note that in this procedure we correlate
the small-scale gradient power with the large-scale gradient
power; whereas, in Fig. 3 we demonstrate that the small-
scale temperature power is strongly correlated to the large-
scale gradient through lensing. The use of small-scale
gradient power is motivated by the discussion at the end
of Sec. III, where we argue that lensing imparts a direc-
tional perturbation to the small-scale temperature field that
is correlated with the large-scale temperature gradient in
both amplitude and direction. We further find that, if we
follow the optimization steps with the small- and large-
scale temperatures (rather than their gradients) in the
Appendix, we inevitably conclude that the optimal filters
would include factors of l for each field, which implies that
the two gradient powers are being correlated.
The general flow of the SCALE pipeline is illustrated in

Fig. 6 and summarized here beginning with a temperature
map Tðn̂Þ:
(1) Transform Tðn̂Þ into harmonic space TðlÞ, apply

the operations described by Eq. (11), and return ∇TL
to map space.

(2) Compute λðn̂Þ using Eq. (12).
(3) Apply the operations described by Eq. (14) to TðlÞ

and return ∇TS to map space.
(4) Compute ςðn̂Þ using Eq. (15).
(5) Compute the cross-spectrum Cλς

Ľ
.

(6) Apply the normalization ΨĽ ¼ AĽC
λς
Ľ
.

The end result ΨĽ is a set of separate estimates of the
lensing power spectrum Cϕϕ

l weighted by the normalization
AĽ along a range of scales set by WςðlÞ and WλðlÞ. We
note that the nature of our effectively four-point correlator

is reminiscent of the trispectrum calculations for Nð1Þ
L [56],

which are typically discarded in CMB lensing power
spectrum analyses. This provides a hint that the non-
Gaussian signatures of CMB lensing are being considered
as part of the SCALE signal. This is further shown by
Ref. [49], wherein they derive the lensing signal present in
the three- and four-point functions of the small-scale CMB
temperature field. The cross-spectrum between large and
small scales is particularly shown to extract information
from the connected four-point function corresponding to
two large-l and two low-l modes [see Eqs. (37)–(42) and
Fig. 9(a) therein]. A lensing estimator featuring the cross-
spectrum between the large-scale temperature gradient and
the small-scale temperature power is also presented in
Ref. [49], and some key differences in SCALE are the
usage of small-scale gradient power and the inclusion of the
optimal filters, as well as the normalization AĽ to correct for
bias. We show below that our method allows us to extract
lensing information from the cross-spectrum out to higher
Ľ. Finally, it is shown in Ref. [49] that the cross-spectrum
between large- and small-scale temperature can be treated
as approximately Gaussian, meaning that Eq. (19) should
accurately predict SCALE uncertainties. We also note that

FIG. 6. Schematic of the steps taken in SCALE pipeline.
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the SCALE procedure draws parallels with the estimator
constructed in Ref. [55], wherein the locally measured
small-scale (l≳ 3000) temperature power varies across the
sky due to the patchiness of the kinetic Sunyaev-Zel’dovich
effect. The main difference is that here we correlate the
fluctuations in power between large and small scales,
whereas the kSZ estimator of Ref. [55] studies the angular
power spectrum of the locally measured small-scale tem-
perature power.

V. SIMULATED OBSERVABLES

We test SCALE on simulated CMB maps to determine
the robustness of the method. The input power spectra for
the simulated maps (shown in Fig. 1) in all of our analyses
were generated with CAMB

1 [57,58] and the parameters
listed in Table I. We choose parameters to approximately
match results from the Planck results [4], as well as
accuracy factors suggested by [59]. We generate all
simulated raw CMB maps using the rand_map method
from PIXELL

2 at a resolution of 0.5 arc minutes. Simulated
maps are generally 10° × 10° and centered at the equator.
These smaller maps are well within the flat-sky approxi-
mation and can be quickly simulated in large quantities.
The rand_map method imposes repeating boundary con-
ditions in each realization, so the filtering steps do not
generate any edge effects. When gathering power spectrum
and/or cross-spectrum statistics, we choose bins ofΔl,ΔL,
and ΔĽ that are integer multiples of the fundamental mode
lfun ¼ 36 for our maps. This is to ensure that we gather
values at bin widths that are commensurate with both the
grids in which the realizations themselves were generated
and in which the correlation statistics are evaluated. We
apply lensing to the raw CMBmaps using PIXELL’s LENSING

package and a lens potential field corresponding to the Cκκ
L

spectrum shown in Fig. 1.
For every CMB map, we generate noise realizations with

experiment-relevant values listed in Table II. Configuration
A represents a stage-III-like survey like ACT and SPT,
while configuration B is illustrative of the Simons
Observatory (SO) [51]. Configuration C gives noise and
beam corresponding to CMB stage-IV-like properties [50],
and configuration D shows a slightly more futuristic
experiment corresponding with some tests made for the
gradient inversion estimator in [18]. Configuration E
represents a low-noise, high-resolution experiment like
the proposed CMB-HD [54]. We also briefly consider
tests in the noise-free limit.
We consider a range of current to future experiments, and

we present a particular focus of results for configuration D.
We generally choose a window function for WςðlÞ to
include modes l1 ∈ ½6000; 8000� (unless otherwise shown)

for a balance between being in a regime where the lensing
signal is expected to be high and noise is not too dominant
(refer to Fig. 1). This reasoning is demonstrated against
several choices of l1 windows in Sec. VI, but we expect the
SCALE methodology to be effective as long as l1 satisfies
our small-scale approximations (i.e., l1 ≫ 2000). We also
generally choose WλðlÞ to include modes l2 ∈ ½0; 3000� to
ensure that λ maps include most of the information about
the large-scale temperature gradient power.
We later compare the results of our SCALE lensing

method to those of the Hu-DeDeo-Vale [23] quadratic
estimator with the TT fields. We choose to compare with a
quadratic estimator since it provides a well-understood and
established benchmark. We choose the HDV quadratic
estimator, in particular, due to its behavior in the small-
scale regime. Small angular scale (l≳ 2000) contributions
to the gradient power are removed in the HDV implemen-
tation to avoid a bias introduced by higher-order cross
terms between the temperature gradient and the lensing
convergence in this regime; this is less of a concern with the
original Hu and Okamoto estimators applied at larger
angular scales (refer to Fig. 1 and [23]). The HDV quadratic
estimator and its principles have also been applied in
studies of cluster lensing including some using Planck
[60], SPT [61], and ACT [62] data, as well as forecasts of

TABLE I. The set of nondefault arguments given to CAMB

when simulating power spectra chosen to approximately match
results from [4]. Lensing accuracy parameters were chosen as
suggested by [59].

Parameter Value

H0 67.5 km=s
ombh2 0.022
omch2 0.122
tau 0.06
As 2 × 10−9
ns 0.965
r 0
lmax 20 000
lens_potential_accuracy 8

TABLE II. The set of simulated noise configurations chosen to
be representative of existing or upcoming experiments from ACT
(configuration A) [2] to CMB-HD (configuration E) [54].

Configurations w (μK-arc min)
b

(arc min)
Analogous
experiments

A 10.5 1.3 ACT [2]
B 6.3 1.4 SO [51]
C 1.5 1.4 CMB-S4 [50]
D 1.0 1.0 Comparison with [18]
E 0.5 0.25 CMB-HD [54]

1https://camb.info/.
2https://github.com/simonsobs/pixell.
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lensing results with the proposed CMB-HD experiment
[63]. We perform reconstructions of the lensing conver-
gence field κ̂ with the HDV method for a subset of
simulated lensed CMB maps, along with computations

of the optimal noise Nð0Þ
L and realization dependent noise

N̂ð0Þ
L using the SYMLENS

3 package. In particular, we choose
XMASK with lmin ¼ 2 and lmax ¼ 3000, YMASK with
lmin ¼ 2 and lmax ¼ 10 000, and KMASK with Lmin ¼
100 and Lmax ¼ 10 000. The first two masks are applied
to each version of the temperature field of the TT quadratic
estimator, and the final mask is applied to the reconstructed
convergence field. We apply our method to 100 000
realizations for each suite of tests to obtain stable statistics
of the SCALE output. In particular, we found that we need
at least 100 000 simulations to reach a converged inverse
covariance matrix that we use later to compute signal-to-
noise ratio. We apply the HDV quadratic estimator on a
subset containing 10 000 of the full set of realizations when
making comparisons, choosing a smaller sample size
because it is computationally more intensive to run quad-
ratic estimators. We also found that the inverse covariance
matrix for the HDVoutput converges with a sample size of
10 000. Each set of simulations applying the SCALE
procedure shares the following general flow:
(1) Generate primordial CMB temperature power spec-

trum CTT
l , lensing power spectrum Cϕϕ

L , and lensed
CMB temperature power spectrum C̃TT

l with CAMB.
(2) Generate NTT

l according to one of the experiment
configurations in Table II.

(3) Compute AĽ and hΨĽiwith the above power spectra.
AĽ are different for lensed/unlensed maps, and
hΨĽi ¼ 0 for unlensed maps.

(4) For each of 100 000 simulations:
(a) Generate realization of CMB temperature T with

CTT
l and lensing field ϕ with Cϕϕ

L .
(b) Apply lensing to the CMB temperature field to

get the lensed temperature field T̃. (Not done in
the null test.)

(c) Generate noise field N with NTT
l and add to T̃.

(Add to T in the null test with no lensing.)
(d) Follow the steps in Fig. 6 to estimate Ψ̂Ľ for this

given realization.
The next three steps are unnecessary for

SCALE, but are performed for 10 000 iterations
if we wish to compare SCALE with the HDV
quadratic estimator.

(e) Reconstruct the lensing convergence field κ̂ with
the HDV quadratic estimator described above.

(f) Estimate the lensing power spectrum Ĉκκ
L with

the reconstructed κ̂ field.
(g) Compute the realization-dependent reconstruc-

tion noise N̂ð0Þ
L .

We provide a summary of all our SCALE-relevant
notation in Table III for quick reference. The summary
statistics for SCALE Ψ̂Ľ and the HDV quadratic estimator

Ĉκκ
L − N̂ð0Þ

L over 100 000 simulations are collected and
presented in the following section. We make our code
publicly available [64] along with example scripts and an
example tutorial notebook.

VI. RESULTS

The SCALE estimator is exceptional at detecting the
presence of small-scale lensing in CMB temperature maps.
We illustrate this in Fig. 7, which shows the summary
statistics of recovered Ψ̂Ľ from 100 000 simulations of
10° × 10° lensed and unlensed CMB temperature maps in
the experiment D noise configuration. The combination of
all bins in Fig. 7 corresponds to a detection of lensing in
100 deg2 maps over the null test with an approximate SNR
of 9. We also show the expected theoretical hΨĽi computed
with Eq. (18). The vertical extent of the error bars
represents the 68% width of the distribution (centered at
the median within the Ľ bin) of estimated Ψ̂Ľ band powers,
and they describe the statistical scatter of estimated band
powers for a given CMB realization of similar total area.

TABLE III. Summary of notation relevant to the SCALE
method for quick reference. Symbols appearing first take prec-
edence in the case of apparent conflict.

Symbol Description

T CMB temperature field
T̃ Lensed CMB temperature field
TL Large-scale temperature field
TS Small-scale temperature field
λ Large-scale temperature gradient power field
ς Small-scale temperature gradient power field
ϕ CMB lensing potential field
κ CMB lensing convergence field
l CMB multipole
L Lensing field multipole
Ľ SCALE cross-spectrum multipole
l1 Small-scale filter multipole
l2 Large-scale filter multipole
n̂ Line-of-sight direction
CXY
l Cross- (or auto) spectrum of fields X and Y

NXX
l Noise spectrum of XX

ΨĽ Normalized SCALE cross-spectrum
ΔΨĽ Minimum expected SCALE uncertainty
AĽ SCALE normalization
X Vector quantity X
∇X Gradient of field X
X̄ Average of quantity X (possibly around n̂)
ΔX Size/width of bin for quantity X
X̂ Estimated quantity or reconstructed field X
hXi Expected value of quantity X

3https://github.com/simonsobs/symlens.
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The scatter of these band powers is comparable to, but
slightly in excess of, the minimal expectationΔΨĽ given by
Eq. (19). Even with relatively small maps of the CMB
temperature, the SCALE estimator is able to make a clear
distinction of whether or not lensing is present in maps
generated with the parameters described in Sec. V and
Fig. 1.
In principle, the SCALEmethod can be applied to any l1

regime so long as the small-scale lensing approximations
are appropriate. Figure 8 shows comparisons between
expected hΨĽi computed with Eqs. (18) and (19) and
recovered Ψ̂Ľ band-power statistics from simulations for
different shifts in the small-scale l1 window while keeping

Δl1 ¼ 2000. This roughly corresponds to shifting (in the
same direction) which CTT

l , NTT
l , and Cκκ

L modes contribute
to ΨĽ. The expected and recovered band powers agree to
the same extent as the results from Fig. 7. The recovered
band powers begin to exhibit a positive bias as the l1

window is shifted toward lower l, which can be explained
by a departure from the small-scale lensing approximations
made in Sec. II. In particular, the Taylor series expansion in
Eq. (1) becomes inaccurate at scales l ∼ 2000 because of
the similarity of scales with the average deflection angle
[1]. Higher accuracy in this regime would require consid-
eration of higher-order terms of the expansion. The overall
amplitude of each ΨĽ curve decreases as the l1 window
shifts to higher l, which reflects the shape of the Cκκ

L
lensing power spectrum in Fig. 1. The statistical spread of
ΨĽ band powers grows as the l1 window is shifted to
higher l because of increased contributions from experi-
ment noise NTT

l at high l (see Fig. 1). The default 6000 <
l1 < 8000 window presented in Fig. 7 offers a balance
between satisfying the small-scale lensing approximations
while not appearing to be statistically dominated by experi-
ment noise.
Mathematically, Eqs. (17) and (18) are constructed such

that the SCALE output is a normalized estimate of the
average lensing power within and slightly around the small-
scale l1 window. The l1 window width determines how
many Cκκ

L modes contribute to what we consider signal, but
the amplitude of ΨĽ centered at the same l1 should not
change significantly after normalization with AĽ. Similarly,
we add more contributions from NTT

l modes, but they are
not expected to strongly correlate between large/small
scales. The overall effect of widening the l1 window is
to use the increased presence of the lensing signal to reduce
statistical scatter of recovered ΨĽ band powers. Figure 9
illustrates this quite well by comparing ΨĽ after narrowing
or widening Δl1 while keeping the window centered at
l1 ¼ 7000. The overall amplitude of the normalized ΨĽ
curves appears mostly unchanged, and a wider window
does indeed result in tighter distributions of recovered ΨĽ
band powers. The changes we do see in the amplitude of
ΨĽ are set by the shape of the underlying lensing power
spectrum (i.e., the slope of Cκκ

L is slightly steeper on one
side of the bin center when compared to the other).
While the goal of conventional methods is to reconstruct

the underlying lensing field, the SCALE method’s output
ΨĽ is an indirect estimate of the statistics of the lensing
field. Figure 5 illustrates the space of Ľ modes in which the
small-scale temperature power fluctuations correlate with
those on the large scales. These Ľ modes are not equivalent
to the space of L modes describing the lensing field itself.
As shown in Eq. (18), each band power of ΨĽ contains
information from a wide range of lensing field statistic
modes Cκκ

L . Figure 10 shows the covariance between
estimated ΔĽ ¼ 72 band powers using SCALE on

FIG. 7. Comparison of expected and recoveredΨĽ band powers
withΔĽ ¼ 72 from 100 000 simulations of 100 deg2 temperature
maps in noise configuration D. Estimates of recovered Ψ̂Ľ are the
median and 68% scatter of the band power at each bin.

FIG. 8. Top: comparisons of expected ΨĽ and spread from
theory (solid lines with dotted error bars) and median recovered
ΨĽ and 68% spread from simulation (points with capped error
bars) when shifting the center of the l1 window that defines the
small-scale filter while keeping the width of the filter constant at
Δl1 ¼ 2000. Error bars shown are reduced by a factor of 2 for
improved visual comparison. Bottom: the bias of the recovered
ΨĽ when compared to the expected ΨĽ shown as a percentage of
the total signal. At fixed window width, increasing the central l1

reduces the strength of the recovered signal.
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100 000 simulations with noise configuration D, as well as
the covariance between estimated ΔL ¼ 100 band powers

of noise-subtracted lensing power spectra Ĉϕϕ
L − N̂ð0Þ;ϕϕ

L
from 10 000 reconstructions using the HDV quadratic
estimator on a subset of simulations.
Each set of recovered Ψ̂Ľ band powers appears to contain

correlations induced by lensing that have weak correlations
between low-Ľ modes, and those at higher Ľ modes appear
mostly independent from other modes. This is in contrast to
the estimated band powers of the quadratic estimator,
which have relatively strong correlations between all bands.
Each covariance matrix C allows us to compute a signal-

to-noise ratio

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTC−1a

p
; ð20Þ

using either a ¼ hΨĽi for SCALE or a ¼ Cϕϕ
L for the

quadratic estimator. Using covariance matrices for SCALE
and HDV QE outputs of 100 000 and 10 000 simulations,
respectively, with the noise configurations in Table II, we
compute the expected signal-to-noise ratios and compare
them in Fig. 11 as well as Table IV. We scale the covariance
matrices used to compute each of these signal-to-noisevalues
by a factor of map-area ratios from 100 to 20 000 deg2.
The results from the quadratic estimator directly retrieve

information frommodes of the lensing field between 6000 <
L < 8000 along with some covariance from modes outside
of this band; however, we note that we have neglected to

consider the effect of subtracting the higher-orderNð1Þ
L bias in

this simple calculation as is typically done in QE analyses.
The samemodes of the lensing field are themain contribution

to the SCALE results with the 6000 < l1 < 8000 window
due to our choice of WςðlÞ, but the set of ΨĽ ’s includes
contributions from modes of the lensing field outside of this
band as shown in Eq. (18).
The reverse is also true: lensing modes within 6000 <

L < 8000 would also contribute to a lesser extent in other
implementations of SCALE with a different choice in l1

range. These modes would make up a small part of the
SCALE signal if we choose instead to filter forWςð8000 <
l < 10 000Þ rather than the filter choice we make in this
paper for Wςð6000 < l < 8000Þ. These contributions to

FIG. 9. As a complement to Fig. 8, the comparisons of expected
ΨĽ and spread from theory (solid lines with dotted error bars) and
median recovered ΨĽ and 68% spread from simulation (points
with capped error bars) when altering the size of the small-scale
filter window Δl1 used to compute the signal, this time keeping
the center of the l1 window at l1 ¼ 7000. For a fixed central l1,
reducing the width of the lwindow merely increases the error bar
on the recovered signal.

FIG. 10. Top: correlation matrix of the SCALE estimator output
ΨĽ over 100 000 simulations in noise configuration D. The
typical variance at a Ľ bin of width ΔĽ ¼ 72 is of order
∼ð10−25Þ2. Bottom: correlation matrix of the HDV quadratic
estimator reconstructed noise-subtracted lensing potential power

spectra Ĉϕϕ
L − N̂ð0Þ;ϕϕ

L for a subset containing 10 000 of the above
simulations. The typical variance at a L bin of width ΔL ¼ 100 is
of order ∼ð10−25Þ2.
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the SCALE estimator from modes outside the filtered band
make a direct comparison between both SCALE and other
approaches difficult, as it is nontrivial to restrict SCALE to
include information only from a certain subset of L modes
from the lensing field.
Finally, we consider in a simple example the SCALE

method’s ability to discriminate between cosmological
models that predict changes in the shape/amplitude of
the matter power spectrum PðkÞ and, by extension, the
lensing power Cϕϕ

L or Cκκ
L by adjusting the total sum of

neutrino masses
P

mν. A higher neutrino mass produces
effects similar to warm or fuzzy dark matter, suppressing

structure formation at small scales, but one key feature is
that the lensing power Cκκ

L is suppressed similarly at high L.
Figure 12 compares a couple of models with neutrino mass
heavier than our fiducial model. We see that the fractional
changes in Cκκ

L do not contain much shape information, but
in principle, different choices of small-scale windows can
elucidate potential shape information. We place approxi-
mate fractional error bands of ΔL ¼ 2000 for SCALE and
the HDV QE on the assumption that the SNR values for
noise configuration D can be taken at face value. In other
words, each fractional error band shown in Fig. 12 is
calculated as 1=SNR, centered on the fiducial curve.
While Fig. 12 is not meant to be a forecast of either

SCALE or QE performance, it provides some insight into
the distinguishing power of each method. We note that the
SCALE estimator exists in a separate space of Ľmodes that
are each an estimate of a weighted sum of Cϕϕ

L (and by
extension Cκκ

L ) as prescribed by Eq. (18). We leave full
parameter constraints and a more thorough comparison
between methods for future work.

VII. DISCUSSION AND CONCLUSION

In this paper, we
(i) showed that fluctuations in the local small-scale

(l ≫ 3000) CMB temperature power are intricately
tied to the variations in the local large-scale temper-
ature gradient through correlations induced by
lensing;

(ii) confirmed that this correlation is readily detectable in
the pixel-space statistics of a lensedCMB temperature
map, and there is no discernable correlation in a CMB
temperature map without lensing (see Fig. 3);

(iii) visualized correlations between a cross-spectrum of
large-/small-scale CMB temperature power in Fig. 5;

(iv) created the SCALE, which efficiently applies vari-
ous filters to pick out the relevant small/large scale in

FIG. 11. Comparison of the values of the signal-to-noise ratio
[Eq. (20)] across noise configurations between the SCALE
estimator for a small-scale window Wςð6000 < l < 8000Þ and
the HDV quadratic estimator applied to 6000 < L < 8000.
SCALE bars indicate the median and 68% range of the bootstrap
distribution for SNRs computed 1000 times with a set of 100 000
simulations. HDV bars indicate the median and 68% range of the
bootstrap distribution for SNRs computed 1000 times with a set
of 10 000 simulations. Each realization has a map area of
100 deg2, and SNR values are scaled up to 20 000 deg2.

TABLE IV. Computed signal-to-noise ratio [Eq. (20)] across
noise configurations between the SCALE estimator for a small-
scale window Wςð6000 < l < 8000Þ and the HDV quadratic
estimator applied to 6000 < L < 8000. Values are the median
and 68% range of the bootstrap distribution for SNRs computed
1000 times with a set of 100 000 simulations for SCALE and
10 000 simulations for the HDV QE. No uncertainty is shown if
the 68% range of the bootstrap distribution is smaller than the
significant figures provided. Each realization has a map area of
100 deg2, and SNR values are scaled up to 20 000 deg2.

Configurations HDV QE SNR SCALE SNR

A 2.9 2.1
B 6.8 5.0
C 55.1þ4.7

−4.2 67.6þ0.4
−0.4

D 87.3þ4.5
−4.2 127.0þ2.1

−1.9
E 135.7þ3.0

−3.0 154.0þ2.2
−2.0

Noise-free 152.2þ2.9
−3.1 153.6þ2.4

−2.5

FIG. 12. Comparison of SCALE vs HDV QE fractional error
bands alongside fractional changes in the lensing convergence
power Cκκ

L with neutrino mass. Note that
P

mν ¼ 0.06 eV is the
fiducial model used in our previous analyses.

CHAN, HLOŽEK, MEYERS, and VAN ENGELEN PHYS. REV. D 109, 043527 (2024)

043527-14



a CMB temperature map and computes their cross-
spectrum (Fig. 6);

(v) demonstrated that the SCALE method effectively
recovers the expected statistics of underlying lensing
fields, which matches well with insignificant bias
against analytic forms (Fig. 7);

(vi) tested the properties of the SCALE estimator against
different choices of filtering scales (Figs. 8 and
9); and

(vii) determined that the SCALE method can outperform
(by a factor of up to 1.5 in signal-to-noise value of
detection) estimates of the CMB lensing power
spectrum Cϕϕ

L through reconstruction with quadratic
estimators in noise configurations similar to future
experiments.

We find that significant lensing signals at modes L >
3000 can be recovered by exploiting the dependence of the
CMB temperature power at similar scales l > 3000 on
fluctuations of the CMB temperature gradient [Eq. (1),
illustrated by Fig. 5]. A key advantage of this method is the
expectation that any noise, foregrounds, and other CMB
secondaries present in observations of the CMB temper-
ature are not expected to correlate with the CMB gradient
fluctuations themselves. Foregrounds, in particular, are
known to be a nuisance at all angular scales (e.g.,
[65,66]), but there have been significant advancements
in foreground cleaning techniques in tandem with multi-
frequency observations from space experiments such as
Planck. We expect foregrounds to be well controlled at
angular scales relevant to the construction of the large-scale
λ maps [67–70]. We expect the effects of foregrounds and
foreground cleaning to change the noise structure in the
small-scale ς maps, but these contributions should not
correlate with λ if the foregrounds have been cleaned
properly at large angular scales. We do expect the need
to account for masking in the normalization AĽ and
expected value hΨĽi. This would look similar to an
additional factor in the filtering, but it would be a
convolution because the mask is applied in real space.
We may expect a mask to induce spurious correlations
between λ and ς at Ľ relevant to the scale of mask
apodization (Ľ ∼ 200 for an apodization scale of 1°), but
we do not expect this to be the case for all Ľ because such a
mask would have support in harmonic space only at the
largest scales. At relevant small scales, telescope systematic
effects such as the differential and boresight pointing
become more important and need to be modeled correctly
to remain below a level of 1σ [71].
We first demonstrated the correlation between large/

small scales in the CMB temperature field with real-space
statistics to detect the presence of lensing in a small
temperature map covering 100 deg2. The SCALE pro-
cedure builds on the intuitions of the real-space method
from Sec. III, and it can successfully quantify the corre-
lations induced by lensing in line with expectations.

A simple comparison of signal-to-noise ratios for con-
figurations similar to present and future experiments
reveals that the SCALE method demonstrates a marked
improvement over the effectiveness of traditional quadratic
estimators at low-noise levels in the small-scale regime. We
do not expect that SCALE will serve as a replacement for
existing lensing reconstruction techniques. Map-level
reconstruction is useful for delensing and cross-correlation
studies, and there are existing reconstruction techniques
that are optimal across a wide range of angular scales.
SCALE provides the most benefit in the small-scale and
low-noise lensing regime, so the most precise lensing
measurements are likely to come from a combination of
different techniques applied to different scales. This could
be achieved, for example, by utilizing an estimate of the
lensing map from a quadratic estimator, using the estimated
lensing map to delens the CMB temperature, and then
applying SCALE to estimate the power spectrum of the
low-noise, small-scale lensing modes that remain in the
delensed map. We wish to highlight the simplicity of
the SCALE pipeline’s steps, which allows it to be quickly
applied to any given CMB temperature map. This is in
contrast to the maximum likelihood and maximum a pos-
teriori methods that have been shown to be optimal, but
they are computationally expensive to perform. These
methods, in addition to the Bayesian and gradient inversion
methods, reconstruct the underlying lensing field ϕ, which
can then be cross-analyzed with other observations such as
galaxy clusters. SCALE does not reconstruct a map of the
lensing field, but it is a simple and fast method of
effectively recovering the statistics of the underlying
lensing field to levels of accuracy and precision beyond
what is capable with QE techniques.
The SCALEmethod presents an optimistic outlook for the

future ofCMB lensing science, providing a fresh opportunity
to make high-quality estimates of lensing statistics using a
relatively straightforward procedure in a regime that has
historically been limited in CMB-only techniques due to
limits in techniques and observational noise. The small-scale
regime is particularly exciting because the lensing statistics
here are sensitive to a wide range of dark matter and
gravitational clustering phenomena.

Our code is publicly available from GitHub [64].
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APPENDIX: DERIVATION OF SCALE

We wish to construct an estimator of the small-scale
lensing power. We will construct the estimator using the
cross correlation between a field constructed from the
square of small-scale temperature fluctuations and a field
constructed from the square of large-scale temperature
fluctuations. In the very-small-scale regime, where the
effects of lensing dominate the temperature power spec-
trum, the temperature power is proportional to the product
of the large-scale temperature gradient power and the
small-scale lensing deflection power. The motivation of
the estimator that we construct here is that the small-scale
lensing-induced temperature power is non-Gaussian; the
locally measured small-scale temperature power is corre-
lated with variations in the large-scale temperature gradient,
and the relation between the two is proportional to the
small-scale lensing power.
Let us first define a field ς defined by the locally

measured small-scale temperature gradient power

ςðĽÞ ¼
Z

d2l1

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞTðl1ÞTðĽ − l1Þ;

ðA1Þ

where g is a filter applied to the small-scale temperature
fluctuations, to be determined in what follows. We will
expand the small-scale temperature fluctuations to first
order in the lensing gradient

T̃ðlÞ ¼
Z

d2l2

2π
ðl2 · ðl2 − lÞÞTðl2Þϕðl − l2Þ; ðA2Þ

where we have dropped the unlensed small-scale temperature, since it is assumed to be negligible compared to the lensing
contribution on very small scales. Inserting this into ς gives

ςðĽÞ ¼
Z

d2l1

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞ

Z
d2l2

2π

Z
d2l3

2π
ðl2 · ðl2 − l1ÞÞðl3 · ðl3 − Ľþ l1ÞÞ

× Tðl2ÞTðl3Þϕðl1 − l2ÞϕðĽ − l1 − l3Þ: ðA3Þ

We will be interested in an estimate of the small-scale lensing power, rather than the realization of the lensing potential, so
we will take an average over lensing realizations

ςðĽÞ ¼
Z

d2l1

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞ

Z
d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞTðl2ÞTðĽ − l2ÞCϕϕ
jl1−l2j: ðA4Þ

The local large-scale temperature gradient power can be expressed in harmonic space as

λðĽÞ ¼
Z

d2l3

2π
hðl3; ĽÞðl3 · ðl3 − ĽÞÞTðl3ÞTðĽ − l3Þ; ðA5Þ
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where h is a filter applied to the large-scale temperature fluctuations. On large angular scales, lensing is only a small
correction, and so we work to zeroth order in the lensing potential for the temperature fluctuations appearing in λ.
Our aim is to isolate the small-scale lensing power by analyzing correlations between the ς and λ fields. The product of ς

and λ is

ςðĽÞλðĽ0Þ ¼
Z

d2l1

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞTðl1ÞTðĽ − l1Þ

Z
d2l3

2π
hðl3; Ľ

0Þðl3 · ðl3 − Ľ0ÞÞTðl3ÞTðĽ0 − l3Þ: ðA6Þ

The cross-spectrum of ς and λ is given for Ľ ≠ 0 by

hςðĽÞλðĽ0Þi ¼
Z

d2l1

2π

Z
d2l3

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞhðl3; Ľ

0Þðl3 · ðl3 − Ľ0ÞÞhTðl1ÞTðĽ−l1ÞTðl3ÞTðĽ0 −l3Þi: ðA7Þ

Choosing disjoint ranges of multipoles for the small- and large-scale temperature fluctuations means that the disconnected
part of the temperature four-point function vanishes for Ľ ≠ 0. The signal of interest is the one that is first order in the
lensing power spectrum, whose dominant contribution comes from the terms of first order in the lensing potential in the
gradient expansion of the small-scale temperature fluctuations

hςðĽÞλðĽ0Þi ¼
Z

d2l1

2π
gðl1; ĽÞðl1 · ðl1 − ĽÞÞ

Z
d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞCϕϕ
jl1−l2j

×
Z

d2l3

2π
hðl3; ĽÞðl3 · ðl3 − ĽÞÞhTðl2ÞTðĽ − l2ÞTðl3ÞTðĽ − l3ÞiδðĽþ Ľ0Þ

¼
Z

d2l1

ð2πÞ2 gðl1; ĽÞðl1 · ðl1 − ĽÞÞ
Z

d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞCϕϕ
jl1−l2j

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2jδðĽþ Ľ0Þ

¼ Cλς
Ľ
δðĽþ Ľ0Þ: ðA8Þ

Wewish to use this cross-spectrum to obtain an unbiased estimate of the integrated small-scale lensing power. We define
a quantity

ΨĽ ≡ AĽhςðĽÞλð−ĽÞi; ðA9Þ

with AĽ defined such that ΨĽ is a weighted average of the small-scale lensing power

AĽ ¼
�Z

d2l1

ð2πÞ2 gðl1; ĽÞðl1 · ðl1 − ĽÞÞ
Z

d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞ

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2j

�
−1
: ðA10Þ

Let us briefly change to a full-sky notation, which makes the calculation of the variance more transparent. We wish to
estimate the small-scale lensing power from the cross-spectrum of the ς and λ fields

AĽhςĽ M̌λĽ0−M̌0 i≡ΨĽδĽĽ0δM̌M̌0 : ðA11Þ

An estimator for ΨĽ can be constructed as

Ψ̂Ľ ≡ AĽ
1

2Ľþ 1

X
M̌

ςĽ M̌λĽ−M̌; ðA12Þ

such that in an isotropic universe
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hΨ̂Ľi ¼ AĽ
1

2Ľþ 1

X
M̌

hςĽ M̌λĽ−M̌i ¼ ΨĽ: ðA13Þ

The variance of this estimator can then be computed to be

hðΨ̂Ľ − ΨĽÞ2i ¼ A2
Ľ

1

ð2Ľþ 1Þ2
X
M̌M̌0

hςĽ M̌λĽ−M̌ςĽM̌0λĽ−M̌0 i −Ψ2
Ľ

¼ A2
Ľ

1

ð2Ľþ 1Þ2
��X

M̌
hςĽ M̌λĽ−M̌i

�
2

þ
X
M̌

ðhςĽ M̌λĽ−M̌iÞ2 þ
X
M̌

hςĽ M̌ςĽ−M̌ihλĽ M̌λĽ−M̌i
�
−Ψ2

Ľ

¼ 1

2Ľþ 1
½Ψ2

Ľ
þ NĽ�; ðA14Þ

where we have defined

NĽ ≡ A2
Ľ
hςĽ M̌ςĽ−M̌ihλĽ M̌λĽ−M̌i: ðA15Þ

Next, we need to choose the filters g and h to minimize the variance of our small-scale lensing estimate. Returning to the
flat-sky approximation, the noise variance can be expressed as

NĽ ¼ A2
Ľ

Z
d2l1

ð2πÞ2 gðl1; ĽÞðgð−l1;−ĽÞ þ gðl1 − Ľ;−ĽÞÞðl1 · ðl1 − ĽÞÞ2CTT;obs
l1

CTT;obs
jĽ−l1j

×
Z

d2l2

ð2πÞ2 hðl2; ĽÞðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞ2CTT;obs
l2

CTT;obs
jĽ−l2j: ðA16Þ

Differentiating with respect to the choice of g filter, we find

∂NĽ

∂gðl0; ĽÞ ¼
2A2

Ľ

ð2πÞ2 ðgð−l
0;−ĽÞ þ gðl0 − Ľ;−ĽÞÞðl0 · ðl0 − ĽÞÞ2CTT;obs

l0 CTT;obs
jĽ−l0j

×
Z

d2l2

ð2πÞ2 hðl2; ĽÞðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞ2CTT;obs
l2

CTT;obs
jĽ−l2j

−
2A3

Ľ

ð2π2Þ ðl
0 · ðl0 − ĽÞÞ

Z
d2l2

ð2πÞ2 ðl2 · ðl2 − l0ÞÞððĽ − l2Þ · ðl0 − l2ÞÞ

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2j

×
Z

d2l1

ð2πÞ2 gðl1; ĽÞðgð−l1;−ĽÞ þ gðl1 − Ľ;−ĽÞÞðl1 · ðl1 − ĽÞÞ2CTT;obs
l1

CTT;obs
jĽ−l1j

×
Z

d2l3

ð2πÞ2 hðl3; ĽÞðhð−l3;−ĽÞ þ hðl3 − Ľ;−ĽÞÞðl3 · ðl3 − ĽÞÞ2CTT;obs
l3

CTT;obs
jĽ−l3j: ðA17Þ

Setting this equal to zero and rearranging, we find
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0 ¼ ðgð−l0;−ĽÞ þ gðl0 − Ľ;−ĽÞÞðl0 · ðl0 − ĽÞÞ2CTT;obs
l0 CTT;obs

jĽ−l0j

×
Z

d2l1

ð2πÞ2 gðl1; ĽÞðl1 · ðl1 − ĽÞÞ
Z

d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞ

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2j

− ðl0 · ðl0 − ĽÞÞ
Z

d2l2

ð2πÞ2 ðl2 · ðl2 − l0ÞÞððĽ − l2Þ · ðl0 − l2ÞÞ

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2j

×
Z

d2l1

ð2πÞ2 gðl1; ĽÞðgð−l1;−ĽÞ þ gðl1 − Ľ;−ĽÞÞðl1 · ðl1 − ĽÞÞ2CTT;obs
l1

CTT;obs
jĽ−l1j: ðA18Þ

A similar procedure for the derivative with respect to the h filter gives

0 ¼ ðhð−l0;−ĽÞ þ hðl0 − Ľ;−ĽÞÞðl0 · ðl0 − ĽÞÞ2CTT;obs
l0 CTT;obs

jĽ−l0j

×
Z

d2l1

ð2πÞ2 gðl1; ĽÞðl1 · ðl1 − ĽÞÞ
Z

d2l2

ð2πÞ2 ðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞ

× ðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞCTT
l2
CTT
jĽ−l2j − ðl0 · ðl0 − ĽÞÞCTT

l0 C
TT
jĽ−l0j

×
Z

d2l1

ð2πÞ2 gðl1; ĽÞðl1 · ðl1 − ĽÞÞðl0 · ðl0 − l1ÞÞððĽ − l0Þ · ðl1 − l0ÞÞ

×
Z

d2l2

ð2πÞ2 hðl2; ĽÞðhð−l2;−ĽÞ þ hðl2 − Ľ;−ĽÞÞðl2 · ðl2 − ĽÞÞ2CTT;obs
l2

CTT;obs
jĽ−l2j: ðA19Þ

These equations are difficult to solve, in general, but if we restrict attention to cases where ς includes only temperature
fluctuations on scales much smaller than fluctuations appearing in λ and also much smaller than scales defined by Ľ, then
one can see that an approximate solution is provided by

gðl; ĽÞ ¼ WςðlÞ
1

CTT;obs
l

WςðĽ − lÞ 1

CTT;obs
jĽ−lj

; ðA20Þ

hðl; ĽÞ ¼ WλðlÞ
CTT
l

CTT;obs
l

WλðĽ − lÞ
CTT
jĽ−lj

CTT;obs
jĽ−lj

; ðA21Þ

where Wς and Wλ are window functions that restrict the temperature fluctuations to the appropriate scales,

WςðlÞ ¼
�
1; l1;min ≤ jlj < l1;max;

0; else;
ðA22Þ

WλðlÞ ¼
�
1; l2;min ≤ jlj < l2;max;

0; else:
ðA23Þ

Using this choice of filters gives

AĽ ¼
"
2

Z
d2l1

ð2πÞ2Wςðl1ÞWςðĽ−l1Þðl1 · ðl1− ĽÞÞ 1

CTT;obs
l1

1

CTT;obs
jĽ−l1j

×
Z

d2l2

ð2πÞ2Wλðl2ÞWλðĽ−l2Þðl2 · ðl2−l1ÞÞððĽ−l2Þ · ðl1−l2ÞÞðl2 · ðl2− ĽÞÞðC
TT
l2
Þ2

CTT;obs
l2

ðCTT
jĽ−l2jÞ

2

CTT;obs
jĽ−l2j

#−1

; ðA24Þ
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and the expected value of Ψ̂Ľ is

hΨ̂Ľi ¼ 2AĽ

Z
d2l1

ð2πÞ2Wςðl1ÞWςðĽ − l1Þðl1 · ðl1 − ĽÞÞ 1

CTT;obs
l1

1

CTT;obs
jĽ−l1j

×
Z

d2l2

ð2πÞ2 Wλðl2ÞWλðĽ − l2Þðl2 · ðl2 − l1ÞÞððĽ − l2Þ · ðl1 − l2ÞÞðl2 · ðl2 − ĽÞÞ

×
ðCTT

l2
Þ2

CTT;obs
l2

ðCTT
jĽ−l2jÞ

2

CTT;obs
jĽ−l2j

Cϕϕ
jl1−l2j: ðA25Þ

The noise variance of Ψ̂Ľ is

NĽ ¼ 4A2
Ľ

Z
d2l1

ð2πÞ2 Wςðl1ÞWςðĽ − l1Þðl1 · ðl1 − ĽÞÞ2 1

CTT;obs
l1

1

CTT;obs
jĽ−l1j

×
Z

d2l2

ð2πÞ2 Wλðl2ÞWλðĽ − l2Þðl2 · ðl2 − ĽÞÞ2 ðC
TT
l2
Þ2

CTT;obs
l2

ðCTT
jĽ−l2jÞ

2

CTT;obs
jĽ−l2j

≃ 4AĽ; ðA26Þ

where in the last line, we used the same approximations as in deriving the g and h filters.
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