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We evaluate the Lorentzian gravitational path integral in the presence of nonvanishing torsion with the
application of the Picard-Lefschetz theory for minisuperspaces corresponding to a number of phenom-
enological bouncing cosmological models as well as for the inflationary paradigm. It turns out that the
semiclassical wave function derived from the saddle points of the path-integral formalism coincides with
the solutions of the Wheeler-DeWitt equation. Intriguingly, our analysis showed that the relative
probability, derived using these semiclassical wave functions favors universes with smaller values of
torsion. Moreover, we find that in the inflationary case, nonzero values of a certain parity-violating
component of the torsion enhance the power in the large-physical length scales, which can have important
observational implications. On the other hand, in the case of bouncing models, the power spectrum is
characterized by an initial region of growth, an intermediate oscillatory region, and then again a final region
of growth. The shape of the power spectrum in the initial and intermediate regions is sensitive to the
abundance of the bounce-enabling matter and torsion, along with the initial wave function of the universe,
while the final size modifies the behavior of the power spectrum in the smaller length scales.
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I. INTRODUCTION

The most successful theory in explaining the gravita-
tional interaction at various scales, starting from the merger
of binary black holes, to the accelerated expansion of
the Universe is Einstein’s theory of general relativity.
Formulated on (pseudo-)Riemannian manifolds, general
relativity is free from torsion and is equipped with a unique
metric-compatible, symmetric, and nontensorial Levi-
Civita connection [1]. Shortly afterward, Élie Cartan
explored the possibility of extending Riemannian geometry
to include a more general situation in which one can have
nonvanishing torsion (formally known as U4 or Riemann-
Cartan geometry), thereby generalizing the Einstein’s
theory of gravitation to the so-called Einstein-Cartan theory
of gravitation [2,3], which is the simplest generalization of
GR with the inclusion of torsion (for a review, see [4]).
There have been numerous studies involving implications
of torsion in the classical aspects of gravitational physics,
for a small sample of such works, see [5–14]. Recently,
several studies [15–21] consider an underlying Riemann-
Cartan geometry and inclusion of torsion in the framework
of quantum cosmology—a field of study which proposes
that the early Universe, as a whole, can be considered as a
quantum mechanical system and is thus characterized by a
wave function. The derivation of such a wave function,
which is generally calculated assuming the framework of

Riemannian geometry, was reworked in the above-
mentioned studies to represent the wave function in terms
of connection with (or without) the presence of torsion
along with possible consequences.
In the classical theory of gravity, there are two different

formalisms; (a) The second-order formalism, wherein the
metric tensor is considered fundamental and its variation in
the gravitational action leads to the field equations; (b) The
first-order formalism, wherein the connection and the
metric are both varied independently. However, if fermionic
degrees of freedom are absent, a constraint relation, coming
from the variation of the (gravityþmatter) action with
respect to the connection, implies that the torsion compo-
nents must vanish. Subsequently, this implies that the first
and second order formalisms are equivalent as far as the
classical theory is concerned (for example, see [22–25]).
However, in quantum theory, the above equivalence is

not guaranteed. Including torsion can lead to various
avenues based on how the quantum nature of the torsional
degree of freedom is incorporated. We, here, consider the
views of [15], which proposes that in the quantum theory,
the constraint implying a vanishing momentum for torsion
and the secondary constraint implying the vanishing of
torsion itself cannot be imposed together, thanks to the
uncertainty principle in the quantum domain. One way to
proceed, then, is to quantize the theory ignoring the secon-
dary constraint at first and computing a (kinematical) wave
function of the universe in which torsion appears as a label,
almost like the spatial curvature index in standard cosmol-
ogy. Thereafter, to incorporate the quantum fluctuations of
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torsion one can form a wave packet (a “beam”) of universes
with different torsion labels having a Gaussian (or, other
suitable) distribution over the torsion space around the
classical value of the torsion (which is zero). The last step
can then be considered equivalent to imposing the secondary
constraint. The authors show, an advantage of this way of
quantizing the universe in the presence of torsion is that it
immediately cures the problemof infinite norms encountered
in quantum cosmology, and probabilities from the wave
function can now be defined in a conventional manner as in
particle quantum mechanics. For our purpose, we shall
primarily focus on deriving the kinematical torsionful wave
function of the universe, inwhich the quantum fluctuations of
torsion have not yet been incorporated, using the Lorentzian
gravitational path integral in the minisuperspace. What
becomes apparent in our treatment, as we shall see in the
following, is that not all values of the relevant torsion
parameter are acceptable in the quantum theory due to a
strict bound following from the stability analysis of pertur-
bations around saddle point geometries. Therefore, one has
to be careful in choosing a distribution in the torsion space.
Although, in principle, beams of universes can still be
constructed as suggested in [15].
Given this interesting development in the quantum

mechanical treatment of cosmologies based on Riemann-
Cartan geometries in the presence of torsion, several
pertinent questions arise naturally and are in need of
thorough investigations. We motivate the present paper
based on some of these questions and these are briefly
described in the following:

(i) The main question we wish to address in the present
work is can the techniques of Lorentzian quantum
cosmology be consistently translated to derive a
torsionful version of the Hartle-Haking wave func-
tion for inflationary and bouncing scenarios? Hartle
and Hawking defined their no-boundary wave func-
tion as a Euclidean path integral over all regular
geometries that start from zero size (“no-boundary”)
[26]. Mathematically, this no-boundary condition
has been a challenge to implement, due to various
issues ranging from the conformal factor problem to
the choice of a suitable contour in the path integral.
A rigorous approach based on the Lorentzian path
integral was recently developed in [27], which
ultimately failed to provide a no-boundary wave
function, because of the uncontrolled growth of
perturbations around the no-boundary saddle point
geometry [28–30]. Subsequently, it was suggested in
[31–33] that it is possible to achieve controlled
perturbations with alternative boundary conditions
for which the trade-off is that only the saddle point
geometry starts with initial zero size complying with
the no-boundary proposal, whereas the other off
shell geometries that also contribute to the path
integral, do start with all possible initial sizes. It
seems, as of now, this is the best possible way to

implement the no-boundary proposal consistently
(for a recent review, see [34]). Moreover, in [35], we
showed that the no-boundary proposal defined in the
way of [32] can also be extended to a large class of
phenomenological bouncing scenarios. Thus, it only
seems natural to ask, how do all of these results
change when we have some nonvanishing torsion
components in the gravitational action? The bulk
of this paper is concerned with demonstrating the
subtle changes that are to be made along the way in
the Lorentzian path-integral approach to compute the
kinematical torsionful version of the no-boundary
wave function of the universe in the inflationary and
bouncing scenarios. Moreover, we shall also discuss
various boundary conditions, in both inflationary
and bouncing scenarios, leading to saddle points,
which are stable. We note that recently the techniques
of Lorentzian quantum cosmology has also been
generalized to the case of Gauss-Bonnet gravity
[36–38], which we shall not consider in the present
article.

We start with a general setup in Sec. II describing
the minisuperspace models that we shall be quantiz-
ing, first, by constructing and solving the Wheeler-
DeWitt equation, as in the canonical approach in
Sec. III and then by the path-integral quantization
in Sec. IV.

(ii) The most important aspect that comes next is the
stability of these saddle points in the path-integral
approach under perturbations. It is indeed possible to
have saddle points with intriguing behavior, possibly
mimicking the Hartle-Hawking no-boundary wave
function. However, the stability of these saddle
points under external perturbation is what makes
certain boundary conditions and saddle points to
stand out. The stability analysis also has implica-
tions in two distinct aspects; (a) the power spectrum,
and (b) the possibility for cross-talk between dif-
ferently curved Friedmann-Robertson-Walker uni-
verses [15]. The importance of determining the power
spectrum cannot be overemphasized, since it relates
the initial quantum phase of the Universe to the
observable regime. In particular, we wish to explore
how the presence of torsion affects the scale invari-
ance of the inflationary power spectrum and also
the corresponding changes in the context of bounce.
In general, bouncing models do not predict scale-
invariant power spectrum (see, however [39–42]), but
the conclusion may change in the presence of torsion.
Regarding the cross-talk between universes with
positive, negative, and zero spatial curvature, the
stability argument can play an important role. Since
the saddle points will depend on the effective curva-
ture of the three-space, which has contributions from
the spatial curvature index appearing in themetric and
torsion, but with an opposite sign. The stability of

VIKRAMADITYA MONDAL and SUMANTA CHAKRABORTY PHYS. REV. D 109, 043525 (2024)

043525-2



these saddle points also tells us a lot about possible
choices of the three-space curvature. In particular, we
will show that stability demands that such cross-talks
between different three-space curvatures should not
exist. These issues have been more elaborated
in Sec. V.

(iii) The final question we wish to address in this work
has been harped upon several times, and from
various different perspectives, namely why is the
spacetime torsion of the observable universe small?
The explanations range from extra dimensions to
modified theories of gravity [11,43–46]. In this work,
we wish to provide another explanation for the same,
but from the initial quantumphase of theuniverse.The
hope is that the relative probability of two universes
with and without torsion, as derived from the wave
functions using saddle points of the Lorentzian path-
integral approach, will be small. In other words, we
wish to explore, if the probability of a universe having
larger values of torsion is significantly small com-
pared to the probability of a universe having zero
torsion. This will provide a quantum explanation of
why our Universe has a very small torsion since such
universes are more favored during the initial quantum
phase of the Universe.

Finally, wewould like tomention that in dealingwith torsion
there is scope for possible ambiguities. We show below that
one can construct different models of torsion, in which the
torsion parameter and the scale factor can have nontrivial
coupling. We have worked with the simplest case, wherein
the torsion parameter remains uncoupled to the scale factor
and behaves as a parameter.Moreover, there can be two types
of torsion degrees of freedom in the cosmological setting one
of them being a parity-odd component (see, [15,47]). These
two torsion degrees of freedom can be treated differently in
the quantum theory, leading to further ambiguities. We shall
discuss all of these issues below.
The paper is organized as follows:We start by introducing

the basics of the mini-superspace model with torsion in
Sec. II. The canonical quantization method and the solutions
of theWheeler-DeWitt equation have been derived in Sec. III
for both inflationary and bouncing scenarios. Subsequently,
we performed the Lorentzian path integral and determined
the relevant saddle points for both inflationary and bouncing
scenarioswith different boundary conditions in Sec. IV. Then
we have discussed the stability of these saddle points under
scalar perturbations and have determined the associated
power spectrum for the scalar field in the background of
both inflationary and bouncing cosmologies in Sec. V. Then
we concludewith a discussion of the results obtained and the
future directions of exploration.Detailed calculations regard-
ing the first order formalism with torsion in the minisuper-
space have been presented in Appendix A and Appendix B,
respectively.
Notations and Conventions: Throughout this paper, we

shall use natural units, i.e., we shall set the fundamental

constants c ¼ 1 ¼ ℏ unless mentioned otherwise. The four-
dimensional spacetime is spanned by the Greek indices
μ; ν;… and the four-dimensional local Minkowski space-
time will be spanned by lowercase Roman indices a; b;…,
whereas the indices i; j;… at places may refer to spatial
components of vectors or tensors.

II. TORSION IN THE MINISUPERSPACE

In this section, we provide all the necessary ingredients
for incorporating torsion in the context of minisuper-
space quantum cosmology. We first provide our setup
and compute the Palatini action, which in turn provides us
the Hamiltonian for the system necessary for canonical
quantization. Subsequently, we discuss these setups in two
distinct scenarios, firstly in the case of inflationary cosmol-
ogy, and then we consider a number of bouncing models of
the universe.

A. General setup

In the minisuperspace approximation, quantization is
restricted to only a limited number of degrees of freedom
by invoking the symmetries exhibited by the classical
cosmological spacetime, namely homogeneity, and isot-
ropy in the present case. As a consequence, the spacetime
metric is characterized by two functions of time, the scale
factor qðtÞ and the lapse function NðtÞ. Therefore, to start
with, we consider the following general parametrized
metric for the minisuperspace, which reads

ds2 ¼ −
N2ðtÞ
q2pðtÞ dt

2

þ q2sðtÞ
�

dr2

1 −Kr2
þ r2ðdθ2 þ sin2 θdϕ2Þ

�
: ð1Þ

Here, p and s are taken to be real and rational numbers. For
the moment, we keep these two numbers as independent
parameters, but later we shall constrain them so that the
action for the system is quadratic in qðtÞ, and as a result, the
quantization becomes straightforward. One immediately
recognizes from [48] that for an inflationary minisuper-
space model, s and p both can be chosen to be 1=2,
however, for different bouncing scenarios the values of s
and p will depend on the context (clear from [35,49]). We
shall discuss this point in detail below.
Since we are interested in the Einstein-Cartan theory, it is

better to make a transition to the first order formalism,
involving tetrads, such that, gμν ¼ eaμebνηab, with ηab ¼
diagð−1; 1; 1; 1Þ. For the above minisuperspace metric,
the four basis tetrads have the following expressions:

e0 ¼ N
qp

dt; e1 ¼ qs

KðrÞ dr;

e2 ¼ qsrdθ; e3 ¼ qsr sin θdϕ; ð2Þ
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where, the bold-faced quantities denotes the 1-forms, and the
function KðrÞ reads, KðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Kr2

p
. In the above

expressions, the quantity K determines the spatial curva-
ture index of the spacetime and is a constant. In particular,
it can take values K ¼ 0;�1, corresponding to a flat,
closed, or open universe, respectively,when torsion is absent.
For brevity, we have introduced the following notation,
qa ≡ ðqðtÞÞa.
Given the above basis 1-forms ea, the spin-connections

ωa
b can be determined from the following Cartan structure

equation:

Ta ¼ dea þ ωa
b ∧ eb; ð3Þ

where, Ta is the torsion two-form. In the absence of torsion,
the spin-connections ωa

b are determined by the tetrads
alone, while for nonzero torsion, the spin-connections are
dependent on the tetrads and as well as on the components
of the torsion field. Since torsion is also a geometrical
entity, it must respect the symmetries of the minisuper-
space, in our case, homogeneity and isotropy. Under
these symmetries, the torsion two-form has the following
expression [47]:

T0 ¼ 0; Ti ¼ T ðtÞe0 ∧ ei þ CðtÞϵijkej ∧ ek; ð4Þ

where, T ðtÞ and CðtÞ are arbitrary functions of the
coordinate time t. Thus, given the above structure of
the torsion two-form and the Cartan structure equation
in Eq. (3), we obtain the following expression for the
components of the spin connection (see Appendix A for
derivation):

ω0i ¼ q−3sþ1BðtÞei; ð5Þ

ω12 ¼ −
KðrÞ
r

q−se2 − qdcðtÞe3; ð6Þ

ω13 ¼ −
KðrÞ
r

q−se3 þ qdcðtÞe2; ð7Þ

ω23 ¼ −
cot θ
r

q−se3 − qdcðtÞe1: ð8Þ

Here, we have introduced two new functions of time BðtÞ
and cðtÞ, such that,

cðtÞ≡ CðtÞ
qd

; ð9Þ

BðtÞ≡
�
−T ðtÞ þ sqp−1

q̇
N

�
q3s−1; ð10Þ

with d being a real and rational number which we shall
constrain later. Thus, instead of the functions T ðtÞ and CðtÞ,
we may use the newly defined function BðtÞ and cðtÞ, such
that the torsion tensor becomes,

T0 ¼ 0;

Ti ¼
�
s
N
qp

q̇
q
− q−3sþ1BðtÞ

�
e0 ∧ ei þ qdcðtÞϵijkej ∧ ek:

ð11Þ

As evident from the above expression, cðtÞ corresponds to
the completely antisymmetric part of the torsion tensor and
can be related to the pseudoscalar degree of freedom. On
the other hand, BðtÞ contains the parity-even part of the
torsion tensor. Having derived the connections in terms of
the scale factor q, lapse function N, and the two-torsion
parameters, such that one of them is contained in B and the
other, completely antisymmetric part is given by c, we shall
now determine the curvature two-form, which has the
following definition:

Rab ≡ dωab þ ωa
c ∧ ωcb: ð12Þ

Explicitly, using the connections from Eq. (5)–(8), it turns
out that only the temporal-spatial and purely spatial
components of the curvature two-form are nonzero and
they read (for a derivation, see Appendix A),

R0i ¼ q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞe0 ∧ ei

þ q−3sþdþ1BðtÞcðtÞϵijkej ∧ ek; ð13Þ

Rij ¼ q−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞei ∧ ej

−
qpþd

N

�
ċðtÞ þ ðsþ dÞ q̇

q
cðtÞ

�
ϵijke0 ∧ ek: ð14Þ

Therefore, the symmetry of the spacetime reduces the
number of degrees of freedom in the spacetime metric to
two (scale factor q, lapse function N) from ten. Similarly,
the torsion tensor, which in general, can have 24 indepen-
dent components, reduces to two degrees of freedom (the
parity-even part residing in B and the parity-odd part c). In
the minisuperspace, the gravitational action must be
expressed in terms of the reduced variables, in this case,
the action must be expressed in terms of the two degrees of
freedom of the metric and the two degrees of freedom of the
torsion. Further, since we are working with first order
formalism, we should use the Palatini action, which takes
the form,

κAPalatini ¼
1

2!

Z
ϵabcd

�
ea ∧ eb ∧ Rcd

−
Λ
6
ea ∧ eb ∧ ec ∧ ed

�
; ð15Þ

where κ ¼ 16πGN, with GN being the Newton’s gravita-
tional constant. We also assume that the cosmological
constant is either positive or, zero. Note that, ϵabcd is the
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completely antisymmetric Levi-Civita symbol in the locally
flat spacetime and we have used the following convention:
ϵabcdea ∧ eb ∧ ec ∧ ed ¼ 4!

ffiffiffiffiffiffi−gp
d4x. Using the expres-

sions for the curvature two-form and the tetrad one-forms,
we can compute the Palatini action for the minisuperspace
cosmology which reads (for a derivation, see Appendix B),

APalatini ¼
3V3

8πGN

Z
dt

�
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞ

þ qs−pNðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞ

−
Λ
3
q3s−pN

�
; ð16Þ

where, V3 is the volume of the three-space. As promised,
the action depends on the four degrees of freedom, and on
the three parameters, s, p, and d, respectively.
The quantity inside the integral of the above action is the

Lagrangian of the (gravityþ torsion) system in the cos-
mological setup within the context of first-order formalism.
Since, any Lagrangian can be expressed as, L ¼ pq̇ −H,
whereH is the Hamiltonian associated with the Lagrangian
L, the above action can be rewritten, up to a boundary term,
in the following form:

APalatini ¼
3sV3

4πGN

Z
dt

�
−q̇B−N

�
−
qs−p

2s
K−

q−3s−pþ2

2s
B2

þ q2dþ3s−p

2s
c2 þ Λ

6s
q3s−p

��
þ 3V3

8πGN
qB

				
Boundary

;

ð17Þ

allowing us to identify the momentum conjugate to q as
p ¼ −B. The resulting Lagrangian, as evident from the
above action, is directly in the form ðpq̇ − NHÞ, where the
factor N before the Hamiltonian arises due to nontrivial
lapse function in the spacetime metric, and hence we can
identify the corresponding Hamiltonian ‘density’ H1 as

H ¼ −
q−3s−pþ2

2s
B2 −

qs−p

2s
Kþ q2dþ3s−p

2s
c2 þ Λ

6s
q3s−p:

ð18Þ

The variation of the Hamiltonian with respect to q and B
yields the dynamical equations for B and q, respectively.
On the other hand, the torsional degree of freedom c has no
conjugate momentum, which in turn demonstrates that the
purely antisymmetric part of torsion is nondynamical, at

least classically. Thus, in what follows, we can take the
torsional degree of freedom c to be a constant, not evolving
with time. We will observe that a similar conclusion holds
true in the quantum domain as well.
It is to be emphasized that, so far we have used the

Palatini form of the action in the tetrad formalism, so that
both the metric degree of freedom q and the connection
degree of freedom B are treated as independent. As a
consequence we have only one torsion degree of freedom c,
while the other gets hidden inside B and does not play
any role. However, had we used the metric form of the
action, the connection B needs to be expressed in terms of
the metric degree of freedom and derivative thereof, see
Eq. (10). Thus we will now have two torsion degrees of
freedom, namely c and T . In particular, all the c2 terms in
the expressions, need to be replaced by T 2 − c2. In what
follows, we shall continue with the Palatini formalism for
the rest of our analysis, which can be changed to the metric
formalism by simply performing the above replacement.
Further simplification can be achieved by fixing the

powers of q in the above expression for the Hamiltonian.
Since our aim is to quantize the system and determine the
wave function of the universe using the path-integral
formalism, we want the Hamiltonian to involve terms that
are at most of the quadratic order of the dynamical
variables. We notice that the torsional parameters are
already quadratic and hence we simply need to fix the
powers of the scale factor appropriately. If we transform the
first term of the above Hamiltonian, in Eq. (18) to a
quadratic one in the dynamical variable, it requires impos-
ing the following condition: 2 − 3s − p ¼ 0. This in turn
determines the exponent p to be p ¼ −3sþ 2 and hence
the Hamiltonian can be rewritten as

H ¼ −
1

2s
B2 −

q4s−2

2s
Kþ q2dþ6s−2

2s
c2 þ Λ

6s
q6s−2: ð19Þ

The two parameters s and d are still free. Further con-
straints can be imposed on these parameters, depending
on whether we are considering inflationary or bouncing
scenarios. In the inflationary scenario, one considers
the cosmological constant Λ to be dominant over any
other matter fields existing in the universe. However, in
the bouncing scenario, at least near the bounce, the
cosmological constant is irrelevant, and instead one
needs to add phenomenological and suitably parametrized
two-component fluid, leading to bouncing cosmology. We
discuss these two cases in the following.

B. Inflationary cosmology

As emphasized earlier, in an inflationary scenario, the
cosmological constant is dominant and there is no addi-
tional matter content in the universe, except for the
spacetime torsion and spatial curvature index (K), arising
from the geometric sector. In this case, the quadratic nature

1The Hamiltonian of the system is given by H ¼
ð3sV3=4πGNÞNH, which is simply equal to the Hamiltonian
density times an overall multiplicative factor, proportional to the
volume of three space. However, in what follows we shall call the
quantity H as the Hamiltonian of the system since no further
confusion is likely to arise.

LORENTZIAN QUANTUM COSMOLOGY WITH TORSION PHYS. REV. D 109, 043525 (2024)

043525-5



of the Hamiltonian in Eq. (19) requires s ¼ ð1=2Þ, since
there is no other way to make both the spatial curvature
index term and the cosmological constant term to be at most
of the quadratic order in the scale factor q (this can also be
seen from [48]). Given the above value for the parameter s,
if we also make the following choice: d ¼ −3sþ 1, then
the Hamiltonian, in Eq. (19) becomes

Hinflation ¼ −B2 −Kþ c2 þ Λ
3
q: ð20Þ

We would like to emphasize that the above Hamiltonian
coincides with the one suggested in [15]. For the above
choices of the parameters, the time coordinate t, defined
in Eq. (1), gets related to the cosmological time coordinate
tco, by the relation, dtco ¼ ðN=

ffiffiffi
q

p Þdt and the scale factor
aðtcoÞ in the cosmological coordinate gets related to qðtÞ
by, a ¼ ffiffiffi

q
p

. Note that this demands q to be a positive
definite quantity in the classical theory.2 Therefore, the
Hubble parameter, defined in the cosmological coordinate,
in terms of the scale factor aðtcoÞ reads

HðtÞ≡ 1

aðtcoÞ
daðtcoÞ
dtco

¼ q̇
2N

ffiffiffi
q

p : ð21Þ

From Eq. (10), we see that the canonically conjugate
momentum (p ¼ −B) is related to the Hubble rate offset
by the torsion component T ðtÞ. On the other hand, given
the Hamiltonian Eq. (20), we can calculate the equations
of motion,

q̇ ¼ N

�
∂Hinflation

∂p

�
¼ −N

�
∂Hinflation

∂B

�
¼ 2NB; ð22Þ

ṗ ¼ −Ḃ ¼ −N
�
∂Hinflation

∂q

�
¼ −N

Λ
3
: ð23Þ

Consistency of the first Hamilton’s equation with Eq. (10)
demands T ðtÞ ¼ 0 on shell. Now, as we shall perform path-
integral quantization in the phase space, the result of the
path integral will be approximated by the classical solution,
and hence for all intents and purposes, T ðtÞ can be set to
zero. The only nontrivial contribution, in the quantum
theory, from the torsional sector arises from the purely
antisymmetric degree of freedom, namely c. As in [15], we
leave this torsion component as a parameter while quantiz-
ing the theory to obtain the kinematical torsionful wave
function of the universe.

C. Bouncing scenario

For bouncing models of cosmology, near the bounce, the
matter content of the universe is more important than the
cosmological constant, and hence we can safely set Λ ¼ 0.
Instead of the cosmological constant, here we shall intro-
duce a two-component fluid, like in [35,49], such that
the background classical spacetime undergoes a bounce.
In the presence of the bounce-enabling fluid, the overall
(gravityþ torsionþmatter) action has to be obtained by
adding the matter action to the previously computed action
for the (gravityþ torsion) sector. The action for the matter
sector reads,

AM ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
ρ ¼ V3

Z
dtNUðqÞ; ð24Þ

where ρðqÞ is the energy density of the matter sector,
including that of the bounce-enabling matter. Moreover, for
later convenience, we have introduced the potential func-
tion UðqÞ, defined as

UðqÞ≡ −q3s−pρðqÞ ¼ −q6s−2ρðqÞ: ð25Þ

Therefore, the total action involving the metric, torsional,
and matter degrees of freedom altogether becomes

Atotal ¼
3sV3

4πGN

Z
dt

�
−q̇B − N

�
−
q4s−2

2s
K −

1

2s
B2

þ q2dþ6s−2

2s
c2 −

4πGN

3s
U

��
; ð26Þ

where we have ignored the boundary contribution.
Therefore, the Hamiltonian for the system now reads,

H ¼ −
1

2s
B2 −

q4s−2

2s
Kþ q2dþ6s−2

2s
c2 −

4πGN

3s
U: ð27Þ

The variation of the above Hamiltonian with respect to the
conjugate momentum p, as well as the variation with
respect to the scale factor q yields Hamilton’s equations
of motion as

q̇ ¼ N

�
∂H
∂p

�
¼ −N

�
∂H
∂B

�
¼ NðB=sÞ; ð28Þ

ṗ¼ −Ḃ ¼ −N
�
∂H
∂q

�
¼ N

�
4s− 2

2s

�
q4s−3K

−N

�
2dþ 6s− 2

2s

�
q2dþ6s−3c2 þ 4πGN

3s
N

�
∂U
∂q

�
: ð29Þ

Again, we see that consistency of the first Hamilton’s
equation with Eq. (10) demands T ðtÞ ¼ 0 on shell, leaving
the purely antisymmetric degree of freedom c as the only
nontrivial torsion degree of freedom. Note that there is an

2However, note that in the quantum theory, say in path-integral
quantization this restriction is lifted and the limit in the quantum
fluctuation integrals is chosen to be the whole range of ð−∞;∞Þ,
see [48]. However, for a different approach to quantum cosmol-
ogy, wherein, q is restricted to only a positive range, see [50].
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additional equation given by H ¼ 0, corresponding to the
Hamiltonian constraint of general relativity.
As in the context of the inflationary paradigm, for

the bouncing scenario as well, one would prefer the
Hamiltonian to be quadratic in the scale factor q, in order
to facilitate the path-integral formulation. For that, we
need to provide the behavior of the energy density of
the fluid ρ with the scale factor q. As is customary for
phenomenological-bouncing models of cosmology, we
introduce a two-component fluid with generic power law
falloff behaviors, such that

ρ ¼ ρ0

�
−

Ω
am

þ 1

an

�
: ð30Þ

Here, ρ0 is a constant, related to the energy scale close to
the time of bounce. Moreover, Ω is the relative fractional
abundance of the bounce-enabling exotic matter compared
to the normal matter component. We shall now relate the
powers of the scale factor n andmwith s, such that we have
a wide range of fluid material that can contribute to the
potential UðqÞ at most quadratically in the scale factor q.
In order to determine the effect of the energy density of

the fluid on the Hamiltonian Eq. (27), we use the relation
a ¼ qs, and express the potential U in terms of the scale
factor q as

U ¼ ρ0½Ωq6s−2−ms − q6s−2−ns�: ð31Þ

Since the first nontrivial effect arises when the potential is
linear in the scale factor q, we will consider this linear
model of the potential throughout this work. The main
motivation is, the linear model is the simplest one, which
captures the nontrivial dynamics of the bounce-enabling
matter. Thus, requiring that the form of the potential be
U ¼ ρ0ðΩ − qÞ, so that for small q, the bounce-enabling
matter starts to become important and for large q, the normal
matter dominates. Given the above structure of the potential,
we obtain the following conditions: s ¼ f3=ð6 − nÞg and
m ¼ fð6s − 2Þ=sg ¼ 6 − 2fð6 − nÞ=3g ¼ fð6 þ 2nÞ=3g.
Therefore, the energy density of the matter contained in the
bouncing scenario becomes,

ρ ¼ ρ0

�
1

an
−

Ω
a

6þ2n
3

�
; s ¼ 3

6 − n
; ð32Þ

where it is assumed that n < 6. The other terms in the
Hamiltonian Eq. (27) correspond to the spatial curvature
associated with the metric degrees of freedom and torsion.
The scale-factor dependence of the spatial curvature index
term becomes, q2n=ð6−nÞ, so that for n ¼ 0, n ¼ 2, andn ¼ 3,
the scale factor attached to the spatial curvature K becomes
independent of q, linear in q and quadratic in q, respectively.
Hence, if we want to keep the spatial curvature term K,
arising from themetric alone, in the Hamiltonian, we need to

restrict ourselves to the above values of n. To avoid any such
restrictions, so that a broader class of bouncingmodels can be
considered, we will take K ¼ 0 for the bouncing scenario.
Finally, the scale factor associated with the torsion

degree of freedom c2 has the following behavior: q2dþ6s−2,
such that we can choose the parameter d in order for the
power of the scale factor to be at most of the quadratic order.
All of these different choices of the parameter d, lead to
inequivalent models of the parity-odd torsion. Treatment
of a system with Hamiltonian of quadratic order in the scale
factor q can become complicated in the path-integral
approach, see e.g., [35,49] and make the physics obscure.
Thus, we will consider two convenient choices for the
parameter d which are

dð0Þ;ðLÞ ¼
�
1 − 3s; leading to the term c2;
3ð1−2sÞ

2
; leading to the term qc2:

ð33Þ

Thus, the possible Hamiltonians in the bouncing model of
cosmology will be given by

Hð0Þ
bounce ¼ −

1

2s
B2 þ 1

2s
c2 −

4πGNρ0
3s

ðΩ − qÞ; ð34Þ

HðLÞ
bounce ¼ −

1

2s
B2 þ 1

2s
qc2 −

4πGNρ0
3s

ðΩ − qÞ: ð35Þ

From a cursory comparison between the inflationary and
bouncingHamiltonians Eqs. (20) and (34), it may appear that
the exotic and normal fluid components in the bouncing
Hamiltonian correspond to the ‘curvature’ and the ‘cosmo-
logical constant’, if one identifies ð4πGN=3sÞρ0ΩwithK and
ð4πGN=3sÞρ0 with Λ=3, respectively. However, such an
appearance is deceptive, since in the cosmic time coordinate
frame the energy densities of these two fluids in the bouncing
scenario satisfy the scaling law given in Eq. (32), which is
very different from the scaling of the curvature and the
cosmological constant. The only exception is when n ¼ 0.
Similarly, the ‘energy density’ corresponding to torsion
component c scales as a−2ðnþ3Þ=3, a similar scaling to that
of the bounce-enabling matter.
Note that the classical bouncing scale is obtained by

setting q̇ ¼ 0, which in turn demands B ¼ 0 (on shell).
Thus the Hamiltonian constraint H ¼ 0 yields the scale
factor qB at which the bounce occurs, for both the
q-independent and linear in q models,

qð0ÞB ¼ Ω −
3c2

8πGNρ0
; qðLÞB ¼ Ω

�
1þ 3c2

8πGNρ0

�−1
: ð36Þ

Thus, in order to have a finite and positive scale factor at
which bounce happens, we must have nonzero Ω, and also
the contribution of the torsion to the energy budget must be
less than the contribution from the bounce-enabling matter.
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Note that in the following we shall only work with the
Hamiltonian Eq. (34).
It is to be emphasized that, in the quantum domain, both

the classical degrees of freedom q and c must be promoted
to operators, q̂ and ĉ, respectively. Even then there is no
operator ordering ambiguity due to the terms of the form
qc2, since these two operators are not canonical conjugates
and hence they commute with each other, i.e., ½q̂; ĉ� ¼ 0.
In what follows we will first quantize the minisuperspace

model of cosmology with torsion in the Wheeler-DeWitt
approach and then shall discuss how the semiclassical
results derived from the Wheeler-DeWitt approach arise
from the path-integral computation as well. The path-
integral approach will provide us with an idea about the
stability of the semiclassical geometry and the behavior
of perturbations around the same, which in turn will help us
to determine the power spectrum of these perturbations. We
discuss each of these aspects in the subsequent sections.

III. QUANTIZATION USING THE WHEELER-
DEWITT EQUATION

We shall now study the quantization of the minisuper-
space models described above. Like any other quantum
system, the quantization of cosmological models can be
approached from two distinct directions; namely, (a) the
canonical quantization, and (b) the path-integral quantiza-
tion. Generally, the equivalence between these approaches
is expected, however, often subtle differences come into
play, in the sense that certain issues are more apparent in
one approach than in the other. For example, recently, the
issue of the stability of the wave function of the universe
obtained with different initial conditions has been greatly
debated, along with the merits of the path-integral approach
versus the canonical approach in dealing with the issues of
stability under perturbations [27–29,31,32,51–56]. As far
as the present article is concerned, for the quantization of
the minisuperspace model(s), first, we shall solve the
Schrödinger-like Wheeler-DeWitt equation(s) to obtain
the wave function(s) of the unperturbed universe with
the Hartle-Hawking no-boundary condition. Next, we shall
show that these solutions can be obtained from the path-
integral approach as well. Finally, we shall deal with
scalar perturbations around the saddle point geometry, that
closely approximates the path integral for the background
spacetime. We shall derive the wave function for such
scalar degrees of freedom and consequently derive corre-
sponding power spectra. We shall perform these calcula-
tions for the inflationary and bouncing scenarios and
highlight differences between these two types of cosmol-
ogies wherever appropriate.
Now, if one assumes the connection component B to be

an independent variable, alongside the tetrads, one can then
have a wave function of the universe characterized by
connection ΦðBÞ. However, due to canonical conjugacy
between q and B, this connection wave function is related,

by means of Fourier transform, to a wave function ΨðqÞ
defined in the coordinate-space representation. Solutions of
the WDW equation in different representations can be
obtained from the path-integral approach by choosing
suitable boundary terms, as we shall show in the Sec. IV.

A. Inflationary scenario

In this section, we shall deal with the canonical quan-
tization of the minisuperspace model described in Sec. II B,
which corresponds to an inflationary universe with torsion.
Note that the canonical quantization of such a scenario has
already been thoroughly discussed in the literature, e.g.,
in [15]. However, we present the analysis here as well for
the sake of completeness and also for the fact that this
discussion will flesh out the notations and conventions we
are going to follow for the rest of our paper.
As discussed in the previous sections, the exponents of

the scale factors in the Palatini action for the inflationary
cosmology can be so chosen that the integrand becomes
quadratic in the degrees of freedom and the corresponding
Hamiltonian for the system is given by Eq. (20) with p ¼
−B being identified as the canonically conjugate momen-
tum to q. Thus for the Palatini action, the (negative of) the
connection component B is the canonical conjugate
momentum of the metric variable q. Therefore, following
the canonical quantization scheme, where all the conjugate
variables are promoted to operators and satisfy the usual
Heisenberg algebra, here also, we promote the variables q,
and B to operators and impose fundamental commutation
relations between them, such that,

½q̂; B̂� ¼ −ih: ð37Þ

Following [15], we have defined the effective Planck’s
constant h as

h≡ 8πGNℏ
3V3

¼ l2
Pl

3V3

: ð38Þ

The last equality follows from the definition of the Planck
length, lPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
. Note that in our convention we

have ignored the coefficient in front of the action 3V3

8πGN
while

defining the conjugate momentum and then redefined the
Planck’s constant for quantization. Alternatively, one could
have defined the conjugate momentum along with the
prefactor ð3V3=8πGNÞ, and then imposing the standard
commutation relation involving ℏ alone would, essentially,
result into the same algebra. However, defining the con-
jugate momentum without the prefactor and then defining
an effective Planck’s constant for the quantization seems
notationwise convenient and we shall stick to that con-
vention. For a physical interpretation of such an effective
Planck’s constant, see [57]. However, it is not necessary for
us to commit to any particular interpretation at this point.
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Further note that the Heisenberg evolution equation for
the torsion yields, ðdĉ=dtÞ ¼ 0, since ĉ commutes with all
the other operators, including the Hamiltonian itself. Thus,
even in the quantum domain, we can treat the torsion as a
constant valued operator.
In the momentum representation, the operator q̂ must be

represented as a differential operator constructed from the
conjugatemomentumB. As in ordinary quantummechanics,
in order to satisfy the fundamental commutation relation in
Eq. (37), one represents the operator q̂ as follows:

q̂ → þih
∂

∂p
¼ −ih

∂

∂B
: ð39Þ

Therefore, the quantum Hamiltonian constraint or the
Wheeler-DeWitt equation, ĤinflationΦIðBÞ ¼ 0, for the infla-
tionary universe takes the following form in the momentum
representation:

�
−ih

Λ
3

∂

∂B
−Kc − B2

�
ΦIðBÞ ¼ 0; ð40Þ

where we have defined an effective curvature scale:
Kc ≡K − c2, and the superscript ‘I’ in the wave function
ΦIðBÞ indicates the fact that we are here concerned with an
inflationary scenario. Two comments are in order: (a) we
see that the parity-odd torsion component ‘c’ acts, in this
particular case of an inflationary scenario, as a source
for spatial curvature and produces an effective spatial
curvature Kc; (b) the other torsion scalar T is hidden inside
the connection component B, and as a result, essentially, its
information is erased in the quantum theory, in the phase
space. This fact, therefore, suggests an inequivalent treatment
of the two torsion components T and c in the quantum
theory.
The Wheeler-DeWitt equation in the momentum space,

presented in Eq. (40), is a first-order ordinary differential
equation, whose most general solution reads,

ΦIðBÞ ¼ ϕ0 exp

�
i
3

hΛ

�
B3

3
þKcB

��
; ð41Þ

where ϕ0 is a constant of integration. For the moment, we
shall keep the constant of integration arbitrary and shall fix
it later using the Hartle-Hawking no-boundary condition.
The wave function in the coordinate-space representa-

tion, denoted byΨIðqÞ can either be obtained by identifying
the operator B̂ with ihð∂=∂qÞ and subsequently solving the
quantum Hamiltonian constraint or by means of a Fourier
transformation of the wave function ΦIðBÞ in the momen-
tum space as

ΨIðqÞ ¼
Z

dBffiffiffiffiffiffiffiffi
2πh

p ΦIðBÞe− i
hBq: ð42Þ

The result of the above Fourier transformation with the
integration range for the conjugate momentum being along
whole the real line,3 such that B∈ ð−∞;∞Þ, is well-known
and has a closed form in terms of the Airy function AiðxÞ
that turns out to be

ΨIðqÞ ¼ ϕ0

ffiffiffiffiffiffi
2π

h

s �
hΛ
3

�1
3

Ai
��

3

hΛ

�2
3

�
Kc −

Λ
3
q
��

: ð43Þ

Now, we can determine the integration constant by using the
boundary condition corresponding to Hartle-Hawking no-
boundary proposal, which isΨI → 1 as q → 0 (see, [59,60]).
This condition implies

ΨIðqÞ ¼
Ai½ð 3

hΛÞ
2
3ðKc − Λ

3
qÞ�

Ai½ð 3
hΛÞ

2
3Kc�

: ð44Þ

Intriguingly, the abovewave function exactly corresponds to
the original Hartle-Hawking no-boundary wave function,
when torsion is absent, i.e., in the limit c → 0. Thus, it
immediately follows that the wave functions derived in
Eq. (41) and Eq. (44) represent the no-boundary state of
an inflationary universe in the presence of spacetime torsion.
Moreover, in the semiclassical limit, with h → 0, the
above wave function, in the classically allowed domain
q > ð3=ΛÞKc, reduces to the standard cosine function
with an exponential prefactor outside, as fit for the no-
boundary wave function. Explicitly, this prefactor reads,
exp ½þð2=hΛÞK3=2

c �, andwe shall see that in the path-integral
approach, we recover this exact prefactor when the saddle
point geometry is required to have an initial zero size, i.e., the
saddle point geometry corresponds to a Hartle-Hawking no-
boundary geometry.

B. Bouncing scenarios

The generalization of the above quantization procedure
to bouncing models of cosmology is straightforward. In the
case of a bouncing scenario, we start with a (gravityþ
torsionþmatter) action, as detailed in Sec. II C. The
bouncing models have an extra parameter n, whose differ-
ent choices correspond to different classical bouncing
scenarios. For example, as discussed above, the choice
n ¼ 3 (or, equivalently s ¼ 1) corresponds to a matter
bounce scenario. Moreover, recall that we have chosen all
the other free parameters in the metric, such that the
Hamiltonian becomes at most of the quadratic order in
either the conjugate momentum or the scale factor q.
The resulting Hamiltonians corresponding to various pos-
sible bouncing scenarios have been presented in Eqs. (34)

3On the other hand, if one restricts to only outgoing modes, as
expected in Vilenkin’s tunneling proposal, the range of integra-
tion is changed to only the half-infinite line. For details, see [58].
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and (35), respectively. In what follows, we shall consider
the case where the scale factor and the torsional degree are
decoupled, i.e., the Hamiltonian Eq. (34).
Quantization of the theory proceeds, as in the previous

scenario, by imposing the fundamental commutation rela-
tion between the ‘coordinate’ and the canonically conjugate
momentum operator as

½q̂; B̂� ¼ −ihs; ð45Þ

where, the effective Planck’s constant hs depends on the
model of bouncing cosmology through the parameter s (or,
equivalently through n) as

hs ≡ 4πGNℏ
3sV3

: ð46Þ

Note that the effective Planck’s constant in the inflationary
scenario can be obtained by choosing s ¼ ð1=2Þ in the
above expression. Here also, we can make the identifica-
tion, q̂ → −ihs ∂

∂B, in order to write down the quantum
Hamiltonian constraint or, the Wheeler-DeWitt equation,
which becomes

�
−ihsσ

∂

∂B
− B2 þ c2 − σΩ

�
ΦBðBÞ ¼ 0; ð47Þ

where the superscript ‘B’ denotes that we are considering
the bouncing models of our Universe. Moreover, we have
also introduced the following notation for future conven-
ience:

σ ≡ 2shsV3ρ0 ¼
8πGNρ0

3
; ð48Þ

where σ corresponds to the constant Hubble parameter
(squared), had a torsionless universe been filled with fluid
with constant energy density ρ0. The general solution of the
above first-order differential equation in the momentum
space has the following form:

ΦBðBÞ ¼ ϕ0
0 exp

�
i

hsσ

�
B3

3
þ ðσΩ − c2ÞB

��
; ð49Þ

where, ϕ0
0 is again a constant of integration. However,

unlike the case of an inflationary universe discussed in
Sec. III A, where we have used a boundary condition
corresponding to the no-boundary proposal to determine
the integration constant, for the present case of a bouncing
scenario, no such proposal exists. We shall leave this
integration constant unfixed, for the moment, only to return
to it during the discussion of path-integral quantization of
the corresponding problem in Sec. IV C. The wave function
in the coordinate-space representation can be obtained,
again, by Fourier transformation, which results into

ΨBðqÞ ¼ ϕ0
0

ffiffiffiffiffiffi
2π

hs

s
ðhsσÞ13Ai

��
1

hsσ

�2
3ðσΩ − c2 − qσÞ

�
: ð50Þ

The above wave function, in the absence of torsion, is
consistent with what we had obtained for the analog of the
no-boundary wave function in the bouncing cosmologies in
[35]. Therefore, the coordinate-space wave function ΨBðqÞ
derived above describes the quantum state for bouncing
scenarios in the presence of torsion. Further, in the semi-
classical limit hs → 0, and in the classically allowed
domain q > Ω − c2

σ , the bouncing wave function also takes
a cosine form, and a relevant pre-factor depending on the
choice of ϕ0

0 (to be discussed in Sec. IV C).

IV. PATH-INTEGRAL QUANTIZATION

The alternative to obtaining the quantum state of the
universe by solving the Wheeler-DeWitt equation corre-
sponds to the path-integral quantization procedure. We first
discuss the general setup and subsequently, we shall
concentrate on the specific cases of inflationary and
bouncing scenarios.

A. General setup

As in the case of a point particle, where both the
canonical as well as the path-integral formalism for
quantization can be developed, in an analogous manner
here also the transition amplitude between any two equal-
time hypersurfaces of the universe can be determined using
the path-integral formalism. Due to the assumption of
homogeneity and isotropy, each of these equal-time hyper-
surfaces can be characterized by simply the scale factors
corresponding to such hypersurfaces. In some cases,
however, it might be beneficial to characterize a hypersur-
face by the Hubble rate or by a combination of the scale
factor and the Hubble rate at that hypersurface [31–33].
Formally, one evaluates such a quantum transition amplitude
by summing over all possible histories between two given
initial and final 3-hypersurfaces separated by finite proper-
time interval, with each history beingweighted by eiA, where
A is the total (gravityþmatter) action for the system.
Subsequently one integrates over all possible time intervals
separating the boundary hypersurfaces as well in order to
exhaust the time reparametrization invariance. The gravita-
tional action, in general, assumes the following form [61]:

Agravity ¼
Z

ðπijḣij − NH − NiHiÞd3xdt; ð51Þ

where, hij is the 3-metric on these spatial hypersurfaces
characterized by constant scale factors, and πij is the
canonically conjugate momenta to hij. Furthermore, N
and Ni are the lapse and the shift functions, respectively
and H and Hi turn out to be Hamiltonian and momenta
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constraints when the action is varied with respect to N and
Ni, respectively, as the lapse and shift functions appear as
Lagrange multipliers in the gravitational action. Due to the
presence of constraints in the system, it is necessary to
include ghosts and gauge-fixing conditions in the path-
integral quantization so that the overcounting of histories
that are equivalent to each other due to the gauge symmetry
can be prevented. In the case of minisuperspace model(s) the
gravitational path integral simplifies enormously. After the
gauge conditions Ṅ ¼ 0 ¼ Ni are enforced and ghost
degrees of freedom are integrated out, the path integral for
the transition amplitude between the initial and the final
boundary hypersurfaces ð3ÞΣiðp; qÞ and ð3ÞΣfðp; qÞ can be
written formally as follows [61,62],

hð3ÞΣfðp; qÞjð3ÞΣiðp; qÞi

¼
Z

ðtf − tiÞdN
Z ð3ÞΣf ;tf

ð3ÞΣi;ti

D½p�D½q� exp

×

�
i
ℏ

Z
tf

ti

dtðpq̇ − NHðp; qÞÞ
�
; ð52Þ

where, q is the minisuperspace ‘coordinate’ and p is the
conjugate momentum, withHðp; qÞ being the Hamiltonian,
and D½p�D½q� corresponding to the Liouville path-integral
measure. Without any loss of generality, we can choose the
coordinate times for the initial and final hypersurfaces, such
that 0 ¼ ti ≤ t ≤ tf ¼ 1 and hence the final integral becomes
an integral over the lapse function alone. Since the proper
time separating the two boundary hypersurfaces can be
defined as τ≡ R tf¼1

ti¼0 Ndt, thanks to the gauge-fixing con-
dition Ṅ ¼ 0, the proper time becomes τ ¼ N. As a result,
the final integration inEq. (52) reduces to anordinary integral
over the lapse function N which is then interpreted as
integrating over all possible proper-time separation between
the boundary hypersurfaces. In the literature, it has been
shown that the lapse function integral over thewhole infinite
range ð−∞;∞Þ, indeed, produces a solution of the quan-
tum Hamiltonian constraint or, the Wheeler-DeWitt equa-
tion [62]. We notice that given the torsionful action in
Eq. (17), insofar as one considers torsion parameter c to
be only a label like spatial curvature indexK, the path integral
is structurally similar to what has been already discussed in
[48,62] in great detail. Therefore, we shall not, here, repeat
the process of quantum fluctuation integration, and rather
assume that in the semiclassical limit ℏ → 0, we can
approximate the wave function of the system from the path
integral in the following manner:

Ψ∼
Z

dN
Z

DBDqe
i
ℏðAPalatiniþAmatterÞ ∝

Z
C
dNfðNÞei

ℏAclðq̄;NÞ;

ð53Þ
where, Acl is the total classical action evaluated for the
classical trajectory q̄ (the solution of the dynamical Einstein

equations), and fðNÞ carries the contribution from the
quantum fluctuation integrals. In the case of Dirichlet
boundary conditions imposed on the path integral, the
function fðNÞ will be proportional to 1=

ffiffiffiffi
N

p
, while for

Dirichlet-Neumann mixed boundary conditions the function
fðNÞ reduces to a simple numerical factor (see, [48,63]).
Since our interest will never be on the Dirichlet boundary
conditions alone and we consider the semiclassical limit
ℏ → 0when performing the lapse integral, for all intents and
purposes we shall ignore the prefactor fðNÞ. Further, to
perform the oscillatory integral over the lapse function, we
shall extend the domain of the lapse function to the complex
plane. Inwhich case the part of the integrand, namely eRe½iAcl�,
will provide the dominant contribution and we are interested
in its behavior. Therefore, we shall focus most of our
attention on finding the appropriate complex integration
contour C, in accordance with the Picard-Lefschetz theory,
for which the convergence of the above oscillatory integra-
tion becomes most apparent and the integration is approxi-
mated by means of the steepest-descent method. Moreover,
we shall also compute the saddle points of the above action
and find out the behavior of scalar perturbations around the
saddle point geometry in order to analyze the stability of
these saddle point geometries.
In order to generate solutions in different representations,

that is either in connection or coordinate-space representa-
tions, we shall have to carefully choose the initial and final
hypersurfaces in the path-integral problem. This will
require us to add different boundary terms to the action,
as we shall see below.

B. Inflationary scenario

Let us start by computing the inflationary minisuper-
space path integral to determine the wave function in the
momentum representation, so that it can be compared
with the one obtained in Eq. (41) using the Wheeler-
DeWitt equation. To do this, as the wave function is
characterized by the conjugate momentum, we shall have
to choose a Neumann condition on the final boundary in the
path integral, i.e., we need to sum over paths for which the
momentum at the final hypersurface is fixed to a certain
value. For the initial boundary, we can either choose a
Dirichlet condition or aRobin boundary condition.However,
we will demonstrate that choosing an initial Dirichlet
condition leads to a saddle point geometry, which is unstable
under perturbations. Stable saddle point(s) can be achieved,
in this case, only by using Robin boundary conditions.
On the other hand, generating a solution in the coor-

dinate representation requires us to sum over paths for
which at the final hypersurface, the Dirichlet boundary
condition is being used. Then for the initial boundary, either
a Neumann or a Robin condition will be necessary to obtain
stable perturbations around the saddle point geometry. An
initial Dirichlet boundary condition generically leads to
an unstable saddle point geometry (see, [28–30]). In the
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following, we proceed to discuss the various boundary
conditions we mentioned above.

1. Momentum space wave function:
Dirichlet-Neumann boundary condition

In the semiclassical approximation, the path integral is
dominated by the classical action, that is, the action evaluated
at the classical path or, the trajectory. However, the classical
solution must respect the boundary condition set in the
problem, in this case, an initial Dirichlet condition and a final
Neumann condition. As the classical solution is obtained
from the variation of the action, to make the variational
problemwell-defined for the boundary conditionswewant to
impose, we shall have to add a boundary term to the action,
such that the final action becomes

Afinal ¼
3V3

8πGN

Z
1

0

dt

�
−q̇B − N

�
−B2 −Kþ c2 þ Λ

3
q

��

þ 3V3

8πGN
½qð1ÞBð1Þ − qð0ÞBð0Þ� þABoundary; ð54Þ

where, we have used the Hamiltonian presented in Eq. (20),
derived in the inflationary scenario. Sincewewish to impose
an initial Dirichlet and final Neumann condition (the final
Neumann condition is motivated by the fact that we are
interested in a wave function in the momentum representa-
tion), the following boundary term should be added to the
action ABoundary ¼ ð3V3=8πGNÞqð0ÞBð0Þ. Such that the
variation of the action Afinal reads,

δAfinal ¼
3V3

8πGN

Z
1

0

dt
�
ð−q̇þ 2NBÞδB þ

�
Ḃ − N

Λ
3

�
δq

−
�
−B2 −Kc þ

Λ
3
q

�
δN

�

þ 3V3

8πGN
½qð1ÞδBð1Þ þ Bð0Þδqð0Þ�: ð55Þ

As evident from the above variation, one needs to fix the
momentaB at the final hypersurface and the scale factor q at
the initial hypersurface, which justifies the boundary term
added to the action. We have defined the following quantity,
Kc ≡K − c2, and hence this quantity captures the informa-
tion regarding the torsional degree of freedom. In addition to
spelling out the appropriate boundary contributions, the
variation of the above action also yields the following
equations ofmotion for thevariablesq,B andN respectively:

Ḃ ¼ N
Λ
3
; ð56Þ

q̇ ¼ 2NB; ð57Þ

B2 þKc −
Λ
3
q ¼ 0: ð58Þ

where Eq. (56) and Eq. (57) captures the dynamics of the
system, while Eq. (58) is a constraint equation. Further, the
boundary conditions imposed on the initial and the final
hypersurface require the following:

Bð1Þ≡ B1; qð0Þ≡ q0: ð59Þ

The path integral over the conjugatemomentumand the scale
factor is dominated by the classical solution q̄ðtÞ of the
dynamical equations presented in Eqs. (56) and (57), such
that the solution satisfies the boundary conditions in Eq. (59).
The classical solution is obtained by taking a time derivative
of Eq. (57) and then substituting Ḃ from Eq. (56), thereby
obtaining a second-order differential equation for the scale
factor. The solution consistent with the boundary conditions
Eq. (59) has the following form:

q̄ðtÞ ¼ N2
Λ
3
tðt − 2Þ þ 2NB1tþ q0: ð60Þ

Evaluation of the final action, as in Eq. (54), at the classical
solution q̄ðtÞ yields

AclðNÞ≡Afinal½N; q̄� ¼ 3V3

8πGN

�
N3

Λ2

27
− N2

Λ
3
B1

þ NB2
1 þ NKc − N

Λ
3
q0 þ B1q0

�
: ð61Þ

Therefore, determining the wave function of our Universe in
themomentumspace representation, given the scale factor on
an initial hypersurface, amounts to calculating an ordinary
integral of the exponential of the classical action over the
lapse function, such that

ΦI
q0ðB1Þ ¼

Z
∞

−∞
dNe

i
ℏAclðNÞ: ð62Þ

Above oscillatory integral can be evaluated using themethod
of steepest descent, in the semiclassical limit ℏ → 0. For this
purpose, one extends the domain of the lapse function N,
originally the entire real line, to the complex plane. As a
result, the classical action becomes complex as well, Acl ¼
Re½Acl� þ iIm½Acl�, and hence the integrand becomes,
expðiRe½Acl�Þ expð−Im½Acl�Þ. As evident, the above inte-
gration will be convergent for large values of the lapse
function, if we have Im½Acl� > 0, as jNj → ∞. Thus, the
deformed contour of integration on the complex lapse func-
tion plane must start and end in those regions, where
Im½Acl� > 0. Explicitly, in the large lapse function limit
(jNj → ∞), these regions are such that Arg½N − ð3=ΛÞB1�∈
ð0;π=3Þ ∪ ð2π=3;πÞ ∪ ð4π=3;5π=3Þ andhavebeendepicted
in Fig. 1 with shades of dark blue color.
The next step is to employ the Picard-Lefschetz theory in

order to identify the flow lines (also known as Lefschetz
thimbles) starting from the saddle point(s) ofAclðNÞ, along
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which the oscillatory part of the integrand, namely
expðiRe½Acl�Þ freezes to a constant and the real part
expð−Im½Acl�Þ becomes an exponentially decaying function.
Then, if one continuously deforms the contour running
along the real line towards the Lefschetz thimble(s), the
above oscillatory integral becomes convergent and will be
dominated by the integrand evaluated at the saddle point(s).
In the present context, there are two saddle points ofAclðNÞ
in the lapse plane, both of which can be determined by
solving the equation ð∂Acl½q̄ðNÞ�=∂NÞNs

¼ 0, yielding

Ns� ¼ 3

Λ

�
B1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Kc þ

Λ
3
q0

r �
: ð63Þ

The location of these saddle points depends on the specific
choices for the parameter values ofK, c, and q0. If we desire
the path integral to be dominated by a Hartle-Hawking type
geometry, which corresponds to a closed (K ¼ 1) universe
starting from a zero size, setting q0 ¼ 0 is a reasonable
choice. Moreover, a closed universe is possible only if the
squared value of the parity-odd torsion component is positive
and cannot exceedK, that is,Kc > 0. In that case, the saddle
points are complex. The action evaluated at these saddle
points reads,

AclðNs�Þ ¼
3V3

8πGNΛ



B3
1 þ 3KcB1 � i2K

3
2
c

�
: ð64Þ

The only remaining bit corresponds to the choice of the
saddle point. It is clear from Fig. 1 that the real line contour C
has to be deformed into a new contour (C̄) in the complex
plane running along the Lefschetz thimble through Nsþ, to
ensure the convergence of the integral. This is because the

other contour passing through Ns− runs along the steepest
ascent contours and the integral for this choice does not
converge. As a result, the integral in Eq. (62) is dominated by
the upper saddle point, located at Nsþ. Thus, the semi-
classical wave function in the momentum representation can
be expressed as

ΦIðB1Þ ∼ exp

�
i
ℏ
AclðNsþÞ

�

¼ exp

�
i
3

hΛ

�
B3
1

3
þKcB1

�
−

2

hΛ
K

3
2
c

�
: ð65Þ

Therefore, from the path-integral approach, we have
obtained the connection wave function as in Eq. (41), but
with the normalization factor ϕ0, which has an opposite sign
in the exponent compared to what is expected from the
Hartle-Hawking no-boundary condition. We shall show
below (in Sec. V B 1) that the perturbation around the saddle
point geometry corresponding toNsþ is unstable, and hence
this wave function, even though mathematically correct, is
not physical andwemust explore other boundary conditions.
Note that the thimbles are defined as contours on the

plane of complex lapse function, for which the Re½Acl�
remains constant. For example, the thimbles relevant for the
present context originating at the saddle point Nsþ and
flowing into the regions of convergence, satisfy the relation
Re½Acl� ¼ Re½AclðNsþÞ�. Since Nsþ is a saddle point of the
action, it follows that slightly away from Nsþ, along the
contour of steepest descent, we have

Re

�
1

2
ð∂2NAclÞNsþðδNÞ2

�
¼ 0: ð66Þ

FIG. 1. We plotted the Re½iAcl� in the plane of the complex lapse function for different choices of the torsion parameter c. The leftmost
plot is for zero torsion, while the middle plot is for an intermediate value of the torsion and the rightmost plot is for a large value of the
torsion. In all the plots, the asymptotic regions of convergence (Re½iAcl� < 0) have been shown in shades of blue, whereas the
complementary regions, where (Re½iAcl� > 0), have been shown in shades of red. The two saddle points ðNs�Þ have been presented as
yellow dots. The black curves are the steepest descent/ascent flow lines passing through the saddle points. C corresponds to the original
integration contour (green line), which is deformed into C̄ (red dashed line) such that it passes through the saddle point Nsþ and runs
along the Lefschetz thimbles starting and ending in the regions of convergence.
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Expressing, δN as δN ≡ jδNjeiα, where α is the angle
subtended by the thimble with respect to the real line, near
the saddle point, and using Eqs. (61) and (63) to express
ð∂2NAclÞ at the saddle point, reduces the above condition to

Re

�
jδNj2iΛ

3

ffiffiffiffiffiffi
Kc

p
e2iα

�
¼ 0: ð67Þ

Since we have 0 < Kc < 1, the above equation implies
sin 2α ¼ 0. Thus, the thimble at the saddle point subtends
an angle α ¼ nπ; n∈Z, where n ¼ 0, 1 corresponds to the
thimble originating at Nsþ and flowing down to right and
left, respectively. On the other hand, much away from
the saddle point we have Re½jδNj3ð∂3NAclÞNsþe

3iα� ¼ 0. As

ð∂3NAclÞNsþ is a real constant, this equation immediately
implies that the thimbles run to infinity at an angle
ð4n� 1Þπ=6. Visual inspection reveals a thimble originat-
ing at Nsþ and flowing down to the right runs to infinity at
an angle π=6. This completes our study of the path-integral
derivation of the momentum space wave function using
the Dirichlet-Neumann boundary condition. We will now
specialize to a different boundary condition, leading to a
modified momentum space wave function with the correct
sign of the exponential prefactor in the semiclassical limit.

2. Momentum space wave function:
Robin-Neumann boundary condition

In the previous section, we obtained the wave function in
the momentum representation, with Dirichlet-Neumann
boundary conditions. It is possible to generate another
wave function in the momentum representation by setting a
Robin boundary condition on the initial hypersurface,
instead of the Dirichlet boundary condition. For this
purpose, we may consider the following boundary term:

ABoundary ¼ −
V3

8πGN

ffiffiffiffi
Λ
3

r
q

3
2ð0Þ; ð68Þ

the inclusion of which in the action given in Eq. (54), yields
upon variation the following:

δAfinal ¼
3V3

8πGN

Z
1

0

dt

�
ð−q̇þ 2NBÞδB þ

�
Ḃ − N

Λ
3

�
δq

−
�
−B2 −Kc þ

Λ
3
q

�
δN

�
þ 3V3

8πGN

×

�
−qð0Þδ

�
Bð0Þ þ

ffiffiffiffi
Λ
3

r ffiffiffiffiffiffiffiffiffi
qð0Þ

p �
þ qð1ÞδBð1Þ

�
:

ð69Þ
As evident from the variation, for consistency, we need
to fix the conjugate momentum on the final surface
(characterized by tf ¼ 1), corresponding to the Neumann
boundary condition, and on the initial hypersurface

(characterized by ti ¼ 0) we fix a combination of B and
q, leading to a Robin boundary condition. When explicitly
spelled out, these conditions read,

Bð1Þ≡ B1; Bð0Þ þ
ffiffiffiffi
Λ
3

r ffiffiffiffiffiffiffiffiffi
qð0Þ

p ≡
ffiffiffiffi
Λ
3

r
a0; ð70Þ

where a0 is, in general, a complex number, for which we
shall choose an appropriate value later. For an interesting
interpretation of the above boundary conditions, see [33].
Again, the phase space path integral will be dominated by
the solution of the dynamical Einstein equations [Eqs. (56)
and (57)] satisfying the boundary conditions Eq. (70) and
its explicit form is the following:

q̄ðtÞ ¼ Λ
3
N2t2 þ 2Nt

�
B1 −

Λ
3
N

�

þ 3

Λ

� ffiffiffiffi
Λ
3

r �
a0 þ

ffiffiffiffi
Λ
3

r
N

�
− B1

�2
: ð71Þ

Like before, in this case, as well, we can identify the saddle
point(s) of the action evaluated on the classical trajectory,
by solving the equation ð∂Acl½q̄ðNÞ�=∂NÞNs

¼ 0. This
yields, a single saddle point given by

Ns ¼
a0

ffiffiffi
Λ
3

q
ð2B1 − a0

ffiffiffi
Λ
3

q
Þ þKc

2a0ðΛ3Þ
3
2

: ð72Þ

If we wish to have a wave function that corresponds
to the Hartle-Hawking no-boundary proposal, then it is
natural to impose the boundary condition that the minis-
uperspace geometry at the above saddle point must start
from a zero size. This condition can be imposed by setting
q̄ðt ¼ 0ÞjNs

¼ 0, which in turn, fixes the parameter a0 to
have the following values:

a0 ¼ �i

ffiffiffiffi
3

Λ

r ffiffiffiffiffiffi
Kc

p
: ð73Þ

Therefore, the classical action evaluated at the saddle point,
but with different choices for the initial Robin boundary
condition, characterized by a0, reads

Acl½Ns; a0 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
�

¼ 3V3

8πGNΛ
ðB3

1 þ 3KcB1 ∓ 2iK
3
2
cÞ: ð74Þ

We shall show below (in Sec. V B 1) that the perturbation
around the saddle point geometry corresponding to the
choice a0 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
is unstable, and hence this choice

is not physical. We shall proceed with the positive
imaginary choice for a0. To find out the wave function
in the momentum space, we need to figure out which
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contour on the complex lapse function plane should C,
which is the original contour along the real lapse function
axis, be deformed to. As evident from Fig. 2, there are only
two possible contours that pass through the saddle point
and along which the Re½Acl� is a constant. The vertical one
among these two contours corresponds to the steepest
descent contour, as it starts and ends in regions where
Im½Acl� remains positive. Given this deformation contour C̄
(red dashed line), the momentum space wave function can
be immediately obtained, since in the semiclassical limit,
the wave function is given by the classical action at the
saddle point. Therefore, the momentum space wave func-
tion assumes the following form:

ΦIðB1; a0 ¼ þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
Þ

∼ exp

�
i
ℏ
Acl½Ns; a0 ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
�
�

¼ exp

�
i
3

hΛ

�
B3
1

3
þKcB1

�
þ 2

hΛ
K

3
2
c

�
: ð75Þ

Thus the choice, a0 ¼ þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
, leads to an exponential

factor in the front, growingwith a decrease inΛ, as per theno-
boundary wave function. Moreover, for the choice
a0 ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
, it follows from Eq. (72) that the saddle

point is given by the expression Ns ¼ ð3=ΛÞðB1 − i
ffiffiffiffiffiffi
Kc

p Þ.
Then it is clear that the position of the saddle point depends
on the torsion parameter. As the torsion parameter c
increases, Kc decreases, and hence the saddle point
approaches the real line (as B1 is real), which can be readily
verified fromFig. 2. It is also to be noted performing a similar
calculation as before, the angle of the thimble at the saddle

point can be calculated. It turns out that the thimble runs at a
constant angle ð2nþ 1Þπ=2; n∈Z throughout, where
n ¼ 0, 1 may correspond to the relevant thimbles.
We shall now derive the coordinate-space wave function

using the path-integral method.

3. Coordinate-space wave function:
Neumann-Dirichlet boundary condition

Having derived the wave functions in the momentum
representation, in the previous sections, with various boun-
dary conditions, herewewish to determine thewave function
in the coordinate representation. As evident, this will require
the use of boundary conditions, different from those we
employed earlier. To be specific, we shall be using aDirichlet
condition (fixed coordinate) for the final boundary hyper-
surface. Whereas, for the initial boundary hypersurface we
have three possibilities; (a) a Dirichlet condition, (b) a
Neumann condition, or (c) a Robin condition. The issue
with an initialDirichlet condition (alongwith a finalDirichlet
condition as well) is that the perturbations become unstable
(see [28,29]). We do not expect this result to change even
with the inclusion of torsion. Thus, we straight awaymove to
discuss the scenario, where we have set Dirichlet and
Neumann conditions on the final and initial boundary
hypersurfaces, respectively.
In order for the Neumann-Dirichlet boundary condition

to be consistent with the classical variational problem,
described by the action in Eq. (54), we must use the
following boundary term:

ABoundary ¼ −
3V3

8πGN
qð1ÞBð1Þ: ð76Þ

FIG. 2. Contours of Re½iAcl� in the plane of the complex lapse function have been presented, for different choices of the torsion
parameter c. In all of these plots, the regions for which Re½iAcl� is positive(negative) are shown in shades of dark red(blue). The regions
of convergence lie with the wedges with asymptotic bounds Arg½N − ð3=ΛÞðB1 − i

ffiffiffiffiffiffi
Kc

p Þ�∈ ðπ=4; 3π=4Þ ∪ ð5π=4; 7π=4Þ, for the choice
a0 ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kc=Λ

p
. The only saddle point Ns for this choice of a0 is located on the lower half of the complex plane. The black lines

correspond to the steepest ascent/descent flow lines passing through the saddle point. The original contour of integration is represented
by C and corresponds to the green line, on the other hand, C̄ depicts the actual contour of integration passing through the only saddle
point Ns (red dashed line).
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Besides getting the same equations of motion, as in
Eqs. (56)–(58), wewill have to fix q at the final hypersurface
(tf ¼ 1) and the conjugate momentum B at the initial
hypersurface (ti ¼ 0). This allows us to impose the initial
Neumann and finalDirichlet boundary conditions as follows:

qð1Þ ¼ q1; Bð0Þ ¼ π0: ð77Þ

The solution to the classical dynamical equations, as in
Eqs. (56) and (57), consistent with the above boundary
conditions becomes

q̄ðtÞ ¼ Λ
3
N2t2 þ 2Nπ0tþ q1 −

Λ
3
N2 − 2Nπ0: ð78Þ

As the phase-space path integral is dominated by the classical
action, which is simply the action evaluated for this classical
solution, using Eq. (78) we obtain

Acl ¼
3V3

8πGN

�
Λ2

27
N3 þ Λ

3
π0N2

þ
�
Λ
3
q1 −Kc − π20

�
N − π0q1

�
: ð79Þ

Now, as for the integration over the lapse function, we shall
again use the steepest-descent approximation, wherein we
extend the lapse function from real to a complex variable and
then choose a suitable integration contour, along which the
Re½Acl� remains constant, whereas Im½Acl� becomes a
positive quantity, signaling exponential decay, away from
the saddle point (see Fig. 3). Therefore, along this new
contour, the integral is approximated by the saddle points of
the action. For the classical action in Eq. (79), there are two
saddle points and they are located at

Ns� ¼ 3

Λ

�
−π0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 −Kc

r �
: ð80Þ

If we require the saddle point geometries to correspond to
Hartle-Hawking no-boundary geometry that starts with a
zero size, then we must impose the additional condition that
q̄ðt ¼ 0ÞjNs� ¼ 0. This in turn determines the possible
choices for the initial momentum to be

π0 ¼ �i
ffiffiffiffiffiffi
Kc

p
: ð81Þ

As in the previous example, here also we will work with the
positive imaginary solution since the negative imaginary
choice for π0 leads to unstable perturbations around the
saddle point geometries. Due to this choice, the saddle points
are located in the lower half complex plane, as evident from
Fig. 3. With a stronger value for the torsion parameter, it
follows that Kc → 0, and hence π0 tends to zero as well,
thereby shifting the saddle points toward the realN axis. This
feature can alsobe seenby comparing the three plots inFig. 3,
for different choices of the torsion parameter. Moreover,
thimbles at saddle point Nsþ in the present case satisfy

Re

�
jδNj2 Λ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 −Kc

r
e2iα

�
¼ 0: ð82Þ

In the classically allowed domain we have ðΛ=3Þq1 > Kc,
and thus the expression within the square root is real. Thus
the above equation implies α ¼ ð4n� 1Þπ=4; n∈Z,
whereas visual inspection reveals the thimble originating
atNsþ running to the right makes an angle π=4. On the other
hand, towards infinity, the thimble takes an angle π=6.

FIG. 3. We show the contour plot of Re½iAcl� in the plane of the complex lapse function for different choices of the torsion parameter c.
In all the plots, the regions where Re½iAcl� is negative(positive) have been shown in shades of blue(red). The regions of convergence
asymptotically remain within the wedges Arg½N þ ið3=ΛÞ ffiffiffiffiffiffi

Kc
p �∈ ð0; π=3Þ ∪ ð2π=3; πÞ ∪ ð4π=3; 5π=3Þ. The two saddle points ðNs�Þ

have been presented as yellow dots. The black curves are the steepest descent/ascent flow lines passing through the saddle points. C
corresponds to the original integration contour (green line), which is deformed into C̄2 ∪ C̄1 (red dashed curves) such that these pass
through the saddle points Ns� and runs along the Lefschetz thimbles starting and ending in the regions of convergence.
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Further, as evident from Fig. 3, unlike previous scenar-
ios, here both the saddle points will contribute, and hence
the real integration contour C has to be deformed into
C̄2 ∪ C̄1, for which the convergence of the integrand is
ensured. Thus the wave function in the coordinate space,
approximated by the behavior of the classical action at the
saddle points become

ΨIðq1Þ ∼
X

j¼sþ;s−
ei

π
4
signð∂2NAcljNj

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ
j∂2NAcljNj

j

s
e

i
ℏAclðNjÞ

∝
eþ

2
hΛK

3
2
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ
3
q1 −Kc

4

q cos
��

2

hΛ

��
Λ
3
q1 −Kc

�3
2

−
π

4

�
:

ð83Þ

The cosine function arises since the above expression
involves a sum over both saddle points. The above wave
function exactly corresponds to the semiclassical limit of
the coordinate-space wave function in Eq. (44), derived
from the Wheeler-DeWitt equation. Thus in all these cases,
there is a direct one-to-one correspondence between the
wave functions obtained from the semiclassical limit of
the path-integral formulation with those derived from the
Wheeler-DeWitt equation.

C. Wave function from path integral
in bouncing scenario

Having demonstrated the path-integral quantization for
torsionful inflationary cosmology, we now turn our atten-
tion to the torsionful bouncing scenario. Since the path-
integral quantization for the bouncing model, as we shall
see, proceeds along the lines of the inflationary case, we
choose to demonstrate the path-integral quantization for
only one suitable boundary condition—an initial Neumann
and final Dirichlet condition. This should lead us to
the coordinate-space bouncing wave function in its semi-
classical limit. Let us first recall that the action for the
s-parametrized bouncing models has the following form:

ABounce ¼
3sV3

4πGN

Z
1

0

dt

�
−q̇B − N

�
−

1

2s
B2 þ 1

2s
c2

−
4πGN

3s
ρ0ðΩ − qÞ

��
þ 3V3

8πGN
qB

				
Bondary

: ð84Þ

Like before, here also we construct the final action by
adding a boundary term to the above action, Afinal ¼
ABounce þABoundary, such that the variational problem con-
sistently supports an initial Neumann and final Dirichlet
boundary condition. For the action in Eq. (84), the
boundary term has the following form:

ABoundary ¼ ð1 − 2sÞ 3V3

8πGN
qð0ÞBð0Þ − 3V3

8πGN
qð1ÞBð1Þ;

ð85Þ

and we notice that the boundary term depends on the value
of s, that is, on the particular bouncing model being
considered. With this boundary term, the variation of the
action Afinal yields,

δAfinal ¼
3sV3

4πGN

Z
dt

��
Ḃ −

4πGN

3s
Nρ0

�
δq

þ
�
−q̇þ N

s
B
�
δB

− δN

�
−

1

2s
B2 þ 1

2s
c2 −

4πGN

3s
ρ0ðΩ − qÞ

��

−
3sV3

4πGN
½Bð1Þδqð1Þ þ qð0ÞδBð0Þ�; ð86Þ

such that, we can now set the desired boundary conditions
for the variational problem,

qð1Þ ¼ q1; Bð0Þ ¼ π0: ð87Þ

Moreover, from the variations with respect to q, B, and N,
respectively, we recover the dynamical, as well as con-
straint equations for the bouncing scenario,

Ḃ ¼ N
σ

2s
; ð88Þ

q̇ ¼ N
s
B; ð89Þ

−
1

2s
B2 þ 1

2s
c2 −

σ

2s
ðΩ − qÞ ¼ 0; ð90Þ

where, we have used the definition σ ≡ ð8πGN=3Þρ0,
which will be the Hubble squared if a torsionless universe
had been filled with constant matter energy density ρ0. The
solution of the dynamical equations, presented in Eqs. (88)
and (89), which is consistent with the boundary conditions
in Eq. (87), has the following explicit form:

q̄ðtÞ ¼ N2
σ

4s2
t2 þ N

π0
s
tþ q1 − N2

σ

4s2
− N

π0
s
: ð91Þ

Again, the path integral over the phase space is dominated
by the classical solution to the dynamical equations
and hence the coordinate-space wave function is an
integration over the lapse function with the integrand being
exp ½ði=ℏÞAclðNÞ�. Here AclðNÞ is the action evaluated at
the above classical solution and is given by

LORENTZIAN QUANTUM COSMOLOGY WITH TORSION PHYS. REV. D 109, 043525 (2024)

043525-17



AclðNÞ ¼ 3sV3

4πGN

�
N3

σ2

24s3
þ N2

σ

4s2
π0

þ N
2s

ð−c2 þ π20 þ σðΩ − q1ÞÞ − π0q1

�
: ð92Þ

The integration of the lapse function along the real line has to
be converted to an integration over the plane of the complex
lapse function to ensure convergence. Subsequently, in the
semiclassical limit, one employs the method of steepest
descent wherein the most contribution to the integral comes
from the relevant saddle points through which the Lefschetz
thimbles pass. Thus it is important to determine the saddle
points of the classical actionAclðNÞ in the complex N plane
and these are given by

Ns� ¼ −π0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðq1 −ΩÞ þ c2

p
ðσ=2sÞ : ð93Þ

Since we are working in a bouncing model, the universe can
never reach zero size, classically. Therefore, we demand the
saddle point geometries to also start from a finite size,
and hence we impose the following initial condition:
q̄ðt ¼ 0ÞjNs� ¼ q0, for a finite real number q0 > 0, yielding,

π0 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðΔ − q0Þ

p
; ð94Þ

where for convenience, we have defined a quantity
Δ≡Ω − ðc2=σÞ, which is the value of the scale factor q
at the bounce in the classical theory (see, the case of
q-independent model of torsion in Eq. (36), for details).
A priori q0 is an arbitrary quantity, and we will keep it that
way for reasons to be elaborated on later, in connection with
the stability analysis. It may appear tempting to equate q0
with the scale associated with the bouncing scenario, that is,
for a q-independent model using the condition: Δ ¼ q0.
Since Ω and c are parameters of the problem, the above
condition can always be imposed (however, if one elevates
the torsion parameter c to be an operator, the above classical
constraint may not be satisfied). This in turn demands
π0 ¼ 0. This is because π0 is related to the Hubble parameter
and at the bouncing scale the Hubble parameter identically
vanishes. For vanishing π0 and for the final size q1 of the
universe is such that, q1 > Δ, it follows that the saddle points
Ns� are both situated on the real axis in the plane of complex
lapse function. However, it will turn out that the above saddle
points are unstable under external scalar perturbations. The
other possibility will be to consider q0 ¼ 0, which would
provide a formal similarity of the wave function in the
bouncing model with the Hartle-Hawking no-boundary
proposal. However, we avoid this case as the saddle point
geometry encounters an initial singularity (see [35]). Thus,
wewill neither assume q0 ¼ 0 nor shall we take it to be equal
to the scale of the bounce, rather wewill keep q0 arbitrary for
the moment being, but smaller than the scale of the bounce.

In which case, π0 is a purely imaginary quantity and the
saddle points are complex. The saddle points, aswe shall see,
are stable only in the case of positive imaginary π0.
The corresponding situation involving the complex

saddle points as well as the steepest descent and steepest
ascent contours has been depicted in the complex lapse
function plane, in Fig. 4. As evident, the original contour of
integration C (demonstrated by the Green line) can be
deformed into the union of two steepest descent contours C1
and C2, passing through the saddle points Nsþ and Ns−,
respectively. This deformation of contour works for all
choices of the torsion parameter c (see Fig. 4 for the
integration contour involving two different choices of the
torsion parameter). Thus the coordinate-space wave func-
tion depends on the contribution from both saddle points,
and hence it is straightforward to compute the coordinate-
space wave function of the universe in the bouncing
scenario as

ΨBðq1Þ ∼
X

j¼sþ;s−
ei

π
4
signð∂2NAcljNj

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ
j∂2NAcljNj

j

s
e

i
ℏAclðNjÞ

∝
exp ½2

ffiffi
σ

p
3hs

ðΔþ q0
2
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ − q0
p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðq1 − ΔÞ4
p

× cos

�
2

ffiffiffi
σ

p
3hs

ðq1 − ΔÞ32 − π

4

�
: ð95Þ

The above wave function corresponds to the solution of
the Wheeler-DeWitt equation in the semiclassical limit,
as expected, and can be seen from Eq. (50). Thus we have
demonstrated that the wave functions arising from the
solution of the Wheeler-DeWitt equation, also arise from
the semiclassical limit of the path integral, even in the
context of a bouncing scenario, when the appropriate
contour(s) of integration has been used. It is to be
emphasized that, even though the lapse integral can either
be performed over the whole real line, leading to a solution
of the Hamiltonian constraint, or over the half-line, leading
to Green’s function, here we have chosen to calculate the
former because then the obtained result can be readily
checked against the known and expected solution to the
Wheeler-DeWitt equation. We will now determine the
stability of these saddle points under scalar field perturbation
and shall determine the corresponding power spectrum.

1. Interpretation of the bouncing wave function

In quantum cosmology, given a wave function, comput-
ing the probability and assigning physical interpretation to
it can be a challenging task in its own right and thus have
engendered numerous suggestions of how an appropriate
probability measure can be defined (see, for example,
[34,64–68]). In the present context we may define a relative
probability between any two given configurations of the
early Universe in the following manner. We start with the
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conserved current associated with the Wheeler-DeWitt
equation in the coordinate-space representation, which
yields,

J ¼ −
iℏ
2
ðΨ�B

∂q1Ψ
B −ΨB

∂q1Ψ
�BÞ; ð96Þ

whereΨB is the wave function, dependent on the final scale
factor q1, in the bouncing scenario. For the real wave
function of the bouncing universe, as in Eq. (95), the above
current is identically zero, because the WKB modes
corresponding to the expanding and contracting branches
of the bouncing universe cancel each other. However, for a
single WKB mode of the universe, say the one correspond-
ing to the saddle point Nsþ, the current is given by

JΔ ∝ exp

�
4

ffiffiffi
σ

p
3hs

�
Δþ q0

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ − q0

p �
: ð97Þ

Then the probability measure of the universe, for a given
value of Δ is dPΔ ¼ JΔdV, where dV is a volume element

of the minisuperspace. JΔ being a constant (that is the
whole point of the existence of a conserved current), the
total probability is obtained by integrating over the entire
minisuperspace, which becomes proportional to its volume,
and is infinite. Since the above does not provide a sen-
sible description for probabilities, rather than talking about
absolute probabilities here, we can define a relative pro-
bability of any configuration of the universe characterized
by a value of Δ with respect to a fiducial state as

PðΔjΔfiducialÞ≡ lim
vol→∞

JΔ · ðvolÞ
JΔfiducial

· ðvolÞ ¼
JΔ

JΔfiducial

¼ exp

�
4

ffiffiffi
σ

p
3hs

��
Δþ q0

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ− q0

p
−
�
Δfiducial þ

q0
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δfiducial − q0

p ��
: ð98Þ

Without the loss of any generality, this fiducial state can be
taken to be the torsionless state of the universe. Then given
a value of Ω, which refers to the relative density of the

FIG. 4. We present the saddle points, as well as the steepest descent and the steepest-ascent contours. For this plot, we have chosen the
initial scale factor of the saddle point geometry to be q0 ¼ 0.045. Note that the initial size is taken to be smaller than the scale of classical
bounce. In this case, there are two saddle points and both lie in the lower half of the complex plane. The existence of two complex saddle
points is generic and exists irrespective of the bouncing model under consideration, e.g., whether we consider the matter bounce scenario
(s ¼ 1) or otherwise (for, e.g., s ¼ 3=2). The steepest-descent contours (depicted by red and black dashed lines) asymptote to the dark
blue regions, where Im½Acl� > 0 and the path integral along them converges, while the steepest-ascent contours (black lines) asymptote
to dark red regions with Im½Acl� < 0 and the path integral along them does not converge. The original integration contour C, shown by a
green line, needs to be deformed to the steepest-descent contours C̄1 ∪ C̄2 to obtain the wave function of a bouncing universe from the
path integral.
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bounce-enabling matter compared to the standard matter
field present, we always have Δfiducial ≥ Δ, with the
equality holding true only when the torsion vanishes.
Therefore, we see that a state with nonzero torsion has a
lower probability associated with it compared to a state
with zero torsion. This can be understood as the quantum
version of the classical secondary constraint which implies
that torsion vanishes in the case of vanishing spin current
coming from the fermionic degrees of freedom, thereby,
rendering the first and the second-order formalism of the
gravity theory equivalent. In quantum theory, then, this
classical condition becomes a statement regarding the
probability of small torsion being large, i.e., zero torsion
is a favorable state of the universe.
Moreover, it has been observed that whenever the

solution of the following form Ψ ∼ eðAþiPÞ=ℏ is substituted
to the Wheeler-DeWitt equation and is expanded in the
powers of ℏ, the first few leading order terms in the
equation reduce to the classical Hamilton-Jacobi equation,
if the amplitude of the wave function varies considerably
slower than the phase of the wave function. In other words,
if ð∂A=∂q1Þ ≪ ð∂P=∂q1Þ (see, [69,70] for details). For the
case of the saddle point Nsþ, in the context of bouncing
cosmologies we obtain,

∂A=∂q1
∂P=∂q1

∝
1

ðq1 − ΔÞ32 ∼ a
− 3
2s

1 → 0; ð99Þ

where the limit corresponds to a large final size for the
universe, i.e., q1 ≫ 1 and we have used the relation
a1 ¼ qs1. We can immediately see that the universe attains
classicality as its size increases at a rate 1=V1=2s, where V is
the volume of the universe. For the case of an inflationary
universe, s ¼ 1=2, and the rate of classicalization corre-
sponds exactly to the volume of the universe. However, in a
bouncing model, say in the case of matter bounce (with
s ¼ 1), the classicality is obtained at a rate 1=

ffiffiffiffi
V

p
, much

slower than the inflationary case. This may imply that for
such bouncing scenarios the quantum nature of the universe
is retained longer than the inflationary case as the universe
continues to grow. We will investigate this further in a
separate work.
We would like to emphasize that, there is no clear

prescription for the choice of the initial boundary con-
dition. Demanding that the saddle point geometry be the
Hartle-Hawking (HH) no-boundary geometry, and that the
perturbations around the saddle is stable, uniquely deter-
mine the free-parameter of the initial Robin condition,
or, the value of the momentum for the initial Neumann
boundary condition. Intriguingly, the power spectrum
predicted by the no-boundary saddle point geometry with
both initial Neumann and Robin conditions is exactly the
same. Hence from the power spectrum, it is almost
impossible to distinguish the initial conditions for our
universe, if the HH no-boundary wave function describes

the initial quantum state of our Universe. For the bouncing
scenario, on the other hand, there can be some differences.
We wish to investigate this point—the effect of initial
boundary conditions on the power spectrum in a bouncing
scenario—in our future work.

V. QUANTUM PERTURBATIONS AGAINST
THE SADDLE POINT GEOMETRY

In the path-integral formalism, it is possible to impose
various boundary conditions on the geometries at the
initial and the final hypersurfaces. Each of these boundary
conditions leads to different wave functions for our universe,
in the semiclassical limit. But for these wave functions to
represent a valid quantum state of the universe, they must be
stable under external perturbations. Such a stability analysis
will also enable us to determine the power spectrum of these
primordial fluctuations, which can have a direct observa-
tional signature in the cosmic microwave background.
In what follows, we first provide a general setup

regarding the scalar perturbations, before specializing to
inflationary and bouncing scenarios.

A. General setup

In this section, we consider a real scalar field, described
by ϕðxÞ, on the background spacetime defined by the
saddle point geometries that dominate the minisuperspace
path integral, as we have discussed above. The perturbation
due to the scalar field will be considered to be small so that
the backreaction of the scalar field on the background
geometry can be ignored. Since the perturbing scalar field
lives on the classical background geometry, we may take its
action to be Apert½ϕ; q̄; Ns�, defined on the background
spacetime characterized by the scale factor q̄ðtÞ, which is
the classical solution to the Einstein’s dynamical equations
and then evaluating the same at the saddle points Ns of
the (gravityþmatter) action. Explicitly, the action for the
scalar field reads,

Apert ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ; ð100Þ

which corresponds to the minimal coupling of a scalar field
with gravity. It is to be emphasized that the spacetime
torsion does not directly couple to the scalar degree of
freedom. Moreover, as far as the background spacetime is
concerned, the classical solution q̄ðtÞ is also independent of
torsion. Therefore, the information regarding torsion enters
only through the saddle points Ns, i.e., through Einstein’s
constraint equation.
Given the symmetries of the background spacetime, it is

possible to decompose the scalar field into time-dependent
and space-dependent parts, such that,

ϕðxÞ ¼
X
nlm

vnlmðtÞQnlmðxÞ: ð101Þ
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Here vnlmðtÞ is the time-dependent part of the scalar field
and QnlmðxÞ is the space-dependent part. We will come
back to the time-dependent part in a moment, while the
spatial part satisfies the Helmholtz equation,

D2Qnlmðr; θ;ϕÞ ¼ −k2Qnlmðr; θ;ϕÞ; ð102Þ

where D2 ¼ γijDiDj, with Di being the spatial covariant
derivative defined by the induced 3-metric γij on the spatial
hypersurface. The comoving wave number k is related to
the eigenmode index n, but the relationship is different in
spaces with different spatial curvature index K. These are
expressed as follows:

k2 ¼
�
n2; n ≥ 0; K ¼ 0;

n2 − 1; n ¼ 1; 2; 3;…; K ¼ þ1;
ð103Þ

where, for K ¼ 0, n is a continuous quantity, while for
K ¼ 1, n can only take integer values. The spatial eigen-
function Qnlmðr; θ;ϕÞ can further be decomposed into
radial and angular parts, such that the radial part satisfies
the radial harmonic equation in spaces with curvature K
and the angular parts are given by spherical harmonics.
Moreover, l takes values from 0 to n − 1 in integer steps,
and for each l, the number m takes values from −l to þl
(for further details of this decomposition, see [59,71]).
Here, we will only require the following orthonormality
condition:Z

d3x
ffiffiffi
γ

p
Q�

nlmðxÞQpl0m0 ðxÞ ¼ δðn; pÞδll0δmm0 ; ð104Þ

where γ is the determinant of the three-metric γij, and the
symbol δðn; pÞ represents the Dirac delta function in the
case of flat space and Kronecker delta in the case of closed
space, such that

δðn; pÞ ¼
�
δðn − pÞ ¼ δðk − k0Þ; K ¼ 0;

δnp; K ¼ þ1:
ð105Þ

In what follows the angular indices ðl; mÞ are not of much
significance because of the degeneracies associated with
them, rather the index n, arising out of the radial behavior
of the mode functions of the scalar field is of much impor-
tance. Thus we will suppress all the angular indices for
notational convenience and hence the action in Eq. (100)
can be decomposed as a sum of individual eigenmode
components, as

Apert ¼
X
n

Apert;n: ð106Þ

In the above expression, we will have summation if the
spatial sections of the universe are closed, while integration
will replace it if the spatial sections are flat. Each of the

decomposed parts of the scalar field action can be written as
an integration over the coordinate time, such that,

Apert;n½v; q̄; Ns� ¼
1

2

Z
1

0

dtNs

�
q̄2

v̇n2

N2
s
− k2q̄ð4s−2Þv2n

�
;

ð107Þ
where, the quantity k is related to n through Eq. (103), and
q̄ is the classical solution of Einstein’s dynamical equations
at the saddle points Ns. The equation of motion corre-
sponding to the above action in Eq. (107), can be expressed
in terms of the time-dependent part of the scalar field,
namely vnðtÞ, which reads

v̈n þ 2
˙̄q
q̄
v̇n þ N2

sk2q̄ð4s−4Þvn ¼ 0: ð108Þ

Note, from the above equation of motion, it is clear that the
eigenmodes vnðtÞ do not explicitly depend on ðl; mÞ,
thereby justifying the suppression of these indices earlier.
We would like to emphasize that similar perturbations can
also arise in the gravitational sector. The gravitational
perturbation, in the transverse-traceless gauge, leads to
two tensor modes hþ and h×, both of which individually
satisfy equations of motion identical to that of a massless
scalar field with no potential, as in Eq. (108). The only
difference between the tensor and the scalar perturbations
is that the action for the tensor perturbations is weighted
with ð1=16πGÞ, which can be captured by rescaling the
scalar field. Thus it follows that, even though we have only
shown computations for a scalar perturbation, it can either
represent the metric fluctuations or may represent some
putative matter field, possibly of quantum origin and
perturbing the isotropic and homogeneous universe. This
in turn implies that such perturbations are natural in going
beyond the minisuperspace approximation and their sta-
bility is essential to assess the initial condition for our
Universe. Therefore, it is justified to take the point of view
that the initial boundary condition should be such that the
background geometry remains stable against the perturba-
tions, be it scalar or, gravitational.
As thepath integral for any dynamical degree of freedom is

dominated by the action evaluated at the classical solution,
the classical action for the scalar perturbation must be
computed. To do this, we rewrite the action for the scalar
field in Eq. (107) by employing integration by parts as

Apert;n ¼
1

2

Z
1

0

dt

�
−
q̄2

Ns
vn

�
v̈n þ 2

˙̄q
q̄
v̇n þ N2

sk2q̄ð4s−4Þvn

�

þ d
dt

�
q̄2

Ns
v̇nvn

��
: ð109Þ

Note that the terms inside the first round brackets involving
v̈n identically vanish when the classical equations of motion
are used, thanks to Eq. (108). Therefore, only the term
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involving the total time derivative remains in the action for
the perturbation scalar field. Expressing the time-dependent
part of the scalar perturbation asvnðtÞ≡ φ1nfFnðtÞ=Fnð1Þg,
the classical action for the scalar field can be written as

Apert;n ¼
q̄2ð1Þ
2Ns

Ḟnð1Þ
Fnð1Þ

φ2
1n; ð110Þ

where, we have imposed the initial conditions that
vnð0Þ ¼ 0. Since the time dependence in vn translates into
the time dependence of the function Fn, it follows that Fn
also satisfies the same equation ofmotion as vn, in particular,

F̈n þ 2
˙̄q
q̄
Ḟn þ N2

sk2q̄ð4s−4ÞFn ¼ 0: ð111Þ

Thus, we have decomposed the scalar field into individual
mode functions, which are decoupled from each other and
can be determined independently using the second-order
differential equation, presented in Eq. (111). The next step is
to consider the wave function of the background, along with
the perturbation scalar field.
The wave functional for the (gravityþmatter þ scalar

field) system, in the momentum space, can be represented
as Φtotal½B1;φ1� ≈ΦðB1Þχ½φ1ðxÞ�, i.e., the total wave func-
tional is a product of the wave function for the unperturbed
universe in the momentum space, given by ΦðB1Þ and the
wave functional for the perturbation, denoted by χ½φ1ðxÞ�.
A similar description exists in the coordinate-space repre-
sentation as well, where Ψtotal½q1;φ1� ≈ Ψðq1Þχ½φ1ðxÞ�. In
both of these cases, we have introduced the notation:
ϕðtf ¼ 1; xÞ≡ φ1ðxÞ. The wave functions for the universe,
in both coordinate and momentum representations, have
already been discussed in detail in the last section, here we
concentrate on the wave functional χ½φ1ðxÞ�. Since the
scalar field can be decomposed into a large number of
decoupled modes, it follows that, the wave functional
χ½φ1ðxÞ� can be expressed as

χ½φ1ðxÞ� ¼
Y
n

χnðφ1nÞ; ð112Þ

where the wave function χnðφ1nÞ, associated with each of
the decoupled modes is defined as a sum over histories of
that mode between its initial and final values φ0n to φ1n,
such that,

χnðφ1nÞ ¼
Z

∞

−∞
dφ0n

Z
vnð1Þ¼φ1n

vnð0Þ¼φ0n

D½vn�ei
ℏApert;n½vn;q̄;Ns�χ0nðφ0nÞ:

ð113Þ

Here, χ0nðφ0nÞ is a suitably chosen initial wave function for
the n-th mode of the scalar field ϕ. It is conventional to
choose the initial value of all the mode functions to be zero,
i.e., φ0n ¼ 0, which in turn implies Fnð0Þ ¼ 0 as well.
Then the initial wave function for the scalar field pertur-
bation can be simply chosen as χ0nðφ0nÞ ¼ δðφ0nÞ, and
hence the path integral turns out to be

χnðφ1nÞ ∝ exp

�
i
ℏ
Apert;n

�
¼ An exp

�
i
q̄2ð1Þ
2ℏNs

Ḟnð1Þ
Fnð1Þ

φ2
1n

�
;

ð114Þ
where An is a suitable normalization. Note that the real part
of the coefficient of φ2

1n in the exponent of the above wave
function has to be negative, that is,

EsðnÞ≡ Re

�
i
q̄2ð1Þ
2ℏNs

Ḟnð1Þ
Fnð1Þ

�
< 0; ð115Þ

to describe a Gaussian distribution and be physically
acceptable. On the other hand, if the coefficient in the
exponent EsðnÞ is positive then the perturbations assume an
inverse Gaussian distribution, favoring larger and larger
values of v1n. Such a distribution then leads to instability
and is said to be unphysical. When EsðnÞ is identically zero,
the wave function of that particular mode becomes pure
phase and hence is non-normalizable.
Assuming that around a particular saddle point geometry

we get physically viable perturbations with Gaussian
distribution, that is with EsðnÞ < 0, then the normalization
constant of the mode functions An can be determined by
imposing the condition that the integral of χ�nðφ1nÞχnðφ1nÞ
over all possible final configurations φ1n of the nth mode of
the scalar field should be unity, yielding

jAnj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
jEsðnÞj

r
: ð116Þ

The modulus takes care of the fact that EsðnÞ is negative for
stable configurations of the scalar field. Given the wave
functions associated with each individual mode of the
scalar field, we can calculate the power spectrum associated
with the scalar perturbations. The computations will be
different depending on the values ofK, here we will present
the computation for a closed universe, with K ¼ þ1. The
power spectrum is obtained by computing the expecta-
tion value of the squared scalar perturbation in the state
described by the wave functional χ½φ1ðxÞ�, and then
averaged over all space at the final hypersurface (where
we make our observations), which yields,
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hχ½φ1ðxÞ�jφ2
1ðxÞjχ½φ1ðxÞ�iavg ¼

1

V3

Z
d3x

ffiffiffi
γ

p X
nlm

n0l0m0

Y
p

hχpðφ1pÞjvnð1Þv�n0 ð1Þjχpðφ1pÞiQnlmðxÞQ�
n0l0m0 ðxÞ

¼
X
nlm

1

2π2
hχnðφ1nÞjvnð1Þv�nð1Þjχnðφ1nÞi

Y
p≠n

hχpðφ1pÞjχpðφ1pÞi

¼
X
n

n2

2π2
hχnðφ1nÞjvnð1Þv�nð1Þjχnðφ1nÞi: ð117Þ

Here, we have used the result that for the spatial sector with
K ¼ 1, the three-volume is V3 ¼ 2π2. Moreover, the last
equality follows from the fact that we are working with
Gaussian wave functions χpðφ1pÞ which are normalized to
unity, and the sum over all the degenerate l and m indices
yields the factor of n2. Thus, we finally obtain

hχ½φ1ðxÞ�jφ2
1ðxÞjχ½φ1ðxÞ�iavg ¼

X
n

n
n2 − 1

PðnÞ; ð118Þ

where the power spectrum PðnÞ, associated with the mode
n, is defined as

PðnÞ≡ nðn2 − 1Þ
2π2

hχnðφ1nÞjvnð1Þv�nð1Þjχnðφ1nÞi: ð119Þ

The above definition of the power spectrum at a given scale
n is motivated by the fact that the logarithmic integration in
the continuum is equivalent in the closed universe with the
following discrete sumZ

dk
k

→
X
n

n
n2 − 1

; ð120Þ

along with the fact that the power spectrum is usually
defined as simply the square of the eigenmode amplitude per
logarithmic interval. Further, recalling that vnð1Þ ¼ φ1n, we
can readily calculate the expectation value of vnð1Þv�nð1Þ in
the state described by the wave function χnðφ1nÞ, which
yields,

hχnðφ1nÞjvnð1Þv�nð1Þjχnðφ1nÞi

¼
Z

∞

−∞
dφ1nφ

2
1n

				An exp

�
i
q̄2ð1Þ
2ℏNs

Ḟnð1Þ
Fnð1Þ

φ2
1n

�				2
¼ 1

4jEsðnÞj
: ð121Þ

Therefore, the power spectrum becomes,

PðnÞ ¼ nðn2 −KÞ
8π2jEsðnÞj

; ð122Þ

where, we have inserted the term involving K, to simply
provide a transition from the closed to the flat universe.
For the flat universe, withK ¼ 0, one can simply replace any

summation by integration and the discrete index n need to be
replaced by the continuum index k, which yields (see, [72]
for more details),

PðkÞ ¼ k3

8π2jEsðkÞj
: ð123Þ

The definition of EsðkÞ is identical to Eq. (115), with the
discrete index n being replaced by the continuum index k.
Thuswe have determined the power spectrum for both closed
and flat models of the universe, and it depends on the modes
as—n2ðn − 1Þ for the closed universe and k3 for the flat
universe. In addition, it depends on the classical solution q̄,
the saddle point Ns, and the mode functions Fn and its
derivative at the observing hypersurface located at tf ¼ 1.
The determination of the mode function from Eq. (111)
depends on the choice of s and hence on the bouncing and
inflationarymodels of the earlyUniverse. Inwhat followswe
depict the stability of perturbations around the saddle point
geometry and its implication for boundary conditions in the
path-integral approach.

B. Stability of perturbations around saddle
point geometry

Saddle point geometries dominate the path integral
for the unperturbed universe and depend heavily on the
boundary conditions. We would like to see whether the
scalar perturbations, described above, are stable around
the saddle points picked up by the Picard-Lefschetz theory.
In cases, when the perturbations around a saddle point
geometry grow uncontrollably, the wave function com-
puted with such saddle point(s), even if deemed math-
ematically correct, cannot be considered physical. In this
section, we scrutinize the stability of various saddle points
we discovered in previous sections while discussing the
path-integral problem set up with different boundary
conditions. Since the stability depends crucially on the
quantity EsðnÞ, defined in Eq. (115), which in turn depends
on the mode function Fn and its derivative, the analysis will
differ from inflation and bouncing scenarios.

1. Inflationary scenario

In order to study the stability of the saddle points, as well
as to evaluate the power spectrum, we first need the mode
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functions FnðtÞ, which satisfies the differential equation
in (111). In the case of inflationary scenario, that is when
Eq. s ¼ 1=2, the two linearly independent solutions of
Eq. (111) read

fnðtÞ; gnðtÞ ¼
1ffiffiffiffiffiffiffiffi
q̄ðtÞp �

t− δ

t− γ

��μ
2f½1∓ μ�ðγ − δÞ þ 2ðt− γÞg;

ð124Þ
where fn corresponds to the ‘þ’ sign in the exponent and
‘−’ sign inside the curly bracket and gn is given by the
opposite signs. The constants γ and δ appearing in the
above solutions are the two roots of the equation q̄ðtÞ ¼ 0,
where q̄ðtÞ is the classical solution, which can be repre-
sented as

q̄ðtÞ ¼ N2
infH

2ðt − γÞðt − δÞ; ð125Þ

where Ninf corresponds to the saddle points associated with
the inflationary scenario. In arriving at the above equation,
we have set H2 ¼ Λ=3, and have defined the constant μ as

μ2 ≡ 1 −
4k2

ðγ − δÞ2N2
infH

4
; ð126Þ

which holds for the flat universe. Recalling the relation
between the principle eigenmode number n and the
comoving wave number k, the above quantity μ for the
closed universe is obtained by simply making the trans-
formation: k2 → ðn2 −KÞ. In what follows, we shall set
K ¼ þ1, i.e., we will discuss the stability of saddle points
corresponding to a closed universe. We will now evaluate
the quantities γ, δ, and μ, appearing above, for the saddle
points corresponding to different boundary conditions
associated with the inflationary paradigm, so that we can
get the solutions for the scalar perturbation explicitly and
inspect whether the saddle points are stable. Subsequently,
in Sec. V C using these results we shall calculate the power
spectrum.

2. Dirichlet-Neumann boundary condition

The path-integral prescription and the associated saddle
points depend on the choice of boundary conditions. In the
inflationary scenario, we employed three possible boun-
dary conditions and the first one being the Dirichlet
boundary condition at the initial time and the Neumann
boundary condition at the final time. In which case, as we
have depicted in Sec. IV B 1, the Picard-Lefshetz theory
picks up the saddle point located on the upper-half complex
plane, which becomes,

Ninfþ ¼ 3

Λ
ðB1 þ i

ffiffiffiffiffiffi
Kc

p
Þ: ð127Þ

Here, B1 corresponds to the momentum at the final time,
and Kc ¼ K − c2, where K is the spatial curvature in the

absence of torsion and c is the completely antisymmetric
part of the torsion tensor. Evaluation of the quantities γ, δ
and μ for the above saddle point yields,

γ ¼ 0; δ ¼ 2iKc

B1 þ iKc
; μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kc þ k2

Kc

s
; ð128Þ

where, for a closed inflationary universe k2 ¼ n2 − 1, with
n being discrete. Having determined the constants involved
in the problem, consider the small-time (t ≪ 1) behavior of
the mode functions,

fnðtÞ; gnðtÞ ∝ t∓1
2
ðμ�1Þ; ð129Þ

and hence, for μ� 1 > 0, the mode fn will not be well-
behaved for small t and hence cannot be considered to be
describing the observable universe at early times. It turns
out that if we consider the case when 1 ≥ Kc > 0, then
from Eq. (128), it follows that μ� 1 > 1, and hence the
mode fnðtÞ ∼ t−ðμ�1Þ=2, diverges at t ¼ 0, and has to be
rejected on physical grounds. On the other hand, gnðtÞ ∼
tþðμ�1Þ=2 for the above choice of the parameter μ and goes
to zero at t ¼ 0. Therefore, this is the allowable physical
solution to be considered.
Having discussed the allowable model function, let us

check whether the perturbations are stable around the
saddle point Ninfþ for the initial Dirichlet and final
Neumann boundary conditions. For this purpose, we must
calculate the quantity EsðnÞ with the physically allowable
solution gnðtÞ, which for large B1, corresponding to the
classical limit, yields,

Einf þðnÞ ¼ Re

�
i

q̄2ð1Þ
2ℏNinfþ

�
Ḟnð1Þ
Fnð1Þ

�
gn

�

¼ Re
�
−i

B1ðn2 − 1Þ
2Λ
3

þ ðn2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�

1

B1

��
≃þðn2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�

1

B2
1

�
:

ð130Þ

As evident, Einf þðnÞ > 0 for any n > 1 and from Eq. (114)
it follows that for EinfþðnÞ > 0 the perturbation has an
inverse Gaussian distribution. Therefore the perturbations
grow and the system is unstable. Thus even though the
unperturbed wave function, as in Eq. (65), is mathemati-
cally consistent with the Picard-Lefschetz theory, such a
wave function cannot describe the initial moments of our
universe. Therefore, an initial Dirichlet and final Neumann
boundary condition cannot give rise to a stable universe.
Before moving forward to other boundary conditions,

however, let us consider the case where the torsion
dominates the curvature scale K, yielding a negative or
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a vanishing value for the quantity Kc. When Kc < 0, there
will always be modes for which the quantity μ becomes
imaginary (as n can correspond to any arbitrary eigenmode,
and for a given value of c2, we can always find a mode such
that Kc þ k2 > 0). As a result, both the solutions fn, gn
behave in the following manner:

fnðtÞ; gnðtÞ ∝ t∓ijμj
2
−1
2: ð131Þ

Note that for small t, the absolute value of the complex
modes become, jfnj; jgnj ∼ t−

1
2, and hence diverges. Thus

neither of these modes can be considered as perturbations,
and hence we find no solutions to the equation satisfied by
the mode functions, which can be considered physical.
Therefore, it is only legitimate to constrain the torsion
degree of freedom such that we have always Kc > 0.
Finally, we come back to the case whereKc ¼ 0, i.e., the

torsion and K cancel each other completely. In this case,
the mode functions of the perturbing scalar field take the
following form

fnðtÞ; gnðtÞ ¼
2

B1

ffiffiffiffi
Λ
3

r
e∓

ik
B1t

�
1� ik

B1t

�
: ð132Þ

Furthermore, in the limit Kc → 0, the quantity fNinfþ=q̄g
simplifies to ðB1t2Þ−1 and hence one can identify the
conformal time in this limit as the integral of the above
quantity over the coordinate time t, yielding η ¼ −ðB1tÞ−1.

Intriguingly, the above eigenmodes in the conformal time
resemble the familiar Bunch-Davies solutions�

B1

2

ffiffiffiffi
3

Λ

r �
fkðtÞ; gkðtÞ ¼ e�ikηð1 ∓ ikηÞ: ð133Þ

Then calculating the stability index EinfþðkÞ with the
positive frequency solution gk, we obtain

EinfþðkÞ ≈þ k3
2Λ
3

: ð134Þ

Again we see that the wave function for the individual
modes with positive frequency behaves as an inverse
Gaussian function and hence is unphysical. Therefore,
we see that we must restrict ourselves to the criteria
that there is a bound on the torsional degree of freedom
1 > c2 ≥ 0. This conclusion turns out to be true for all the
different boundary conditions considered for the infla-
tionary scenario as well.

3. Robin-Neumann boundary condition

Having demonstrated the instability associated with the
Dirichlet-Neumann boundary conditions, let us deal in this
section with the stability of staddle point geometry under
the Robin-Neumann boundary condition, as discussed in
Sec. IV B 2. Again, starting from Eq. (71) and evaluating it
at the saddle point Eq. (72), we can rewrite the classical
solution as

q̄ðtÞ ¼ ΛN2
inf

3

0
BBB@t −

� ffiffiffi
Λ
3

q
a0 þ i

ffiffiffiffiffiffi
Kc

p �
2

ffiffiffi
Λ
3

q
a0

� ffiffiffi
Λ
3

q
a0 − 2B1

�
−Kc

1
CCCA
0
BBB@t −

� ffiffiffi
Λ
3

q
a0 − i

ffiffiffiffiffiffi
Kc

p �
2

ffiffiffi
Λ
3

q
a0

� ffiffiffi
Λ
3

q
a0 − 2B1

�
−Kc

1
CCCA; ð135Þ

and hence we can identify the quantities γ and δ with

γ ¼

� ffiffiffi
Λ
3

q
a0 þ i

ffiffiffiffiffiffi
Kc

p �
2

ffiffiffi
Λ
3

q
a0

� ffiffiffi
Λ
3

q
a0 − 2B1

�
−Kc

; δ ¼

� ffiffiffi
Λ
3

q
a0 − i

ffiffiffiffiffiffi
Kc

p �
2

ffiffiffi
Λ
3

q
a0

� ffiffiffi
Λ
3

q
a0 − 2B1

�
−Kc

: ð136Þ

In tune with the no-boundary proposal, if we set q̄ðt ¼ 0Þ ¼ 0, then it turns out that we must set the parameter a0 to the
following value: a0 ¼ �i

ffiffiffiffiffiffiffiffiffi
3=Λ

p ffiffiffiffiffiffi
Kc

p
. We first present the case where the imaginary part of a0 is positive and in this case for

the parameters γ, δ and μ, we obtain,

γ ¼ −2i
ffiffiffiffiffiffi
Kc

p
B1 − i

ffiffiffiffiffiffi
Kc

p ; δ ¼ 0; μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kc þ k2

p
ffiffiffiffiffiffi
Kc

p : ð137Þ

We see that the quantity μ, in this case, is identical to that in Eq. (128). Therefore, the conclusion regarding the bound on the
parameter c2 still holds true in this case as well, i.e., we will have the following inequality 0 < Kc ≤ 1 to be true. Moreover,
from Eq. (124), it follows that, with the above inequality satisfied, only the solution fnðtÞ is regular at t ¼ 0. For this
solution the stability index EinfðnÞ, appearing in the exponent of the perturbation wave function Eq. (114) becomes
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EinfðnÞ ¼ Re

�
i
q̄2ð1Þ
2ℏNinf

�
Ḟnð1Þ
Fnð1Þ

�
fn

�

¼ Re

�
−i

B1ðn2 − 1Þ
2Λ
3

−
ðn2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�

1

B1

��
≃ −

ðn2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�

1

B2
1

�
: ð138Þ

Therefore, the perturbation has a Gaussian distribution and
the system is stable. On the other hand, it can be shown that
with the negative imaginary choice for the parameter
a0 ¼ −i

ffiffiffiffiffiffiffiffiffi
3=Λ

p ffiffiffiffiffiffi
Kc

p
, the perturbation has an inverse Gaus-

sian distribution and this case cannot be considered
physical. Therefore, the saddle point associated with the
path integral involving the Robin-Neumann boundary
condition is stable for a certain choice of parameters.

4. Neumann-Dirichlet boundary condition

In this final scenario involving an inflationary paradigm,
we consider an initial Neumann and a final Dirichlet
boundary condition. As in the previous case, here also
we start with the classical solution corresponding to the
above boundary condition, presented in Eq. (78). In this
case, there are two saddle points, and evaluating the
classical solution for both of these saddle points, as in
Eq. (80), we can obtain the parameters γ, δ, and μ. The
determination of these parameters also requires fixing the
initial momenta, which we consider to have the following
value π0 ¼ þi

ffiffiffiffiffiffi
Kc

p
, and that yields,

γ� ¼ 2
ffiffiffiffiffiffi
Kc

p

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 −Kc

q
þ ffiffiffiffiffiffi

Kc
p ; δ� ¼ 0; μ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kc þ k2

Kc

s
:

ð139Þ

Again, the conclusion regarding the bound on the value of
the torsion parameter, namely 0 < Kc ≤ 1 still holds in this
case. Using the above expressions for the parameters γ�,
δ�, and μ�, from Eq. (124) we realize that only fnðtÞ is
well-behaved at t ¼ 0, among the two linearly independent
solutions for the differential equation satisfied by the mode
function. Therefore, the stability parameter, defined in
Eq. (115) becomes,

E�ðnÞ ¼ Re

�
i
q̄2ð1Þ
2Ninf�

�
Ḟnð1Þ
Fnð1Þ

�
fn

�

¼ Re

�
∓ i

ffiffiffiffiffi
q1

p ðn2 − 1Þ
2

ffiffiffi
Λ
3

q −
ðn2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�

1ffiffiffiffiffi
q1

p
��

≃ −
ðn2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − c2

p
2Λ
3

þO
�
1

q1

�
;

ð140Þ

which is negative for all modes with n > 1 and hence the
wave functions are Gaussian in nature. Thus we observe
that the perturbation around both the saddle points for
the Neumann-Dirichlet boundary condition is deemed
relevant by the Picard-Lefschetz theory and is stable and
therefore, the corresponding wave function can be consid-
ered physical.

5. Bouncing scenarios

In the case of a bouncing scenario, there is a free
parameter in the problem, namely the initial size of the
saddle point universe q0. As we have discussed before,
there are two tempting possibilities in this regard, we can
take q0 to be identical to the scale of classical bounce, or,
we can take q0 ¼ 0, following the no-boundary scenario.
However, for q0 equal to the classical scale of bounce, the
stability index EsðkÞ becomes ill-behaved, often positive
for certain values of comoving wave number and hence the
modes become inverse Gaussian, signaling instability. The
incompatibility of the bouncing wave function with the no-
boundary proposal can be motivated along the following
lines—–the saddle point geometry in the bouncing scenario
is singular when q0 → 0 and hence should be avoided (see,
[35]). Thus, the bouncing wave function can neither have
any correspondence with the no-boundary wave function,
nor the initial size of the saddle point universe in the path-
integral approach be equal to the classical scale of bounce.
In the context of bouncing scenarios, for reasonable

values of s, the differential equation satisfied by the mode
functions, namely Eq. (111), cannot be solved analytically.
Thus, we need to find out these mode functions by
numerically solving the associated differential equation.
We proceed to do this exercise for the specific case s ¼ 1,
whereas similar computations can be performed for other
s-models as well. In addition, we also incorporate the
classical solution, derived in Eq. (91), which reads,

q̄s�ðtÞ ¼ N2
s�

σ

4s2

�
t −

π0 þ i
ffiffiffiffiffiffiffi
σΔ

p

π0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðq1 − ΔÞp �

×

�
t −

π0 − i
ffiffiffiffiffiffiffi
σΔ

p

π0 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðq1 − ΔÞp �

; ð141Þ

and then the classical solution is evaluated at the two saddle
points associated with the path integral in the bouncing
cosmology, located at Eq. (93). Inclusion of all these results
provides us an estimation for the stability index EsðkÞ and
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one can check if this index is positive or, negative, thereby
pointing out the instability or, the stability of the saddle
points, respectively, under scalar perturbation.
Following this approach, we have considered two

scenarios, one in which q0 ≪ Δ, and another with q0≲Δ,
and have plotted the stability index EsðkÞ against the wave
number k, for the matter bounce scenario (which corre-
sponds to s ¼ 1), for two possible choices of the quantity
π0, appearing in the saddle point geometries. The result of
this analysis has been presented in Fig. 5 to Fig. 7. As
evident, universes having imaginary part of π0 as positive,
provide negative values of the stability index Es for all wave
modes k and hence are stable. On the other hand, universes
with the imaginary part of π0 as negative have the stability
index Es to be positive and hence are unstable. These
results are generic in nature, e.g., holds when the initial size
of the universe is very close to the classical scale of bounce
but smaller than the same (see Fig. 5). Similar results hold

true for universes whose initial size is small but not zero, as
depicted in Fig. 6. Finally, it turns out that the above result
is also independent of the value of the torsion, as long as it
is smaller than the relative abundance of bounce-enabling
matter. This is evident from Fig. 7, where the stability index
Es is negative for universes having imaginary part of π0 as
positive as well as larger and smaller values of torsion
(corresponding to smaller and larger values of Δ, respec-
tively). Thus, we conclude that, as long as the relative
abundance of bounce-enabling exotic matter is greater than
the torsion, and for all possible choices of the initial size of
the universe, which is greater than zero but smaller than the
classical scale of bounce, the saddle points in the path
integral of bouncing wave function are stable for positive
values of the imaginary part of π0.
Besides studying the stability of saddle point geometries

under scalar perturbations, we have also demonstrated the
time variation of the mode function associated with the
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FIG. 5. We have plotted the stability index Es with the wave number associated with various mode functions for different choices of π0,
and for the situation where the initial size of the universe is very close to the classical scale of bounce but smaller than the same. The left-
hand plot is for Im π0 > 0, while the right-hand plot depicts the case where Im π0 < 0. As evident Es < 0 for all k if and only if
Im π0 > 0 and hence the configurations corresponding to the left-hand plot is stable, while the configurations associated with the right-
hand plot is unstable.
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FIG. 6. The stability index Es has been plotted with the wave number k for a universe whose initial size is very small compared to the
classical scale of the bounce. In this case also, only for Im π0 > 0, the Es < 0 and hence stability is achieved for such a configuration of
the universe. Note that this result holds good for both the saddle points of the path integral in the bouncing scenario.
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scalar perturbation around both saddle points for stable
configurations of the background spacetime. As evident
from Fig. 8, for the initial size of the universe very close
to the classical scale of bounce (but smaller), it follows
that both the real and imaginary parts of the mode
function oscillate in time, with the amplitude decaying.
On the other hand, if the initial size of the universe is
very close to zero, then also the real and imaginary part
of the mode function oscillates in time, but the amplitude
grows (see Fig. 9). In both of these cases, the real and
imaginary parts of the mode functions are out of phase
for scalar perturbation around the saddle point Nsþ, while
for scalar perturbation around Ns−, the real and imaginary
parts of the scalar perturbation are mostly in phase.
Having discussed the conditions for stability of scalar
perturbation around the saddle point, along with the time
variation of the mode function, we will concentrate on
the power spectrum of the perturbing scalar field in the
next section.

C. Power spectrum

In this section, we discuss the power spectrum associated
with the scalar perturbations for both inflationary and
bouncing scenarios. As evident from Eqs. (122) and (123),
the power spectrum depends on the stability index, which in
turn depends on the classical solution, the saddle points, and
the mode functions. For an inflationary universe, the mode
functions can be exactly solved for and hence the power
spectrum can be explicitly computed. Considering a closed
universe (with K ¼ 1), the power spectrum yields,

PðnÞ ¼
�

Λ
12π2

�
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 − c2
p : ð142Þ

As evident, for c ¼ 0, i.e., for a torsion-free universe, the
power spectrum does not depend on the wave number n,
leading to a scale-invariant power spectrum. On the other
hand, for nonzero values of torsion, the power spectrum
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FIG. 7. The variation of the stability index Es with the wave number k is presented for two saddle point universes whose classical
scales of the bounce are different. Again, universes with a positive imaginary part for π0 have a negative stability index and hence are
stable. This is true irrespective of the value of torsion, as it holds for different choices of the torsion parameter c.
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FIG. 8. The variation of the real and imaginary parts of the mode function with time has been depicted for wave number k ¼ 10. In
both of these plots, we have taken the initial size of the universe to be very close to the classical scale of bounce, but smaller than it. The
left-hand plot depicts the variation of the mode function associated with perturbation about the saddle point Nsþ, while the right-hand
side plot describes the variation of the k ¼ 10 mode for scalar perturbation about the other saddle point Ns−.
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becomes scale noninvariant. Moreover, since the torsion
appears as a subtracting quantity in the denominator, it
follows that for finite c, there will be larger power at large
physical length scales. This feature is explicitly presented in
Fig. 10. Thus, the power spectrum derived from the saddle
points in the Lorentzian path-integral approach leads to a
scale-invariant power spectrum at large comoving wave
number, i.e., at small scales, which is consistent with the
Bunch-Davies vacuum in the inflationary paradigm. It turns
out that the feature involving enhanced power at large scale
(equivalently, for small wave number) has already been
observed in the context of Euclidean path integral with a
massless scalar perturbation [73] as well as in the context of
Starobinskymodel of inflation [74]. Thus, enhancedpower at
a largephysical length scale is quite common in the context of
quantumcosmologywithin the Euclidean approach.Herewe
have shown that the presence of torsion can also lead to the
enhancement of power at such large scales but within the
Lorentzian approach to quantum cosmology. This is a
distinct signature and can in principle lead to observable

consequences regarding the possible existence of torsion.
Moreover, in [73] it was demonstrated that the inclusion of
mass for the scalar perturbation can suppress the power
spectrum at large scales, rather than enhancing the same, and
it would be interesting to see if the same holds true in the
presence of torsion as well, which we wish to explore in a
future work.
Let us now discuss the corresponding situation in the

context of bouncing cosmology. Since in this case the mode
functions cannot be determined analytically, we can not
provide a closed-form expression for the power spectrum.
Rather, we solve for the mode functions numerically (as
previously discussed) and hence determine the power spec-
trum. In the bouncing context, we have taken K ¼ 0,
and hence the power spectrum will be given by Eq. (123).
The corresponding power spectra for the matter bounce
model (s ¼ 1) have been depicted in Fig. 11. The structure of
the power spectrum is such that the power spectrum initially
grows, then oscillates, and again finally it grows again. For
q0 ≲ Δ, the oscillations are smaller and they exist for a
smaller range of the comoving wave number. On the other
hand, when q0 → Δ, the oscillations are larger and also
happen over a longer range of the comoving wave number.
The above features in the bouncing power spectrum have

been observed in various quantum models of gravity
predicting a bouncing scenario for our universe [75–78].
The power spectrum is divided into three regimes, the
infrared regime, which corresponds to the initial growth,
then there is the intermediate regime, where the power
spectrum oscillates, but the amplitude remains almost
constant, and finally, the ultraviolet regime, where again
the power spectrum grows. The growth in the ultraviolet
regime is expected, since in the bouncing cosmology,
during the phase of bounce the presence of exotic matter
can amplify the perturbations. The oscillatory nature of the
perturbation is expected too and is a common feature in
most of the early Universe models. Finally, the infrared
contribution depends on the choice of the vacuum state
and other details, e.g., the normalization. We have further
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FIG. 9. We have depicted the time variation of the real and imaginary parts of the mode function with wave number k ¼ 10 perturbing
a universe whose initial size is very small. The left-hand plot depicts the variation of a specific scalar mode around the saddle point Nsþ,
while the right-hand side plot describes the variation of the same about the other saddle point Ns−.
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FIG. 10. We have depicted the variation of the power spectrum,
scaled by ð12π2=ΛÞ, with the mode number n, for different
choices of the torsion parameter c. As evident, for zero torsion,
the power spectrum is scale invariant, while for finite torsion there
is more power at large physical length scales.
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elaborated on the variation of the power spectrum with the
various parameters of interest, e.g., torsion, and the initial
and final size of the saddle point universe. The results of
such an analysis have been depicted in Fig. 12. As torsion
increases the quantity Δ decreases, which in turn enhances
the oscillatory behavior and the growth in the infrared

sector, while the ultraviolet sector remains identical. This
feature we have observed in the context of the inflationary
paradigm as well, where also torsion modified the structure
at large length scales. Thus we can conclude that irre-
spective of the early Universe physics, the presence of
torsion modifies the power spectrum at large length scales,
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FIG. 11. The power spectrum of the perturbing scalar field has been presented in the context of bouncing cosmology. The left-hand
side plot is for the power spectrum of the perturbing field when the initial size of the saddle point universe is slightly smaller than the
classical scale of bounce. See text for more discussion.
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FIG. 12. We have depicted the power spectrum of the perturbing scalar field in the bouncing universe for different choices of the
torsion parameter (the left-hand plot in the upper row), for various initial size of the universe (the right-hand side plot in the upper row)
and lastly for different final sizes of our Universe (the plot in the last row). The torsion and the initial size of the saddle point universe
affect the power spectrum at large length scales, while the final size of the universe affects the power spectrum at smaller length scales.
See text for discussion.
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in particular, it enhances the power. The enhancement of
power at a large length scale can also be due to the smaller
initial size of the universe. As evident from Fig. 12, the
smaller the initial size of the universe, the larger is the
power at large length scales, however, the ultraviolet
behavior of the power spectrum remains unchanged.
Finally, we also depict the behavior of the power spectrum
with a change in the final size of the universe. This does
not affect the infrared behavior but affects the ultraviolet
behavior significantly. Fig. 12 also demonstrates that a
universe with a smaller final size will have larger power at
smaller length scales, than a universe with a larger final
size. Thus we observe that the power spectrum of the
perturbing scalar field in the bouncing scenario is very
similar to the previous results in the literature arising from
quantum gravity models. In our work, we have explored
the matter bounce scenario, with s ¼ 1, in detail. It will be
interesting to explore other possibilities for the parameter s
and investigate how the power spectrum is modified. We
hope to return to these issues in a future work.

VI. CONCLUSION AND DISCUSSIONS

The existence of spacetime torsion is a tantalizing
possibility and appears in the most natural extension of
general relativity, namely in the Einstein-Cartan theory.
The presence of spacetime torsion would prohibit the
formation of spacetime singularity, by introducing a diver-
gent term in Raychaudhuri’s equation. However, it had
remained elusive, despite several experimental searches.
Classically, due to the absence of macroscopic fermionic
currents, the spacetime torsion is not expected to exist
(actually, Einstein’s equations predict vanishing torsion in
the absence of any macroscopic fermionic current). The
corresponding statement cannot not be made in the quan-
tum domain, due to the uncertainty relation. Since the
gravitational Hamiltonian does not involve the time deriva-
tive of the torsional degree of freedom, the momentum
conjugate to the torsional degree of freedom must vanish
and hence the torsion parameter cannot be set to zero in the
quantum domain. Thus the early universe cosmology must
have a nonzero value of torsion. Following this argument
we have studied the minisuperspace quantum cosmology
with a nonzero value of spacetime torsion. Intriguingly, the
gravitational Hamiltonian only depends on the completely
antisymmetric part of the torsion tensor, while the other
nontrivial contributions from the torsion tensor in the
minisuperspace have been absorbed in the momentum
conjugate to the scale factor qðtÞ. This also brings out
two inequivalent quantization schemes in the presence of
torsion. In this work, we have considered the tetrad and the
spin-connection components to be more fundamental so
that torsion components are derived from these. Thus in our
approach, only the completely antisymmetric part of the
torsion appears in the Hamiltonian, while another compo-
nent appears in the momentum B. On the other hand, we

could have considered the tetrad and the torsion to be
fundamental and the spin connections as derived entities. In
that case, however, the wave function would explicitly
depend on the scale factor and all the torsion components.
Therefore, these two approaches are inequivalent. This
inequivalency also arises in the path-integral formalism,
since in the former one performs the ‘phase-space’ path
integral over the Liouville’s measure D½B�D½q�, while in
the latter one reexpress the momentum B in terms of the
scale factor and torsion and then perform a ‘coordinate-
space’ path integral over the measure D½q�. In such a case
the two torsion degrees of freedom appear explicitly and
are treated similarly. Here we have used the phase-space
path integral and it would be interesting to perform the
coordinate-space path integral and determine the wave
function to exactly pinpoint the inequivalences. We hope
to return to this in a future work.
In this work, we have explicitly demonstrated the

equivalence between the solutions of the Wheeler-DeWitt
equation and the semiclassical wave function derived using
the path integral framework. This equivalence holds true for
both inflationary and bouncing scenarios. In particular, for
the inflationary scenario, we have determined the saddle
points in the Lorentzian path integral using initial Dirichlet as
well as initial Neumann and Robin boundary conditions. It
turns out that the saddle point associated with the initial
Dirichlet boundary condition is unstable under scalar per-
turbation, while the saddle points with initial Robin or
Neumann boundary conditions are stable.
For both bouncing and inflationary scenarios, the asso-

ciated semiclassical wave function depicts two interesting
behavior. First of all, it seems possible to answer the
question, of why spacetime torsion seems to be small in the
universe. It turns out that if one calculates the relative
probability between two configurations of the universe with
different values for the torsion component, then one finds
that the universe with a lower value of torsion has a higher
relative probability to occur. Thus it is more natural for a
universe to have a smaller value of torsion than a large
value. Moreover, it turns out that classicalization happens
fastest in an inflationary universe and the rate depends on
the volume. On the other hand, for the bouncing scenarios,
the classicalization is slower and hence the bouncing
scenarios are expected to retain more quantum nature with
the evolution of the Universe.
The perturbation analysis, presented in this work, also

suggests interesting behavior. For example, in the context
of an inflationary paradigm with torsion, for Robin or
Neumann boundary conditions [32,33], stable saddle points
exist, if and only if the torsion parameter never becomes
larger than the spatial curvature index K ¼ þ1. Therefore,
the effective curvature of space has to be bounded within
0 < Kc ≤ 1. This seems to indicate that there is no
transition between the positive curvature space to flat or,
negative curvature space through quantum dynamics.
Similarly, we find, for the bouncing scenarios, the stability
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of perturbation requires that the energy density of the
torsion component does not overwhelm that of the bounce-
enabling matter. Thus, in both inflation and bounce, the
torsion is supposed to contribute by a small amount and
hence cannot change the overall nature of the classical
geometry.
We have also answered the following question in this

work, how does the presence of torsion affect the power
spectrum? For this purpose, we have computed the power
spectrum of the perturbing scalar field around the saddle
point geometries for both inflationary and bouncing sce-
narios. From such exercises, we find that for an inflationary
universe with a positive spatial curvature index (K ¼ þ1),
the stronger the value of the torsion, the more is the
enhancement of the power spectrum in the large length
scales (equivalent, for low comoving wave number). For
the bouncing scenarios, we have computed the power
spectrum numerically for the case of a universe with
vanishing spatial curvature index (K ¼ 0) and filled with
two fluids; ordinary matter (falloff ∝ a−3) and an energy
condition violating ‘phantom’ radiation (falloff ∝ a−4). In
this case, which corresponds to the case of matter bounce,
at large physical length scales, the power spectrum is
suppressed and is characterized by a region of initial growth
as the comoving wave number k increases, then an inter-
mediate region of oscillations, and finally a region of
growth again. The shape of the power spectrum in the initial
and oscillatory regions is sensitive to the difference in
the abundance of the bouncing matter and torsion, and the
initial quantum state chosen for the universe, while the
smaller length -scale part of the power spectrum depends
crucially on the final size. Note that, we have considered
the matter bounce model as a simple example, but the

formalism developed in this work, including the numerical
treatment of perturbations and thereby obtaining the power
spectrum, can be readily extended to the case of other
bouncing models as well. Also following the discussion
around Eq. (98), as our analysis clearly shows, the pro-
bability of a universe with a small torsion parameter is
indeed large, compared to a universe with a large torsion
parameter. This allows us to expect, albeit in a qualitative
manner, that torsion is going to have very little influence
on the structure formation. A more detailed discussion is
necessary to make a quantitative statement, which will be
presented in a subsequent work. Finally, implications for
the allowable complex matrices (as in [79,80]) with the
inclusion of torsion, and also in the context of the bouncing
scenario needs to be explored, which we wish to perform in
a separate work in the future.
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APPENDIX A: DERIVATION OF THE
COMPONENTS OF THE SPIN CONNECTION

Given the tetrad one-forms in Eq. (2), we obtain the
following relations:

de0 ¼ N
qp

d2tþ d
dt

�
N
qp

�
dt ∧ dt ¼ 0; ðA1Þ

de1 ¼ qs

KðrÞ d
2r −

qsK0ðrÞ
K2ðrÞ dr ∧ drþ sqs−1q̇

KðrÞ dt ∧ dr ¼ sqp−1q̇
N

e0 ∧ e1; ðA2Þ

de2 ¼ qsrd2θ þ qsdr ∧ dθ þ sqs−1q̇rdt ∧ dθ ¼ sqp−1q̇
N

e0 ∧ e2 þ KðrÞ
qsr

e1 ∧ e2; ðA3Þ

de3 ¼ qsr sin θd2ϕþ qs sin θdr ∧ dϕþ qsr cos θdθ ∧ dϕþ sqs−1q̇r sin θdt ∧ dϕ

¼ sqp−1q̇
N

e0 ∧ e3 þ KðrÞ
qsr

e1 ∧ e3 þ cot θ
qsr

e2 ∧ e3: ðA4Þ

Thus from the Cartan’s structure equation in Eq. (3) and the expression for the torsion tensor in the minisuperspace, as
described by Eq. (4), we obtain,

ω0i ∧ ei ¼ T0 − de0 ¼ 0; ðA5Þ

ω0i ∧ e0 þωij ∧ ej ¼ Ti − dei ¼ T ðtÞe0 ∧ ei þ CðtÞϵijkej ∧ ek − dei; ðA6Þ
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where, we have used the result that ωab is antisymmetric and the indices are raised by the flat spacetime Minkowski metric.
From Eq. (A5), we obtain,ω0i ¼ fðtÞei, where fðtÞ is an arbitrary function of the cosmological time t, as defined in Eq. (1).
This suggests the following expressions for the other components of the spin connection from Eq. (A6),

ω12 ∧ e2 þω13 ∧ e3 ¼
�
fðtÞ þ T ðtÞ − sqp−1q̇

N

�
e0 ∧ e1 þ 2CðtÞe2 ∧ e3; ðA7Þ

−ω12 ∧ e1 þ ω23 ∧ e3 ¼
�
fðtÞ þ T ðtÞ − sqp−1q̇

N

�
e0 ∧ e2 þ 2CðtÞe3 ∧ e1 −

KðrÞ
qsr

e1 ∧ e2; ðA8Þ

−ω13 ∧ e1 − ω23 ∧ e2 ¼
�
fðtÞ þ T ðtÞ − sqp−1q̇

N

�
e0 ∧ e3 þ 2CðtÞe1 ∧ e2 −

KðrÞ
qsr

e1 ∧ e3 −
cot θ
qsr

e2 ∧ e3: ðA9Þ

These equations can be satisfied provided the spin con-
nections have the following expressions:

ω12 ¼ −
KðrÞ
qsr

e2 − CðtÞe3; ðA10Þ

ω13 ¼ −
KðrÞ
qsr

e3 þ CðtÞe2; ðA11Þ

ω23 ¼ −
cot θ
qsr

e3 − CðtÞe1; ðA12Þ

along with the relation, T ðtÞ þ fðtÞ ¼ ðsqp−1q̇=NÞ. These
results have been used in the main text.

APPENDIX B: DERIVATION OF THE
CURVATURE COMPONENTS

In the previous section we derived the relevant compo-
nents of the tetrad and the spin connections in synchroniza-
tion with the homogeneity and isotropy of the background
cosmological spacetime. For our purpose, we need to
determine the gravitational action in the presence of torsion
in the minisuperspace, and this requires determining the
curvature two forms. Owing to the symmetries of the
spacetime, determination of only two components of
the curvature two-form will suffice for our purpose and
these two components areR01 andR12. Using the structure of
the tetrad and the spin-connection derived above, we obtain,

R01 ¼ dω01 þ ω0
2 ∧ ω21 þ ω0

3 ∧ ω31

¼ d

�
BðtÞ q

−2sþ1

KðrÞ dr

�
− ðq−3sþ1BðtÞe2Þ ∧

�
−
KðrÞ
r

q−se2 − qdcðtÞe3
�
− ðq−3sþ1BðtÞe3Þ

∧
�
−
KðrÞ
r

q−se3 þ qdcðtÞe2
�

¼ q−2s

KðrÞ ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞdt ∧ drþ 2q−3sþdþ1BðtÞcðtÞe2 ∧ e3

¼ q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞe0 ∧ e1 þ 2q−3sþdþ1BðtÞcðtÞe2 ∧ e3; ðB1Þ

and

R12 ¼ dω12 þω1
0 ∧ ω02 þ ω1

3 ∧ ω32

¼ dð−KðrÞdθ − qsþdcðtÞr sin θdϕÞ þ q−6sþ2B2ðtÞe1 ∧ e2

− ð−KðrÞ sin θdϕþ qsþdcðtÞrdθÞ ∧
�
− cos θdϕ −

qsþd

KðrÞ cðtÞdr
�

¼ K
r

KðrÞ dr ∧ dθ − ðqsþdċðtÞ þ ðsþ dÞqsþd−1q̇cðtÞÞr sin θdt ∧ dϕþ q−6sþ2B2ðtÞe1 ∧ e2 þ q2ðsþdÞ

KðrÞ c2ðtÞrdθ ∧ dr

¼ q−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞe1 ∧ e2 −
qpþd

N

�
ċðtÞ þ ðsþ dÞ q̇

q
cðtÞ

�
e0 ∧ e3: ðB2Þ
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The other nonzero components of the curvature two-form can be derived given the above. The gravitational action, on the
other hand depends on the curvature two-form and a term dependent on the cosmological constant. Using the above
expressions, we obtain these two contributions to the gravitational action to read,

ϵabcdea ∧ eb ∧ Rcd

¼ 2ϵab0iea ∧ eb ∧ R0i þ ϵabij ∧ ea ∧ eb ∧ Rij

¼ 2ϵ0ijkR0i ∧ ej ∧ ek þ ϵabijea ∧ eb ∧ Rij

¼ 2ϵ0ijk

�
q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞe0 ∧ ei þ ϵimnq−3sþdþ1BðtÞcðtÞem ∧ en

�
∧ ej ∧ ek

þ ϵabijea ∧ eb ∧
�
q−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞei ∧ ej − ϵijk

qpþd

N

�
ċðtÞ þ ðsþ dÞ q̇

q
cðtÞ

�
e0 ∧ ek

�

¼ 2ϵ0ijk

�
q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞe0 ∧ ei

�
∧ ej ∧ ek

þ ϵabijea ∧ eb ∧ ðq−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞei ∧ ejÞ

¼ 2 × 3!

�
q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞ þ q−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞ

�
e0 ∧ e1 ∧ e2 ∧ e3

¼ 2 × 3!

�
q−3sþp

N
ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞ þ q−2sðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞ

�
q3s−pNr2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Kr2
p dtdrdθdϕ

¼ 2 × 3!½ðqḂðtÞ þ ð1 − 2sÞq̇BðtÞÞ þ qs−pNðKþ B2ðtÞq−4sþ2 − c2ðtÞq2ðsþdÞÞ� r2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Kr2

p dtdrdθdϕ; ðB3Þ

and

Λ
6
ϵabcdea ∧ eb ∧ ec ∧ ed ¼ 4!Λ

6

q3s−pNr2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p dtdrdθdϕ ¼ 4Λ
q3s−pNr2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p dtdrdθdϕ: ðB4Þ

These are the results we have used in the main text.
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