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Motivated by the recent development in quantum cosmology, we revisit the anisotropic Kantowski-
Sachs model in the light of a Lorentzian path-integral formalism. Studies so far have considered the
Euclidean method where the choice of the lapse-integration contour is constrained by certain physical
considerations rather than mathematical justification. In this paper, we have studied the Hartle-Hawking
no-boundary proposal along with the use of Picard-Lefschetz theory in performing the lapse integration. In
an isotropic limit, we show our results agree with the studies made in Friedmann-Lemaître-Robertson-
Walker cosmology. We also observe that in the large-scale structure the no-boundary proposal tends
towards a conical singularity at the beginning of time. We have also performed a massless scalar
perturbation analysis with no backreaction. This reveals that if there were any perturbation present at the
beginning of the Universe then that would flare up at the final boundary.
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I. INTRODUCTION

One of the main motivations to study quantum cosmology
is to understand the primordial Universe and how it emerged
from the Planck era to become the Universe we observe
today. Cosmology is governed by general relativity (GR) but
one needs to go beyond this classical theory to describe the
small-scale structure of the Universe where a consistent
quantum theory is supposed to have dominant effects. There
are two main avenues to study quantum cosmology, the
Wheeler-DeWitt (WD) quantization approach [1–3] and the
path integral approach [4–8]. The WD quantization follows
from the fact that the Hamiltonian operator annihilates the
wave function of the Universe. The Hamiltonian operator is
achieved from the Hamiltonian constraint by replacing the
canonical momenta of the field variables with their operator
representation, πij → −iℏ δ

δhij
. However, there are issues

associated with this approach. Firstly, there is an operator
ordering ambiguity and secondly, there is a wide range of
choices on the initial condition. On the other hand path
integral method evaluates the probability amplitude of
various final states of a system that has been prepared in
a certain way as its initial state. So, in order to evaluate the

transition probability of the Universe one needs to have an
idea about the initial state of the Universe.
Hartle and Hawking’s no-boundary [5,9,10] proposal

provides us with an initial condition of the Universe. Their
proposal dictates that the transition amplitude must be
evaluated between a late time configuration of 3-geometry
and no initial 3-geometry. This could help us understand
how the Universe was created from a zero volume

ffiffiffi
h

p ¼ 0
structure or ‘nothingness’.
Anisotropic cosmological models are important in its

own right. Anisotropic cosmological models provide a
deeper understanding of the evolution and structure of
the Universe. These models are particularly relevant when
studying the early Universe, in particular during the infla-
tionary epoch when the Universe might not have had an
isotropic structure.
So far many studies have been made in the Wheeler-

deWitt approach [11–13] as well as in the path-integral
quantization [14–16]. The realization of no-boundary
proposal gets fairly complicated as one needs to round
off the big bang singularity with regularity conditions near
the big bang for the Euclideanized spacetime. A general
prescription has been presented in [17]. Kantwoski-Sachs
(KS) model in particular is important because of its spatial
topology, S1 × S2 which carries close resemblance with
Euclidean black hole metrics [18–21]. The KS metric
represents a homogeneous but anisotropic spacetime and
its importance in gravity manifests in several ways, one of
which is the fact that it is isometric to a spherically
symmetric black hole spacetime. For further details we
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refer to [22,23]. One can employ the methods discussed here
to study the thermodynamic properties of black hole space-
time as has been prescribed in [21]. The KS spacetime has
also been explored in other contexts, such as, in noncommu-
tative geometry [19,20] and in loop quantumcosmology [24].
According to the original proposal one needs to start with

an Euclidean path integral to evaluate the transition
amplitude. Also, the lapse integration is done along a
complex contour constrained by certain physical consid-
erations [25]. However, the recent proposal of Picard-
Lefschetz theory [26] gives a new way of choosing the
lapse integration contour. The importance of this theory is
that it allows one to carry out the Lorentzian path integral
which has alluded theorists so far. It has been a long-standing
belief that the highly oscillatory nature of the Lorentzian
path integral may not lead to a well-defined result.
In this work our starting point is a Lorentzian path

integral with Kantowski-Sachs anisotropic cosmological
model. Our study closely resembles the recent paper [27],
where an Euclidean approach was followed to construct the
wave function of the Universe. However, there are few
important distinguishing remarks presented in our analysis.
It is well known that the half infinite range of the lapse
function (N ¼ 0 to infinity) leads to the Green’s function of
the Wheeler-DeWitt equation. On the other hand a full
infinite range yields the wave function. In this present work
we focus on the half infinite range and proceed to evaluate
the transition probability. Our choice of lapse contour
on the complex N plane is motivated by the Picard-
Lefschetz theory. For a detailed discussion we refer [28].
In gravitational theory, working with imaginary time can
lead to the conformal factor problem—conformal trans-
formation could make the Euclidean action arbitrarily
negative [29]. So it is always prudent to work with the
physically relevant Lorentzian time. We have also per-
formed a perturbation analysis in the context of massless
scalar field in the background of a classical spacetime. This
reveals that the perturbations are unstable which reinstates
the claims of [30].
The paper is organized as follows. In Sec. II, we briefly

review the cosmological model and the gravitational theory
along with some simplified calculations towards the path
integral approach. Section III contains the no-boundary
initial conditions that we followed in our work. Section IV
deals with the detailed calculation and contour integration
for the lapse function which leads to a final form of the path
integral propagator. In Sec. V, we have considered a
massless scalar perturbation analysis with no backreaction.
Finally we conclude in Sec. VI.

II. BASIC FORMULATION

It is well known that the transition amplitude from
an initial to a final state can be expressed as a path
integral [31,32]. In the case of gravity the transition
probability to propagate from an initial three spatial

geometry h0ij and matter field Φ0 to a final one h1ij, Φ1

is defined as

Gðh1ij;Φ1jh0ij;Φ0Þ ¼
Z

f

i
DgμνDΦ e

i
ℏS½gμν;Φ�; ð1Þ

where S is the action for the metric gμν and the matter
fieldΦ. The path integral is taken over all possible values of
four metrics gμν and matter field Φ with specified boundary
conditions. The path integral defined above has Lorentzian
signature. The standard trick to evaluate such an integral in
gravity is to Euclideanize it. In this work, this will not be
done and the approach in [26] will be followed.
We begin by writing down the Einstein-Hilbert action in

four dimensions with a positive cosmological constant

S½gμν� ¼
1

2

Z
M

d4χ
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ
Z
∂M

d3η
ffiffiffi
h

p
K; ð2Þ

where R is the Ricci scalar of the manifold M, Λ is the
cosmological constant,

ffiffiffiffiffiffi−gp
is the determinant of the

metric in coordinates fχg, fηg are the coordinates on
the three-dimensional boundary ð∂MÞ of the manifold,ffiffiffi
h

p
is the determinant of the induced metric hab on the

boundary, and K is the trace of the extrinsic curvature
tensorKab with respect to the induced metric. Here we have
considered 8πG ¼ 1. The second term is called the
Gibbon-Hawking-York (GHY) term which ensures a well
defined variational principle to yield the Einstein field
equations of general relativity when the boundary geom-
etries are held fixed.
The invariant line element of Kantowski-Sachs (KS)

metric with a spatial topology S1 × S2 follows:

ds2 ¼ −N 2ðtÞdt2 þ a2ðtÞdr2 þ b2ðtÞdΩ2
2; ð3Þ

whereN is the lapse function and a, b are two scale factors
in this anisotropic cosmological model, r is a periodic
coordinate with period 2π and dΩ2

2 ¼ dθ2 þ sin2ðθÞdϕ2 is
the metric on a unit two sphere with curvature 2R ¼ 2.
The action (2) along with the KS metric (3) takes

the form

S½a; b;N � ¼
Z

t1

t0

dtLðx; ẋ;N Þ þ B; ð4Þ

where L is the Lagrangian given by

L ¼ π

�
−
2bȧ ḃ
N

−
aḃ2

N
−NΛab2 þN a

�
: ð5Þ

The only boundary (∂M) that we will consider is the final
three surface at t1 ¼ 1. There is no boundary at t0 ¼ 0. If
there was a boundary at both the ends then the GHY term in
action (2) would cancel out and there will be no boundary
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term contribution. But in this case the boundary term at
t ¼ 0 will be present and is given by

Bjt0¼0 ¼ −π
�
b2ȧ
N

þ 2abḃ
N

�
t0¼0

: ð6Þ

A. Lapse rescaling and variable change
for simplified path integration

For mathematical simplification we now perform a
rescaling in the lapse function as N ¼ N=a and define
c ¼ a2b. The action (4) then takes the form

S½b; c; N� ¼
Z

1

0

dt

�
−
ḃ ċ
N

− NΛb2 þ N

�
: ð7Þ

It can be seen that the Lagrangian (7) does not contain
any Ṅ term which means N is not a dynamical variable.
Using the Batalin-Fradkin-Vilkovisky quantization, one
may impose the proper-time gauge Ṅ ¼ 0 [33]. Without
loss of generality one can choose the domain of t within
the range [0, 1]. As derived by Halliwell [34] and
Teitelboim [4,35,36], the propagator can be expressed as

Gðb1; c1jb0; c0Þ ¼
Z

∞

0

dN
Z
b
Db

Z
c
Dc e

i
ℏðSþBÞ: ð8Þ

Varying the action (7) with respect to c and b leads to the
equations of motion,

b̈ ¼ 0;

c̈ ¼ 2N2Λb: ð9Þ
The Hamiltonian constraint can be derived by varying the
action with respect to N which reads

ḃ ċ
N

− NΛb2 þ N ¼ 0: ð10Þ

The solution to the equations of motion (working with the
gauge Ṅ ¼ 0) is given by

b̄ðtÞ ¼ ðb1 − b0Þtþ b0

c̄ðtÞ ¼ N2Λðb1 − b0Þ
3

t3 þ N2Λb0t2

þ
�
−
N2Λðb1 − b0Þ

3
− N2Λb0 þ c1 − c0

�
tþ c0;

ð11Þ
where we have used the boundary values at t0 ¼ 0 and
t1 ¼ 1 as

að0Þ ¼ a0; að1Þ ¼ a1;

cð0Þ ¼ c0; cð1Þ ¼ c1: ð12Þ

To perform a semiclassical approximation around the
classical path, we now define

bðtÞ ¼ b̄ðtÞ þ XðtÞ;
cðtÞ ¼ c̄ðtÞ þ YðtÞ: ð13Þ

b̄ðtÞ and c̄ðtÞ are the saddle points of the action functional
but they do not obey the Hamiltonian constraint. Putting
this back in the action (7), we get

S½X; Y; N� ¼
Z

1

0

dt

�
−
ð ˙̄bþ ẊÞð ˙̄cþ ẎÞ

N

− NΛðb̄þ XÞ2 þ N

�
: ð14Þ

Using this form of the action in Eq. (8), the transition
amplitude takes the form,

Gðb1; c1jb0; c0Þ ¼
Z

∞

0

dNe
i
ℏðS0þBÞ

Z
DXDYe

i
ℏS2 ; ð15Þ

where

S0 ¼ π

Z
1

0

dt

�
−
˙̄b ˙̄c
N

− NΛb̄2 þ N

�
;

S2 ¼ π

Z
1

0

dt

�
−
Ẋ Ẏ
N

− NΛX2

�
: ð16Þ

The boundary conditions on the X, Y functional integration
are Xð0Þ ¼ 0 ¼ Yð0Þ and Xð1Þ ¼ 0 ¼ Yð1Þ. The final form
of the classical action S0 in terms of the original scale
factors, that is, a, b comes out to be

S0 ¼ π

�
αN −

β

N

�
; ð17Þ

with

α ¼ 1 −
Λ
3
ðb21 þ b0b1 þ b20Þ;

β ¼ ðb1 − b0Þða21b1 − a20b0Þ: ð18Þ
One can also look into a phase space formof the path integral.
One then evaluates the conjugate momenta of b and c

Πb ¼
∂L

∂ḃ
¼ −

ċ
N
;

Πc ¼
∂L
∂ċ

¼ −
ḃ
N
: ð19Þ

The action in terms of the variables and their conjugate
momenta reads

S½x;Π; N� ¼
Z

1

0

dtðΠbḃþ Πcċ − NHÞ; ð20Þ
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where

H ¼ −ΠbΠc þ Λb2 − 1: ð21Þ

The Hamiltonian is independent of c and linear inΠb. So the
semiclassical path integral can be done exactly.

B. A separate set of variables for fixing
the initial condition

For technical convenience let us perform a variable
change ða; bÞ → ðA; BÞ with

A ¼ b2 and B ¼ ab: ð22Þ

In terms of these new variables, the Lagrangian (5) along
with the lapse rescaling N ¼ N=a takes the form

L ¼ π

�
−

B
NA

Ȧ Ḃþ B2

4NA2
Ȧ2 − NΛAþ N

�

≡ 1

2N
fγσq̇γq̇σ − NUðqÞ: ð23Þ

The metric for the minisuperspace can be identified as

fγσ ¼
"

πB2

8A2 − πB
4A

− πB
4A 0

#
: ð24Þ

The canonical conjugate momenta of the original variables
in metric (3) reads

Pa ¼ −
2bḃ
N

and Pb ¼ −
2bȧ
N

−
2aḃ
N

: ð25Þ

Since we shall focus on fixing the initial values of the
original variables, a or b and their Euclidean time deriv-
atives, it will not be appropriate to work with Pa and Pb.
Instead a convenient choice would be the conjugate
momenta ΠA, ΠB corresponding to the variables A, B. In
terms of a, b, they read

ΠA ¼ −π
ȧ
N

and ΠB ¼ −2π
ḃ
N

: ð26Þ

III. INITIAL CONDITIONS FOR NO-BOUNDARY
PROPOSAL

The original Hartle-Hawking proposal is that the path
integral must be done on geometries that are compact
and the fields should be regular on such geometries. In the
case of a positive cosmological constant Λ, any regular
Euclidean solution of the field equations is necessarily
compact [5]. Here we shall turn our attention to the smooth
closure of the Euclidean geometry. We change the metric
signature of (3) to an Euclidean time by taking the lapse

convention N ¼ iN E (the sign is chosen in accordance
with the usual Wick rotation). The metric is then given by

ds2E ¼ N 2
EðtÞdt2 þ a2ðtÞdr2 þ b2ðtÞdΩ2

2: ð27Þ

The starting condition is spatial volume be zero (
ffiffiffi
h

p ¼ 0)
at the initial time (t ¼ 0). As has been discussed in [37],
there could be two sets of conditions that can give a
vanishing spatial volume. að0Þ ¼ 0 which corresponds to
the closing of S1 and bð0Þ ¼ 0 which corresponds to
closing of S2. The corresponding regularity conditions are

að0Þ¼0;
1

N E

da
dt

ð0Þ¼�1;
1

N E

db
dt

ð0Þ¼0; ð28Þ

bð0Þ¼0;
1

N E

da
dt

ð0Þ¼0;
1

N E

db
dt

ð0Þ¼�1: ð29Þ

Here we shall take up the boundary condition að0Þ ¼ 0

along with 1
N E

da
dt ð0Þ ¼ þ1, which, in the A, B parametri-

zation, implies

Bð0Þ≡ B0 ¼ abjt¼0 ¼ 0;

ΠAð0Þ≡ Π0
A ¼ −π

ȧ
iN E

¼ iπ: ð30Þ

It is worth noting that we discarded the condition
1

N E

db
dt ð0Þ ¼ 0 since it would over constraint the theory

and also in quantum mechanics one can not specify a
variable and its canonical conjugate momenta at the
same instant.

IV. CONTOUR FOR LAPSE INTEGRATION

We now proceed to specify the appropriate contour for
carrying out the lapse integration. From Eq. (26) we have

ΠA ¼ −π
ȧ
N

: ð31Þ

After the lapse rescaling N ¼ N=a, it takes the form

ΠA ¼ −π
aȧ
N

: ð32Þ

As has been discussed in the previous section, we will be
fixing the initial values of a and ȧ at t ¼ 0. In the A, B
parametrization, this is equivalent to fixing ΠA and B. Also
the final point values of the scale factors are a1 and b1 at
t ¼ 1. We take the help of classical solutions to find the
value of b0 in terms of the boundary dataΠ0

A; B
0; a1, and b1.

Now at t ¼ 0

Π0
A ¼ −π

ā ˙̄a
N

����
t¼0

: ð33Þ
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Using solutions of the equations of motion from Eq. (11),
one can find the following result:

2NΠ0
A

π
b0 ¼

N2Λ
3

ðb1 þ 2b0Þ − a21b1 þ
B02b1
b20

: ð34Þ

This is a cubic equation of b0 which has three roots. But the
initial boundary condition B0 ¼ 0 renders the above equa-
tion to a simple linear equation and b0 comes out to be

b0 ¼
b1
2N

�
N2Λ
3

− a21
	

�
Π0

A
π − NΛ

3

	 : ð35Þ

The boundary term in Eq. (6), in terms of lapse rescaling, as
well as in A, B parametrization reads

Bjt¼0 ¼ −π
�
b2aȧ
N

þ 2a2bḃ
N

�
t¼0

¼ A0Π0
A þ B0Π0

B: ð36Þ

Once again with the initial condition B0 ¼ 0, the boundary
term becomes

B ¼ A0Π0
A ¼ b20Π0

A: ð37Þ

One can now use the value of b0 in Eq. (35) and substitute it
in Eq. (17) along with Eq. (37), which leads to

S0 þ B
π

¼ N −
Λb21
3

N −
a21b

2
1

N
−

b21
4N2

�
ΛN2

3
− a21

	
2

Π0
A
π − NΛ

3

: ð38Þ

The final form of the transition amplitude in terms of lapse
integration is given by

G ¼
Z

∞

0

dN μðNÞ ei
ℏS0þB; ð39Þ

where the prefactor μðNÞ ensures normalization condition
and is given by [32]

μðNÞ ¼ f−
1
4

ffiffiffiffiffiffiffi
jDj

p
f0−1

4; ð40Þ

where f and f0 are the determinant of the minisuperspace
metric fγσ (24) evaluated at t ¼ 1 and t ¼ 0, respectively.
Also, D is the Van-Vleck-Morette determinant and is
given by [38,39]

D ¼ det

�
∂
2S̃

∂Qγ
∂Zσ

�
; ð41Þ

where Qγ ¼ fA;Bg and Zσ ¼ fΠ0
A; B

0g. This leads to the
following form of the prefactor

μðNÞ ¼ 4

π

2
64 2πA0

N2
�
Π0

A
π − NΛ

3

	
3
75
1=2

: ð42Þ

One can perform a rescaling as follows:

ΛN¼ Ñ; Λa21¼u; Λb21¼v and S̃¼ΛðS0þBÞ
π

: ð43Þ

Equation (38) in terms of the rescaled quantities as
mentioned above reads,

S̃ ¼ Ñ −
Ñv
3

−
uv

Ñ
−

v

4Ñ2

�
Ñ2

3
− u

	
2

Π0
A
π − Ñ

3

: ð44Þ

Here we shall be working with the initial value Π0
A ¼ iπ.

Also, we are interested in the large values of the scale
factors. If we consider v ≫ 1, then the above expression
can be approximated to the following form:

S̃ ¼ −
Ñv
3

−
uv

Ñ
−

v

4Ñ2

�
Ñ2

3
− u

	
2

i − Ñ
3

: ð45Þ

In order to find an approximated value of the transition
probability (39), we take help of the saddle point approxi-
mation. The saddle points can be found out by dS̃

dÑ
¼ 0.

There are five saddle points. Two of them are

Ñs ¼ �
ffiffiffiffiffiffi
3u

p
: ð46Þ

The other three are the roots of the equation,

−Ñ3
s þ 6iÑ2

s þ ð12þ 3uÞÑs − 6iu ¼ 0: ð47Þ
These three roots are not relevant as we shall see employing
the Picard-Lefschetz theory (Fig. 1). The only root that will
contribute is Ns ¼

ffiffiffiffiffiffi
3u

p
as the steepest ascent contour

passing through this point intersects the original domain of
integration.
This root has an interesting feature in our analysis as it

makes the initial value of the scale factor b0 ¼ 0, which is
evident from Eq. (35). Here we already are working with
the initial value a0 ¼ 0. However, zero initial condition for
both the scale factors, a, b leads to conical singularity as
mentioned in [37]. To circumvent this issue we consider a
first-order correction around this particular saddle point,

Ñ ¼ Ñsð1þ δÞ; ð48Þ
where jδj ≪ 1. With this correction, the exact action (44)
up to second order in δ takes the form,

S̃¼
ffiffiffiffiffiffi
3u

p �
1−

2v
3

�
þδþ ivδ2ffiffiffiffiffiffi

3u
p ð ffiffiffiffiffiffi

3u
p

−3iÞþOðδ3Þ: ð49Þ
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Extremizing the above action with respect to δ gives

δ ¼ ið ffiffiffiffiffiffi
3u

p
− 3iÞ

2v
: ð50Þ

It is worth noting that δ gets smaller as v becomes larger.
So for large values of b1, this saddle point will tend to
the value

ffiffiffiffiffiffi
3u

p
.

The action in terms of the saddle point value
Ñ ¼ Ñsð1þ δÞ now reads

S̃ ¼ i
3u
4v

þ
ffiffiffiffiffiffi
3u

p ð9þ 12v − 8v2Þ
12v

: ð51Þ

In the complex Ñ plane, the general form of the integration
(39) reads

G ¼
Z
C
μðÑÞeλS̃ðÑÞdÑ; ð52Þ

where λ ¼ iπ=ℏΛ. For large values of λ, the asymptotic
integral value can be given as [40]

G ≈ eλS̃ðÑsÞ
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

λjS̃00ðÑsÞj

s
μðÑsÞeiφm þOðλ−3=2Þ

#
; ð53Þ

where φm ¼ π−θ0
2

þmπ (m ¼ 0, 1) and θ0 ¼ arg S̃00ðÑsÞ.
The choice of value of φm determines the sign in the
formula, and naturally depends on the direction of inte-
gration along the contour C. In our case λ ∝ 1=ℏ and we are
interested in the semiclassical limit ℏ → 0. The explicit
form of the transition amplitude comes out to be

G∝
u

1
4

v
exp

�
−

3πu
4Λℏv

þ i

�
π

Λℏ

� ffiffiffiffiffiffi
3u

p ð9þ12v−8v2Þ
12v

�
: ð54Þ

This can easily be recast in terms of the original variables
by substituting u ¼ Λa21 and v ¼ Λb21. One can check that
in the isotropic limit, that is, a1 ≈ b1, the real part in the
classical action with the dominant saddle point contribution
is negative and the exponential factor, e−

3π
4ℏΛ is very similar

to the characteristic factor e−
12π2

ℏΛ as derived in [26].

V. SCALAR FIELD FLUCTUATION

In this section we shall study the behavior of an
inhomogeneous, massless scalar field fluctuation in the

FIG. 1. The depiction of wedges and flow lines in the complex Ñ plane. There are total of five saddle points denoted by the numbers.
Each saddle point has its steepest descent (Lefschetz thimbles J i) as well as steepest ascent (Ki) flow lines passing through them.
Steepest descent paths are marked with dashed lines and the solid lines indicate steepest ascent flows. The green colored region is where
Re½iS̃� > 0 and the orange colored region denotes Re½iS̃� < 0. The gray colored region, however, is a degenerate region. Both steepest
descent and ascent lines could pass through this region. The solid orange line along the positive real axis represents the original
integration domain. The dashed orange line along J 4 is the deformed contour. The fourth saddle point is the only contributing saddle as
its steepest ascent contour K4 intersects the original integration domain.
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anisotropic Kantowski-Sachs background. The action of
the scalar field is given by

SΦ ¼ −
1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇μΦ∇μΦ: ð55Þ

Using the Kantowski-Sachs metric with lapse rescaling,
that is,

ds2 ¼ −
N2ðtÞ
a2ðtÞ dt

2 þ a2ðtÞdr2 þ b2ðtÞdΩ2
2; ð56Þ

one can rewrite the action (55) in the following form:

SΦ ¼ 1

2

Z
1

0

dtNsb2
Z

2π

0

dr
Z
S2
dΩ2

ffiffiffiffiffiffiffi
gΩ2

p �
a2

N2
s
ð∂tΦÞ2

þ 1

b2
Φ∇2Φ

�
; ð57Þ

where the Laplacian is defined with respect to the metric,

dΣ2 ¼ a2ðtÞ
b2ðtÞ dr

2 þ dΩ2
2: ð58Þ

We now separate the scalar field into mode functions as
follows:

Φðt; r; θ;ϕÞ ¼ 1ffiffiffiffiffiffi
2π

p
X
κ;l;m

φðtÞeiκrYlmðθ;ϕÞ;

where the harmonics are labeled by the quantum numbers
κ, l, andm. Ylm is related to the Legendre polynomial in the
following way:

Ylmðθ;ϕÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−mÞ!
4πðlþmÞ!

s
ð−1ÞmeimϕPm

l ðcosθÞ: ð59Þ

The scalar field in terms of the mode functions (59) follows
the following eigenvalue equation:

∇2Φ ¼ −
�
lðlþ 1Þ þ b2

a2
κ

�
Φ: ð60Þ

One thing to notice is that the eigenvalue is time dependent
in this scenario. The orthogonality condition for Ylm reads,Z

S2
dΩ2Y⋆

l0m0 ðθ;ϕÞYlmðθ;ϕÞ ¼ δmm0δll0 : ð61Þ

It is worth mentioning that the scalar modes in (59) forms a
complete basis of complex functions. One can derive a
complete basis set of real functions which along with the
orthogonality condition (61) and the eigenvalue Eq. (60)
leads to the following form of the action (57):

SΦ ¼
X
κ;l;m

Z
1

0

dtNs

�
a2b2

2N2
s
ð∂tφÞ2 −

1

2

�
lðlþ 1Þ þ b2

a2
κ2
�
φ2

�
:

ð62Þ

The equation of motion for each decoupled mode is
given by

d
dt

½a2b2φ̇� þ N2
s

�
lðlþ 1Þ þ b2

a2
κ2
�
φ ¼ 0: ð63Þ

It is not possible to find an analytic solution for this
equation but Eq. (62) can be made simpler with the use of
the equation of motion, and the on shell action reads,

Son-shellΦ ¼ 1

2Ns

X
κ;l;m

½a2b2φφ̇�1t¼0: ð64Þ

Here we proceed to solve the equation of motion (63) by
numerical methods. We solve it for particular values of l
and κ subjected to the boundary condition φð0Þ ¼ 0.
We wish to keep φð1Þ ¼ φ1 as a variable quantity.
To do so, we start with a random initial value for φ̇ð0Þ
along with φð0Þ ¼ 0 and find out φ1. Then we divide
the whole function φðtÞ with φ1. Let us say the new

function φ̃ðtÞ ¼ φðtÞ
φ1
. So the boundary conditions on φ̃ðtÞ

FIG. 2. In this picture we show the variation of imaginary part
FðαÞ with α ¼ a1

b1
for a particular scalar mode fκ; l; mg. We see

that the imaginary part of FðαÞ is always negative which implies
that GΦ is always going to blow up as φ1 increases. Near the
isotropic limit, the imaginary part of FðαÞ reaches a constant
value and in that region the real part of GΦ becomes an inverse
Gaussian function which matches with the result obtained in case
of FLRW cosmology [30].
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are φ̃ð0Þ ¼ 0 and φ̃ð1Þ ¼ 1. Now Eq. (64) can be written
down as

Son-shellΦ ¼ 1

2Ns
a21b

2
1

X
κ;l;m

˙̃φð1Þφ2
1;

≡X
κ;l;m

FðαÞφ2
1; ð65Þ

where we have defined FðαÞ¼ 1
2Ns

a21b
2
1
˙̃φð1Þ and α¼a1=b1.

The transition probability, as we have derived for the
background in the previous section, for the scalar field
in a geometry ðāðtÞ; b̄ðtÞ; NsÞ can be given as

GΦ ∝ e
i
ℏS

on-shell
Φ : ð66Þ

Below we analyze the nature of the imaginary part of FðαÞ
(see Figs. 2–4).

VI. DISCUSSION

In this paper we considered a spatially homogeneous but
anisotropic cosmological model whose spatial geometry is
the product of a circle and a two sphere (S1 × S2). Our 4D
geometry has a preferred 3D slicing which in turn ensures a
convenient Euclidean time coordinate. Therefore, a simple
rotation in the time flow leads the Euclidean ansatz to a
Lorentzian one. In deriving a Hartle-Hawking-type solution
one needs to specify the boundary data. The fixed boundary
quantities in the path integral should be the same as that of
in the classical variational principle. As has been delineated
in [37], the appropriate boundary data for the variational
principle is not the initial and final values of the scale
factors a, b, but the final values of a, b and initial value of a
along with Euclidean time derivative of a. Now the
Euclidean propagation amplitude, KEða1; b1ja0; ȧ=NEÞ
can be considered analytic in its last argument (considering
that all the mathematical intricacies have been resolved)
and the Lorentzian counterpart can be defined as
KLða1; b1ja0; iðȧ=NÞÞ≡ KEða1; b1ja0; ȧ=NEÞ. This is
similar to the Wick rotation of Feynman propagator in
quantum field theory. Our Lorentzian analysis is mainly
motivated by this argument.
A general path integral prescription for anisotropic

models was presented in [37]. Following that a recent
work on tunneling formulation has been done in [27]
focusing on Kantowski-Sachs model in particular. These
works are mainly based on an Euclidean path-integral
method where the choice of the lapse integration contour
does not obey the Picard-Lefschetz theory. In this work we
revisit the problem in the light of Picard-Lefschetz theory
and go on to calculate the transition amplitude rather than
the wave function of the Universe. The importance of this
work lies in the fact that we were able to carry out the
Lorentzian path integral for the Kantowski-Sachs back-
ground by carefully tackling the saddle points arising in the
Picard-Lefschetz theory. A neat result for the transition
amplitude was obtained. In short, our study is aimed at
addressing Lorentzian path integral for a general class of
cosmological models; namely, the anisotropic models of
the Universe where the regularity condition at the big bang
singularity is fairly complicated. This extends the previous
studies which were performed in an Euclidean setting,
stemming from a long standing belief that the highly

FIG. 3. The plot shows the variation imaginary part of FðαÞ
with α for different κ modes for a particular value of l. We see the
larger values of κ is going to blow up faster than the lower modes.

FIG. 4. The plot shows the variation of imaginary part of FðαÞ
with α for different l values while κ remains fixed. Similar to the
previous case, we see larger values l makes the real part of GΦ
blow up faster than the lower modes.
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oscillatory nature of Lorentzian path integral may not lead
to a well-defined result. We also find that in the Kantowski-
Sachs background a major contribution to the transition
amplitude arises from a conical singularity. This is contrary
to what is established in the case of Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmologies where a conical
singularity does not occur. We advocate for the Lorentzian
method which avoids the ambiguities in the Euclidean
approach such as, the conformal factor problem.
Our main results are twofold. Firstly, for large-scale

structure, we observed that the dominant saddle point
contribution pushes the initial value of the scale factor,
b0 towards zero value. b0 ¼ 0 is a singularity, that is,
it violates the regularity condition at the beginning of
time [25]. So it is safe to claim that the main contribution to
the transition amplitude comes from an initial condition
which tends to a singular start. We also show that in an
isotropic limit the real part in the classical action is negative
and the exponential factor in the transition amplitude, e−

3π
4ℏΛ

is very similar to the characteristic factor e−
12π2

ℏΛ as derived
in [26]. Secondly, we performed a scalar perturbation
analysis. This shows that if there were any initial pertur-
bation then that would blow up as the Universe grows
bigger. This result is in compliance with the claims
presented in [30] for FLRW cosmology. The objective of
the no-boundary proposal is to provide an initial condition
for the Universe in order to explain a smooth beginning.
The key concept is that at the quantum level the notion of a
“smooth” beginning is replaced by a more nuanced and
quantum description where spacetime itself undergoes
fluctuations. As we have explained here, such fluctuations
do not get suppressed and the theory is divergent.
In future it wold be interesting to perform this analysis in

different Bianchi class of anisotropic models for a deeper
understanding. Also, the Robin-type of boundary condition
will be worth exploring in this context as it circumvents the
unstable perturbation issue as has been reported in [41].

[1] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
[2] C. W. Misner, Phys. Rev. 186, 1319 (1969).
[3] A. Vilenkin, Phys. Rev. D 50, 2581 (1994).
[4] C. Teitelboim, Phys. Rev. D 25, 3159 (1982).
[5] J. B. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960

(1983).
[6] J. J. Halliwell and J. Louko, Phys. Rev. D 39, 2206 (1989).
[7] A. Vilenkin, Phys. Lett. 117B, 25 (1982).
[8] A. Vilenkin, Phys. Rev. D 37, 888 (1988).
[9] S. Hawking, Nucl. Phys. B239, 257 (1984).

[10] J. J. Halliwell, J. B. Hartle, and T. Hertog, Phys. Rev. D 99,
043526 (2019).

[11] S. Pal and N. Banerjee, Phys. Rev. D 90, 104001 (2014).
[12] S. Pandey, S. Pal, and N. Banerjee, Ann. Phys. (Amsterdam)

393, 93 (2018).
[13] S. Ghosh, S. Gangopadhyay, and P. K. Panigrahi, Mod.

Phys. Lett. A 34, 1950283 (2019).
[14] J. D. Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog, O.

Janssen, and Y. Vreys, Phys. Rev. Lett. 121, 081302 (2018).
[15] O. Janssen, J. J. Halliwell, and T. Hertog, Phys. Rev. D 99,

123531 (2019).
[16] J. J. Halliwell and R. C. Myers, Phys. Rev. D 40, 4011

(1989).
[17] J. J. Halliwell and J. Louko, Phys. Rev. D 40, 1868 (1989).
[18] S. Pal and N. Banerjee, Classical Quantum Gravity 32,

205005 (2015).
[19] S. Ghosh, S. Gangopadhyay, and P. K. Panigrahi, Mod.

Phys. Lett. A 37, 2250009 (2022).
[20] H. García-Compeán, O. Obregón, and C. Ramírez, Phys.

Rev. Lett. 88, 161301 (2002).
[21] A. Di Tucci, M. P. Heller, and J.-L. Lehners, Phys. Rev. D

102, 086011 (2020).

[22] H. D. Conradi, Classical Quantum Gravity 12, 2423 (1995).
[23] L. Parisi, N. Radicella, and G. Vilasi, Phys. Rev. D 91,

063533 (2015).
[24] A. Joe and P. Singh, Classical Quantum Gravity 32, 015009

(2014).
[25] J. J. Halliwell and J. B. Hartle, Phys. Rev. D 41, 1815

(1990).
[26] J. Feldbrugge, J.-L. Lehners, and N. Turok, Phys. Rev. D 95,

103508 (2017).
[27] G. Fanaras and A. Vilenkin, J. Cosmol. Astropart. Phys. 03

(2022) 056.
[28] J. Feldbrugge, J.-L. Lehners, and N. Turok, Phys. Rev. D 97,

023509 (2018).
[29] G. Gibbons, S. Hawking, and M. Perry, Nucl. Phys. B138,

141 (1978).
[30] J. Feldbrugge, J.-L. Lehners, and N. Turok, Phys. Rev. Lett.

119, 171301 (2017).
[31] R. Feynman and A. Hibbs, Quantum Mechanics and Path

Integrals (McGraw Hill, New York, 1965).
[32] L. Schulman, Techniques and Applications of Path Inte-

gration (Dover Publications, New York, 2012).
[33] I. Batalin and G. Vilkovisky, Phys. Lett. 69B, 309 (1977).
[34] J. J. Halliwell, Phys. Rev. D 38, 2468 (1988).
[35] C. Teitelboim, Phys. Rev. D 28, 297 (1983).
[36] C. Teitelboim, Phys. Rev. Lett. 50, 705 (1983).
[37] J. J. Halliwell and J. Louko, Phys. Rev. D 42, 3997 (1990).
[38] J. H. V. Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928).
[39] C. Morette, Phys. Rev. 81, 848 (1951).
[40] S. Narayan, Theory of Functions of a Complex Variable

(Sultan Chand, India, 2005).
[41] A. Di Tucci and J.-L. Lehners, Phys. Rev. Lett. 122, 201302

(2019).

LORENTZIAN PATH INTEGRAL IN KANTOWSKI-SACHS … PHYS. REV. D 109, 043524 (2024)

043524-9

https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1103/PhysRev.186.1319
https://doi.org/10.1103/PhysRevD.50.2581
https://doi.org/10.1103/PhysRevD.25.3159
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1103/PhysRevD.39.2206
https://doi.org/10.1016/0370-2693(82)90866-8
https://doi.org/10.1103/PhysRevD.37.888
https://doi.org/10.1016/0550-3213(84)90093-2
https://doi.org/10.1103/PhysRevD.99.043526
https://doi.org/10.1103/PhysRevD.99.043526
https://doi.org/10.1103/PhysRevD.90.104001
https://doi.org/10.1016/j.aop.2018.04.006
https://doi.org/10.1016/j.aop.2018.04.006
https://doi.org/10.1142/S0217732319502833
https://doi.org/10.1142/S0217732319502833
https://doi.org/10.1103/PhysRevLett.121.081302
https://doi.org/10.1103/PhysRevD.99.123531
https://doi.org/10.1103/PhysRevD.99.123531
https://doi.org/10.1103/PhysRevD.40.4011
https://doi.org/10.1103/PhysRevD.40.4011
https://doi.org/10.1103/PhysRevD.40.1868
https://doi.org/10.1088/0264-9381/32/20/205005
https://doi.org/10.1088/0264-9381/32/20/205005
https://doi.org/10.1142/S0217732322500092
https://doi.org/10.1142/S0217732322500092
https://doi.org/10.1103/PhysRevLett.88.161301
https://doi.org/10.1103/PhysRevLett.88.161301
https://doi.org/10.1103/PhysRevD.102.086011
https://doi.org/10.1103/PhysRevD.102.086011
https://doi.org/10.1088/0264-9381/12/10/005
https://doi.org/10.1103/PhysRevD.91.063533
https://doi.org/10.1103/PhysRevD.91.063533
https://doi.org/10.1088/0264-9381/32/1/015009
https://doi.org/10.1088/0264-9381/32/1/015009
https://doi.org/10.1103/PhysRevD.41.1815
https://doi.org/10.1103/PhysRevD.41.1815
https://doi.org/10.1103/PhysRevD.95.103508
https://doi.org/10.1103/PhysRevD.95.103508
https://doi.org/10.1088/1475-7516/2022/03/056
https://doi.org/10.1088/1475-7516/2022/03/056
https://doi.org/10.1103/PhysRevD.97.023509
https://doi.org/10.1103/PhysRevD.97.023509
https://doi.org/10.1016/0550-3213(78)90161-X
https://doi.org/10.1016/0550-3213(78)90161-X
https://doi.org/10.1103/PhysRevLett.119.171301
https://doi.org/10.1103/PhysRevLett.119.171301
https://doi.org/10.1016/0370-2693(77)90553-6
https://doi.org/10.1103/PhysRevD.38.2468
https://doi.org/10.1103/PhysRevD.28.297
https://doi.org/10.1103/PhysRevLett.50.705
https://doi.org/10.1103/PhysRevD.42.3997
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1103/PhysRev.81.848
https://doi.org/10.1103/PhysRevLett.122.201302
https://doi.org/10.1103/PhysRevLett.122.201302

