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We investigate a mechanism of primordial black hole (PBH) formation that avoids any dependence on
specific inflationary features or exotic physics. In this scenario, the required large curvature fluctuations
leading to PBH formation are generated after inflation by the quantum fluctuations of a light stochastic
spectator field during inflation, when this field transiently dominates the energy density. We calculate the
dynamics of such a spectator field during and after inflation, the distribution of induced curvature
perturbations and their non-Gaussian tails leading to the copious production of PBHs. For a plateaulike
potential, this scenario produces an extended PBH mass distribution with a peak at the solar-mass scale
when one takes into account the effects of the thermal history. What is remarkable in this scenario is the
absence of parameter fine-tuning. Instead, it invokes an anthropic selection over all the realizations of PBH
abundances predicted by the field stochasticity. This scenario offers a novel perspective for the formation of
PBHs with minimal ingredients and without the need of fine-tuning. It is amenable to observational tests,
notably with the gravitational-wave observations of black hole mergers and of a background at nanohertz
frequency, as recently observed by pulsar timing arrays.
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I. INTRODUCTION

Taking advantage of the absence of detection of new
particles such a weakly interacting massive particles, in
accelerators and in direct and indirect detection experiments,
primordial black holes (PBHs) are nowadays considered as
one leading candidate to explain the dark matter in the
Universe. Contrary to dark matter particles, the existence
of PBHs is supported by a series of observations, reviewed
in [1–4] and including the gravitational waves (GWs) from
compact binary coalescences observed by the Ligo/VIRGO/
Kagra (LVK) Collaboration [5–10], a GW background at
nanohertz frequency detected with pulsar timing arrays
(PTA) [11–16], the size and mass-to-light ratio of ultrafaint
dwarf galaxies, several microlensing candidates, spatial
correlations in source-subtracted cosmic infrared and x-ray
backgrounds, the existence of supermassive black holes at
high redshifts (see Ref. [4] and references therein). These
observational clues are however not unambiguous and could
have other astrophysical origins.
In addition, there are also numerous constraints on the

abundance of PBHs, see e.g., [17] for a recent review,
sometimes in apparent conflict with some of those hints.
Furthermore, it is worth noticing that any observational
evidence or constraint is still subject to large uncertainties
or model dependence. It is therefore very difficult to prove
the existence of PBHs and, if they exist, to infer their total
contribution to the dark matter. There is so far only one
almost unambiguous way to prove the existence of PBHs
that is accessible with the current generation of instruments:

detecting a subsolar-mass black hole in a compact binary
coalescence. Recently a few intriguing subsolar-mass trig-
gers have been reported in GW observations [18,19]. For
instance, SSM170401 prefers a subsolar-mass black hole
secondary component if interpreted as a GW signal [20].
Overall, the search for PBHs and their properties is a very
active and exciting area of research, with many implications
for our understanding of the nature of dark matter and of the
physics at play in the early Universe.
PBHs are thought to have formed from the collapse of

regions of high density contrast in the early Universe. An
important criticism of the majority of PBH scenarios comes
from the difficulty to produce them without invoking strong
parameter fine-tuning [21] and specific models of the early
Universe, such as transient inflationary features in the
primordial power spectrum, during reheating or new phase
transitions (see e.g., [22–24] for a review). For instance, the
mechanism of PBH formation may involve the amplifica-
tion of quantum fluctuations during inflation. A lot of PBH
models rely on this idea but they require a strong enhance-
ment of the primordial power spectrum at small scales.
Such a feature is not natural in the vast majority of single-
field slow-roll inflation models. It typically requires an
extremely flat region of the scalar field potential over a tiny
field range, leading to a so-called transient phase of ultra-
slow-roll. In addition, in most models the abundance of
PBHs depends exponentially on the amplitude of those
fluctuations, leading to an additional layer of fine-tuning
for the model parameters [21,25].
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In this work we explore a mechanism of PBH production
based on a light quantum stochastic spectator scalar field
during inflation. By definition, a spectator field is a
hypothetical scalar field, not involved in the inflationary
expansion of the early Universe. Inflation therefore does
not play a direct role in the PBH production, and vice-
versa. Because the field is very light, the exact shape of its
potential is also irrelevant for the dynamics of its quantum
fluctuations during inflation, which adds to the genericity
of the scenario and allows PBH formation with relatively
minimal assumptions and no strong dependence on poten-
tial parameters. It can have a variety of origins and
properties, spectator fields being generic in various high-
energy frameworks like supersymmetry, supergravity,
grand unified theories, string theory, extra-dimension
models, etc. The best example of a light spectator field
during inflation is the Broug-Englert-Higgs (BEH) field.
We consider this specific case in a companion paper [26]
and focus here on the more general case. Contrary to most
other PBH models based on extra spectator fields [27–31],
the curvature fluctuations at the origin of PBHs are not
produced during inflation in our scenario, but after, in the
subsequent matter or radiation era. This happens when the
field starts to dominate the energy density of the Universe
and drive the expansion, in such a way that small fluctua-
tions of the field can be converted into large but still super-
horizon curvature fluctuations, as in the so-called curvaton
scenario [32] but with the addition that curvature fluctua-
tions are highly non-Gaussian. More precisely, in some rare
regions where the spectator field lies in a sufficiently flat
region of its potential, one gets a short extra phase of
expansion, i.e., a curvature fluctuation. PBHs are only
produced later, when these fluctuations re-enter inside the
Hubble radius and collapse gravitationally.
This mechanism was proposed in [33] by one of us, but

using simple assumptions and estimates. Other authors also
proposed more specific models based on a spectator field
and sometimes qualitatively similar scenarios [34–40]. In
this work, we refine the analysis of the stochastic dynamics
during inflation and improve the calculation of the resulting
PBH abundance. We compute the exact field and expansion
dynamics leading to the generation of curvature fluctua-
tions, for realistic example models, considering both the
field and the radiation or matter content in the Universe at
this epoch, instead of assuming simple slow-roll condi-
tions. We show that this affects the conditions for the
realization of this scenario and modifies the PBH mass
distribution. Furthermore, we estimate the contribution of
curvature fluctuations from the spectator field to the total
primordial power spectrum, on cosmological scales and on
smaller scales, using the stochastic δN formalism [41–43].
We find the conditions under which they are subdominant
on cosmological scales. The statistics of these fluctuations
is also investigated and we find that on all scales it exhibits
a non-Gaussian tail, which triggers the formation of PBHs.

Finally, we include the effect of the QCD cross-over
transition on the critical overdensity threshold, leading to
specific features in distribution of stellar-mass PBHs that
can be tested with GW observations of compact binary
coalescences.
The layout of this paper is as follows. In Sec. II we

introduce and solve the stochastic dynamics of a light
spectator field during inflation. In Sec. III, two examples of
scalar field potentials are introduced, one successful (pla-
teau potential) and one unsuccessful (small-field potential).
In Sec. IV, we solve the exact dynamics of the field after
inflation when it transiently dominates the Universe. The
resulting production of curvature fluctuations and their
statistics are analyzed in Sec. V, where the condition that
they are subdominant on large cosmological scales is
imposed. In Sec. VI, we compute the abundance of
PBHs and their mass distribution in several cases, including
the effects of the QCD transition. We then explain and
discuss why there is no fine-tuning issue in our scenario in
Sec. VII. We try to quantify the implications of this
property in terms of Bayes factor when our model is
compared to some other PBH scenarios. Finally, in
Sec. VIII, we discuss our results and we present our
conclusions, as well as the perspectives of our work, with
a focus on how to distinguish the model observationally.

II. QUANTUM STOCHASTIC DYNAMICS
DURING INFLATION

In the considered scenario, the production of PBHs
results from the stochastic quantum fluctuations of a light
spectator field during cosmic inflation. In different universe
patches that are comparable to the size of our observable
Universe, referred as Hubble-sized patches, the field has
acquired different mean values, different fluctuation sta-
tistics, leading to different PBH abundances. Since inflation
can generically lead to much more than 60 e-folds of
expansion, there are today so many of these Hubble-sized
patches that there is necessarily one associated to a given
PBH abundance. In order to calculate the abundance of
PBHs with a given mass in a given patch, the first step is
thus to solve the stochastic dynamics of the field during
inflation, which is the goal of this section.
The inflationary dynamics is commonly described using

the so-called Hubble-flow (slow-roll) functions denoted by
ϵ1;2;3 and defined as follows:

ϵ1≡−
dlnH
dN

; ϵ2≡dlnϵ1
dN

; ϵ3≡dln jϵ2j
dN

; ð1Þ

where H is the Hubble-Lemaître expansion rate and N
denotes the number of e-folds realized during inflation. We
arbitrarily fix N ¼ 0 when our Hubble-sized patch exited
the Hubble radius during inflation. These slow-roll func-
tions can be reconstructed from the amplitude and scale
dependence of the (scalar) primordial perturbations that
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seeded the observed large-scale structures and cosmic
microwave background anisotropies. This primordial power
spectrum is usually parametrized by its amplitude As and
spectral index ns at the pivot scale k� ¼ 0.05 Mpc−1. In the
context of single-field slow-roll inflation, its amplitude is
given by

As ¼ 2.1 × 10−9 ≃
H2�

8π2ϵ1M2
P
; ð2Þ

and the spectral index is

ns ¼ 0.9649� 0.0042 ≃ 1 − 2ϵ1� − ϵ2�; ð3Þ

according to the latest observations by Planck [44], where
MP is the reduced Planck mass and a star subscript means
that a quantity is evaluated at the time when the comoving
pivot scale k� exited the Hubble radius, for instance H� is
the expansion rate when k� ¼ aH�. For the inflation
dynamics, we consider two phenomenological models that
are consistent with the above-mentioned constraints and
with the current limit on the tensor-to-scalar ratio r ≃
16ϵ1� ≲ 0.05 [44], reported in Table I. For simplicity we
assumed that ϵ3 ¼ 0 but our results can easily be general-
ized to other models or to refined inflationary predictions. It
is important to note that the exact shape of the PBH mass
distribution will marginally depend on the assumed infla-
tion dynamics, but that the process of PBH formation itself
remains generic and does not require any specific infla-
tionary scenario.
The first model is representative of an inflaton potential

(close to) linear leading to ϵ2 ≃ 4ϵ1 and to a still acceptable
value (despite disfavored) of the tensor-to-scalar ratio, at the
limit of being detected. The secondmodel corresponds to the
best and simplest inflationarymodel after Planck [45],Higgs
or Starobinsky inflation, and is representative of all the
models where the spectral index value is saturated by the ϵ2�
parameter, while ϵ1 remains sufficiently small during
inflation for not playing a significant role in the stochastic
dynamics of the spectator field, as later shown. These
properties are typical of plateaulike potentials favored after
Planck observations [45]. These models, with small varia-
tions, were also considered in the previous analysis of [33].
Let us now focus on the evolution of the quantum

fluctuations of a light spectator field ψ during inflation.

Each e-fold of expansion, the amplitude of its quantum
fluctuations in a Hubble-sized region is of order H=2π. We
denote δψ inðx; NinfÞ≡ ψ inðx; NinfÞ − ψoutðx; Ninf − 1Þ the
variation of the meanvalue of ψ in a Hubble-sized region1 at
e-fold timeNinf centered on the position xwith respect to the
mean field value in the outer encompassing Hubble-sized
region at e-fold time Ninf − 1, denoted ψoutðx; Ninf − 1Þ.
The mean field value in the much larger Hubble-sized patch
corresponding to our observable Universe is denoted hψi.
Finally, δψout ≡ ψoutðx; Ninf − 1Þ − hψi refers to the field
fluctuation between that outer region and the mean value in
our observable Universe. These different quantities are
illustrated by a sketch of our coarse-grained model shown
in Fig. 1.
The Fokker-Planck equation can be used for the calcu-

lation of the probability distribution of the field during
inflation, taking into account its quantum stochastic fluc-
tuations [33,46]. This equation involves the drift and
diffusion coefficients of the field, which are determined
by the properties of the potential and the background

TABLE I. Hubble rate and Hubble-flow functions for the pivot
scale k� ¼ 0.05 Mpc−1 for the two illustrative benchmark models
of inflation considered in this paper (without losing generality on
the mechanism of PBH formation).

Model ϵ1� ϵ2� H�ðMPÞ r

1 0.00507 0.0207 2.9 × 10−5 0.08115
2 0.00020 0.0351 5.8 × 10−6 0.00325

FIG. 1. Schematic representation of the spectator field fluctua-
tions in a two-dimensional real-space slice, showing a rare
fluctuation leading to a field value ψout that exited the Hubble
radius at the e-fold time Ninf − 1 and another smaller fluctuation
on top of it with a field value ψ in that became super-Hubble at
time Ninf . If the yellow color represents field values in a
sufficiently flat region of the potential, the inner fluctuation
can lead to a large curvature fluctuation collapsing into a PBH
when it re-enters the Hubble radius.

1Note the difference of terminology between a Hubble-sized
region denoting a spatial region of the Universe of size compa-
rable to the Hubble radius at a given time, and a Hubble-sized
patch that corresponds to a spatial region of size comparable to
the observable Universe.

PRIMORDIAL BLACK HOLES WITHOUT FINE-TUNING FROM A … PHYS. REV. D 109, 043522 (2024)

043522-3



cosmology. For a very light spectator field with a mass
m ≪ Hinf , however, the spectator field fluctuations remain
independent of its potential. The probability distribution
can be used to calculate statistical quantities, such as the
mean and variance of the field, and to study the behavior of
the field in different regions of the Universe.
The quantum fluctuations of ψ produced during one

e-fold in a Hubble-sized region are Gaussian and their
variance is H=2π. Since H evolves during inflation, driven
by the slow-roll functions, if ϵ2 is assumed to be constant,
one has

hδψ2
inðNinfÞi ≃

H2�
4π2

exp

�
−2

ϵ1�
ϵ2�

h
eϵ2�ðNinf−N�Þ − 1

i�
; ð4Þ

where N� ¼ lnðk�=H0Þ ≃ 5. If one is instead interested by
the variance of the field fluctuations in a Hubble-sized
patch, it is obtained through

hδψ2ðNinfÞi ≃
Z

N

0

HðNÞ2
4π2

dN: ð5Þ

As long as Ninf − N� ≪ 1=ϵ2 ∼ 50 that is a valid hypoth-
esis for stellar-mass PBHs for which Ninf − N� ≃ 20, one
can expand the second exponential in H2ðNÞ given by
Eq. (4) as exp½ϵ2�ðN − N�Þ� ≃ 1þ ϵ2�ðN − N�Þ and there-
fore one gets

hδψ2
outðNinfÞi ≃

H2�
8π2ϵ1�

½1 − expð−2ϵ1�ðNinf − N�ÞÞ�;

≃
H2�ðNinf − N�Þ

4π2
: ð6Þ

It is worth noticing that the variance of field fluctuations
grows linearly with the number of e-folds. This property
will be important to avoid large non-Gaussianities on
cosmological scales and allow PBH formation on much
smaller scales. Those distributions will be used to compute
the associated curvature fluctuations produced after
inflation.

III. EXAMPLE MODELS

In this section, we present two illustrative potentials for
the light stochastic spectator field that can lead to the
production of PBHs. The first one is an archetype of a
plateaulike potential, the second of small-field inflation.
However, as shown later, even if both can lead to the PBH
production, only the former one does not overproduce at
the same time curvature fluctuations on large cosmological
scales, which is ruled out by CMB observations.
Case 1: The first considered potential has the form:

VðψÞ ¼ Λ4

�
1 − exp

�
−
ψ

M

��
ð7Þ

where Λ and M are two parameters. This exponential
potential has a plateau at large values of the field when
ψ > M. In Fig. 2 we depict the potential for two relevant
choices of the parameters. With such a potential, only the
plateau region is sufficiently flat to lead to extra e-folds of
expansion. In order to get sufficiently small curvature
fluctuations in most regions of our Hubble-sized patch,
we will have to consider patches where hψi does not lie in
the plateau, together with a value of M that is sufficiently
small (but not too small) for quantum fluctuations of ψ
during inflation to lead to a subdominant fraction of
Hubble-sized regions with ψðx; NinfÞ in the plateau region,
as required for having PBH formation. Finally, it is worth
noticing that the Λ parameter does not influence the filed
dynamics when expressed in e-fold time, one can therefore
simply require that Λ is below the energy scale of inflation
and above the QCD scale.
Case 2: The second potential we consider has the

following form:

VðψÞ ¼ Λ4

�
1 −

ψ2

M2

�
2

: ð8Þ

It is a double well potential, with two minima at ψ ¼ �M
while it exhibits a maximum and so a flat region at ψ ¼ 0,
where extra e-folds could be realized. It grows like V ∝ ψ4

at ψ ≫ M, as shown in Fig. 2. We will consider cases
where hψi is close toM which is sufficiently small for field
fluctuations to reach the tiny flat region close to ψ ¼ 0
where large curvature fluctuations can be produced.

FIG. 2. The spectator field plateaulike potential of Eq. (7),
referred as case 1. The green line corresponds to the parameter
M ¼ 4 × 10−6MP that will be used in combination with the
inflation model 1. The orange line is obtained for M ¼ 8 ×
10−7MP and is used for the inflation model 2. The gray line
corresponds to the small-field spectator field potential of Eq. (8),
with M ¼ 8 × 10−6 and is considered as a representative un-
successful model.
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Nevertheless, we will show that this potential cannot
simultaneously satisfy the constraints imposed by the
CMB anisotropies and the production of PBHs.
At the end of the paper, we shortly discuss another class

of potentials, the one of those with an inflection point that
can also lead to PBH production without spoiling the
large-scale primordial power spectrum. One could think
that most natural example of such scenario is to consider
the BEH field as the stochastic spectator, given that it
exhibits an inflection point for very specific choices of the
top quark and the BEH boson mass. This is the subject of a
separate paper, where we show that unfortunately this
scenario is not viable with our standard knowledge of the
BEH potential.

IV. THE DYNAMICS OF THE SPECTATOR
FIELD AFTER INFLATION

After the end of inflation, the spectator field remains
frozen during the subsequent reheating and radiation era
until it dominates the energy density in the Universe, which
causes an additional short period of accelerated expansion
in some Hubble-sized regions where the field lies in a flat
region of the potential. This results in the generation of
large curvature fluctuations, whose statistics will be studied
in the next section. In this section, we focus on the
dynamics of the spectator field after inflation. After the
field rolls down to the bottom of the potential, it oscillates
and possibly lead to a matter-dominated era. We assume
here that it is coupled to other fields such that it quickly
decays, driving the Universe back to the radiation era.
The equations governing the evolution of the spectator

field ψ and of the Universe expansion, in cosmic time, read

ψ̈ þ 3Hψ̇ þ ∂V
∂ψ

¼ 0;

Ṅ ¼ H ¼
ffiffiffiffiffiffiffiffiffiffi
ρ

3M2
P

r
; ð9Þ

where a dot denotes the derivative with respect to the
cosmic time. ρ is the total energy density that evolves as
follows, as long as the field velocity is negligible:

ρ ¼ ρm;re−κN þ VðψÞ; ð10Þ

where ρm;r is the energy density in matter or radiation at
some initial time. In case of matter (radiation) domination,
one has κ ¼ 3 (κ ¼ 4). The initial time must be after
inflation but before the field dominates the density of the
Universe. Our choice is to consider the time when
ρr;m ¼ C × Vðψ icÞ, with C ¼ 10, which typically ensures
that the field did not evolve before this time. We denote the
initial field value as ψ ic.
Instead of using the cosmic time, we compute the

evolution of the field with respect to the e-fold time.

The Eq. (9) can be rewritten in e-fold time in the following
way:

ψ 00 þψ 0 1
2ρ

�
−κρm;re−κN þψ 0 dV

dψ

�
þ 3ψ 0 þ 3M2

P

ρm;r

dV
dψ

¼ 0;

ð11Þ

where primes denote derivatives with respect to N. We
solve numerically this exact classical equation, instead of
assuming the slow-roll approximation as done in [33]. In
the rest of the paper, we focus on the case of a radiation
phase, κ ¼ 4. Our results are nevertheless found to be
generic and our conclusions apply to the case κ ¼ 3 as well,
with an adequate rescaling of hψi.
The Eq. (11) is numerically solved for a range of initial

conditions. The numerical integration is stopped when the
slow-roll parameter ϵ1 reaches one. An alternative choice is
to continue the integration during the phase where the field
oscillates around its minimum, until the density reaches a
specific value, e.g., one hundredths of the mean initial
density. As explained in the next section, such a choice
would be theoretically more justified given that the δN
formalism used to calculate the spectrum of curvature
fluctuations applies to final hypersurfaces of constant
density. However for the considered scenarios we did
not get any appreciable difference between the different
choices and the hypersurfaces defined by ϵ1 ¼ 1 are almost
of constant density.
Our results are presented in Fig. 3 for the two cases κ ¼ 4

and κ ¼ 3, for the two considered values of M of the
plateau potential (model 1). One observes that a brief phase
of accelerated expansion is achieved when ψ ic lies in the
flat plateau, with a number of generated e-folds that can be

FIG. 3. The number of e-folds realized at the time of the
spectator field domination, for the parameters of the potential
given in Eq. (7), as a function of the initial conditions. Solid lines
correspond to a radiation dominated era and dashed lines to a
matter era.
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larger than one for the considered cases. This is expected to
lead to significant curvature perturbations, later collapsing
into PBHs. For comparison, the results obtained for the
small-field potential are displayed in Fig. 4 with the same
parameter value as in Fig. 2. However, due to the small
value of M that we consider—required to not spoil the
primordial power spectrum of CMB scales, as later
explained—one gets that the number of e-folds that are
realized always remains very small, much lower than one.
The reason is that even if the potential is extremely flat
around ψ ¼ 0, the curvature of the potential is large enough
to quickly stop the slow-roll phase and drive the field down
to the potential minimum.

V. PRODUCTION OF CURVATURE
FLUCTUATIONS AFTER INFLATION

The fluctuations in the extra expansion can be connected
to curvature fluctuations. Their importance and their
statistical distributions can be studied using the stochastic
δN formalism. It relies on the separate universe approxi-
mation [43] and relates a curvature perturbation ζðx; tÞ on a
spatial hypersurface of constant energy density to the
difference between the number of e-folds of expansion
Nðx; tÞ realized starting from an initially flat hypersurface
and the unperturbed number of e-folds N̄ðtÞ,

ζðx; tÞ ¼ δNf
i ≡ Nðx; tÞ − N̄ðtÞ ð12Þ

where we have labeled by i and f the initial and final
hypersurfaces. These are chosen to be at the initial and final
time respectively as specified in the previous section.
The curvature fluctuation is a random variable connected

to the random fluctuation of the spectator field value
δψ in, i.e.,

ζðxÞ¼NðψðxÞÞ− N̄¼Nðδψ inþδψoutþhψiÞ− N̄ ð13Þ

where the mapping between N and ψ comes from the
numerical integration of the field trajectories. The value of
N̄ and the corresponding hψi can be arbitrarily chosen,
since these are associated to our Hubble-sized patch and
result from the stochastic field dynamics during inflation,
before observable scales leave the horizon. In terms of
probability distributions, denoted P, and using the proper-
ties of transformations of random variables, one therefore
has for curvature fluctuations associated to a physical size
determined by the scale exiting the Hubble radius during
inflation at Ninf ,

Pðζin − ζoutÞ ¼
Z

dδψoutPðδψ inÞPðδψoutÞ
dψ
dN

				
ψout

: ð14Þ

In this equation, ψout ¼ hψi þ δψout and δψ in ¼
ψðζin þ ζout þ hNiÞ − ψout, i.e., is a function of the curva-
ture fluctuation in the inner region and of the field value in
the outer region. Since δψ in and δψout follow a Gaussian
statistics, one has

Pðδψ inÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhδψ2
inðNinfÞi

p exp

�
−δψ2

inðNinfÞ
2hδψ2

inðNinfÞi
�

ð15Þ

PðδψoutÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πhδψ2
outðNinf − 1Þi

p

× exp

�
−δψ2

outðNinf − 1Þ
2hδψ2

outðNinf − 1Þi
�
: ð16Þ

The evolution of the variances hδψoutðNinfÞi and
hδψ inðNinfÞi during inflation are given by the relation of
Eqs. (6) and (4).
In simple words, we consider all the possible realizations

of the spectator field in the outside region, weighted by
their probability of realization. In each of them, we consider
the probability to have an inner fluctuation, to which
corresponds a variation of the number of e-folds realized,
i.e., a curvature fluctuation. It is worth noticing that what is
relevant for PBH formation is the curvature fluctuation
between the inner region and the outer region and not
compared to hNi, but this subtlety becomes relevant only
after a certain number of e-folds, when the values of ψout
can populate the field region where large curvature fluc-
tuations can be generated.
There is one more condition to be satisfied for our

scenario to be viable: the power spectrum of the curvature
fluctuations induced by the stochastic spectator field Pψ

ζ
must not spoil the primordial power spectrum of curvature
fluctuations from the inflaton on CMB scales, given by
Eq. (2). In the δN formalism applied to our single spectator
field, it can be calculated as [41–43]

FIG. 4. The number of e-folds realized at the time of the
spectator field domination, for the parameters of the potential
given in Eq. (8), as a function of the initial conditions and for the
parameters given in caption of Fig. 2.

IOANNA STAMOU and SEBASTIEN CLESSE PHYS. REV. D 109, 043522 (2024)

043522-6



Pψ
ζ ðkÞ ¼

H2ðkÞ
4π2

�
dN
dψ

				
hNi

�
2

≪ As; ð17Þ

where k ¼ k� expðNinf − N�Þ. The above mentioned con-
dition can be respected if one selects hψi to be in the region
where NðψÞ is very flat. For the plateau potential, this is
obtained when hψi≲M, and for the small-field potential
when it is close to the potential minimum at ψ ¼ �M. The
value of Pψ

ζ obtained for the two considered inflationary
models given in Table I and M values as reported in the
caption of Fig. 2 are 2.61 × 10−10 and 4.97 × 10−11, i.e., in
both case below As. It is also worth noticing that Pψ

ζ

typically does not evolve much when considering smaller
scale and would still remain below the CMB power
spectrum if the statistics of the curvature fluctuations
would not develop heavy non-Gaussian tails, as explained
hereafter.
Finally, we proceed to the calculation of the probability

distribution of curvature fluctuations, described by Eq. (14).
The outcome is depicted in Fig. 5 for the consideredmodel 1
and for different values of Ninf . We have also shown for
comparison the Gaussian distribution expected from the
calculation of PζðkÞ only, i.e., neglecting non-Gaussian
effects. On large cosmological scales, i.e., when Ninf < 10,
the Eq. (14) reproduces well the distribution expected from
the power spectrum. One can nevertheless already observe a
non-Gaussian tail at ζ ≳ 10−4, but not enough to lead to the
production of PBHs with a significant probability. When
Ninf increases, the tail becomes more and more non-
Gaussian and forNinf ≳ 20 one gets that order one curvature
fluctuations are generated, with a very small but non-
negligible probability. These will collapse into PBHs when
they re-enter inside the horizon.

VI. PRIMORDIAL BLACK HOLE FORMATION
AND MASS DISTRIBUTION

When the curvature fluctuations are generated, they are
still super-horizon. Only later, when they re-enter inside the
Hubble radius, they collapse into PBHs when they exceed a
certain threshold ζcr. One usually denotes βðMPBHÞ the
density fraction of the Universe collapsing into PBHs of
mass MPBH per unit of logarithmic mass interval. In our
scenario, it is therefore obtained by integrating the prob-
ability density function of curvature fluctuations above this
threshold value,

βðMPBHÞ≡ 1

ρ

dρ
d lnMPBH

¼
Z

∞

ζcr

PðζÞdζ: ð18Þ

The exact threshold leading to PBH formation depends
on several factors, including the equation of state of the
Universe which itself depends on the thermal history. In
particular, at the QCD epoch, the slight transient reduction
of the equation of state slightly reduces the threshold,
which can result in a high peak in the PBH mass
distribution around MPBH ≈ 2M⊙ and a bump in the range
from 30M⊙ to 100M⊙ [2,47]. In order to consider this
effect, we have used the overdensity threshold values δcr
as a function of the Hubble mass at horizon crossing
from Ref. [48], related to the PBH mass by a factor
γ ≡MPBH=MH ≃ 0.8, recently computed with numerical
relativity simulations taking into account the changes in the
equation of state at the QCD epoch. One can relate the
curvature and density fluctuations through the approximate
relation ζ ≈ ð9=4Þδ valid at horizon crossing. The exact
relation depends on various factors, such as the shape of the
primordial power spectrum, the statistics of the fluctuations
(Gaussian or non-Gaussian), the curvature and density
profiles [49–51]. All these factors can induce changes in
the features visible in the final PBH mass distribution, but
without losing the generality and the viability of our PBH
formation scenario. Then, the dark matter fraction made of
PBHs today is obtained by [47]

fPBHðMPBHÞ ≈ 2.4βðMPBHÞ
�
2.8 × 1017M⊙

MPBH

�
1=2

: ð19Þ

The PBH distributions at formation and today, βðMPBHÞ
and fPBHðMPBHÞ respectively, for the model 1 and model 2,
are displayed in Figs. 6 and 7. In both cases, one gets an
extended mass distribution with the QCD-induced features
clearly visible in the stellar-mass range. We have selected
the parameter hψi such that one gets a total dark matter
density ftotPBH ¼ 1, when it is integrated over the full mass
range, but different choices can lead to different
abundances.
By modifying the value of M and of the slow-roll

parameters, one influences the mass distribution of
PBHs. A peak around a solar mass is generic, however

FIG. 5. The probability distribution of curvature fluctuations ζ
for model 1 and for different values of Ninf . The red dashed line
corresponds to the case of a Gaussian distribution on CMB scales,
determined with Eq. (17). The vertical gray dash-dotted line
denotes the critical threshold ζcr for PBH formation.
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it is not related to our mechanism but to the variation of the
formation threshold at the QCD epoch. We specifically
focus on PBH distributions where these peaks provide most
of the abundance in the solar-mass range, considering their
significant role in observational studies. But other values of
M and inflationary parameters can also generate a decreas-
ing mass distribution dominated by asteroid-mass PBHs, or
even lighter PBHs that would have evaporated. Although
this was not the primary focus of our analysis, this
illustrates the broad adaptability of our model.
It is important to emphasize that the probabilities

associated with the production of PBHs and their corre-
sponding abundances can be in agreement with the obser-
vational constraints of inflation. With a good choice of hψi
and M one can have at the same time a significant PBH

production on small scales and negligible curvature fluc-
tuations on cosmological scales.

VII. RESOLVING THE FINE-TUNING

One of the main criticisms of inflationary models as a
mechanism to generate PBHs is the issue of fine-tuning,
recently studied in [21,25] for some models. This is in fact a
three-sided problem that can be summarized as follows:
(1) The parameters of the inflation model must be fine-

tuned in order to produce a high peak in the
primordial power spectrum with Oð1Þ density fluc-
tuations on small scales, while not spoiling it on
CMB scales where density fluctuations are of
Oð10−5Þ. Adding the constraint that no CMB dis-
tortions are produced at an observable level, this
particularly restricts the range of possible models
[52,53] and further adds up to the required degree of
fine-tuning.

(2) In addition to the shape of the primordial power
spectrum, requiring that today’s abundance of PBHs
is sizeable adds another layer of fine-tuning. This
issue is related to the exponential dependence of the
PBH abundance with respect to the primordial
power spectrum amplitude. A tiny change of it
can typically induce a change in the PBH abundance
by several orders of magnitude. This issue typically
increases the PBH fine-tuning problem by 1 or 2
orders of magnitude [21].

(3) If the model aims at explaining some GW signals
from black hole merger events, one has in addition to
explain the coincidence between the PBH mass and
stellar masses, and so tune the model parameters to
produce a peak in the primordial power spectrum on
the correct scales, around ∼107 Mpc−1.

The last issue can be naturally solved in models leading
to a very wide PBH mass distribution. Indeed, the over-
density threshold leading to PBH formation is slightly
reduced at the QCD epoch, leading to a peak and a bumpy
feature in the PBH mass function in the stellar-mass range,
as already mentioned. The fact that the Hubble mass at the
QCD epoch and the Chandrasekhar mass are the same up to
an order one numerical factor, whatever is the QCD
coupling constant, naturally explains the coincidence
between the mass of PBHs and of astrophysical black
holes. This argument applies to our model, as explained in
the previous section and as one can see in the obtained PBH
mass distributions.
The first two issues were studied quantitatively for a few

representative models in [21]. One way to quantify the
needed fine-tuning on a parameter p to obtain a given
observable O is to define a measure

ϵO ≡ d logO
d logp

: ð20Þ

FIG. 6. The collapse fraction of PBHs for the two models of
inflation: Green line corresponds to model 1 and orange line to
model 2.

FIG. 7. The fraction of PBHs to DM for the two models of
inflation: Green line corresponds to model 1 and orange line to
model 2.
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Roughly, this definition is similar to the inverse of the
Bayesian evidence of a model with a uniform prior on a unit
interval of logp. The ratio of two values of jϵOj obtained in
two different models represents the odds of one with
respect to the other. Let us note that such a measure is
not unambiguous, as discussed in detail in [21]. For the few
PBH models audited in [21], very large values of jϵPpeak

j are
obtained, ranging from 102 to 108. In turn, jϵfPBH j ranges
from 104 to 109. On the opposite, an ideal model that would
generically lead to fPBH ∼Oð1Þwithin the same range of p
would have a measure jϵfPBH j ∼Oð1Þ and would be highly
favored on a Bayesian statistical point of view.
In our scenario, the needed fine-tuning is strongly

suppressed because of the inevitable stochasticity of the
spectator field during inflation, a suppression that we can
try to quantify. For our scenario to work, the only require-
ment is that the single parameter M of the field potential is
smaller but of same order as H�. But within this restriction,
a variation ofM can be compensated by a suitable choice of
hψi to obtain any given PBH abundance. The crucial point
is that hψi is not a model parameter but a stochastic variable
that naturally takes a whole possible range of values in the
entire Universe.
Taken alone, however, this argument is insufficient to

reduce the fine-tuning issue. Indeed nothing guarantees one
gets fPBH ∼Oð1Þ in our observable patch of the Universe,
given that many realizations and many values of fPBH are
obtained in the different patches. Obviously fPBH ≫ 1 can
be discarded by invoking an anthropic selection argument:
in those Universe patches, PBH rapidly accrete all the
ordinary matter and they become dominated by PBHs only,
without galaxies, stars and planets. But values of fPBH ≪ 1
are a priori not excluded and a Universe without dark
matter is, as far as we know, suitable for galaxies and stars
to form and for life to appear. But recently, it was pointed
out that PBHs from the QCD epoch can at the same time be
at the origin of baryogenesis [33,54] within the standard
model of particle physics, without invoking additional CP
violation. A sizable fraction of the overdensities collapsing
into PBH is converted into baryonic matter and therefore
there is a connection between the PBH abundance at
formation and the baryon-to-photon ratio η ∼ β ∼ 10−10,
as well as a connection betweenΩPBH from the QCD epoch
and the baryonic content of the Universe Ωb. Combining
our model to this scenario—which does not require any
additional ingredient or parameter—one therefore gets a
value of the relevant fine-tuning measure ϵðfPBH=ΩbÞ ∼ 1,
given that any value of M in the considered range can lead
to fPBH ∼ 1, while not spoiling CMB observations. Given
that one has to fix the scale of M, the evidence of the
scenario is in fact reduced by 1 order of magnitude with
ϵðfPBH=ΩbÞ ∼Oð10Þ, which cannot be considered as a fine-
tuning. In other words, on a Bayesian point of view, the
odds are in favor of our model when compared to the
ones studied in [21] by at least one against one thousand.

It could be studied, nevertheless, if for some particularly
motivated and less fine-tuned models like critical Higgs
inflation [55,56] the odds may become comparable.
The previous discussion does not mention a possible

fine-tuning arising from the requirement that quantum
correction to the spectator field potential does not spoil
the condition that the field is light during inflation, i.e.,
Λ4=M2 ≪ H2�. Such a fine-tuning is for instance present in
the Standard Model in order to keep a Brout-Englert-Higgs
field mass much below the Planck scale.

VIII. DISCUSSION AND CONCLUSION

PBHs have recently seen a renewed interest as an
explanation of GW observations and of the dark matter
in the Universe. However, despite the fact that dozens of
formation scenarios have been proposed, the vast majority
them still suffer from a strong fine-tuning problem. We
have explored a mechanism based on a light stochastic
spectator field during inflation, acting as a curvaton and for
which the needed parameter tuning is importantly reduced,
making PBH formation more natural.
During inflation, due to its quantum fluctuations, the

spectator field explores all its potential. After inflation,
during the subsequent matter or radiation era, there is a time
when it starts to dominate the energy density of the
Universe. In the regions of the Universe where the field
lies in a flat part of the potential, an extra expansion occurs,
corresponding to a curvature fluctuation that can later
collapse into a PBH, when it reenters inside the Hubble
radius. Large curvature fluctuations are therefore produced
only in rare regions, whereas they remain small in the rest
of the Universe. Compared to Ref. [33] where this scenario
was first proposed, we have considerably improved and
refined the computation of the field dynamic before and
after inflation, the calculation of the statistical distribution
of the curvature fluctuations and the resulting PBH abun-
dance. On large scales, we find that only small, essentially
Gaussian, curvature fluctuations are generated and they can
be subdominant compared to the inflationary fluctuations
in such a way that they do not spoil the primordial power
spectrum on CMB scales. Then, going to smaller scales, the
probability distribution develops a heavy non-Gaussian tail,
with a small fraction of curvature fluctuations that is above
the threshold for PBH formation. When considering the
effects of the QCD epoch on this threshold, one obtains a
broad PBH mass distribution covering decades of masses
but with a peak between 2M⊙ and 5M⊙ and a bumpy
feature between 20M⊙ and 100M⊙. Such a distribution is
approximately reminiscent to the one expected for a nearly
scale invariant primordial power spectrum of Gaussian
fluctuations. But in our scenario the origin and the statistics
of curvature fluctuations are radically different.
We have applied this mechanism to two types of spectator

field potential—plateau and small-field—and two inflation
scenarios.We have shown that for small-field potentials, it is
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unfortunately not possible to produce PBHs and have at the
same time subdominant curvature fluctuations on cosmo-
logical scales, contrary to what was claimed in [33]. This
difficulty arises due to the extremely tiny size of the flat
region of the potential from which large curvature fluctua-
tions can be produced. But a plateau potential does the job
and we obtained the corresponding PBH mass distributions
in this case.
Even if one does not need a fine-tuning of potential

parameters, we nevertheless find that one parameter must be
smaller but of the same order of magnitude smaller than the
Hubble rate during inflation. Nevertheless, the abundance of
PBHs is fixed by the averaged value of the spectator field in
our observable Universe. Because it is a stochastic variable
and not a model parameter, one can invoke an anthropic
selection—different from an antrhopic principle—to argue
that the abundance of PBHs todaymust be comparable to the
one of dark matter. We also argued that explaining the
coincidence between the density of dark matter constituted
of PBHs and baryons is eased in a scenario where PBHs are
also at the origin of baryogenesis based on the CCGB
mechanism also proposed in [33]. This mechanism explains
at the same time the observed value of the baryon-to-photon
ratio in the Universe that is connected to the density of
stellar-mass PBHs produced at the QCD epoch.
Our present work opens interesting perspectives. First,

the mass distribution of PBHs could be used to derive PBH
merger rates that can be compared to the ones of compact
binary coalescences inferred from LVK observations. This
is one way to constrain the exact shape of the potential
associated to the spectator field, as well as the underlying
inflationary dynamics, in particular the energy scale of
inflation. Second, one could investigate the effect of the

fully non-Gaussian distribution of curvature fluctuations
onto the scalar-induced GW spectrum. The recent PTA
observations of a GW background at nanohertz frequencies
suggest that the signal is hardly compatible with models of
PBH formation from Gaussian fluctuations. But the signal
could be explained by PBHs coming from non-Gaussian
fluctuations [57]. Third, one may consider to explore
scenarios based on the same mechanism and embedded
in existing high-energy frameworks, for instance models
based on no-scale supergravity. The most realistic candi-
date could be the Brought-Englert-Higgs field itself, but
only if its potential has a flat region or an inflexion point at
field values comparable to the Hubble expansion during
inflation, due to radiative corrections, but which may
require a nonminimal coupling to gravity or deviations
from the standard model predictions. Finally, we envision
that some scenarios may exist where the large-scale CMB
fluctuations arise from the stochastic spectator field itself,
as originally proposed in curvaton scenarios, while PBHs
are produced on smaller scales from the non-Gaussian tails.
Overall, we pave the road to new analysis and new

models that would address the critical fine-tuning issue
related to PBHs, while possibly explaining puzzling obser-
vations, the most important one being the existence of the
dark matter in the Universe.
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