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Postinflationary structure formation boosted by parametric self-resonance
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The postinflationary Universe can pass through a long epoch of effective matter-dominated expansion.
This era may allow for both the parametric amplification of initial fluctuations and the gravitational
collapse of inflaton perturbations. We perform first-of-their-kind high-resolution simulations that span the
resonant phase and subsequent gravitational collapse of the inflaton field by segueing from a full Klein-
Gordon treatment of resonance to a computationally efficient Schrodinger-Poisson description that
accurately captures the gravitational dynamics when most quanta are nonrelativistic. We consider a
representative example in which resonance generates O(107!) overdensities and gravitational collapse
follows promptly as resonance ends. We observe the formation of solitonic cores inside inflaton halos and
complex gravitational dynamics on scales of 10727 m, greatly extending the possible scope of nonlinear

postinflationary gravitational dynamics.
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I. INTRODUCTION

In early-Universe inflationary scenarios [1-4], the
energy density in the inflaton field must eventually be
transformed into Standard Model particles and dark matter.
This process is known as reheating and is not well con-
strained by observations, leaving room for a plethora of
different mechanisms to thermalize the Universe. In many
models inflation ends near grand unification energies but
reheating need not be completed until temperatures are at
the MeV scale [5-7]. Consequently, the Universe can grow
substantially before the onset of radiation domination.

In single-field models the inflaton oscillates around the
minimum of its potential following the end of inflation. With
the exception of the quadratic model, this oscillatory phase
can trigger fascinating nonlinear phenomena whose proper-
ties depend on the detailed shape of the potential and the
couplings of the inflaton to other fields. In particular,
specific momentum modes of fields coupled to the inflaton
and of the inflaton itself can undergo resonant amplifica-
tion [8—11], fragmenting the initially homogeneous inflaton.

Observations have ruled out purely monomial models and
focus attention on potentials that are quadratic near their
minima but grow more slowly at larger field values [12,13].
This is the necessary condition for the existence of pseu-
dosolitonic field configurations known as oscillons [14—18]
and these form abundantly following resonance in many
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models where the minimum of the inflaton potential is
surrounded by a subquadratic region. Oscillons are stable on
scales longer than the postinflationary Hubble time and the
Universe can pass through an oscillon-dominated phase.
Moreover, resonance (and oscillon formation, if it takes
place) can source a high-frequency stochastic gravitational-
wave background (SGWB) [19-29] and may even lead to
the formation of primordial black holes [30].

In the absence of parametric resonance, the dominant
inflaton interactions are purely gravitational and the
amplitude of the inflaton oscillations will slowly decrease.
If the inflaton oscillates around a quadratic minimum, a
period of effectively matter-dominated expansion occurs
and perturbations in the inflaton grow gravitationally
on subhorizon scales [31,32]. In this regime, the self-
gravitating inflaton condensate can be described by
the nonrelativistic Schrodinger-Poisson equations [33].
Simulations have shown that growing inflaton fluctuations
can collapse into gravitationally bound structures prior to
thermalization [33-37]. This can be accompanied by the
generation of a potentially nontrivial SGWB [37,38].

There is a clear analogy between nonlinear gravita-
tional collapse in the postinflationary Universe and the
gravitational evolution of axion-like or fuzzy dark matter
(FDM) [39,40] in the late-time Universe.' In particular, the
same methods used to solve the Schrédinger-Poisson
equations in FDM structure formation simulations can
be exploited to study the formation of gravitationally
bound inflaton structures in the early matter-dominated

'Also known as ultralight dark matter.
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epoch. Naively, a numerical simulation must spatially
resolve the de Broglie wavelength to reveal phenomena
arising from wave interference such as gravitational
solitonic objects known as boson stars that are of special
interest in the context of axion-like dark matter; see, e.g.,
Refs. [41-57]. Achieving this throughout a large-scale
cosmological simulation is computationally infeasible.
However, on large scales there is a correspondence
between the coarse-grained Schrodinger-Poisson equa-
tions and the Vlasov-Poisson equations [58,59], so only
N-body simulations are needed if it is unnecessary to
resolve the wave-like behavior at small scales.

Until now, postinflationary gravitational collapse has
been primarily explored with a quadratic inflaton potential.
This suppresses self-resonant field amplification and
ensures that the inflaton condensate fragments gravitation-
ally. Large N-body simulations confirm that inflaton halos
form roughly 17 e-folds after the end of inflation in this
scenario, with typical masses of grams to kilograms [35].
Subsequent simulations with adaptive mesh refinement
(AMR) which solved the Schrédinger-Poisson equations
directly in high-density regions showed the formation of
dense solitonic cores, so-called inflaton stars, in the center
of the inflaton halos [36]. These simulations suggest that if
the matter-dominated era lasts long enough some inflaton
stars might collapse to form primordial black holes (PBHs),
a possibility further explored in Refs. [60,61]. Moreover,
the formation and subsequent interactions of inflaton
structures leads to gravitational-wave emission. This spec-
trum was computed directly from simulations up to 23
e-folds after the end of inflation and estimated semianalyti-
cally for reheating temperatures as low as 100 MeV [37]. In
extreme cases, the resulting signal might be detectable by
the Einstein Telescope [62] or a space-based, Big Bang
Observer-like instrument [63].

That said, the quadratic inflaton potential assumed in
the postinflationary structure formation simulations of
Refs. [35-37] is excluded observationally [12]. Furthermore,
the growth of density fluctuations proceeds slowly, leading to
along gap between the end of inflation and the beginning of
gravitational collapse. For that reason, we wish to consider
more realistic single-field inflationary models whose poten-
tials grow less steeply away from the quadratic minimum.
The primary inflationary perturbation spectrum will differ
between these scenarios and a quadratic model but, more
importantly, these potentials typically support self-resonance
and thus quickly generate significant overdensities. Hence,
postinflationary gravitational structure formation can begin
much earlier than in the quadratic case [35-37] and the
overall nonlinear matter-dominated phase can last much
longer and is thus more likely to have detectable conse-
quences. Therefore, simulating the full dynamics of the
postinflationary phase in realistic models is a critical chal-
lenge; in addition to the need for a complete account of the
dynamics of these observationally favored scenarios, this

novel phase can lead to specific predictions that may be
experimentally testable.

In this work, we present the first combined simulations
that follow the inflaton field through parametric self-
resonance into gravitational fragmentation. We focus on
the single-field axion monodromy inflationary model [64,65]
(which may itself overproduce primordial tensor perturba-
tions relative to the latest constraints [13]), starting the
simulations immediately after the end of inflation in a
Klein-Gordon solver and running through to the end of
resonance. At this point, the inflaton field configuration is
mapped into the nonrelativistic wave function and used to
initialize the AMR-enabled Schrodinger-Poisson solver from
AxioNyx [54]. We observe the formation of inflaton halos
with masses of up to 10* Planck masses 7.6 e-folds after the
end of inflation. Using a halo finder, we extract the evolution
of the halo mass function and confirm the formation of
inflaton stars in the halo centers. Compared to simulations
with a quadratic inflaton potential [35—-37], collapsed struc-
tures form roughly 10 e-folds of expansion earlier in this
scenario. This will likely have a significant effect on the
strength of gravitational-wave emission and on potential
PBH formation.

The one key restriction on our simulations is that we
have deliberately chosen model parameters such that
oscillon formation does not follow resonance. In contrast
to the gravitationally bound solitons, oscillons are sup-
ported by nonlinear self-interactions of the field itself, and
although long-lived they do eventually decay relativisti-
cally. These might be describable at the wave-function level
for oscillons with nonrelativistic frequencies by adding
nonlinear interactions (at least during the period in which
resonance is operating [66]) to the Schrodinger-Poisson
equation, but this is not possible with generic oscillons (see,
e.g., Refs. [66-68]).

The structure of this paper is as follows. In Sec. II we
describe the overall scenario with an era of gravitational
structure formation following a period of parametric self-
resonance and present our chosen model. The simulation
setup of the resonance simulations and their results are
discussed in Sec. III. The use of the end point of these
calculations to initialize a Schrodinger-Poisson solver is
described in Sec. IV, along with the outcome of these
simulations. We discuss our results and conclude in Sec. V.

II. SCENARIO

In single-field models of inflation a scalar field ¢ drives
the accelerated expansion. A homogeneous inflaton field
with effective potential V() in a flat Friedmann-Lemaitre-
Robertson-Walker space-time obeys the Klein-Gordon
equation

av
»+3Hp + — =0, 1
o+ ¢+d(p (1)
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while the expansion of space is described by the Friedmann
equation

= (374 V). )

- 3ME\2

As usual, H = a/a is the Hubble parameter, « is the scale
factor, and Mp = (87G)~'/? is the reduced Planck mass.
We consider a potential inspired by the axion monodromy

model [17,64,65],
2\ a
@
(+3) 1]

where m denotes the inflaton mass and « is treated as a free
parameter, but must be less than unity for the model to
match observations. For small ¢ the potential approaches
V(p) =~ m?>¢*/2, while V(@) ~ m*M?*~2%¢** / (2q) for large
@ and M parametrizes the crossover scale between these
two regimes.

After inflation ends, the inflaton oscillates around the
minimum of Eq. (3). When ¢ <M the potential is
approximately quadratic and the postinflationary growth
of the scale factor matches that of a matter-dominated
universe. Provided the field is not disrupted by resonance,
the scale factor grows as a(t) ~*/3, while the field
amplitude and the Hubble parameter decrease as
@ ~a>3? and H ~a=>/?, respectively. Depending on the
couplings between the inflaton and other fields, this
early matter-dominated era can last for tens of e-folds.

mM>
- 20

Vig) (3)

monodromy

» o/M

FIG. 1.

w/M

This leaves substantial room for parametric self-resonance
and an extensive era of gravitational structure formation.

A. Parametric self-resonance

In contrast to a quadratic potential, an inflaton potential
with the form of Eq. (3) supports parametric self-resonance.
The strength of the parametric amplification depends on a
and M [17]. To gain an understanding of the parametric
growth of perturbations for the given potential, one can
make use of Floquet theory to compute the corresponding
instability diagram.

Decomposing the inflaton field ¢ = @ 4 d¢ into a
homogeneous background @ and a perturbation ¢, the
equation of motion for the homogeneous background field
takes the form of Eq. (1), while in Fourier space the
perturbations obey to first order

2

k

The periodically evolving background inflaton field enters
this equation and acts as a forcing term for the inflaton
perturbations. In this case, Floquet theory can be used to
find solutions for d¢;. In a nonexpanding universe (a = 1,
H = 0), the solutions are of the form [17,69]

Sy = P (t)e' + P_(t)e ", (5)
where P, are periodic functions and £y, are the so-called
Floquet exponents. They are complex numbers and deter-
mine the parametric amplification of the inflaton perturba-
tions for a given scale k. If Re(u;) > 0, they grow
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Left: inflationary monodromy potential for parameters a = 1/2, M = 0.05Mp, that supports parametric self-resonance. For

comparison, we show a quadratic m?>¢> potential. Right: Floquet stability diagram for the monodromy potential shown on the left. The
white lines visualize the evolution of two physical wave numbers k/a in an expanding universe. They mark the boundaries of the broad

resonance peak shown in Fig. 3.
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exponentially. In an expanding universe, the effective wave
number is k/a and modes move in and out of resonance so
that strong fluctuation growth needs Re(u;) > H.

Adopting the algorithm of Ref. [69] to calculate the
Floquet exponents, the instability diagram for the potential
in Eq. (3) is shown on the right-hand side of Fig. 1 for
a=0.5 and M = 0.05Mp,. The Hubble parameter is
computed from H? = V(¢)/(3M?%,), where ¢ is understood
as the amplitude of the oscillating field in this expression.
With a maximum of Re(y, )/ H = 4.8, this model allows for
moderate resonance while the formation of oscillons is
typically seen with Re(u)/H 2 10 [17,69]. With this
choice, we can simulate the gravitational collapse of
resonantly amplified inflaton perturbations with the non-
relativistic Schrédinger-Poisson equations.

B. Gravitational structure formation

If the reheating temperature is sufficiently low, the
inflaton condensate eventually becomes gravitationally
unstable. In principle, one could solve the full relativistic
Einstein-Klein-Gordon equation but this would be infea-
sible over many e-folds. Instead, we make use of a
nonrelativistic approximation that relies on integrating
out the rapid oscillations of the inflaton. This choice means
that we cannot capture the dynamics of oscillons in most
models but it greatly facilitates the analysis of scenarios in
which they are absent.

Since H ~a~3/? in the postinflationary epoch, the
relationship m > H holds a few e-folds after the end of
inflation. In this limit, one can use the WKB approximation
to express the inflaton in terms of a slowly varying,
complex field y [58],

— h (
(p - \/Ema3/2 l//

This ansatz factors out the fast oscillations of ¢ using the
approximation |y < m|y|. The wave number of small
perturbations is effectively an oscillation time and the
nonrelativistic limit is valid when the wave number k
satisfies k/a << m on scales of interest. Finally, the field
values must be small enough so that Eq. (3) can be
approximated as V(@) ~ m?¢?/2. Under these conditions,
the evolution of the inflaton field under its own self-gravity
is described by the nonrelativistic (comoving) Schrodinger-
Poisson equations [33,70,71]

e—imt/h + w*eimt/h). (6)

. n’

ihdy = =5 — Vi + myVy, (7)
47G _

ViVy =—=(p-p) (8)

where p = |y|? is the matter density of the inflaton field
with mean p.

Moderate inflaton overdensities produced during self-
resonance will grow and collapse into gravitationally bound
inflaton halos and inflaton stars. Eventually, we expect that
the gravitational fragmentation will break down when the
Hubble parameter becomes comparable to the decay rate I
of the inflaton and the field decays into radiation. This
reheating temperature is given by [11]

100
9«

1/4
Trh ’:055( ) (FMp1>1/2, (9)

where g, denotes the number of relativistic degrees of
freedom.

C. Parameter choice

Using the monodromy potential from Eq. (3), we evolve
the inflaton field through a phase of parametric self-
resonance by solving the Klein-Gordon equation. The final
configuration then initializes the nonrelativistic wave
function that is further evolved with the Schrodinger-
Poisson equations. As noted, we choose the free parameters
in the monodromy potential to avoid oscillon formation in
the self-resonant phase so that the nonrelativistic approxi-
mation will hold.

The observed amplitude of the primordial curvature
perturbations sets one parameter in the monodromy poten-
tial. During slow-roll inflation, the potential in Eq. (3) can
be approximated in the large-field limit ¢ > M. In this
case, the amplitude of the dimensionless curvature power
spectrum at the end of inflation is [17]

A2 = (4aN, + 2a)'te ( m )2< M )Ha’ (10)

967203 Mp) \Mp

where N, denotes the number of e-folds astrophysical
perturbations of interest left the horizon before the end of
inflation. We fix N, = 55, but the precise value depends on
the details of the postinflationary evolution [72].

For the sake of definiteness, we set @ = 1/2 which
recovers the linear axion monodromy potential [64,65]; the
value of M then controls the efficiency of resonance.
Oscillon formation occurs after strong resonance, which
requires M < 0.01Mp, [17,29]. However, significant reso-
nance still occurs with M = 0.05Mp, as seen from the
Floquet diagram in Fig. 1, and we work with this value
in what follows. Given that Ap = 2.1 x 107 [12], we
fix m=70x IO_SMPI.

III. KLEIN-GORDON SIMULATIONS

We implemented a Klein-Gordon finite-difference solver
similar to LatticeEasy [73] in the AMReX [74] framework.
This same package underlies the Schrodinger-Poisson
solver of AxioNyx [54], so we can follow the full evolution
within a single codebase. However, in contrast to AxioNyx,
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FIG. 2. Evolution of the inflaton field ¢, Hubble parameter
H, equation-of-state parameter w, and numerical error
[H?/(87Gp/3) — 1] as a function of scale factor a. The dashed
curve in the second upper panel corresponds to H ~ a=>/2.

the Klein-Gordon solver self-consistently solves the
coupled Klein-Gordon-Friedmann equations, rather than
using a fixed equation of state, which is necessary for
consistency early in the simulation (see Fig. 2). The
transition between the two solvers is made when the
self-resonant amplification of resolved modes becomes
negligible and the scales of interest are nonrelativistic.
For our specific scenario, this happens after 3.6 e-folds of
postinflationary expansion.

A. Simulation setup

Following LatticeEasy, we define computationally con-
venient program variables for ¢, length, and time as
Ppr = Ad" Pphys> Loy = Bloys, and 1, = Ba'ty,, tespec-
tively. The choice of scaling parameters A, B, r, and s
depends on the dominant term of the inflaton potential.
Expressing it as V = 1/f¢”, the scaling parameters are
A=g5', B=2"2p;" P r=6/(2+p), and s =3(2—f)/
(2+f3), where ¢y is the initial value of the field ¢ [73]. For
the potential in Eq. (3) with a=1/2, it is B=
m(M /@)%, r =2, and s = 1. We consider the value of
the homogeneous inflaton field at the end of slow-roll

inflation as our choice for ¢, and compute it numerically
from setting the slow-roll parameter e(¢g) = 1, which
yields Py = 075MP1

We use a comoving box with sides of length of L = 10/,
and solve the equations of motion on a 256° grid.2 The
scale factor is normalized to a(y) = 1 at the beginning of
the simulations and evolved by solving the Friedmann
equations. In contrast to the fixed time step used in
LatticeEasy, we set

1 Ax

23a’
where Ax is the cell width in physical coordinates. This
choice guarantees that the Courant stability condition A¢ <
Ax/+/3 is always fulfilled and At~ a'/? in comoving
coordinates. Consequently, we have small time steps in the
early stages of the simulation when self-resonance is active
and larger steps when the energy density changes more
slowly. This choice reduces the computational costs sub-
stantially compared to a fixed time step.

We initialize the inflaton field in agreement with
LatticeEasy and set d@,,/dt,. = 0. The initial conditions
are defined in momentum space and given by (|g;|?) =
1/(2wy), where @ = k* + m*. The amplitude of each
mode is fixed from a Gaussian random distribution; the
phase of each mode is drawn randomly from a uniform
distribution. The initial field values are then given by the
inverse Fourier transform. We iterate the initial conditions
once, resetting da/dz,, to ensure H?/(8xGp/3) =1 ini-
tially. The subsequent violation of this condition furnishes a
measure of the numerical error of the simulation, as
discussed below.

At (11)

B. Self-resonant evolution

Figure 2 shows the evolution of ¢, H, and the equation-
of-state parameter w during resonance. As expected, these
quantities evolve as in a matter-dominated universe with
@~a3? H~a3? and w = 0. Furthermore, we esti-
mate the energy conservation and thus the numerical error
by computing the deviation between the ratio of H? and
87Gp/3 and unity. The numerical error is well under
control over the entire simulation with a final deviation
of ~0.3% from perfect energy conservation.

The energy density at each grid point consists of a kinetic
term, a gradient term, and the field potential,

1 1
=-¢*+—1|Vol* + V(p). 12
p=50+55IVel" +Vie) (12)
Given the overdensity field 6§ = p/p — 1, we define the

density power spectrum as P(k) = V{|5;|>), where

2 . . L.

Choosing a highly resolved grid is not necessary as resonance
occurs only on comparatively large scales for our specific
scenario (see Fig. 3).
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FIG. 3. Evolution of the dimensionless density power spectrum
from A = 1.7 to 3.6 e-folds after the end of inflation. For
comparison, the dashed curve shows the spectrum at NV = 3.6 of
a simulation with a 1283 lattice. The two vertical lines mark the
boundaries of the resonance peak whose evolution is shown in the
Floquet diagram of Fig. 1.

V = L*. For the purpose of studying the formation of
gravitationally bound structures in the postresonance uni-
verse, it is suitable to work with the dimensionless power
spectrum

5 Pk), (13)

as the threshold A2?(k) =1 indicates when a density
perturbation on a given scale k becomes nonlinear.

The evolution of A%(k) during resonance is shown in
Fig. 3 for \V between 1.6 and 3.6 e-folds after the end of
inflation. At N' = 1.7 we observe the formation of a broad
peak around ~6l§r1. The amplitude of the resonant peak

10
1)
8 0.2
6
— 0.1
\)Q
=
4
0.0
2
-0.1
0

z [lp]

continues to grow until N' = 3.2. Afterwards, there are
only minor changes to the shape of the power spectrum.
This is consistent with the Floquet indices shown in Fig. 1
which predict that the strongest growth occurs for comov-
ing wave numbers within the resonance peak when the
oscillating field amplitude satisfies 0.05 < @/M < 0.8.
Note that the strong increase of A? ~ k> at small scales
that are not resonantly amplified is numerical shot noise
and thus unphysical. To verify that it does not affect the
physical outcome, we performed a comparison run with
the same initial conditions and a coarser 128* grid. The
corresponding power spectrum at A = 3.6 is shown by the
dashed curve in Fig. 3 and it perfectly agrees with the final
spectrum of the higher-resolution run.

After N' = 3.6 e-folds of expansion, H/m ~ 1073 (see
Fig. 2) and the highest-momentum modes satisfy
k/m < 0.1. This permits the use of the nonrelativistic
approximation and we make the transition to the
Schrodinger-Poisson description at this time.

A slice through the overdensity field 5 at N' = 3.6 is
visible in the left panel of Fig. 4 showing inhomogeneities
of O(107"). The distribution of the overdensity field is
shown in the right panel of Fig. 4, and this is in good
agreement with the log-normal distribution

1 (Ing— u,s)Z)
= exp (- ROTHY) 14
Sos\/2m P < 263 (14)

with 65 = 5.2 x 1072 and pus = —4.1 x 1073,

P(5)

IV. SCHRODINGER-POISSON SIMULATIONS

Having evolved the inflaton field through a resonant
phase, we initialize the Schrédinger-Poisson solver and
evolve the universe through an additional 4 e-folds of

P()

-0.2 -0.1 0.0 0.1 0.2

FIG. 4. Left: slice through the center of the full simulation box showing the overdensity field § at N' = 3.6. Right: normalized
distribution of the overdensity field (blue curve) at the same time. The dashed curve shows a log-normal distribution [see Eq. (14)] with

parameters o5 = 5.2 x 1072 and p; = —4.1 x 1073,
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expansion. Numerical solutions of Schrodinger-Poisson
equations must ensure that the de Broglie wavelength is
properly resolved. We make use of AMR techniques to
ensure that the resolution requirement is fulfilled at
all times.

A. Simulation setup

Using Eq. (6) and dropping small terms,” we initialize
the wave function y from the inflaton field ¢ and its time
derivative ¢ as

ma’/? ho\ .
v ="l (o igo)emn 09

To perform cosmological simulations AxioNyx takes the
value of the Hubble parameter H.,y at the end of the
simulation as an input parameter, at which point the scale
factor is normalized to unity, whereas the Klein-Gordon
solver works internally with a scale factor which satisfies
a =1 at the end of inflation. Since we consider 4 e-folds
of additional expansion, we set @iy/denga = €~ * in
AxioNyx. The Hubble parameter is thus given by its
value H;,;; at the end of the Klein-Gordon run via H.,4 =
Hiie(@init/ @ena)** = Hine ™.

The comoving size of the simulation box (L = 10/,)
remains unchanged. Given the total expansion of 7.6
e-folds, we define the box size at A/ = 7.6 in physical
coordinates as the length unit for the AxioNyx run, so
I, =553%x10°1p, where [p is the Planck length.
Choosing the mass unit as m, = 2.3 x 1072Mp, and taking
the gravitational constant to be G = 10793 /(m,,12), the
time unit is 7, = 6.06 x 10'%,, where fp; denotes the
Planck time. The Hubble parameter and the mean matter
density N =7.6 e-folds after the end of inflation are
Hq = 1.691;" and pepg = 3.42 x 10°m,, /1.

A fourth-order Runge-Kutta finite-difference algorithm
is used to solve the Schrodinger-Poisson equations on the
256° root grid and on the refined levels. We allow four
levels of refinement with a refinement factor of 2 at each
step. Refinement occurs when the comoving density of a
cell exceeds the thresholds 1.5p,4 on the root grid, 5p.,q on
the first level, 10p.,q on the second level, and 20p,,q on the
third level. This choice guarantees that the de Broglie
wavelength is always resolved. At the end of the simu-
lation, 60.2% of the volume is refined on the first level,
while the second, third, and fourth levels cover 15.2%,
4.1%, and 1.1% of the domain, respectively.

B. Gravitational evolution

As expected, gravitationally bound inflaton halos form
after the phase of self-resonance. Resonance ends with

*Note that this requires a choice of convention to remove the
redundancy in inverting Eq. (6); see Ref. [75] for details.

typical overdensities smaller than O(107") and so the first
structures start to collapse gravitationally after 3 e-folds of
expansion. For N 2 6.9 an increasing number of halos then
form, with masses of up to 6 x 10*Mp,. A visualization of
the full simulation volume that exhibits the rich, highly
nonlinear structure is shown in Fig. 5. Overdensities of
O(10°) are reached in this scenario.

The evolution of the dimensionless density power
spectrum is shown in Fig. 6. As a consistency check for
the conversion of the inflaton field into the wave function,
we compare the power spectrum computed from the density
p = |w|? at initialization (light green curve) with the final
power spectrum of the Klein-Gordon run (dashed orange
curve) and they agree well with each other.

Initially, the comoving Jeans scale

m2 1/4

coincides with the position of the resonance peak in the
power spectrum.” Linear gravitational growth only takes
place on scales k < k;, while density perturbations oscillate
on scales k> k 1.5 Thus, the gravitational growth of
structures on scales smaller than the resonance peak is
initially suppressed. However, with growing A/ the comov-
ing Jeans scale slowly increases and gravity starts to
dominate on increasingly smaller scales, eventually leading
to the collapse of the respective density fluctuations. It is
possible to assign a characteristic linear mass M;, to each
wave number k by considering a sphere with radius ry;, =
1/2 = n/k enclosing a region with the average density p, so
My, = 4xn/3pr; . This mass provides an estimate for the
actual halo mass when a density fluctuation on a given scale
becomes nonlinear at A% ~ 1 and it is included in Fig. 6 as a
secondary axis.

During the first 3 e-folds of postresonant expansion, we
observe an overall increase in power on scales k < k; due
to the gravitational growth of density perturbations.
Additionally, a prominent peak develops at k ~ 10?[;!
slightly below the Jeans scale. Concurrently, there is a
strong enhancement in the power spectrum on scales
k > k; that cannot be explained by gravitational effects.’

*We understand this to be a coincidence, but it is possible
further study could reveal a deeper connection between the two
scales.

>Since the maximum amplitude of the dimensionless power
spectrum is significantly below A? =1, linear perturbation
theory is applicable.

®Note that the numerical shot noise which originates from the
Klein-Gordon simulation cannot be the origin of the observed
growth of power on small scales. If that were the case, one would
expect the transfer of power from the smallest to larger scales.
However, the shape of the spectrum on the smallest resolved
scales does not evolve until AV = 6.4, while a power increase can
be observed for larger scales.
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FIG. 5.

Visualization of the inflaton field N' = 7.6 e-folds after the end of inflation from larger to smaller scales. On the left, the

projected inflaton density of the full simulation box (L = 5.53 x 10°[p) centered on a selected halo is shown. A slice through the density
maximum of this halo covering the area of the grey square (L = 2.76 x 10°lp) illustrates the occurrence of interference patterns in the
filaments and the typical granular structure inside the halos. In the enlargement of the selected halo on the right (L = 1.63 x 108/p)), one

can identify the prominent solitonic core in its center.

Instead, this excess power originates from nonlinear
processes of wave interference on scales of the de
Broglie wavelength (see interference patterns along fila-
ments and in halos in Fig. 5) that is also present in the
power spectrum evolution of FDM simulations [76-78]. Its
occurrence on smaller and smaller scales with increasing A/
can be explained phenomenologically via the growth of
structures on larger scales which results in an increasing
local velocity v and thus a decreasing Agg = 27h/(mv).
Hence, shell-crossing events and eventually the virializa-
tion of collapsed structures produce a particularly strong
increase of power on scales above the Jeans scale.

At N = 6.6 the amplitude of the resonance peak at
k ~ 601[;" reaches the threshold A? = 1. Accordingly, we
observe the formation of the first gravitationally bound
inflaton halos shortly afterwards at N' = 6.9 by which time
the aforementioned second peak located slightly above the
Jeans scale has also become nonlinear. The mass of the just
collapsed objects can be estimated to be My, ~ 5 x 10*Mp,.
When N = 7.6, an increasing number of modes have

become nonlinear and one expects halo masses ranging
from Mlin ~3x 103MP1 to Mlin ~2 X 105Mp1.

We are not aware of any publicly available halo finder
that operates on a discretized density field. However, we
can sample the density field with N = 2563 particles by
placing one particle per cell with a mass that corresponds to
the cell density, located at a random position within the cell.
We then use the Hop halo finder [79] to locate the inflaton
halos in the simulation volume and determine their masses.
We performed this sampling at different simulation snap-
shots and verified that the power spectra computed from the
particle mass density field agrees with the original spectra
at the corresponding times.” The minimum particle number
in a halo is set to 20. By computing the enclosed density as
the radius is increased, the virial radius r,; of a halo is

"We found general agreement between the halo mass function
obtained from our early-universe N-body simulations [35] and
the mass function computed from the corresponding density field,
validating the finding approach used here.
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FIG. 6. Evolution of the dimensionless density power spectrum
from A/ = 3.6 to 7.6 e-folds after the end of inflation. The dashed
curve corresponds to the final power spectrum of the Klein-
Gordon run. The stars illustrate the location of the comoving
Jeans scale k; [see Eq. (16)] at the respective times. The upper
axis shows the characteristic linear mass for each wave number
(see text for details).

obtained when the enclosed density matches p.;, = A;.p,
where Ay, = 187° for a matter-dominated background and
p is the mean matter density. The virial mass of the halos is
then given by M, = 47/3A;pr..

The inflaton halo mass function (HMF), the comoving
number density of halos per logarithmic mass interval, is
shown in Fig. 7 for several values of A/. At N' = 6.9, right
after the first formation of halos, the HMF contains halos
with masses of up to M, = 2 x 10*Mp, and is peaked at
~10*Mp,. These halos presumably originate from the
collapse of nonlinear density fluctuations that correspond
to the broad resonance peak (see Fig. 6). With increasing

o

= 102 | -
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o
=
~
e |
e
N=69 —N=74|]
— N=71 =—=N=756]|]
—_— N=7.2
101 L L L el N N N N N ——
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M [Mp)]
FIG. 7. Evolution of the inflaton halo mass function from A/ =

6.9 to 7.6 e-folds after the end of inflation.

N, more and more inflaton halos are produced, extending
the covered mass range to both lower and higher masses. At
the final snapshot, we observe halo masses from M, ~ 4 x
10°Mp, to M, ~6x 10*°Mp, and the HMF peaks at
Mh ~2 X 104MP1'

Note that the halo masses do not precisely match the
estimated masses My;, from the analysis of the dimension-
less density power spectrum. For example, My, ~5 %
10°Mp, for collapsed scales of the broad resonance peak
at N = 6.9, while the maximum halo mass is M), ~2 X
10*Myp, at that time. Nevertheless, the evolution of the HMF
is understandable from the evolution of the power spectrum
as it confirms the expectation that an initially narrow
distribution of halo masses will extend to both lower
and higher masses. Consequently, one can assume that
both lower- and higher-mass halos will continue to form
when A > 7.6. This is in contrast to nonresonant post-
inflationary structure formation [33,35-37] where higher-
mass objects emerge after lower-mass halos via bottom-up
structure formation.

Beyond the halos themselves, our high-resolution sim-
ulations reveal the formation of solitonic cores in the center
of the halos. These inflaton stars are surrounded by
incoherent granular density fluctuations associated with
the wave function, as can be seen in Fig. 5. Given the
analogy with FDM, the expected radial density profile of an
inflaton star is [43,44]

p.(r) zp*,()(l +0.091 <§>2> ” (17)

*

where r, denotes the physical core radius. This is defined to
be the point at which the density is half of the central
density,

7.0x 1075Mp\ 2 (10731, *
ﬂ*,o=4.6x1013( x "')( > Du (18)

m r, B

Defining the mass M, of an inflaton star as the mass inside
r., we have

7.0x 1075 M\ 2 (10731
M*:1.27><105< x P‘)( )m (19)

m Ty

The radial density profiles of four different halos with
masses ranging from M, = 1.1 x 10°Mp, to M), = 5.8 x
10*Mp, at N = 7.6 are shown in Fig. 8. The inner profiles
are in good agreement with Eq. (18), confirming the
existence of inflaton stars in the postresonance, matter-
dominated universe. Via Eq. (19), the core masses for the
density profiles shown in Fig. 8 range from M, = 2.5 x
10°Mp, to M, = 5.0 x 10°Mp,.

Given the virial velocity v,;, of their host halos, we can
infer the core masses via M, = hv,;./(mG) which is also
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FIG. 8. Radial density profiles of four inflaton halos N = 7.6 e-folds after the end of inflation with masses (from left to right)

M, e€[1.1,2.8,4.3,5.8] x 10*Myp,. The solid curves display the simulation data and the theoretical soliton density profile from Eq. (18),
respectively, and the vertical dashed lines mark the core radius r,. The corresponding core masses from Eq. (19) are (from left

to right) M, € [2.5,3.0,3.5,5.0] x 103Myp,.

known as the core-halo mass relation. The inflaton star
masses obtained from Eq. (19) are 5-26% lower than the
prediction from the core-halo relation that is expected to be
valid when the core is in virial equilibrium with its host
halo. However, the corresponding power-law relationship

M, ~M },/ 3 appears to be setup dependent [80,81] and need
not apply exactly to this case.

V. CONCLUSIONS AND DISCUSSION

We have performed first-of-their-kind combined simu-
lations that evolve the inflaton field through a phase of
parametric self-resonance into the era of gravitational
structure formation. This was achieved by transitioning
between the Klein-Gordon and Schrédinger-Poisson equa-
tions following the end of resonance, providing a computa-
tionally efficient strategy that pivots between solving the
nonlinear field dynamics and the gravitational physics.

In this initial investigation, we considered a specific
inflationary model with no couplings to other fields. The
free parameters in the potential were selected to allow for a
significant period of resonance while suppressing oscillon
formation, as these metastable field configurations cannot
be evolved in the Schrodinger-Poisson system which does
not include any nongravitational self-interactions of the
field. The simulations were initialized directly after the
end of inflation and evolved for in total 7.6 e-folds of
expansion.

During self-resonance, inflaton field fluctuations with
specific wavelengths are amplified as they pass through the
resonance bands, leading to a highly scale-dependent
spectrum of overdensities. The growth of the dimensionless
density power spectrum ceases N =~ 3.2 e-folds after the
end of inflation, at which point resonance effects are thus
negligible. We stopped the Klein-Gordon simulation at

N =3.6 and checked that the resolved scales are non-
relativistic and the Schrodinger-Poisson description is valid.

The inflaton field was then mapped into a nonrelativistic
wave function and the Schrodinger-Poisson equations were
solved to study the gravitational fragmentation of the
inflaton field in the postresonance epoch. Using AMR
with four levels of refinement, we spatially resolved the
formation of inflaton structures throughout the full simu-
lation volume. The first inflaton halos form after roughly 3
e-folds of additional expansion, i.e., at N" = 6.9. In contrast
to typical structure formation simulations where lower-
mass halos are usually produced earlier than higher-mass
objects, low- and high-mass inflaton halos in our simu-
lation can emerge at similar times. This is a consequence of
the broad peak in the density power spectrum generated by
resonance, which means that intuitions from structure
formation scenarios with a near scale-free power spectrum
need not be reliable. Our simulation ended at N' = 7.6 and
at this moment the inflaton halos cover masses up to
6 x 10*Mp,. In addition, our high-resolution simulations
showed central soliton-like configurations at the centers of
these halos, confirming the rapid formation of inflaton stars
in these halos.

Gravitationally bound structures form roughly 10 e-folds
earlier in this scenario than in postinflationary structure
formation without a resonant phase [33,35-37], signifi-
cantly extending the possible era of postinflationary struc-
ture formation, as well as changing the form of the inflaton
HMF. The resonant phase itself can generate a high-
frequency gravitational-wave background [19-29], but this
will be diluted during a long postinflationary matter-
dominated phase. However, nonlinear dynamics during
the matter-dominated phase will also source a gravitational-
wave background, but at lower frequencies [37]. Given that
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resonance can significantly extend the duration of the
nonlinear phase, it is plausible that it will also boost the
resulting gravitational-wave signal. Similarly, any PBH
production can be enhanced by the longer nonlinear
phase [36,60,61].

We have focused on a model with comparatively mild
parametric resonance, forestalling the formation of oscil-
lons. Once formed, oscillons decouple from the cosmo-
logical expansion, so the spatial resolution would need to
be increased continuously in the Klein-Gordon simulation
to capture their dynamics and oscillons are frequently
long-lived relative to the Hubble time. Some oscillons
can be captured in a Schrodinger-Poisson framework if
self-interactions are included [66], but this is not generi-
cally possible. As in simulations of the early axion
evolution [82-85], the oscillons would then need to
evaporate and the inflaton field would become nonrelativ-
istic before the current gravitational solver can be applied.

Relative to gravitational time scales, 6p/p grows very
rapidly during resonance. For the scenario here, it peaks at
O(107") during this phase, so we can be confident that
gravitational effects during resonance are small and the
division between the Klein-Gordon and Schroédinger-
Poisson regimes is clear cut. Nevertheless, our results
might be weakly sensitive to the point of transition from
the Klein-Gordon to the Schrodinger-Poisson phase.

There are clearly a number of avenues for follow-up; the
first and most obvious is to compute the HMF at larger
values of /. This might be achieved by Press-Schechter-
style semianalytic calculations [34] or using the mapping
between the wave function and an N-body representation
developed for the halo-finding calculation to initialize an
N-body solver. This would exploit the known correspon-
dence between N-body and wave-function descriptions of
wave-like matter (whether inflaton or FDM) at scales where
interference effects are not relevant [35]. With this infor-
mation in hand, we could then accurately estimate the
SGWB produced by this scenario.

So far as we are aware, these simulations appear to
yield the least massive gravitationally bound objects that
have been discussed numerically within a weak-field

cosmological framework. Moreover, this work further
develops the parallel treatment of nonlinear gravitational
dynamics in the postinflationary Universe and “present
epoch” structure formation first described in Refs. [33,34].

That said, we clearly want to be able to extend this
treatment to a broad range of inflationary scenarios,
including those with couplings to other fields or which
support oscillon production. Likewise, it is conceivable
that gravitational interactions during a lengthy oscillon-
dominated phase will be significant. Some investigations of
gravitational effects on reheating and oscillon dynamics
have been made [86—89] but these are omitted from most
cosmological Klein-Gordon solvers, and this points to a
new range of possible dynamics. Conversely, Amin and
Mocz [66] investigated the gravitational dynamics of
oscillons in an expanding universe by adding interaction
terms to the Schrodinger equation, but this approach need
not capture the full behavior that would be revealed by a
Klein-Gordon solver. Finally, this analysis and almost all
similar treatments assumes that thermalization eventually
takes place but does not provide a detailed description of
the process or the ways in which the detailed couplings
involved modify the latter stages of the matter-dominated
phase. Consequently, there are many open and interesting
questions to pursue and answering them will allow us to
build a complete understanding of the primordial Universe.
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