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Primordial magnetic fields (PMFs) are one of the plausible candidates for the origin of the observed
large-scale magnetic fields. While many proposals have been made for the generation mechanism of PMFs
by earlier studies, it remains a subject of debate. In this paper, to obtain new insights into PMFs, we focus
on the intrinsic alignments (IAs) of galaxies induced by the vector and tensor modes of the anisotropic
stress of PMFs. The long-wavelength vector and tensor modes locally induce the tidal gravitational fields,
leading to the characteristic distortions of the intrinsic ellipticity of galaxies. We investigate the shear
E- and B-mode power spectra induced by the magnetic vector and tensor modes in the three-dimensional
space, assuming the combination of galaxy imaging and galaxy redshift surveys. We find that the magnetic
tensor mode dominates both the E- and B-mode spectra. In particular, the B-mode spectrum induced by the
magnetic tensor mode plays a crucial role in constraining the amplitude of PMFs, even in the presence
of the nonmagnetic scalar contribution to the B-mode spectrum arising from the one-loop effect. In
future galaxy redshift surveys, such as the Euclid and Square Kilometre Array, the minimum detectable
value reaches ∼30 nG, which can potentially get even smaller in proportion to the number of observed
galaxies and reach ∼Oð1 nGÞ. Measuring the IAs of galaxies would be a potential probe for PMFs in
future galaxy surveys.

DOI: 10.1103/PhysRevD.109.043520

I. INTRODUCTION

Recent observations of high-energy TeV photons emitted
from the distant blazars suggest the existence of large-
scale magnetic fields, especially in intergalactic and void
regions [1–6]. For instance, Ref. [1] has reported the lower
bound 3 × 10−16 Gauss on the amplitude of intergalactic
magnetic fields. Although the origin of such magnetic
fields remains an open question, a number of theories have
been proposed to explain them. An interesting scenario
attracting much attention is the primordial origin, in which
the primordial magnetic fields (PMFs) are generated in the
early Universe, especially before the cosmic recombination
epoch. Since PMFs are generated before the formation of

stars or galaxies, we expect to observe PMFs as large-scale
magnetic fields, not associated with astronomical objects
(see, e.g., [7–9] for reviews).
There exists a variety of models for the generation of

PMFs. In the presence of an interaction between electro-
magnetic fields and other fields that break the conformal
invariance during inflation, the inflationary magnetogene-
sis takes place from the quantum fluctuations [10–22].
The coherent length of PMFs generated in this way can
be beyond the horizon scales. During cosmological
phase transitions, the bubble collisions and turbulence
in the primordial plasma result in the generation of
PMFs [23–25]. In the simple phase transition models,
the coherent length of PMFs is generally shorter than the
observed intergalactic magnetic field. However, recent
works [26–29] have proposed a model that can generate*shohei.saga@yukawa.kyoto-u.ac.jp
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PMFs with sufficiently long coherent length. In postinfla-
tionary epochs, the Harrison mechanism [30] results
in PMFs at OðMpcÞ scales in the primordial plasma.
However, the amplitude is about 10−24 Gauss [31–34],
which is smaller than the observed amplitude.
To distinguish magnetogenesis models through observa-

tions, many authors have investigated the impact of PMFs on
cosmological observables, for instance, the effects of PMFs
on the big bang nucleosynthesis [35–40], cosmic microwave
background (CMB) anisotropies [41–51], CMB spectral
distortions [52–54], and large-scale structure of the
Universe [55–58]. While cosmological observations to date
have provided some clues to the generation mechanism of
PMFs, it is also worth exploring other ways to extract further
information from future cosmological observations.
Motivated by the above, this paper focuses on the

intrinsic alignments (IAs) of galaxy shapes as a novel
probe for PMFs. In weak gravitational lensing observa-
tions, the IAs of galaxies have been recognized as a
contaminant to the estimation of cosmological para-
meters [59–66] (also see Ref. [67] for a review).
However, it has been shown that the IAs of galaxies offer
a unique opportunity to constrain the cosmological param-
eter, growth of the large-scale structure, and the initial
condition of the Universe, complementary to galaxy
clustering [68–80]. More interestingly, using the galaxy
samples in the Sloan Digital Sky Survey, Ref. [81] has
measured the anisotropic signals of the IA due to redshift-
space distortions and indeed used the signals to constrain
the growth rate of the Universe.
How do PMFs leave their imprints on the IA?

References [82–86] have shown that the long-wavelength
vector and tensor metric perturbations induce the short-
wavelength gravitational tidal fields, called the fossil
effect. Such tidal fields are expected to affect the intrinsic
shape of galaxies, leading to the IAs. The imprints of
primordial gravitational waves (GWs) on the IAs have
been analytically and numerically investigated [82–86].
Very recently, assuming the photometric surveys,
Ref. [87] has investigated the impact of the primordial
vorticity vector mode [42,88] and primordial GWs on
the IAs. Since our primary interest lies in the IAs as a new
probe of PMFs, this paper focuses on the vector and
tensor modes induced by PMFs.
The anisotropic stress fluctuation of PMFs creates addi-

tional metric perturbations on standard nonmagnetic con-
tributions [42,44–46]. The resultant metric perturbations
source the IAs. As for the scalar mode, the magnetic
contribution is not remarkable and hidden by the non-
magnetic one; thus, we shall not investigate it below. By
elucidating the relation between the anisotropic stress of
PMFs and the IAs, we derive the analytical expression of
the E- and B-mode power spectra of the intrinsic ellipticity
of galaxies induced by the vector and tensor modes of
PMFs. Exploiting the derived analytical expression,

we explore the potential to constrain the amplitude of
PMFs in the Euclid and Square Kilometre Array (SKA)
galaxy redshift survey as well as more idealistic cases.
This paper is organized as follows. In Sec. II, we briefly

review the general properties of PMFs and present how the
anisotropic stress of PMFs induces the vector and tensor
modes. For comparison purposes, we also introduce the
vorticity vector mode and primordial GWs. In Sec. III,
based on Ref. [85], we show the analytical expression of the
intrinsic ellipticity shape induced by the long-wavelength
vector and tensor modes. We show the detailed derivations
in Appendix A. In Sec. IV, we derive an analytical
expression for the three-dimensional E- and B-mode power
spectra, and see their typical behavior. Using the analytical
expression of the E- and B-mode power spectra, we
perform the Fisher matrix computation and derive the
expected minimum detectable value of the amplitude of
PMFs in future surveys in Sec. V. In our analysis, we take
into account the nonmagnetic scalar mode contributions to
the E- and B-mode power spectra, respectively arising from
the leading-order and one-loop order effects. We present
the way to compute the one-loop B-mode spectrum in
Appendix B. We perform the same analysis for the vorticity
vector mode and primordial GWs in Appendix C.
Section VI is devoted to the summary of our findings.
Throughout this paper, we apply the Einstein summation
convention for repeated Greek indices and alphabets
running from 0 to 3 and from 1 to 3, respectively. We
work in units c ¼ ℏ ¼ 1.

II. VECTOR AND TENSOR MODES

We are interested in imprints of the vector and tensor
modes induced by PMFs on cosmological observables. In
this section, we briefly introduce the basic property of the
initial power spectrum of PMFs and the vector and tensor
modes induced by PMFs in Sec. II A. We also introduce
other possible cosmological sources to generate the vector
and tensor modes in Sec. II B for comparison purposes.
Throughout this paper, we work in the synchronous

gauge of which the line element is

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ hijÞdxidxj�; ð1Þ

where the quantities a and η are the scale factor and the
conformal time, respectively. We decompose the metric
perturbation into the vector and tensor modes based on the
helicity basis in Fourier space:

hij ¼
X
λ¼�1

OðλÞ
ij h

ðλÞðkÞ þ
X
λ¼�2

OðλÞ
ij h

ðλÞðkÞ; ð2Þ

where the first and second terms represent the vector
(λ ¼ �1) and tensor (λ ¼ �2) modes, respectively. Here
we have defined
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Oð�1Þ
ij ðk̂Þ ¼ k̂iϵ

ð�1Þ
j ðk̂Þ þ k̂jϵ

ð�1Þ
i ðk̂Þ; ð3Þ

Oð�2Þ
ij ðk̂Þ ¼ ϵð�1Þ

i ðk̂Þϵð�1Þ
j ðk̂Þ; ð4Þ

where the polarization vectors ϵð�1Þ satisfy the relations:
k̂ · ϵð�1Þ ¼ 0, ðϵð�1ÞÞ� ¼ ϵð∓1Þ, and ϵð�1Þ · ϵð∓1Þ ¼ 1. For
the vector mode, we define the gauge invariant variable in
Fourier space by

σijðkÞ≡
X
λ¼�1

OðλÞ
ij h

ðλÞ0
ij ðkÞ=k; ð5Þ

where a prime denotes a derivative with respect to the
conformal time η. With this definition, the helicity modes of
σij are given by σð�1Þ ¼ hð�1Þ0=k.

A. Magnetic vector and tensor modes

PMFs act as a source of the vector and tensor modes
[42,44–46,89,90]. We first introduce the general property
of PMFs. We then present the magnetic vector and tensor
modes induced by PMFs.

1. General property of PMFs

We consider the magnetically induced vector and tensor
modes presented by Refs. [42,44–46]. We assume that the
time evolution of physical magnetic fields Bða; xÞ is given
by Bða; xÞ ¼ BðxÞ=a2 with BðxÞ being the comoving
magnetic fields without the adiabatic decay due to the
expansion of the Universe. This assumption is valid in the
limit of infinite electrical conductivity of the Universe as in
the early time.
The power spectrum of the divergence-free vector such

as PMFs is given by

hBiðkÞB�
jðk0Þi ¼ ð2πÞ3δ3Dðk − k0ÞPijðk̂ÞPBðkÞ; ð6Þ

where Pijðk̂Þ ¼ ðδij − k̂ik̂jÞ=2, and BiðkÞ is the Fourier
transform of BiðxÞ given by

BðxÞ ¼
Z

d3k
ð2πÞ3 BðkÞe

ik·x: ð7Þ

We model the power spectrum of the primordial magnetic
field by the power-law form (see, e.g., Ref. [91]):

PBðkÞ ¼ B2
λ

Γ
�nBþ3

2

�
4π2λnBþ3

knBΘðkD − kÞ; ð8Þ

where the functions ΓðxÞ and ΘðxÞ are the gamma function
and the Heaviside theta function, respectively. The quan-
tities Bλ and kD are the amplitude of PMFs smoothed over a
comoving scale of λ ¼ 1 Mpc and the damping scale,
respectively. We introduce the Heaviside theta function to

express the damping scale. We use the damping scale kD
given by Refs. [89,91,92]:

kD ¼ ð2.9 × 104Þ 1
nBþ5

�
Bλ

nG

�
− 2
nBþ5ð2πÞ

nBþ3

nBþ5h
1

nBþ5; ð9Þ

with h being the reduced Hubble constant. The power
spectrum of PMFs contains two parameters, Bλ and nB. The
CMB observations provide the upper limits Bλ ≲Oð1 nGÞ
depending on the value of nB.
A key quantity for investigating the cosmological impact

of PMFs is the anisotropic stress and its power spectrum.
The anisotropic stress of PMFs, ΠB;ij, is given by

ΠB;ijðkÞ ¼ −
1

4πργ;0

Z
d3k1
ð2πÞ3 Biðk1ÞBjðk − k1Þ; ð10Þ

where ργ0 is the photon energy density at the present time.
As with the metric perturbation, we decompose the
anisotropic stress into the vector and tensor components
by using the helicity basis:

ΠB;ijðkÞ¼
X
λ¼�1

OðλÞ
ij ðk̂ÞΠðλÞ

B ðkÞþ
X
λ¼�2

OðλÞ
ij ðk̂ÞΠðλÞ

B ðkÞ: ð11Þ

The power spectra of the anisotropic stress for the vector
and tensor modes are then given by [42,46]

hΠðλÞ
B ðkÞΠð−λÞ

B ðk0Þi ¼ ð2πÞ3δ3Dðk − k0Þ 1
2
jΠðXÞ

B j2; ð12Þ

where we denote X ¼ V and X ¼ T for the vector (λ ¼ �1)
and tensor (�2) modes, respectively. Here we assume the
unpolarized case, where the power spectra of the þ and −
modes are identical. In Eq. (12), we define

jΠðV=TÞ
B ðkÞj2 ¼ cV=T

4ð4πργ0Þ2
Z

d3k1
ð2πÞ3

× PBðk1ÞPBðk2ÞDV=Tðk; k1; μÞ; ð13Þ

where k2 ¼ k − k1. In the above, cV=T are constants,
cV ¼ 1 and cT ¼ 1=2, and we have defined DVðk; k1; μÞ ¼
1–2γ2β2 þ γβμ, and DTðk; k1; μÞ ¼ ð1þ γ2Þð1þ β2Þ, with
μ ¼ k̂1 · k̂2, γ ¼ k̂ · k̂1, β ¼ k̂ · k̂2.
The anisotropic stress defined in Eq. (10) contributes to

the energy-momentum tensor in the Einstein equation,
and sources the fluctuations induced magnetically. In what
follows, we briefly review the resultant vector and tensor
fluctuations induced by the anisotropic stress of PMFs.

2. Vector mode

We first introduce the magnetically induced vector
mode. In the initial time, the anisotropic stress of PMFs
is compensated by that of neutrinos. Hence, the total
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anisotropic stress is zero, but each component is perturbed.
In this setup, Ref. [46] has derived the initial condition for
the Einstein-Boltzmann equation and shown that all the

perturbed variables are proportional to Πð�1Þ
B ðkÞ in Eq. (11)

(see Appendix B in Ref. [46]). This contribution is known
as compensated vector mode. Here, we define the transfer
function of the vector mode by

σð�1Þðη; kÞ ¼ T ðVÞ
B ðη; kÞΠð�1Þ

B ðkÞ: ð14Þ

We note that even though the magnetic field itself is a
random Gaussian variable, the statistical property of the
vector mode is highly non-Gaussian, as the anisotropic
stress is proportional to the square of the magnetic field.
We plot the time and wave number dependences of the

transfer function in the top panels of Fig. 1. To compute the

transfer function of the compensated vector mode T ðVÞ
B , we

use the CAMB code [93].1 In the right panel, we show only
the low-redshift results because we are interested in the
late-time effect of PMFs on the galaxy IAs. In the limit
a → 0, in contrast to the usual adiabatic initial condition
or primordial GW cases, the transfer function asymptoti-
cally approaches zero. This is because the vector metric
perturbation is sourced by the total anisotropic stress,

which however initially cancels between the magnetic field
and neutrinos.

3. Tensor mode

The tensor metric perturbation arises from the aniso-
tropic stress of PMFs after its generation time. However,
after the neutrino decoupling, the contribution to the total
energy-momentum tensor from the anisotropic stress of
PMFs is canceled by the anisotropic stress of neutrinos.
The generation of the tensor mode therefore ceases at the
epoch of neutrino decoupling. This contribution is known
as passive tensor mode [46].
The expression of the generated tensor mode is given

by [46]

hð�2Þ
ini ðkÞ ¼ 6Rγ ln ðην=ηBÞΠð�2Þ

B ðkÞ; ð15Þ
where we define an energy fraction of photons in the total
radiation defined Rγ ¼ ργ=ðργ þ ρνÞ, and the quantities ην
and ηB are the neutrino decoupling time and the PMF
generation time in terms of the conformal time, respec-
tively. The generation epoch ηB highly depends on the
generation mechanism; therefore, ην=ηB has an ambiguity
as 106 ≲ ην=ηB ≲ 1017. In the following analysis, we adopt
the maximum value ην=ηB ¼ 1017, corresponding to the
grand unification energy scale [91], while the change of

hð�2Þ
ini (and induced E/B-mode ellipticity field appearing

below) is only by a factor of < 3 even if adopting other
values.

FIG. 1. Time and wave number dependences (left and right, respectively) of the transfer function. From top to bottom, we show the
transfer function of the magnetic vector mode [42,89], magnetic tensor mode/primordial GWs, and vorticity vector mode [46],
respectively.

1In the initial parameter file for the CAMB code, we set
vector mode ¼ 1 to output the transfer function of the
compensated vector mode.
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Once the tensor metric perturbation is generated from the
anisotropic stress of PMFs, it evolves as the usual primor-
dial GWs [41,46,94]. Therefore we may express the
magnetic tensor mode at the time η by using the transfer
function of the primordial GWs T GWsðk; ηÞ by

hð�2Þðη; kÞ ¼ 6Rγ ln ðην=ηBÞT GWsðk; ηÞΠð�2Þ
B ðkÞ; ð16Þ

where T GWsðk; ηÞ stands for the transfer function of the
primordial GWs as explained in the next subsection. As
with the magnetic vector mode, the magnetic tensor mode
is proportional to the square of PMFs, suggesting that
its statistical property is highly non-Gaussian. We remark
that the tensor mode arises from the same mechanism in
Sec. II A 2, i.e., compensated tensor mode. However, its
amplitude is negligible compared to the tensor mode
presented in this section (see, e.g., Ref. [91]), and hence
we ignore it throughout this paper.

B. Other vector and tensor sources

Here, we introduce other possible sources of vector and
tensor modes: the (neutrino) vorticity vector mode and the
primordial GWs. In the next section, we will compare
the vector and tensor modes introduced in this subsection
with those induced by PMFs.
Another possible source of a vector mode is the

(neutrino) vorticity vector mode [42,46,88], in which,
similar to the isocurvature initial conditions, the sum of
the neutrino, baryon, and photon vorticities vanishes
initially, but the vector metric perturbation remains constant
due to the neutrino anisotropic stress (see Appendix 2 in
Ref. [46]). Using the transfer function of the vorticity mode

T ðVÞ
ω ðη; kÞ, the vector metric perturbation at the time η is

given by

σð�1Þðη; kÞ ¼ T ðVÞ
ω ðη; kÞσð�1Þ

ini ðkÞ; ð17Þ

where σð�1Þ
ini ðkÞ is the primordial amplitude. We define its

power spectrum by

hσð�1Þ
ini ðkÞσð∓1Þ

ini ðk0Þi¼ð2πÞ3δ3Dðk−k0Þ2π
2

k3
Pσð�1Þ ðkÞ: ð18Þ

In the unpolarized case Pσðþ1Þ ðkÞ ¼ Pσð−1Þ ðkÞ ¼ PσðkÞ=2,
where PσðkÞ stands for the total power spectrum defined
by hσiniiðkÞσ�iniiðk0Þi ¼ ð2πÞ3δ3Dðk − k0Þð2π2=k3ÞPσðkÞ. We
parametrize the total power spectrum by the power-law
form:

PσðkÞ ¼ rVAS

�
k
k�

�
nV
; ð19Þ

with AS and k� ¼ 0.002 Mpc being the amplitude of the
usual nonmagnetic scalar perturbation and the pivot scale.

The shape of the power spectrum is controlled by the
vector-to-scalar ratio rV and spectral index nV . Although
finding a mechanism to source this mode is challenging,
this initial condition is mathematically possible and
has been indeed investigated by many authors, e.g.,
Refs. [87,95–97]. We show the behaviors of the transfer
function in the middle two panels of Fig. 1 by using the
CAMB code [93].2

Another possible source of a tensor mode is the usual
primordial GWs generated during inflation from the quan-
tum fluctuations. The tensor mode is formally given by
using the transfer function T GWsðη; kÞ and initial fluc-

tuation hð�2Þ
ini ðkÞ:

hð�2Þðη; kÞ ¼ T GWsðη; kÞhð�2Þ
ini ðkÞ: ð20Þ

We define the power spectrum of the initial field by

hhð�2Þ
ini ðkÞhð∓2Þ

ini ðk0Þi ¼ ð2πÞ3δ3Dðk − k0Þ 2π
2

k3
Phð�2Þ ðkÞ: ð21Þ

We consider the unpolarized case Phðþ2Þ ðkÞ ¼ Phð−2Þ ðkÞ ¼
PhðkÞ=2, where PhðkÞ stands for total power spectrum
defined by hhiniijðkÞh�iniijðk0Þi ¼ ð2πÞ3δ3Dðk − k0Þð2π2Þ=
k3PhðkÞ. We model the total power spectrum of the initial
field by the power-law form:

PhðkÞ ¼ rTAS

�
k
k�

�
nT
; ð22Þ

where rT and nT are the usual tensor-to-scalar ratio and
spectral index, respectively. In the bottom panels in Fig. 1,
we show the behaviors of the transfer function T GWs
by numerically solving the evolution equation for the
primordial GWs:

T 00
GWsðη; kÞ þ 2HT 0

GWsðη; kÞ þ k2T GWsðη; kÞ ¼ 0; ð23Þ

with the initial conditions T GWð0;kÞ¼1 and T 0
GWð0;kÞ¼0.

Here, we define the conformal Hubble parameterH ¼ a0=a.

III. IMPACT OF THE VECTOR AND TENSOR
MODES ON THE INTRINSIC ALIGNMENT

We briefly review how the vector and tensor modes
induce the IAs of galaxies. We leave the detailed derivation
to Appendix A.
The local physical effects of the long-wavelength vector

and tensor modes on the gravitational potential have been
investigated by using conformal Fermi normal coordinates
in Refs. [85,98,99]. According to the results shown in
Ref. [85] (or see Appendix A), the tidal fields locally

2We set vector mode ¼ 0 to output the transfer function of
the vorticity mode in the initial parameter file.
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induced by the vector and tensor modes of the long-
wavelength mode kL are, respectively, given by

τðVÞij ðη; kLÞ ¼ −
kL
2a

ðaσijðη; kLÞÞ0

¼ −
kL
2a

ðaT ðVÞðη; kLÞÞ0σiniijðkLÞ; ð24Þ

τðTÞij ðη; kLÞ ¼ −
1

2a
ðah0ijðη; kLÞÞ0

¼ −
1

2a
ðaT ðTÞ0ðη; kLÞÞ0hiniijðkLÞ; ð25Þ

where we used the gauge invariant vector variable
σijðkLÞ ¼ h0ijðkLÞ=kL. From the first line to the second
line in Eqs. (24) and (25), we decompose the perturbed
metric into the time-dependent part described by the
transfer function and the time-independent initial part.
To derive the expression for the density field induced by

the coupling between long- and short-wavelength modes,
we solve the equation of motion of a matter particle in the
local frame:

x00 þHx0 ¼ −∇x

�
ϕs þ

1

2
τðXÞij xixj

�
; ð26Þ

∇2
xϕs ¼ 4πGa2ρ̄mδ; ð27Þ

with X ¼ V and T for the vector and tensor modes,
respectively. The quantity ϕs stands for the scalar gravi-
tational potential of the short-wavelength mode. To facili-
tate the computations, we employ the Lagrangian
perturbation formalism (see Appendix A).
The second order solution arising from the short- and

long-wavelength mode coupling is then given by

δðslÞðxÞ ¼ ξiniabðkLÞ
��

−
DðslÞðη; kLÞ

DðηÞ þ βðη; kLÞ
�

× ∂
−2
∂a∂b þ βðη; kLÞxa∂b

�
δð1Þðx; ηÞ; ð28Þ

where ξ ¼ σ or h for the vector or tensor modes, respec-
tively. We define the linear growth factor DðηÞ, which
satisfies

D00ðηÞ þHD0ðηÞ − 4πGa2ρ̄mðηÞDðηÞ ¼ 0: ð29Þ

The second-order growth factor DðslÞ satisfies

DðslÞ00 þHDðslÞ0 − 4πGa2ρ̄mðηÞDðslÞ ¼ SðXÞðη; kLÞ; ð30Þ

where the source terms SðXÞ of the vector (X ¼ V) and
tensor (X ¼ T) are, respectively, defined by

SðVÞðη; kLÞ ¼ −
kL
2a

DðηÞðaT ðVÞðη; kLÞÞ0; ð31Þ

SðTÞðη; kLÞ ¼ −
1

2a
DðηÞðaT ðTÞ0ðη; kLÞÞ0: ð32Þ

Equation (28) allows us to estimate how the IA is
induced by the long-wavelength vector and tensor modes.
We use the same ansatz in Ref. [85], in which we assume
that the first term in the square brackets in Eq. (28) induces
the intrinsic galaxy shape, and the conversion from the
second-order density fluctuations to the intrinsic galaxy
shape in the vector and tensor modes has the same scaling
as that in the scalar mode [85,86] (see Appendix A for
details). Finally, we have the expression of the intrinsic
galaxy shape induced by the long-wavelength vector and
tensor modes at the linear order given by

γijðkÞ ¼ bKðη; kÞξiniijðkÞ; ð33Þ

where ξ ¼ σ or h for the vector or tensor modes, respec-
tively. Here we define the effective linear shape bias by

bKðη; kÞ≡ 7

4

�
−
DðslÞðη; kÞ

DðηÞ þ βðη; kÞ
�
bscalarK : ð34Þ

The quantity bscalarK is the linear shape bias induced by
the scalar tides as in Ref. [86]. We omit the subscript L
indicating the long-wavelength mode here.
In Fig. 2, we show the behaviors of the effective linear

shape bias parameter bKðη; kÞ=bscalarK . We notice that the
effective linear shape bias sourced by the vector mode has
the opposite sign to that by the tensor mode because of the
different number of time derivatives in the sources [see
Eqs. (31) and (32)]. Taking the limit k → ∞, the transfer
function asymptotically approaches zero (see the right
panels in Fig. 1). However the effective tidal bias parameter
does not vanish in the same limit, known as the fossil
effect [85]. Since the transfer function of the vector modes
decays rapidly after the matter-radiation equality, the
effective linear shape bias parameter induced by the vector
mode, a fossil effect, is more quickly frozen than that by
the tensor mode. Therefore, we do not see the redshift
dependence of the effective tidal bias parameter in the top
and bottom panels in Fig. 2. We note that, since the
amplitude of the effective linear shape bias parameter is
solely determined by the behavior of the transfer function,
its amplitude can be larger than the linear shape bias
induced by the scalar tides as seen in the vector mode cases.
However, the net impact of the vector mode on the galaxy
shape is generally much smaller than the scalar one.
While Eq. (33) is estimated based on the ansatz we

mentioned before, it is nontrivial whether Eq. (33) actually
holds in the presence of long-wavelength vector/tensor
modes. However, a recent numerical work [86] has
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investigated the validity of Eq. (33) in the primordial GW
case, and confirmed that Eq. (33) agrees with simulations at
large scales. Although they also confirmed that the dis-
crepancy between the ansatz and measurements becomes
larger at smaller scales, this discrepancy does not qualita-
tively affect the estimates in this paper, and henceforth, we
will carry out the analysis assuming that Eq. (33) is valid
for both the vector and the tensor modes. Numerical
validation, especially for the vector mode, would be an
interesting future work.

IV. THREE-DIMENSIONAL E- AND B-MODE
POWER SPECTRA

From here, we move to the heart of this work, which
involves the investigation of the three-dimensional power
spectrum of the IA induced by the vector and tensor modes.
While the vector and tensor can generally contribute to the
lens-induced ellipticity (e.g., Refs. [100–104]), as we are
interested in the characteristic signature of the intrinsic
galaxy shapes from the magnetically induced vector and
tensor modes, we simply ignore the lens-induced ellipticity
but focus on the intrinsic ellipticity.
The E- and B-mode decomposition is convenient to

distinguish the impact of vector and tensor modes on the
galaxy shape from that of the scalar mode because the
leading-order scalar mode does not induce the B mode.
There however exists a scalar-mode contribution to the B
mode arising from the one-loop effect, which we will
properly take into account in a later section.

We work under the plane-parallel limit and set the line-
of-sight direction to be parallel to the z axis: n̂ ¼ ẑ. We
define the shear E-mode and B-mode by

�2γðkÞe∓2iϕk ¼ EðkÞ � iBðkÞ; ð35Þ
where we define

�2γðkÞ ¼ mi∓mj∓γijðkÞ; ð36Þ

with mλ ¼ ð1;−λi; 0Þ= ffiffiffi
2

p
. Recall the expression of the

induced galaxy shape by the long-wavelength vector and
tensor modes in Eq. (33):

γij ¼ bKðkÞξiniijðkÞ;
¼ bKðkÞ

X
λ

OðλÞ
ij ðk̂ÞξðλÞini ðkÞ; ð37Þ

where ξ ¼ σ and h for the vector and tensor modes,
respectively. Here and hereafter we omit the time depend-
ence of bK to simplify the notation. Using this expression,
we obtain

�2γ
ðVÞ ¼ bKðkÞffiffiffi

2
p

X
λ¼�1

σðλÞ sin θkð�λþ cos θkÞe�2iϕk ; ð38Þ

�2γ
ðTÞ ¼ bKðkÞ

4

X
λ¼�2

hðλÞ½ð1þ cos2θkÞ � 2λ cos θk�e�2iϕk ;

ð39Þ

FIG. 2. Time and wave number dependences of the effective bias parameter normalized by the scalar tidal bias bK=bscalarK (left and
right, respectively). From top to bottom, we show the magnetic vector mode, magnetic tensor mode/primordial GWs, and vorticity
vector mode, respectively.
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where the superscripts (V) and (T) stand for the vector
and tensor modes, respectively. The function bKðη; kÞ
depends on the source of the vector and tensor modes
(see Fig. 2).
For later purposes, we mention the nonmagnetic scalar

mode tidal effect. We adopt the linear alignment model, in
which the galaxy ellipticity is linearly related to the real
space density field:

γij ¼ bscalarK

�
k̂ik̂j −

1

3
δij

�
δLðkÞ: ð40Þ

Substituting Eq. (40) into Eq. (36), we have

�2γ
ðSÞ ¼ 1

2
bKsin2θkδLðkÞe�2iϕk ð41Þ

for the scalar mode.
Using Eqs. (38), (39), and (41), the expressions of the

E- and B-modes are given by

EðSÞðk; n̂Þ ¼ 1

2
bscalarK sin2 θkδLðkÞ; ð42Þ

BðSÞðk; n̂Þ ¼ 0; ð43Þ

EðVÞðk; n̂Þ ¼ 1ffiffiffi
2

p bKðkÞ sin θk cos θk
X
λ¼�1

σðλÞðkÞ; ð44Þ

BðVÞðk; n̂Þ ¼ −
iffiffiffi
2

p bKðkÞ sin θk
X
λ¼�1

λσðλÞðkÞ; ð45Þ

EðTÞðk; n̂Þ ¼ 1

4
bKðkÞð1þ cos2 θkÞ

X
λ¼�2

hðλÞðkÞ; ð46Þ

BðTÞðk; n̂Þ ¼ −
i
2
bKðkÞ cos θk

X
λ¼�2

λ

2
hðλÞðkÞ; ð47Þ

where the superscripts (S), (V), and (T) stand for the scalar,
vector, and tensor modes, respectively.
As the observable quantity, we focus on the three-

dimensional power spectrum, which is defined as

hXðkÞY�ðk0Þi ¼ ð2πÞ3δ3Dðk − k0ÞPXYðkÞ; ð48Þ

where X; Y ¼ E or B for the E- and B- mode power spectra.
From Eqs. (42)–(47), we finally obtain

PðSÞ
EEðk; μÞ ¼

1

4
ðbscalarK Þ2ð1 − μ2Þ2PLðkÞ; ð49Þ

PðSÞ
BBðk; μÞ ¼ 0; ð50Þ

PðVÞ
EE ðk; μÞ ¼

1

2
ðbKðkÞÞ2ð1 − μ2Þμ2PσðkÞ; ð51Þ

PðVÞ
BB ðk; μÞ ¼

1

2
ðbKðkÞÞ2ð1 − μ2ÞPσðkÞ; ð52Þ

PðTÞ
EEðk; μÞ ¼

1

16
ðbKðkÞÞ2ð1þ μ2Þ2PhðkÞ; ð53Þ

PðTÞ
BBðk; μÞ ¼

1

4
ðbKðkÞÞ2μ2PhðkÞ; ð54Þ

where we define μ ¼ cos θk. The linear matter power
spectrum of the density field δL is given by

hδLðkÞδ�Lðk0Þi ¼ ð2πÞ3δ3Dðk − k0ÞPLðkÞ: ð55Þ

The nonvanishing EB power spectrum appears in the chiral
vector and tensor modes:

PðVÞ
EB ðk; μÞ ¼

i
2
ðbKðkÞÞ2μð1 − μ2ÞχσðkÞPσðkÞ; ð56Þ

PðTÞ
EBðk; μÞ ¼

i
8
ðbKðkÞÞ2μð1þ μ2ÞχhðkÞPhðkÞ; ð57Þ

where we define a chiral parameter χσ=hðkÞ as

χσðkÞ ¼
Pσðþ1Þ − Pσð−1Þ

PσðkÞ
; ð58Þ

χhðkÞ ¼
Phðþ2Þ − Phð−2Þ

PhðkÞ
: ð59Þ

The EB spectrum is an interesting probe for testing parity-
violating theories. Hereafter, we consider unpolarized
cases, χσ=hðkÞ ¼ 0.

We note that PðSÞ
EE is the nonmagnetic scalar contribution,

but affects the detectability of PMFs by forming the
E-mode covariance of the Fisher matrix (67). Moreover,
at one-loop order, the density field can source the B mode,

forming PðSÞ
BB (see Fig. 3 and Appendix B) and hence the

B-mode covariance. We will also take them into account in
the later Fisher matrix analysis. For the vector and tensor
power spectra Pσ=h, we adopt (see Sec. II for details)

Pσðk;Bλ; nBÞ ¼ jΠðVÞj2; ð60Þ

Phðk;Bλ; nBÞ ¼
�
6Rγ ln

�
ην
ηB

��
2

jΠðTÞj2; ð61Þ

Pσðk; rV; nVÞ ¼
2π2

k3
rVAs

�
k
k�

�
nV
; ð62Þ

Phðk; rT; nTÞ ¼
2π2

k3
rTAs

�
k
k�

�
nT
; ð63Þ
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for the magnetic vector, magnetic tensor, vorticity vector
modes, and primordial GWs, respectively.
As a demonstration, we present the lowest order multi-

pole, the monopole, of the various models in Fig. 3,
although the nonvanishing quadrupole and hexadecapole
are also observables. We define the monopole by

PXX;0ðkÞ ¼
1

2

Z
1

−1
dμPXXðk; μÞ: ð64Þ

In this plot, we set the model parameters as follows:
ðBλ; nBÞ ¼ ð2 nG;−2.9Þ taken from the upper limit by
Planck results [91], ðrV; nVÞ ¼ ð0.01; 0Þ roughly corre-
sponding to the upper limit obtained by using the WMAP
results [95], and ðrT; nTÞ ¼ ð0.03;−rT=8Þ from the Planck
results [106]. Also, we calculate the scalar shape bias
parameter bscalarK by using the fitting formula [107]:

bscalarK ¼ 0.09302 − 0.1289bE1
1þ 0.3541bE1

; ð65Þ

where bE1 is a linear density bias parameter. In this plot,
we use the same linear density bias parameter as the
hydrogen line (HI) galaxies in SKA2 [108]:

bE1 ¼ c4ec5z; ð66Þ

with c4 ¼ 0.554 and c5 ¼ 0.783. For comparison purposes,
we show the contributions from the scalar mode to the
E- and B-mode power spectra. While the leading-order
effect of the scalar mode results only in the E mode, the
one-loop order effect produces the nonvanishing B-mode

contributions (e.g., Refs. [109,110]). To compute the
one-loop contribution to the B-mode spectrum, we exploit
the effective-theory description of galaxy shape based on
Ref. [105]. See Appendix B for details.
Recalling that all the primordial power spectra are

modeled by the power-law form, the characteristic feature
observed in each power spectrum comes from the shape of
each effective linear shape bias bK. The power spectrum of
the magnetic tensor mode has a similar behavior to that
of the primordial GWs as both nB ¼ −2.9 and nT ¼
−0.00375 impose nearly scale invariance of their initial
power spectra Ph, and also their bK are exactly the same.
Compared to the nonmagnetic scalar power spectrum, the
vector and tensor mode signals are suppressed at small
scales because of the feature of the fossil effect, i.e., the
absence of growth at late time.
We notice that the signal of the magnetic vector mode is

3–8 orders of magnitude smaller, depending on the scale,
than those by other sources. We elaborate on the origin of
this suppression as follows. First, to compute each spec-
trum in Fig. 3 we set the model parameters to the CMB
limits; thus, the amplitude of each mode essentially reflects
the amplitude of corresponding metric perturbation at
around the recombination epoch. Indeed, there is a 2–4
order of magnitude gap between the magnetic vector mode
and the other three in the metric perturbation, inducing a
comparable gap in the IA. Second, recalling the behavior of
the effective linear shape bias in the magnetic vector mode
(see the right panel in Fig. 2), the effective tidal bias
asymptotically approaches zero more quickly than other
modes at large scales. This asymptotic behavior leads to
further suppression in the magnetic vector mode at large
scales. The above two facts explain the behavior illustrated
in Fig. 3.
In Fig. 4, we investigate the behavior of E- and B-mode

power spectra of the magnetic modes by varying the model
parameters Bλ and nB. Since we plot the signal normalized
by ðBλ=nGÞ4, the solid and dashed lines overlap if the PEE

and PBB scale as ∝ B4
λ . We indeed see this feature for

nB ≲ −1.5, while their gap increases as nB gets larger than
−1.5. This is because, for the blue tilted case, a convolution
integral in the anisotropic stress (10) becomes more
sensitive to the ultraviolet magnetic cutoff kD depending
on Bλ [see Eq. (9)], and hence the power spectrum of the
anisotropic stress no longer obeys a simple B4

λ scaling (see,
e.g., Refs. [44,45,111]). Corresponding to the change of the
impact of kD at nB ∼ −1.5, the dependence of PEE and PBB
on nB also changes, i.e., they decrease for small nB but start
increasing as nB enlarges. As a consequence, they are
minimized at nB ∼ −1.5. This unique feature straightfor-
wardly determines the dependence of the detectability of Bλ

on nB as shown in Figs. 5 and 6. The overall amplitude of
the tensor mode is larger than that of the vector mode due to
the prefactor ð6Rγ lnðην=ηBÞÞ2 ≈ 2 × 104. As we will dem-
onstrate in the next section, the contribution from the tensor

FIG. 3. E-mode (left) and B-mode (right) monopole power
spectra at z ¼ 0 for various sources: the magnetic vector (blue),
magnetic tensor (orange), vorticity vector (green) modes, and
primordial GWs (red). To compute each case, we adopt ðBλ; nBÞ ¼
ð2 nG;−2.9Þ, ðrV;nVÞ¼ð0.01;0Þ, and ðrT; nTÞ ¼ ð0.03;−rT=8Þ.
Dashed and dotted lines represent, respectively, the E-mode power
spectrum induced by the primary nonmagnetic scalar mode
given in Eq. (49) and the B-mode power spectrum induced by
the one-loop contribution from the scalar mode, calculated based
on Ref. [105] (see Appendix B).
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mode is an important source in constraining PMFs through
the observation of the IA of galaxies.

V. FISHER FORECAST

In this section, we discuss the constraining power of the
E- and B-mode power spectra of the galaxy shape on the
amplitude of PMFs based on the analytic model given in
Eqs. (51)–(54) with Eqs. (60) and (61). To this end, we
perform a Fisher matrix analysis. Following, e.g., Ref. [72],
we define the Fisher matrix for the parameter vector θ as

Fij ¼
V

ð2πÞ2
Z

kmax

kmin

k2dk
Z

1

−1
dμ

×
X

a;b¼EE;BB

�
∂Pa

∂θi

�
½cov−1�ab

�
∂Pb

∂θj

�
; ð67Þ

where the quantity V represents the survey volume. The
covariance matrix covab is given by

covab ¼ 2

�
Pa þ

σ2γ
ngal

�
2

δa;b; ð68Þ

with σγ and ngal being the root mean square of the galaxy’s
ellipticity and the galaxy number density, respectively.
Our analysis examines the constraints on the amplitude

of PMFs, Bλ with a fixed spectral index nB. In this case, the
expression of the Fisher matrix is reduced to

FðBλ;fidÞ ¼
V

2ð2πÞ2
Z

kmax

kmin

k2dk
Z

1

−1
dμ

×
X

a¼EE;BB

�
∂Pa

∂Bλ

1

Pa þ σ2γ=ngal

				
Bλ¼Bλ;fid

�
2

; ð69Þ

with Bλ;fid being the fiducial value of the parameter. The
size of the expected error on the PMF strength is given by

σðBλ;fidÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−1ðBλ;fidÞ

q
. PMFs whose strength exceeds

the size of the error are detectable at the 1σ level; thus, a
minimum detectable value of the PMF strength Bλ;min is
given by a solution of the equation

σðBλ;minÞ ¼ Bλ;min: ð70Þ

FIG. 4. E- and B-mode power spectra induced by PMFs normalized by ðBλ=nGÞ4 at z ¼ 0. Left two and right two panels,
respectively, show the magnetic vector and magnetic tensor modes. Solid and dashed lines show the results in Bλ ¼ 1.0 and 10 nG,
respectively.

FIG. 5. Minimum detectable value for the Euclid spectroscopic
survey (left two panels) and SKA HI galaxy surveys (right two
panels) obtained through the magnetic vector mode and through
the magnetic tensor mode as indicated. Blue, orange, and black
lines, respectively, show the results obtained by E-mode power
spectrum alone, by B-mode power spectrum alone, and by
combining E- and B-mode power spectra, respectively. We note
that the orange and black lines, corresponding to the results from
B mode alone and from both E and B modes, respectively, almost
overlap, showing that the B mode gives a much larger gain than
the E mode. For visualization purposes, we multiply the B-mode
results by a factor of 1.12.
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Throughout the analysis, we incorporate the E-mode
power spectrum induced by the scalar mode and the
B-mode power spectrum induced by the vector and tensor
modes and the one-loop contribution from the scalar mode
into the Fisher analysis. In computing the one-loop B-mode
spectrum, we follow Ref. [105] and use the effective-theory
description of galaxy shape (see Appendix B for details).
We set kmin ¼ 2πV−1=3, kmax ¼ 0.1 Mpc=h, and σγ ¼ 0.3.
The scalar shape bias parameter bscalarK is calculated by
using the fitting formula [107] given in Eq. (65).
We first demonstrate the expected minimum detectable

value for the Euclid spectroscopic survey [112] and
SKA [113]. The galaxy redshift surveys by Euclid and
SKA will, respectively, observe the Hα emitter over red-
shifts 0.9 to 1.8 and HI galaxies over redshifts 0.23 to 1.81.
Although IA has not yet been detected for emission line
galaxies (ELGs) [64,114–116], Ref. [117] recently pro-
posed an optimal estimator to determine the IA of halos
using ELGs. We suppose that the power spectra related to
the IA can be measured with the optimal estimator, and
that all observed ELGs are, therefore, an ideal tracer of
the halo shape. We use the survey specifications in
Table 3 of Ref. [118] for the Euclid and Table 1 of
Ref. [119] for SKA. We combine all the redshift bins by

σðBλÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i FðBλÞjz¼zi

q
with the subscript i being the

label of the redshift bins, and then numerically solve
Eq. (70). In Fig. 5, we present the minimum detectable
value for Euclid and SKA (see Appendix C for the same
analysis but for the vorticity vector mode and primordial
GWs). As expected from Fig. 4, the magnetic tensor
mode provides stronger constraints on the PMF strength
than the magnetic vector mode. It is also apparent from
Fig. 5 that the B-mode power spectrum places stronger
constraints than the E-mode power spectrum due to the
absence of the sizable nonmagnetic scalar contribution in
the covariance matrix. We find that Bλ;min has a local

maximum around nB ∼ −1. This behavior comes from a
unique nB dependence of PEE and PBB seen in Fig. 4 and
the lower limit of the integration range in the Fisher
matrix for the survey specification of Euclid/SKA
kmin ¼ 2πV−1=3 ≈ 0.001 h=Mpc. One can find from
Fig. 5 that PMFs with Bλ ∼ 30–300 nG would be meas-
urable by a Euclid- or SKA-level B-mode survey.
To capture PMFs with Bλ ¼ Oð1 nGÞ, what specific

level of survey should be aimed at? To figure this out, we
compute the minimum detectable value Bλ; min by varying
the shot noise contribution to the covariance matrix σ2γ=ngal
(see Appendix C for the same analysis but for the vorticity
vector mode and primordial GWs). We then set V ¼
1ðGpc=hÞ3 and z ¼ 1.0. We also use the same bias
parameter as the HI galaxies in SKA2 given in Eq. (66).
The choice of these parameters does not qualitatively
change the results. Figure 6 describes our results, again
showing that the B-mode information induced by the tensor
mode is the most powerful to measure Bλ. Both for the
E-mode and B-mode cases, decreasing the shot noise level
causes the dominance of the nonmagnetic scalar signal in
the covariance and hence the saturation of Bλ; min around
σ2γ=ngal ∼ 10−2. We finally find that the saturated value
of Bλ; min reaches Oð1 nGÞ–Oð10 nGÞ, depending on the
spectral index. To archive this minimum detectable value,
the B-mode power spectrum plays a major role and still an
interesting probe even in the presence of the one-loop
nonmagnetic scalar contribution to the B mode.

VI. SUMMARY

In recent years, there has been growing attention on
PMFs as a strong candidate for explaining the origin of
observed large-scale magnetic fields, including void
regions. While the statistical properties of PMFs have been
constrained by the recent cosmological observations such
as the cosmic microwave background anisotropies, this

FIG. 6. Minimum detectable value for the idealistic surveys by varying σ2γ=ngal, obtained through the magnetic vector mode (dashed
lines) and through the magnetic tensor mode (solid lines). We present the results obtained by the E-mode power spectrum alone (blue),
by the B-mode power spectrum alone (orange), and by combining the E- and B-mode power spectra (black). The orange and black lines,
corresponding to the results from the B mode only and from both the E and B modes, respectively, almost overlap, showing that the B
mode gives a much bigger gain than the E mode. For visualization purposes, we multiply the B-mode results by a factor of 1.12.
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paper has focused on the IAs of galaxies as a comple-
mentary new observational probe, aiming to delve into the
nature of PMFs. The metric perturbations of the long-
wavelength vector and tensor modes are known to induce
the local tidal gravitational fields [85]. Through the
observations of the intrinsic galaxy shapes, we have paved
the way to detect the vector and tensor modes sourced by
the anisotropic stress of PMFs in the early Universe.
We have shown the relation between the anisotropic

stress of PMFs and the IA of the galaxies. Considering up
to the leading-order contributions, while the scalar mode
only produces the cosmic shear E mode, the vector and
tensor modes produce both E and B modes. Hence, the
B-mode signal can be a good probe to search for magneti-
cally induced vector and tensor modes once we properly take
into account the one-loop scalar contribution to the B mode.
Assuming that the power spectrum of PMFs is given by a
power-law function, which includes two parameters, the
amplitude of PMFs Bλ and the spectral index nB, we
demonstrated the E- and B-mode power spectra of the
galaxy shape induced by PMFs. Owing to the convolution
and small-scale cutff inherent in the anisotropic stress of
PMFs, we found that the slopes of the E- and
B-mode spectra do not change for nB > −1.5 as nB is
increased, but only their amplitudes vary with nB.
Based on our analytical model of the E- and B-mode

spectra, we have performed the Fisher analysis to estimate
the minimum detectable value of the PMF strength, defined
in Eq. (70), for a fixed spectral index. We first examined the
minimum detectable value assuming the galaxy redshift
survey by Euclid and SKA. In this case, we found that the
minimum detectable value of Bλ reaches about 30–300 nG,
depending on nB, which is weaker than the upper limit
obtained by the recent CMB observations. To investigate
the detecting power of the IA observations in spectroscopic
surveys, we further performed the Fisher matrix analysis
by varying the shot noise term as a free parameter. We
found that a minimum detectable value can reach
Oð1 nGÞ–Oð10 nGÞ, depending on nB, which is almost
comparable to the current CMB limits, and that the B-mode
spectrum still plays a crucial role in achieving this even in
the presence of the nonmagnetic scalar contribution to the
B mode spectrum. The currently planned galaxy redshift
surveys would provide weaker constraints on PMFs than
the CMB observations. However, the observations of the
galaxy IAs would become increasingly important as a
complementary probe to understand the nature of PMFs.
This paper has focused on the auto power spectra of the

cosmic shear E and B modes induced by PMFs. However,
as the anisotropic stress of PMFs also induces the density
fluctuations [46], we would observe a nonvanishing signal
in the cross-correlation between density fields and galaxy
shapes. Adding this information to the present analysis
would improve the constraint on PMFs. An interesting
future challenge is to probe PMFs, making comprehensive

use of the available information on the galaxy density field
and its shape.
We have carried out our analysis with a spectroscopic

survey in mind. When considering an analysis based on the
two-dimensional angular power spectrum for a photometric
survey (e.g., Ref. [87]), we expect that the impact of the
shot noise on the covariance is reduced due to the larger
number density of galaxies than spectroscopic surveys.
We leave detailed comparisons of the detecting power on
PMFs between the two-dimensional angular power spec-
trum and three-dimensional power spectrum for an in-
triguing future work.
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APPENDIX A: INTRINSIC ALIGNMENTS FROM
VECTOR AND TENSOR MODES

In this appendix, based on Ref. [85], we solve the
equation of motion of a matter particle in a local frame in
the presence of the local tidal effect, and then derive the
density fields induced by the crosstalk between the long-
and short-wavelength modes. From the expression for the
second-order density fields, we show the linear shape bias
of the IA of galaxies from the vector and tensor modes.
Our starting point is the expression of the tidal field

induced by the long-wavelength vector and tensor modes
using conformal Fermi normal coordinate [85]

τijðη; kLÞ ¼ −
1

2a
ðah0ijðη; kLÞÞ0; ðA1Þ

where we work in the synchronous gauge. It is useful to
decompose the tidal tensor into the time-dependent part and
initial perturbation part:

τijðη; kLÞ ¼ T τðη; kLÞξiniijðkLÞ; ðA2Þ

where ξ ¼ σ and h for the vector and tensor modes,
respectively. The function T τðη; kLÞ is given by

T τðη; kLÞ ¼ −
kL
2a

ðaT ðVÞðη; kLÞÞ0 ðA3Þ
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for the vector mode, and

T τðη; kLÞ ¼ −
1

2a
ðaT ðTÞ0ðη; kLÞÞ0 ðA4Þ

for the tensor mode.
In the presence of the long-wavelength tidal tensor τij,

the equation of motion of a matter particle in the local frame
becomes

x00 þHx0 ¼ −∇x

�
ϕs þ

1

2
τijxixj

�
; ðA5Þ

∇2
xϕs ¼ 4πGa2ρ̄mδ; ðA6Þ

where a prime denotes a derivative with respect to the
conformal time η. To solve the equation of motion,
we employ the Lagrangian perturbation formalism. The
Lagrangian description relates the initial Lagrangian posi-
tion for the fluid element q to the Eulerian position at
conformal time η through the displacement field Ψðη; qÞ:

xðη; qÞ ¼ qþΨðη; qÞ: ðA7Þ
Substituting Eq. (A7) into Eq. (A5), the equation forΨ at

the first order is given by

Ψ00 þHΨ0 ¼ −∇q

�
ϕsðqÞ þ

1

2
τijqiqj

�
: ðA8Þ

We split the displacement field into the long- and short-
wavelength mode contributions:

Ψ ¼ ΨðsÞ þΨðlÞ: ðA9Þ

The evolution equation of each displacement field is
given by

ΨðsÞ00
i þHΨðsÞ0

i ¼ −
∂ϕsðqÞ
∂qi

; ðA10Þ

ΨðlÞ0
i þHΨðlÞ0

i ¼ −T τðη; kLÞξiniiaqa: ðA11Þ

Using the Poisson equation (A6), the solution of
Eq. (A10) is given by

ΨðsÞ
i ðη; qÞ ¼ −DðηÞ∂−2q

∂

∂qi
δð1Þðη0; qÞ; ðA12Þ

where the quantity η0 is the conformal time at the present
time. The linear growth factor DðηÞ satisfies

D00ðηÞ þHD0ðηÞ − 4πGa2ρ̄mDðηÞ ¼ 0: ðA13Þ

We adopt the normalization conditions Dðη0Þ ¼ 1. The
solution of Eq. (A11) is given by

ΨðlÞ
i ¼ −βðη; kLÞξiniiaqa; ðA14Þ

where we define

βðη; kLÞ ¼ −
Z

η

0

dη0

aðη0Þ
Z

η0

0

aðη00ÞT τðη00; kLÞdη00: ðA15Þ

Next, we solve the equation for Ψ by considering only
the coupling between long- and short-wavelength modes.
We start by taking the divergence of Eq. (A5) with respect
to q:

ΨðslÞ00
a;a þHΨðslÞ0

a;a ¼−∇2
xϕs−ΨðsÞ

b;aτab−ΨðlÞ
b;a∂xb∂xaϕs; ðA16Þ

where a comma stands for the derivative with respect to the
Lagrangian coordinate. We note that the first term on
the right-hand side involves the coupling of short- and
long-wavelength modes through the chain rule of spatial
difference: ∂

∂xi
¼ ðJ−1Þji ∂

∂qj
with the Jacobian matrix

Jij ¼ ∂xi
∂qj

¼ δij þ Ψi;j. Then, the second order equation

for ΨðslÞ is given by

ΨðslÞ00
a;a þHΨðslÞ0

a;a − 4πGa2ρ̄mΨ
ðslÞ
a;a

¼ T τðη; kLÞDðηÞ∂−2q
∂
2δð1Þðη0; qÞ
∂qa∂qb

ξiniab: ðA17Þ

The solution of this equation is given by

ΨðslÞ
a;a ¼ DðslÞðη; kLÞ∂−2q

∂
2δð1Þðη0Þ
∂qa∂qb

ξiniabðkLÞ; ðA18Þ

where the function Dslðη; kLÞ satisfies
DðslÞ00 þHDðslÞ0−4πGa2ρ̄mDðslÞ ¼DðηÞT τðη;kLÞ: ðA19Þ
From Eqs. (A12), (A14), and (A17), we obtain the

Eulerian density field up to the second order:

δðxÞ ¼ δðsÞðxÞ þ δðslÞðxÞ; ðA20Þ
where we define

δðsÞðxÞ ¼ −ΨðsÞ
a;aðxÞ;

¼ DðηÞδð1Þðη0; xÞ; ðA21Þ

δðslÞðxÞ ¼ ΨðsÞ
a;abðxÞΨðlÞ

b ðxÞ −ΨðslÞ
a;a ðxÞ

þΨðsÞ
a;aðxÞΨðlÞ

b;bðxÞ þ ΨðsÞ
a;bðxÞΨðlÞ

b;aðxÞ; ðA22Þ

¼ ξiniabðkLÞ
�
βðη; kLÞxa∂b

þ
�
−
DðslÞðη; kLÞ

DðηÞ þ βðη; kLÞ
�
∂
−2
∂a∂b

�
δð1ÞðxÞ:

ðA23Þ
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We use the same ansatz in Ref. [85] which assumes that
the second term in the square brackets in Eq. (A23) induces
the IAs, since this term represents the growth of the density
perturbation in a local region by the coupling between the
long- and short-wavelength tidal fields while the first term
corresponds to the displacement induced by the long-
wavelength tidal field, which should have no effect on
local physics. We also assume that the alignment from the
vector/tensor tidal fields has the same scaling as the second
order density induced by the scalar tidal fields. According
to this ansatz, the expression of the intrinsic galaxy shape is
given by

γij ¼ bKðη; kLÞξiniij; ðA24Þ

bKðη; kLÞ≡ 7

4

�
−
DðslÞðη; kLÞ

DðηÞ þ βðη; kLÞ
�
bscalarK ; ðA25Þ

where bscalarK is the scalar linear shape bias. The factor 7=4
comes from the conversion from the second-order density
field to the galaxy intrinsic shape in the scalar mode
case [85,86].

APPENDIX B: ONE LOOP CONTRIBUTIONS TO
B MODE POWER SPECTRUM

Here we give a brief explanation of what is assumed to
compute the one-loop correction to the B-mode auto power
spectrum. Recently the perturbation theory of the IAs with
the effective theory considerations has been formulated in
both Eulerian and Lagrangian ways [105,120]. In this paper
we employ the LPT-based calculation of the one-loop
power spectrum developed in Ref. [105].
As the one-loop power spectrum involves the linear,

quadratic, and cubic fields, we need to introduce up to the
cubic shape bias parameters, which in general consist of
one linear, three quadratic, and two cubic free parameters to
compute the one-loop correction to the shape power
spectrum. However, with the comparison of the N-body
halo shapes, Ref. [121] showed that the values of the higher
order (Eulerian) shape bias parameters are well approxi-
mated by the coevolution prediction [122]. In other words,
the halo shape field is well described by the Lagrangian
tracer of the initial tidal field advected to its final position
by the large-scale bulk flow. Hence the following model
can be used in lieu of the full model for the one-loop power
spectrum:

γijðkÞ ¼
Z

d3qγLijðqÞeik·ðqþΨðqÞÞ; ðB1Þ

with

γLijðqÞ ¼ bLKKijðqÞ½1þ δLg ðqÞ�; ðB2Þ

where bLK is the Lagrangain linear shape bias and δLg ðqÞ is
the Lagrangian galaxy density field. Note that since the
galaxy shapes are always observed with galaxies they are
naturally density-weighted quantities.
In order to compute the one-loop correction, we can also

assume the linear bias description for the galaxy density
field since the quadratic bias fields in the density in
Eq. (B2) give rise to a reparametrization of the linear
shape bias parameter. After all, with these assumptions, the
free bias parameters we have to include to the one-loop
calculation are the linear shape and density bias parameters:
bLK and bL1 . The Lagrangian linear shape bias is the same as
the Eulerian one, bscalarK ¼ bLK, since the tidal field does not
induce the volume distortion at first order, while the
Lagrangian linear density bias is related to the Eulerian
one as bE1 ¼ bL1 þ 1. Using these relations we can compute
the one-loop correction to the shape power spectrum given
the values of bscalarK and bE1 .

APPENDIX C: FISHER FORECAST FOR
THE VORTICITY VECTOR MODE

AND PRIMORDIAL GWs

As we are interested in the detectability of the PMFs
through observations of the galaxy shape, we have
focused on the vector and tensor modes induced by
PMFs in the main text. For reference purposes, this
appendix provides the Fisher forecast based on the same
analysis as done in Sec. V, but we consider other vector
and tensor sources: the vorticity vector mode and the
primordial GWs.
We define the Fisher matrix for a fixed spectral index

nV ¼ nT ¼ 0 by

FðrX;fidÞ ¼
V

2ð2πÞ2
Z

kmax

kmin

k2dk
Z

1

−1
dμ

×
X

a¼EE;BB

�
∂Pa

∂rX

1

Pa þ σ2γ=ngal

				
rX¼rX;fid

�
2

; ðC1Þ

where X ¼ V and T for the vorticity vector mode and the
primordial GWs, respectively. The size of the expected
error on the amplitude of the vector/tensor modes is

given by σðrX;fidÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−1ðrX;fidÞ

q
. We here evaluate the

minimum detectable value rX;min by solving

σðrX;minÞ ¼ rX;min: ðC2Þ

Table I shows the results for the Euclid spectroscopic
survey and SKAHI galaxy survey. We see from this that the
E-mode (B-mode) power spectrum can capture smaller rT
(rV) than the B-mode (E-mode) one. This can happen in
surveys where the covariance is dominated by the shot
noise as with the Euclid and SKA. For the primordial GW
case, ignoring the cosmic variance contribution to the
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covariance, we can analytically estimate the ratio of the

Fisher matrix FðTÞ
EE=F

ðTÞ
BB by

FðTÞ
EE

FðTÞ
BB

≈
R
1
−1 dμP

ðTÞ
EER

1
−1 dμP

ðTÞ
BB

≈
�
1
16

R
1
−1 dμð1þ μ2Þ2�2�
1
4

R
1
−1 dμμ

2
�
2

¼ 83

63
; ðC3Þ

yielding σEEðrTÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
63=83

p
σBBðrTÞ ¼ 0.87σBBðrTÞ.

Similarly, in the vorticity vector mode case, we have
σEEðrVÞ ≈

ffiffiffiffiffi
21

p
σBBðrVÞ ¼ 4.6σBBðrVÞ. These values

explain the results in Table I very well. We note that the
minimum detectable value given in Table I is larger than the
constraints derived in Ref. [87] because our analysis

assumes the spectroscopic survey which has generally a
smaller number of galaxies than the photometric surveys
assumed in Ref. [87].
In Fig. 7, we perform the same analysis as in Fig. 6 but

for the cases of the vorticity vector mode and primordial
GWs. In analogy with the magnetic case in Fig. 6, as the
shot noise decreases, the detectability of rV=T from the E
and B modes reaches a plateau because of the scalar-mode
contamination in the covariance. In a noisy regime as
100ðMpc=hÞ3 ≲ σ2γ=ngal, as the above analytic estimate
indicates, the E-mode spectrum can capture smaller rT
than the B-mode one.

[1] A. Neronov and I. Vovk, Science 328, 73 (2010).
[2] F. Tavecchio, G. Ghisellini, G. Bonnoli, and L. Foschini,

Mon. Not. R. Astron. Soc. 414, 3566 (2011).
[3] I. Vovk, A. M. Taylor, D. Semikoz, and A. Neronov,

Astrophys. J. Lett. 747, L14 (2012).
[4] K. Takahashi, M. Mori, K. Ichiki, S. Inoue, and H. Takami,

Astrophys. J. Lett. 771, L42 (2013).
[5] Y.-P. Yang and Z.-G. Dai, Res. Astron. Astrophys. 15,

2173 (2015).
[6] P. Veres, C. D. Dermer, and K. S. Dhuga, Astrophys. J.

847, 39 (2017).
[7] D. Grasso andH. R. Rubinstein, Phys. Rep. 348, 163 (2001).
[8] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62

(2013).
[9] K. Subramanian, Rep. Prog. Phys. 79, 076901 (2016).

[10] M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743
(1988).

[11] B. Ratra, Astrophys. J. Lett. 391, L1 (1992).
[12] A. D. Dolgov, Phys. Rev. D 48, 2499 (1993).
[13] K. Bamba and J. Yokoyama, Phys. Rev. D 69, 043507

(2004).
[14] V. Demozzi, V. Mukhanov, and H. Rubinstein, J. Cosmol.

Astropart. Phys. 08 (2009) 025.

[15] A. Kandus, K. E. Kunze, and C. G. Tsagas, Phys. Rep.
505, 1 (2011).

[16] C. Caprini and L. Sorbo, J. Cosmol. Astropart. Phys. 10
(2014) 056.

[17] G. Domènech, C. Lin, and M. Sasaki, Europhys. Lett. 115,
19001 (2016).

[18] H. Bazrafshan Moghaddam, E. McDonough, R. Namba,
and R. H. Brandenberger, Classical Quantum Gravity 35,
105015 (2018).

[19] Y. V. Shtanov and M. V. Pavliuk, Ukr. Phys. J. 64, 1009
(2019).

[20] Y. Shtanov, J. Cosmol. Astropart. Phys. 10 (2019) 008.
[21] A. Talebian, A. Nassiri-Rad, and H. Firouzjahi, Phys. Rev.

D 102, 103508 (2020).
[22] A. Talebian, A. Nassiri-Rad, and H. Firouzjahi, Phys. Rev.

D 105, 023528 (2022).
[23] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
[24] G. Sigl, A. V. Olinto, and K. Jedamzik, Phys. Rev. D 55,

4582 (1997).
[25] A. G. Tevzadze, L. Kisslinger, A. Brandenburg, and T.

Kahniashvili, Astrophys. J. 759, 54 (2012).
[26] Y. Zhang, T. Vachaspati, and F. Ferrer, Phys. Rev. D 100,

083006 (2019).

TABLE I. Minimum detectable value for the spectroscopic
survey in Euclid (left values) and SKA (right values). For the
spectral index of the vorticity vector mode and primordial GWs,
we set nV ¼ nT ¼ 0.

Euclid=SKA Vorticity vector 10−5rV Primordial GWs 10−5rT

EE 2.95=0.84 4.45=1.45
BB 0.631=0.171 5.35=1.66
EEþ BB 0.615=0.167 3.19=1.04

FIG. 7. Same as Fig. 6 but for the vorticity vector mode and
primordial GWs.

IMPRINTS OF PRIMORDIAL MAGNETIC FIELDS … PHYS. REV. D 109, 043520 (2024)

043520-15

https://doi.org/10.1126/science.1184192
https://doi.org/10.1111/j.1365-2966.2011.18657.x
https://doi.org/10.1088/2041-8205/747/1/L14
https://doi.org/10.1088/2041-8205/771/2/L42
https://doi.org/10.1088/1674-4527/15/12/005
https://doi.org/10.1088/1674-4527/15/12/005
https://doi.org/10.3847/1538-4357/aa87b1
https://doi.org/10.3847/1538-4357/aa87b1
https://doi.org/10.1016/S0370-1573(00)00110-1
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1007/s00159-013-0062-7
https://doi.org/10.1088/0034-4885/79/7/076901
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1086/186384
https://doi.org/10.1103/PhysRevD.48.2499
https://doi.org/10.1103/PhysRevD.69.043507
https://doi.org/10.1103/PhysRevD.69.043507
https://doi.org/10.1088/1475-7516/2009/08/025
https://doi.org/10.1088/1475-7516/2009/08/025
https://doi.org/10.1016/j.physrep.2011.03.001
https://doi.org/10.1016/j.physrep.2011.03.001
https://doi.org/10.1088/1475-7516/2014/10/056
https://doi.org/10.1088/1475-7516/2014/10/056
https://doi.org/10.1209/0295-5075/115/19001
https://doi.org/10.1209/0295-5075/115/19001
https://doi.org/10.1088/1361-6382/aaba22
https://doi.org/10.1088/1361-6382/aaba22
https://doi.org/10.15407/ujpe64.11.1009
https://doi.org/10.15407/ujpe64.11.1009
https://doi.org/10.1088/1475-7516/2019/10/008
https://doi.org/10.1103/PhysRevD.102.103508
https://doi.org/10.1103/PhysRevD.102.103508
https://doi.org/10.1103/PhysRevD.105.023528
https://doi.org/10.1103/PhysRevD.105.023528
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1103/PhysRevD.55.4582
https://doi.org/10.1103/PhysRevD.55.4582
https://doi.org/10.1088/0004-637X/759/1/54
https://doi.org/10.1103/PhysRevD.100.083006
https://doi.org/10.1103/PhysRevD.100.083006


[27] J. Ellis, M. Fairbairn, M. Lewicki, V. Vaskonen, and
A. Wickens, J. Cosmol. Astropart. Phys. 09 (2019) 019.

[28] Y. Di, J. Wang, R. Zhou, L. Bian, R.-G. Cai, and J. Liu,
Phys. Rev. Lett. 126, 251102 (2021).

[29] J. Yang and L. Bian, Phys. Rev. D 106, 023510 (2022).
[30] E. R. Harrison, Mon. Not. R. Astron. Soc. 147, 279 (1970).
[31] K. Takahashi, K. Ichiki, H. Ohno, and H. Hanayama, Phys.

Rev. Lett. 95, 121301 (2005).
[32] E. Fenu, C. Pitrou, and R. Maartens, Mon. Not. R. Astron.

Soc. 414, 2354 (2011).
[33] S. Saga, K. Ichiki, K. Takahashi, and N. Sugiyama, Phys.

Rev. D 91, 123510 (2015).
[34] C. Fidler, G. Pettinari, and C. Pitrou, Phys. Rev. D 93,

103536 (2016).
[35] C. Caprini and R. Durrer, Phys. Rev. D 65, 023517 (2001).
[36] D. G. Yamazaki and M. Kusakabe, Phys. Rev. D 86,

123006 (2012).
[37] M. Kawasaki and M. Kusakabe, Phys. Rev. D 86, 063003

(2012).
[38] Y. Luo, T. Kajino, M. Kusakabe, and G. J. Mathews,

Astrophys. J. 872, 172 (2019).
[39] M. Kusakabe, A. Kedia, G. J. Mathews, and N. Sasankan,

Phys. Rev. D 104, 123534 (2021).
[40] Y. Lu and M. Kusakabe, Astrophys. J. Lett. 926, L4

(2022).
[41] R. Durrer, P. G. Ferreira, and T. Kahniashvili, Phys. Rev. D

61, 043001 (2000).
[42] A. Lewis, Phys. Rev. D 70, 043011 (2004).
[43] M. Giovannini, Phys. Rev. D 70, 123507 (2004).
[44] F. Finelli, F. Paci, and D. Paoletti, Phys. Rev. D 78, 023510

(2008).
[45] D. Paoletti, F. Finelli, and F. Paci, Mon. Not. R. Astron.

Soc. 396, 523 (2009).
[46] J. R. Shaw and A. Lewis, Phys. Rev. D 81, 043517 (2010).
[47] C. Bonvin, C. Caprini, and R. Durrer, Phys. Rev. D 88,

083515 (2013).
[48] S. Saga, A. Ota, H. Tashiro, and S. Yokoyama, Mon. Not.

R. Astron. Soc. 490, 4419 (2019).
[49] K. Jedamzik and A. Saveliev, Phys. Rev. Lett. 123, 021301

(2019).
[50] T. Minoda, K. Ichiki, and H. Tashiro, J. Cosmol. Astropart.

Phys. 03 (2021) 093.
[51] S. Mandal, N. Sehgal, and T. Namikawa, Phys. Rev. D 105,

063537 (2022).
[52] K. Jedamzik, V. Katalinić, and A. V. Olinto, Phys. Rev.

Lett. 85, 700 (2000).
[53] K. E. Kunze and E. Komatsu, J. Cosmol. Astropart. Phys.

01 (2014) 009.
[54] S. Saga, H. Tashiro, and S. Yokoyama, Mon. Not. R.

Astron. Soc. 474, L52 (2018).
[55] D. Ryu, D. R. G. Schleicher, R. A. Treumann, C. G.

Tsagas, and L. M. Widrow, Space Sci. Rev. 166, 1 (2012).
[56] J. R. Shaw and A. Lewis, Phys. Rev. D 86, 043510

(2012).
[57] C. Fedeli and L. Moscardini, J. Cosmol. Astropart. Phys.

11 (2012) 055.
[58] S. Camera, C. Fedeli, and L. Moscardini, J. Cosmol.

Astropart. Phys. 03 (2014) 027.
[59] A. Heavens, A. Refregier, and C. Heymans, Mon. Not. R.

Astron. Soc. 319, 649 (2000).

[60] R. A. C. Croft and C. A. Metzler, Astrophys. J. 545, 561
(2000).

[61] P. Catelan and C. Porciani, Mon. Not. R. Astron. Soc. 323,
713 (2001).

[62] R. G. Crittenden, P. Natarajan, U.-L. Pen, and T. Theuns,
Astrophys. J. 559, 552 (2001).

[63] C. M. Hirata and U. Seljak, Phys. Rev. D 70, 063526
(2004).

[64] R. Mandelbaum, C. M. Hirata, M. Ishak, U. Seljak, and
J. Brinkmann, Mon. Not. R. Astron. Soc. 367, 611 (2006).

[65] C. M. Hirata, R. Mandelbaum, M. Ishak, U. Seljak,
R. Nichol, K. A. Pimbblet, N. P. Ross, and D. Wake,
Mon. Not. R. Astron. Soc. 381, 1197 (2007).

[66] T. Okumura, Y. P. Jing, and C. Li, Astrophys. J. 694, 214
(2009).

[67] M. A. Troxel and M. Ishak, Phys. Rep. 558, 1 (2015).
[68] F. Schmidt and D. Jeong, Phys. Rev. D 86, 083513 (2012).
[69] N. E. Chisari and C. Dvorkin, J. Cosmol. Astropart. Phys.

12 (2013) 029.
[70] T. Okumura, A. Taruya, and T. Nishimichi, Phys. Rev. D

100, 103507 (2019).
[71] T. Okumura and A. Taruya, Mon. Not. R. Astron. Soc. 493,

L124 (2020).
[72] A. Taruya and T. Okumura, Astrophys. J. Lett. 891, L42

(2020).
[73] M. Shiraishi, A. Taruya, T. Okumura, and K. Akitsu,

Mon. Not. R. Astron. Soc. 503, L6 (2021).
[74] K. Akitsu, T. Kurita, T. Nishimichi, M. Takada, and

S. Tanaka, Phys. Rev. D 103, 083508 (2021).
[75] K. Kogai, K. Akitsu, F. Schmidt, and Y. Urakawa,

J. Cosmol. Astropart. Phys. 03 (2021) 060.
[76] T. Okumura and A. Taruya, Phys. Rev. D 106, 043523

(2022).
[77] Y.-T. Chuang, T. Okumura, and M. Shirasaki, Mon. Not. R.

Astron. Soc. 515, 4464 (2022).
[78] S. Saga, T. Okumura, A. Taruya, and T. Inoue, Mon. Not.

R. Astron. Soc. 518, 4976 (2023).
[79] M. Shiraishi, T. Okumura, and K. Akitsu, J. Cosmol.

Astropart. Phys. 08 (2023) 013.
[80] T. Kurita and M. Takada, Phys. Rev. D 108, 083533

(2023).
[81] T. Okumura and A. Taruya, Astrophys. J. Lett. 945, L30

(2023).
[82] K. W. Masui and U.-L. Pen, Phys. Rev. Lett. 105, 161302

(2010).
[83] D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108,

251301 (2012).
[84] L. Dai, D. Jeong, and M. Kamionkowski, Phys. Rev. D 88,

043507 (2013).
[85] F. Schmidt, E. Pajer, and M. Zaldarriaga, Phys. Rev. D 89,

083507 (2014).
[86] K. Akitsu, Y. Li, and T. Okumura, Phys. Rev. D 107,

063531 (2023).
[87] O. H. E. Philcox, M. J. König, S. Alexander, and D. N.

Spergel, arXiv:2309.08653.
[88] A. Lewis, Phys. Rev. D 70, 043518 (2004).
[89] A. Mack, T. Kahniashvili, and A. Kosowsky, Phys. Rev. D

65, 123004 (2002).
[90] M. Giovannini and K. E. Kunze, Phys. Rev. D 77, 063003

(2008).

SAGA, SHIRAISHI, AKITSU, and OKUMURA PHYS. REV. D 109, 043520 (2024)

043520-16

https://doi.org/10.1088/1475-7516/2019/09/019
https://doi.org/10.1103/PhysRevLett.126.251102
https://doi.org/10.1103/PhysRevD.106.023510
https://doi.org/10.1093/mnras/147.3.279
https://doi.org/10.1103/PhysRevLett.95.121301
https://doi.org/10.1103/PhysRevLett.95.121301
https://doi.org/10.1111/j.1365-2966.2011.18554.x
https://doi.org/10.1111/j.1365-2966.2011.18554.x
https://doi.org/10.1103/PhysRevD.91.123510
https://doi.org/10.1103/PhysRevD.91.123510
https://doi.org/10.1103/PhysRevD.93.103536
https://doi.org/10.1103/PhysRevD.93.103536
https://doi.org/10.1103/PhysRevD.65.023517
https://doi.org/10.1103/PhysRevD.86.123006
https://doi.org/10.1103/PhysRevD.86.123006
https://doi.org/10.1103/PhysRevD.86.063003
https://doi.org/10.1103/PhysRevD.86.063003
https://doi.org/10.3847/1538-4357/ab0088
https://doi.org/10.1103/PhysRevD.104.123534
https://doi.org/10.3847/2041-8213/ac33b3
https://doi.org/10.3847/2041-8213/ac33b3
https://doi.org/10.1103/PhysRevD.61.043001
https://doi.org/10.1103/PhysRevD.61.043001
https://doi.org/10.1103/PhysRevD.70.043011
https://doi.org/10.1103/PhysRevD.70.123507
https://doi.org/10.1103/PhysRevD.78.023510
https://doi.org/10.1103/PhysRevD.78.023510
https://doi.org/10.1111/j.1365-2966.2009.14727.x
https://doi.org/10.1111/j.1365-2966.2009.14727.x
https://doi.org/10.1103/PhysRevD.81.043517
https://doi.org/10.1103/PhysRevD.88.083515
https://doi.org/10.1103/PhysRevD.88.083515
https://doi.org/10.1093/mnras/stz2882
https://doi.org/10.1093/mnras/stz2882
https://doi.org/10.1103/PhysRevLett.123.021301
https://doi.org/10.1103/PhysRevLett.123.021301
https://doi.org/10.1088/1475-7516/2021/03/093
https://doi.org/10.1088/1475-7516/2021/03/093
https://doi.org/10.1103/PhysRevD.105.063537
https://doi.org/10.1103/PhysRevD.105.063537
https://doi.org/10.1103/PhysRevLett.85.700
https://doi.org/10.1103/PhysRevLett.85.700
https://doi.org/10.1088/1475-7516/2014/01/009
https://doi.org/10.1088/1475-7516/2014/01/009
https://doi.org/10.1093/mnrasl/slx195
https://doi.org/10.1093/mnrasl/slx195
https://doi.org/10.1007/s11214-011-9839-z
https://doi.org/10.1103/PhysRevD.86.043510
https://doi.org/10.1103/PhysRevD.86.043510
https://doi.org/10.1088/1475-7516/2012/11/055
https://doi.org/10.1088/1475-7516/2012/11/055
https://doi.org/10.1088/1475-7516/2014/03/027
https://doi.org/10.1088/1475-7516/2014/03/027
https://doi.org/10.1111/j.1365-8711.2000.03907.x
https://doi.org/10.1111/j.1365-8711.2000.03907.x
https://doi.org/10.1086/317856
https://doi.org/10.1086/317856
https://doi.org/10.1046/j.1365-8711.2001.04250.x
https://doi.org/10.1046/j.1365-8711.2001.04250.x
https://doi.org/10.1086/322370
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1111/j.1365-2966.2005.09946.x
https://doi.org/10.1111/j.1365-2966.2007.12312.x
https://doi.org/10.1088/0004-637X/694/1/214
https://doi.org/10.1088/0004-637X/694/1/214
https://doi.org/10.1016/j.physrep.2014.11.001
https://doi.org/10.1103/PhysRevD.86.083513
https://doi.org/10.1088/1475-7516/2013/12/029
https://doi.org/10.1088/1475-7516/2013/12/029
https://doi.org/10.1103/PhysRevD.100.103507
https://doi.org/10.1103/PhysRevD.100.103507
https://doi.org/10.1093/mnrasl/slaa024
https://doi.org/10.1093/mnrasl/slaa024
https://doi.org/10.3847/2041-8213/ab7934
https://doi.org/10.3847/2041-8213/ab7934
https://doi.org/10.1093/mnrasl/slab009
https://doi.org/10.1103/PhysRevD.103.083508
https://doi.org/10.1088/1475-7516/2021/03/060
https://doi.org/10.1103/PhysRevD.106.043523
https://doi.org/10.1103/PhysRevD.106.043523
https://doi.org/10.1093/mnras/stac2029
https://doi.org/10.1093/mnras/stac2029
https://doi.org/10.1093/mnras/stac3462
https://doi.org/10.1093/mnras/stac3462
https://doi.org/10.1088/1475-7516/2023/08/013
https://doi.org/10.1088/1475-7516/2023/08/013
https://doi.org/10.1103/PhysRevD.108.083533
https://doi.org/10.1103/PhysRevD.108.083533
https://doi.org/10.3847/2041-8213/acbf48
https://doi.org/10.3847/2041-8213/acbf48
https://doi.org/10.1103/PhysRevLett.105.161302
https://doi.org/10.1103/PhysRevLett.105.161302
https://doi.org/10.1103/PhysRevLett.108.251301
https://doi.org/10.1103/PhysRevLett.108.251301
https://doi.org/10.1103/PhysRevD.88.043507
https://doi.org/10.1103/PhysRevD.88.043507
https://doi.org/10.1103/PhysRevD.89.083507
https://doi.org/10.1103/PhysRevD.89.083507
https://doi.org/10.1103/PhysRevD.107.063531
https://doi.org/10.1103/PhysRevD.107.063531
https://arXiv.org/abs/2309.08653
https://doi.org/10.1103/PhysRevD.70.043518
https://doi.org/10.1103/PhysRevD.65.123004
https://doi.org/10.1103/PhysRevD.65.123004
https://doi.org/10.1103/PhysRevD.77.063003
https://doi.org/10.1103/PhysRevD.77.063003


[91] Planck Collaboration, Astron. Astrophys. 594, A19 (2016).
[92] K. Subramanian and J. D. Barrow, Phys. Rev. D 58,

083502 (1998).
[93] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).
[94] S. Saga, H. Tashiro, and S. Yokoyama, Phys. Rev. D 98,

083518 (2018).
[95] K. Ichiki, K. Takahashi, and N. Sugiyama, Phys. Rev. D

85, 043009 (2012).
[96] S. Saga, M. Shiraishi, and K. Ichiki, J. Cosmol. Astropart.

Phys. 10 (2014) 004.
[97] W. R. Coulton, K. Akitsu, and M. Takada, Phys. Rev. D

108, 123528 (2023).
[98] E. Pajer, F. Schmidt, and M. Zaldarriaga, Phys. Rev. D 88,

083502 (2013).
[99] L. Dai, E. Pajer, and F. Schmidt, J. Cosmol. Astropart.

Phys. 11 (2015) 043.
[100] S. Dodelson, E. Rozo, and A. Stebbins, Phys. Rev. Lett.

91, 021301 (2003).
[101] C. Li and A. Cooray, Phys. Rev. D 74, 023521 (2006).
[102] D. Yamauchi, T. Namikawa, and A. Taruya, J. Cosmol.

Astropart. Phys. 10 (2012) 030.
[103] D. Yamauchi, T. Namikawa, and A. Taruya, J. Cosmol.

Astropart. Phys. 08 (2013) 051.
[104] S. Saga, D. Yamauchi, and K. Ichiki, Phys. Rev. D 92,

063533 (2015).
[105] S.-F. Chen and N. Kokron, J. Cosmol. Astropart. Phys. 01

(2024) 027.
[106] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).
[107] K. Akitsu, Y. Li, and T. Okumura, J. Cosmol. Astropart.

Phys. 04 (2021) 041.

[108] P. Bull, Astrophys. J. 817, 26 (2016).
[109] C. M. Hirata and U. Seljak, Phys. Rev. D 68, 083002

(2003).
[110] F. Schmidt, E. Rozo, S. Dodelson, L. Hui, and E. Sheldon,

Astrophys. J. 702, 593 (2009).
[111] D. Paoletti and F. Finelli, Phys. Rev. D 83, 123533

(2011).
[112] R. Laureijs et al., arXiv:1110.3193.
[113] D. J. Bacon et al. (Square Kilometre Array Cosmology

Science Working Group), Publ. Astron. Soc. Aust. 37,
e007 (2020).

[114] R. Mandelbaum et al., Mon. Not. R. Astron. Soc. 410, 844
(2011).

[115] M. Tonegawa, T. Okumura, T. Totani, G. Dalton, K.
Glazebrook, and K. Yabe, Publ. Astron. Soc. Jpn. 70,
41 (2018).

[116] M. Tonegawa and T. Okumura, Astrophys. J. Lett. 924, L3
(2022).

[117] J. Shi, K. Osato, T. Kurita, and M. Takada, Astrophys. J.
917, 109 (2021).

[118] Euclid Collaboration, Astron. Astrophys. 642, A191
(2020).

[119] P. Bull, S. Camera, A. Raccanelli, C. Blake, P. Ferreira,
M. Santos, and D. J. Schwarz, Proc. Sci. AASKA14 (2015)
024 [arXiv:1501.04088].

[120] Z. Vlah, N. E. Chisari, and F. Schmidt, J. Cosmol.
Astropart. Phys. 01 (2020) 025.

[121] K. Akitsu, Y. Li, and T. Okumura, J. Cosmol. Astropart.
Phys. 08 (2023) 068.

[122] D. M. Schmitz, C. M. Hirata, J. Blazek, and E. Krause,
J. Cosmol. Astropart. Phys. 07 (2018) 030.

IMPRINTS OF PRIMORDIAL MAGNETIC FIELDS … PHYS. REV. D 109, 043520 (2024)

043520-17

https://doi.org/10.1051/0004-6361/201525821
https://doi.org/10.1103/PhysRevD.58.083502
https://doi.org/10.1103/PhysRevD.58.083502
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1103/PhysRevD.98.083518
https://doi.org/10.1103/PhysRevD.98.083518
https://doi.org/10.1103/PhysRevD.85.043009
https://doi.org/10.1103/PhysRevD.85.043009
https://doi.org/10.1088/1475-7516/2014/10/004
https://doi.org/10.1088/1475-7516/2014/10/004
https://doi.org/10.1103/PhysRevD.108.123528
https://doi.org/10.1103/PhysRevD.108.123528
https://doi.org/10.1103/PhysRevD.88.083502
https://doi.org/10.1103/PhysRevD.88.083502
https://doi.org/10.1088/1475-7516/2015/11/043
https://doi.org/10.1088/1475-7516/2015/11/043
https://doi.org/10.1103/PhysRevLett.91.021301
https://doi.org/10.1103/PhysRevLett.91.021301
https://doi.org/10.1103/PhysRevD.74.023521
https://doi.org/10.1088/1475-7516/2012/10/030
https://doi.org/10.1088/1475-7516/2012/10/030
https://doi.org/10.1088/1475-7516/2013/08/051
https://doi.org/10.1088/1475-7516/2013/08/051
https://doi.org/10.1103/PhysRevD.92.063533
https://doi.org/10.1103/PhysRevD.92.063533
https://doi.org/10.1088/1475-7516/2024/01/027
https://doi.org/10.1088/1475-7516/2024/01/027
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1088/1475-7516/2021/04/041
https://doi.org/10.1088/1475-7516/2021/04/041
https://doi.org/10.3847/0004-637X/817/1/26
https://doi.org/10.1103/PhysRevD.68.083002
https://doi.org/10.1103/PhysRevD.68.083002
https://doi.org/10.1088/0004-637X/702/1/593
https://doi.org/10.1103/PhysRevD.83.123533
https://doi.org/10.1103/PhysRevD.83.123533
https://arXiv.org/abs/1110.3193
https://doi.org/10.1017/pasa.2019.51
https://doi.org/10.1017/pasa.2019.51
https://doi.org/10.1111/j.1365-2966.2010.17485.x
https://doi.org/10.1111/j.1365-2966.2010.17485.x
https://doi.org/10.1093/pasj/psy030
https://doi.org/10.1093/pasj/psy030
https://doi.org/10.3847/2041-8213/ac4246
https://doi.org/10.3847/2041-8213/ac4246
https://doi.org/10.3847/1538-4357/ac0cfa
https://doi.org/10.3847/1538-4357/ac0cfa
https://doi.org/10.1051/0004-6361/202038071
https://doi.org/10.1051/0004-6361/202038071
https://doi.org/10.22323/1.215.0024
https://doi.org/10.22323/1.215.0024
https://arXiv.org/abs/1501.04088
https://doi.org/10.1088/1475-7516/2020/01/025
https://doi.org/10.1088/1475-7516/2020/01/025
https://doi.org/10.1088/1475-7516/2023/08/068
https://doi.org/10.1088/1475-7516/2023/08/068
https://doi.org/10.1088/1475-7516/2018/07/030

