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The Borde-Guth-Vilenkin theorem states that any spacetime with net positive expansion must be
geodesically incomplete. We derive a new version of the theorem using the fluid flow formalism of general
relativity. The theorem is purely kinematic, depending on the local expansion properties of geodesics, and
makes no assumptions about energy conditions. We discuss the physical interpretation of this result in
terms of coordinate patches on de Sitter space, and apply the theorem to Penrose’s model of conformal
cyclic cosmology. We argue that the conformal cyclic extension of an asymptotically de Sitter universe is
geodesically incomplete.
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I. INTRODUCTION

The geodesic incompleteness theorem of Borde et al. [1]
is a general and powerful constraint on the structure of
cosmological spacetimes. A geodesically complete space-
time is one for which all possible inertial paths in the
spacetime extend infinitely in proper time toward both the
past and the future. In contrast, a geodesically past-
incomplete spacetime contains geodesics which encounter
a boundary at finite-past proper time, and a geodesically
future-incomplete spacetime contains geodesics which
encounter a boundary at finite-future proper time. The
Borde-Guth-Vilenkin (BGV) theorem states that any space-
time for which the net expansion is positive,

Z
Hdt > 0; ð1Þ

is necessarily geodesically past-incomplete. This has
profound implications for cosmological model building,
since it applies not only to trivially past-incomplete
spacetimes such as matter- or radiation-dominated
Friedmann-Robertson-Walker (FRW) cosmologies, but to
inflationary models as well. Furthermore, the proof is
purely kinematic, and does not depend any assumption
about energy conditions. Recently proposed cyclic cosmol-
ogies, which attempt to remove the need for an initial
cosmological singularity using alternating periods of
expansion and contraction, have also been shown to be
past-incomplete [2].

In this paper, we derive a version of the BGV theorem
using the fully covariant, coordinate-independent fluid flow
formalism for general relativity, based on the foliation of
spacetime into hypersurfaces orthogonal to a timelike
congruence of geodesic four-velocity vectors fuμg. In this
formalism, the Hubble constant H is generalized to the
fluid four-divergence, Θ≡ uμ;μ, and the scale factor is
generalized to the components of the orthogonal projection
tensor λμν∶λμνuν ¼ 0. We show that any local spacetime
interval for which the net expansion integrated over the
proper time ds along a geodesic is positive,Z

Θds > 0; ð2Þ

is geodesically past-incomplete, and any region for which
the net expansion is negative,Z

Θds < 0; ð3Þ

is geodesically future-incomplete. The proof is independent
of choice of metric and energy conditions. Our proof differs
from the proof in Ref. [1] in that it uses locally defined
geometric variables. We emphasize that this is no more
general than the original proof, but formulates the theorem
in a new way.
The paper is organized as follows. In Sec. II, we review

the BGV theorem in the simple case of FRW cosmology. In
Sec. III we present the geometric proof of the BGV theorem
using the fluid flow formalism. In Sec. IV, we include
spacetime dynamics and discuss the geodesic structure of
de Sitter spacetimes, identifying the incomplete geodesics
in the BGV construction with rest-frame geodesics in the
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open, k ¼ −1 patch of the de Sitter manifold. Finally, we
apply the results to the conformal cyclic extension of an
asytmpotically de Sitter spacetime, and argue that such
extended spacetimes are geodesically incomplete, indepen-
dent of the details of the conformal matching at the
boundary between cosmological aeons. Section V contains
discussion and conclusions.

II. THE BGV THEOREM IN FRIEDMANN-
ROBERTSON-WALKER SPACE

Before constructing a more general proof, we begin by
reviewing the BGV theorem [1] for geodesic incomplete-
ness in an FRW spacetime. We take a metric of the form

ds2 ¼ −dt2 þ a2ðtÞdx2; ð4Þ

where we assume a flat spatial geometry, dx2 ¼ δijdxidxj,
for convenience. We wish to address the question of
whether such spacetimes are geodesically complete, which
is the statement that all inertial (or geodesic) observers see
the spacetime as both past- and future-infinite, as measured
by the proper time along a geodesic world line in the
spacetime. Z

t

−∞
ds → ∞;

Z þ∞

t
ds → ∞: ð5Þ

The metric is singular for aðtÞ ¼ 0, so that standard matter-
or radiation-dominated cosmologies, with aðtÞ ∝ tα, are
trivially geodesically incomplete, since aðtÞ → 0 at finite
past time. The case of de Sitter space,

aðtÞ ∝ eHt; H ¼ const; ð6Þ

is more ambiguous, since the initial singularity is reached
only at t → −∞ for a comoving observer. It is, however,
straightforward to show that noncomoving geodesics are
past-finite. For a timelike geodesic, normalization uμuμ ¼
−1 gives

uμuμ ¼ gμν
dxμ

ds
dxν

ds
¼ −

�
dt
ds

�
2

þ a2ðtÞ
���� dxds

����2 ¼ −1: ð7Þ

The geodesic equation for the motion free falling observer
is

d
ds

�
a2ðtÞ dx

ds

�
¼ 0; ð8Þ

so that we can define an integration constant v0 such
that [3]

a2ðtÞ
���� dxds

����≡ v0 ¼ const: ð9Þ

We then have

�
dt
ds

�
2

¼ γ2 ¼ 1þ v20a
−2ðtÞ; ð10Þ

where

γ2 ¼ 1

1 − v2
ð11Þ

is the Lorentz boost as a function of the three-velocity v of
the observer, so that the integration constant v0 is

v20 ¼
a2v2

1 − v2
¼ const: ð12Þ

The differential proper time ds along the geodesic of the
freely falling observer can then be written in terms of the
coordinate time dt as

ds ¼ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20a

−2ðtÞ
p : ð13Þ

For aðtÞ ¼ eHt, the integral

Δs ¼
Z

0

−∞

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20e

−2Ht
p ð14Þ

¼ 1

2H
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v20
p

− 1

�
ð15Þ

¼ 1

2H
ln

�
γ0 þ 1

γ0 − 1

�
; ð16Þ

where the Lorentz factor γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20

p
is evaluated at

t ¼ 0. This integral is finite for any v0 ≠ 0, so the observer
on a noncomoving world line sees the space as past-finite,
and the space is geodesically past-incomplete.
The BGV theorem states that any spacetime for which

the average expansion rate Hav is positive is geodesically
incomplete where,

Hav ≡ 1

Δs

Z
Hds; ð17Þ

and ds is the proper time along a geodesic world line. First,
let us consider the integral of the expansion rate H along a
comoving world line, for which the proper time ds ¼ dt,Z

tf

ti

Hdt ¼
Z

tf

ti

1

a
da
dt

dt ð18Þ

¼
Z

af

ai

d ln a ¼ lnðafÞ − lnðaiÞ: ð19Þ
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Since the integrand is a total derivative, the integral is
determined by the values of the scale factor on the
boundary, and measures the total expansion from ti to
tf. Note in particular that this integral is logarithmically
divergent as ai → 0, consistent with the fact that comoving
world lines are past-infinite in proper time. (We will
generalize this expression to non-FRW metrics in
Sec. III.) We can integrate the expansion rate H along a
noncomoving geodesic with proper time ds as follows:

Z
sf

si

Hds ¼
Z

tf

ti

H
ds
dt

dt ð20Þ

¼
Z

tf

ti

1

a

�
da
dt

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v20=a
2

p dt ð21Þ

¼
Z

af

ai

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ v20

p ð22Þ

¼ 1

2
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 þ a2

p
þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v20 þ a2
p

− a

�����af
ai

: ð23Þ

Integrating from ai ¼ 0 to af ¼ 1, this integral is finite:

Z
sf

si

Hds ¼ 1

2
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v20
p

− 1

�
ð24Þ

¼ 1

2
ln

�
γ0 þ 1

γ0 − 1

�
: ð25Þ

Note that unlike the case of Eq. (16), we have not taken
H ¼ const. The only assumption is that the overall change
in scale factor is positive, af > ai. We can then define an
average expansion rate,

Hav ≡ 1

Δs

Z
Hds: ð26Þ

The BGV theorem is then the statement that as long asHav
is finite and positive, the proper time Δs along a timelike
world line is finite

Δs ¼
Z

ds ¼ 1

Hav

Z
Hds: ð27Þ

The BGV theorem as stated in Eq. (27) is, however,
something of a circular argument, since Hav is only well-
defined if Δs is finite in the first place. A better way to state
it is thatHav depends only on the amount of expansion, not
the specific expansion history, as can be seen from Eq. (19).
For a given expansion history HðsÞ, we can define a
bounding de Sitter space with H ¼ Hav ¼ const such that

Hav

Z
sf

si

ds ¼
Z

sf

si

Hds; ð28Þ

and the ratio af=ai on the interval ½si; sf� is the same for
both spaces. We can then choose a scale factor a0 in the
bounding de Sitter space such that

a0eHavt ≥ aðtÞ; ∀ t∈ ½ti; tf�: ð29Þ

The past proper time along a geodesic in the target space is
then bounded from above by the past proper time in the
bounding de Sitter space [2],

Δs ¼
Z

tf

ti

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20a

−2ðtÞp ≤
Z

tf

ti

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20a

−2
0 e−2Havt

q :

ð30Þ
Then geodesic incompleteness of the bounding de Sitter
space implies geodesic incompleteness of the space with
expansion history HðsÞ, which we will refer to in what
follows as the target space. This applies not only to spaces
where the scale factor a grows monotonically, but also to
cyclic universes for which the scale factor aðtÞ is oscil-
latory, but grows from one cycle to the next [2]. We have so
far only demonstrated this for an FRW metric; in the next
section we generalize this to non-FRW spacetime.

III. A GEOMETRIC FORMULATION
OF THE BGV THEOREM

In this section, we construct a version of the BGV
theorem which does not assume an FRW metric, but relies
only on the local properties of the spacetime. Our con-
struction is based on a foliation of the spacetime into
spacelike hypersurfaces orthogonal to a congruence of
timelike world lines with four-velocity uμ, as shown in
Fig. 1 [4,5]. The expansion rate is then defined locally on
the orthogonal hypersurfaces, without assumption of a form
for the metric, as long as it is consistent with the existence
of a timelike congruence fuμg.
Take a timelike geodesic congruence fuμg, with metric

of signature ð−þþþÞ, such that uμuμ ¼ −1. We can
define a coordinate-independent time derivative,

Ṫ ¼ dT
ds

¼ uμT ;μ; ð31Þ

where ds is the proper time measured along the world lines
of the congruence fuμg. The condition for uμ to be a
geodesic is

duμ

ds
¼ uνuμ;ν ¼ 0; ð32Þ

where a semicolon indicates a covariant derivative.
Similarly, we define a gradient operator
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∇μT ¼ λμνT ;ν; ð33Þ

where the λμν is a spatial projection tensor orthogonal to the
congruence,

λμν ¼ gμν þ uμuν; λμνuν ¼ 0: ð34Þ

Note especially that∇μ is a purely spatial gradient operator.
The expansion rate relative to fuμg is defined by the
divergence of the four-velocity

Θ≡ uμ;μ; ð35Þ

which in a FRW space reduces to the usual Hubble
parameter,

Θ ¼ 3H: ð36Þ

We can write a general covariant derivative of the con-
gruence as

uμ;ν ¼ σμν þ ωμν þ
1

3
Θλμν − u̇μuν: ð37Þ

For a geodesic congruence, u̇μ ¼ 0, with zero shear and
vorticity σ ¼ ω ¼ 0, we have

uμ;ν ¼
1

3
Θλμν: ð38Þ

(We discuss shear in Sec. IV.) The spatial gradient of the
four-velocity u is then

∇μuν ¼ λμσuν;σ ¼
1

3
Θλμν: ð39Þ

Using λμνλμν ¼ 3, we have an expression for the expansion
rate in terms of the orthogonal gradient of the congruence,

Θ ¼ λμν∇μuν: ð40Þ

We can then define a coordinate- and metric-independent
version of Hav (17) in terms of the orthogonal gradient as

Θav ≡ 1

Δs

Z
Θds ¼ 1

Δs

Z
λμν∇μuνds: ð41Þ

We can evaluate the integral (41) by noticing that the
extrinsic curvature of spatial hypersurfaces orthogonal to
the congruence fuμg is

Kμν ¼ ∇μuν ¼
1

2
LuðλμνÞ; ð42Þ

where

LuðλμνÞ ¼ λμσuσ ;ν þ λσνuσ ;μ þ λμν;σuσ ð43Þ

is the Lie derivative along the world line uμ. The integrand
in (41) is then

λμν∇μuν ¼
1

2
λμν½LuðλμνÞ�: ð44Þ

From λμνλμν ¼ 3, it is tempting to identify ð1=3Þλμν as the
inverse ðλμνÞ−1, but the inverse of the projection tensor is
undefined, since λμν is singular, with detðλÞ ¼ 0. However,
it is straightforward to see that this is an artifact of the fact
that λμν is purely spatial, i.e., with one dimension fewer
than the full spacetime manifold. In the rest frame of the
four-velocity uμ ¼ ð1; 0; 0; 0Þ, the definition of the projec-
tion tensor (34) tells us that the projection tensor is purely
spatial, with the spatial components of the tensor just equal
to the corresponding components of the metric,

λij ¼ gij: ð45Þ

In the rest frame of the congruence fuμg, the lapse
g00 ≡N ¼ −1, and the shift g0i ¼ gi0 ≡N i ¼ 0, by con-
struction. Then λij ¼ ðλijÞ−1, and we have the identity

λμν½LuðλμνÞ� ¼ λij
�
d
ds

ðλijÞ
�
¼ d

ds
Tr½lnðλijÞ�; ð46Þ

and we have reduced the integrand in (41) to a total
derivative. We then have the fully general expression,Z

sf

si

Θds ¼ 1

2

Z
λμν½LuðλμνÞ�ds ¼

1

2
Tr½lnðλijÞ�j

sf

si
; ð47Þ

where λij are the spatial components of the projection
tensor, and the integral is determined by its values on
the boundaries at si and sf. This is a general version of
Eq. (19), with the spatial hypersurfaces singular when
detðλijÞ ¼ 0.

FIG. 1. A foliation of spacetime into spacelike hypersurfaces
orthogonal to a timelike congruence fuμg. Time derivatives are
defined projections along the fluid four-velocity, and spatial
gradients as projections orthogonal to the fluid four-velocity.
(Here ∂μ refers to a covariant derivative.)
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As an example, we can take a flat FRW metric,

gμν ¼ diag½−1; a2ðtÞ; a2ðtÞ; a2ðtÞ�: ð48Þ
Taking uμ to be comoving world lines, the projection tensor
is then

λμν ¼ diag½0; a2ðtÞ; a2ðtÞ; a2ðtÞ�; ð49Þ
and

1

2
λij½LuðλijÞ� ¼

3

2a2
d
dt

ða2Þ ¼ 3
ȧ
a
; ð50Þ

which is just the usual Hubble parameter, and we haveZ
Θds ¼ 3

Z
Hdt ¼ 1

2
Tr½lnðλijÞ� ¼ 3 ln a; ð51Þ

which is just Eq. (19), where the log of the spatial
projection tensor is just log of the scale factor.
We are now in a position to construct a general version of

the BGV theorem. Given a geodesic congruence fuμg,
choose a second congruence fvμg ≠ fuμg. We can define

γ ≡ −vμuμ; ð52Þ
where γ can be identified as the Lorentz boost of the vector
vμ in the rest frame uμ ¼ ð1; 0; 0; 0Þ. Since vμ is a unit-
normalized timelike vector,

vμvμ ¼ −1 ð53Þ

¼ −γ2 þ gijvivj ð54Þ

¼ −γ2 þ λijvivj; ð55Þ

where in the rest frame of fuμg, the lapse and shift
functions are N ¼ −1 and N i ¼ 0, respectively.
Normalization of vμ results in the relation

λijvivj ¼ γ2 − 1: ð56Þ
We also have the geodesic equation,

dvμ

ds
¼ 0; ð57Þ

where ds is the proper time measured along vμ. Then

dγ
ds

¼ −
d
ds

ðvμuμÞ ð58Þ

¼ −vμ
duμ
ds

ð59Þ

¼ −vμvνuμ;ν ¼ −
1

3
Θvμvνλμν ð60Þ

¼ 1

3
Θð1 − γ2Þ; ð61Þ

where fuμg is shear-free in the rest frame. We then have the
relation

Θ ¼ 3

1 − γ2
dγ
ds

; ð62Þ

and Z
Θds ¼

Z
3

1 − γ2
dγ
ds

ds ð63Þ

¼
Z

3dγ
1 − γ2

ð64Þ

¼ 3

2
ln

�
γ þ 1

γ − 1

�
: ð65Þ

Therefore, the BGV relation (25) holds in in any spacetime
which admits a local foliation orthogonal to a timelike
geodesic congruence, where the expansion is measured
by the trace of the log of the spatial projection tensor,
ð1=2ÞTr½lnðλijÞ�. As long as the space is locally expanding
along a geodesic, the space is past-incomplete. (This proof
is equivalent to the original proof in Ref. [1], but stated in
terms of different variables.) Note that this applies in the
inverse as well; if the space is locally contracting along a
geodesic Θav < 0, that geodesic is future-incomplete. This
will be relevant when we discuss extensions to de Sitter
space in Sec. IV.

IV. BGV IN EXTENDED DE SITTER SPACES

A. The Raychaudhuri equation and coordinates
on de Sitter space

We have seen that the BGV theorem demonstrates
geodesic incompleteness of an arbitrary spacetime by
constructing a bounding de Sitter spacetime, such that
incompleteness of the bounding spacetime requires incom-
pleteness of the target spacetime, irrespective of the details
of its dynamics, as long as the net expansion is positive,
with local Θav > 0. As such, it is useful to consider the
geodesic properties of the bounding de Sitter space. Note that
the BGV theorem is a purely kinematic statement, relying
only on solutions to the geodesic equation, and as such does
not rely on any assumption about energy conditions.
To include the dynamics of the spactime itself, we con-

sider the Raychaudhuri equation for the local expansion Θ,

Θ̇þ 1

3
Θ2 þ σ2 − ω2 ¼ −Rμνuμuν; ð66Þ

where uμ is a timelike congruence, Rμν is the Ricci tensor,
σ2 and ω2 are the trace of the shear and vorticity tensors,
and the time derivative is defined as a derivative with
respect to proper time along the geodesic uμ,
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Θ̇ ¼ dΘ
ds

≡ uμΘ;μ: ð67Þ

Taking uμ to be shear- and vorticity-free, σ2 ¼ ω2 ¼ 0,
de Sitter space is the case of a maximally symmetric
spacetime,

Θ̇þ 1

3
Θ2 ¼ −Rμνuμuν ¼ Λ ¼ const: ð68Þ

This equation has solutions

Θ0 ¼ �3

ffiffiffiffi
Λ
3

r
; ð69Þ

Θþ ¼ 3

ffiffiffiffi
Λ
3

r
tanh

� ffiffiffiffi
Λ
3

r
s

�
; ð70Þ

Θ− ¼ 3

ffiffiffiffi
Λ
3

r
coth

� ffiffiffiffi
Λ
3

r
s

�
: ð71Þ

The solution Θ0 is easily identified as the standard case of
exponential expansion,

H ≡ ȧ
a
¼ 1

3
Θ ¼

ffiffiffiffi
Λ
3

r
¼ const:; ð72Þ

so that

a ∝ eHt: ð73Þ

The solutions Θ� can be physically interpreted by noting
that the Raychaudhuri equation does not specify the cur-
vature of the spacetime. For example, in the case of FRW
cosmology, the Raychaudhuri equation reduces to the usual
equation for acceleration, with Θ ¼ 3H,

Θ̇þ 1

3
Θ2 ¼ 3

�
ä
a

�
¼ Λ ¼ const: ð74Þ

A complete specification of the spacetime requires the
Friedmann equation,�

ȧ
a

�
2

þ k
a2

¼ Λ
3
¼ const: ð75Þ

Here k ¼ 0;�1 specifies the curvature, and the solution Θ0

is the solution for a flat (k ¼ 0) cosmology,�
ȧ
a

�
2

¼ Λ
3
¼ const: ð76Þ

Similarly, the solutions Θ� can be recognized as solutions
of the Friedmann equation for k ¼ �1, respectively. In the
rest frame of uμ, ds ¼ dt, and taking

aðtÞ ¼
ffiffiffiffi
3

Λ

r
cosh

� ffiffiffiffi
Λ
3

r
t

�
; ð77Þ

we have

ȧ
a
¼

ffiffiffiffi
Λ
3

r
tanh

� ffiffiffiffi
Λ
3

r
t

�
¼ 1

3
Θþ; ð78Þ

and

�
ȧ
a

�
2

þ 1

a2
¼ Λ

3

�
tanh2

� ffiffiffiffi
Λ
3

r
t

�
þ 1

cosh2

� ffiffiffiffi
Λ
3

r
t

��
ð79Þ

¼ Λ
3
¼ const: ð80Þ

Similarly, for the Θ− solution, taking

aðtÞ ¼
ffiffiffiffi
3

Λ

r
sinh

� ffiffiffiffi
Λ
3

r
t

�
; ð81Þ

we have

ȧ
a
¼

ffiffiffiffi
Λ
3

r
coth

� ffiffiffiffi
Λ
3

r
t

�
¼ 1

3
Θ−: ð82Þ

This then solves the Friedmann equation with k ¼ −1,

�
ȧ
a

�
2

−
1

a2
¼ Λ

3

�
coth2

� ffiffiffiffi
Λ
3

r
t

�
−

1

sinh2

� ffiffiffiffi
Λ
3

r
t

��
ð83Þ

¼ Λ
3
¼ const: ð84Þ

The solutions Θ0;� can then be seen to correspond to the
well-known closed, flat, and open coordinate patches on
the complete de Sitter space, defined as the invariant
(3þ 1) hyperboloid in a (4þ 1) embedding space,

x2 þ y2 þ z2 þ w2 − v2 ¼ α−2 ≡ Λ
3
¼ const: ð85Þ

Figure 2 shows the three coordinate patches on the invariant
hyperbola. The k ¼ þ1 coordinates cover the entire hyper-
bola, corresponding to a closed universe with metric

ds2 ¼ −dt2 þ α2cosh2
�
t
α

�
× ½dχ2 þ sin2ðχÞðdθ2 þ sin2θdϕ2Þ�: ð86Þ

In this patch, the curvature radius a which contracts from
t → −∞ to finite radius at a ¼ α2 ¼ 3=Λ at t ¼ 0, then
expands outward again as t → ∞.
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The k ¼ 0;−1 coordinates, by contrast, cover only parts
of the hyperbola. The k ¼ −1 coordinates correspond to an
open universe which expands out of an initial singularity at
t ¼ 0, which appears on the full manifold as a bubble
nucleation. A dual coordinate patch is an antibubble,
collapsing from t → −∞ to a singularity at t ¼ 0. The
metric in the bubble/antibubble regions is

ds2 ¼ −dt2 þ α2sinh2
�
t
α

�
× ½dχ2 þ sinh2ðχÞðdθ2 þ sin2θdϕ2Þ�: ð87Þ

The bubble is geodesically past-incomplete, s ¼ ½0;∞�,
and the antibubble is future-incomplete, s ¼ ½−∞; 0�.
The k ¼ 0 patch is the flat universe, and covers the upper

half of the hyperbola, expanding exponentially from a
singularity at t → −∞, extending forward in time to
t → þ∞, with metric

ds2 ¼ −dt2 þ α2e2t=α½dχ2 þ χ2ðdθ2 þ sin2θdϕ2Þ�: ð88Þ

Penrose diagrams for the three coordinate patches are
shown in Fig. 3. (The Appendix details the specific
coordinate transformations used to construct the plots.)
While the k ¼ þ1 coordinates are nonsingular, the k ¼ −1
and k ¼ 0 patches contain singularities in the spatial
projection tensor, detðλijÞ → 0, corresponding to a → 0

in FRW coordinates, where the intrinsic curvature of the
spatial hypersurfaces diverges. The four-dimensional Ricci
scalar R, however, is everywhere finite, with

R ¼ 4Λ: ð89Þ

In this sense, the singularities in the flat and open
coordinate systems on the de Sitter manifold are coordi-
nate, rather than physical singularities, as long as the de
Sitter symmetry is exact.

FIG. 2. Closed, flat, and open coordinates (left to right) on the de Sitter invariant hyperboloid.

FIG. 3. Penrose diagrams for closed, flat, and open coordinates (left to right) on de Sitter space. The k ¼ þ1 coordinates cover the
entire space, and are nonsingular. The k ¼ −1 coordinates consist of bubble/antibubble solutions, connected via a singularity at t ¼ 0.
The k ¼ 0 coordinates cover the upper half-diagonal, evolving out of singularity at t → −∞. Singularities are labeled by s ¼ 0�.
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B. Coordinates on de Sitter space
and the BGV theorem

To make contact with the BGV theorem, take uμ to be the
comoving four-velocity in the flat patch Θ0, and consider
noncomoving timelike geodesics vμ satisfying Eq. (10),

vμ ¼
�
γ;
1

a

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
n⃗

�
¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v20
a2

s
;
v0
a2

n⃗

!
; ð90Þ

where v0 ¼ const and n⃗ · n⃗ ¼ 1. Then,

gμνvμvν ¼ −γ2 þ a2
�
γ2 − 1

a2

�
¼ −1: ð91Þ

It is straightforward to identify the geodesics vμ as rest-
frame geodesics in the open patch Θ− by taking
v0 ¼ α ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

, and

aðsÞ ¼ α sinh ðα−1sÞ; ð92Þ

where s is the proper time along the geodesic vμ. Then

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v20

a2

s
¼ cosh ðα−1sÞ

sinh ðα−1sÞ ; ð93Þ

and

v0
a2

¼ α−1

sinh2 ðα−1sÞ ; ð94Þ

so that

gμνvμvν ¼ −
cosh2ðα−1sÞ
sinh2ðα−1sÞ þ α2sinh2ðα−1sÞ

�
α−1

sinh2ðα−1sÞ
�
2

× ðn⃗ · n⃗Þ ¼ −1: ð95Þ

This makes clear the physical interpretation of the geo-
desics in the bounding de Sitter space used to prove the
BGV theorem. While comoving observers fuμg see them-
selves in a universe with a flat FRW metric (88), observers
on noncomoving timelike geodesics fvμg see, in their rest
frame, the metric for an open universe (87), which is
trivially past-incomplete, having a singularity at s ¼ 0.
This can also be seen by noting that in the rest frame of the
noncomoving observer, the congruence fvμg is shear-free,
while in the comoving rest frame, the congruence fvμg (90)
has shear

σ2 ¼ σμνσμν ¼
2

3

�
a0

a

�
2 v40
a4ð1þ v20=a

2Þ ¼
�

2

3α2

� ðγ2 − 1Þ2
γ2

;

ð96Þ

so that curvature in the rest frame of fvμg manifests as
shear in the rest frame of fuμg. (Direct coordinate trans-
formations between the k ¼ 0;�1 coordinate patches on
the de Sitter manifold are discussed in the Appendix.)
We can similarly see that geodesics fvμg in the rest

frame of the closed patch, with metric (86), are spacelike in
the comoving rest frame fuμg defined on the flat patch,

vμvμ ¼ −
�
dt
ds

�
2

þ a2
���� dxdt

����2 ¼ þ1; ð97Þ

with geodesic equation

a2
���� dxdt

���� ¼ v0 ¼ const: ð98Þ

Then,

γ ¼ dt
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v20
a2

− 1

s
; ð99Þ

and

vμ ¼
�
γ;
1

a

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
n⃗

�
¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

v20
a2

− 1

s
;
v0
a2

n⃗

!
: ð100Þ

If we identify the metric aðsÞ with the metric for the closed
patch (86),

aðsÞ ¼ α cosh ðα−1sÞ; ð101Þ

then

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v20
a2

− 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− tanh2 ðα−1sÞ

q
; ð102Þ

and

gμνvμvν ¼ tanh2 ðα−1sÞ þ 1

cosh2 ðα−1sÞ ðn⃗ · n⃗Þ ¼ þ1:

ð103Þ

This case is of less physical interest, since the closed-patch
geodesics are tachyonic in the flat patch, and we will not
consider it further.

C. Application to extended de Sitter spaces

By considering solutions to the Raychaudhuri equation
and the corresponding coordinate patches on a full de Sitter
manifold, we have arrived at a straightforward geometric
picture of the construction used in the BGV theorem, which
states that spacetimes with net positive expansion Θav > 0
are geodesically past-incomplete, and spacetimes with
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net negative expansion Θav < 0 are geodesically future-
incomplete. This is shown by constructing a bounding de
Sitter space with the same average expansion rate Θ ¼
Θav ¼ const as the target space. In the bounding space, a
comoving observer in the (expanding) flat coordinate patch
sees a singularity detðλijÞ → 0 only at t → −∞, where λij is
the spatial projection tensor orthogonal to uμ. However,
there also exists a second set of well-defined timelike
geodesics vμ, such that the rest frame of vμ is the open patch
on the de Sitter manifold. In this patch, the singularity
detðλijÞ → 0 occurs at finite past time, s ¼ 0, and the space
is therefore geodesically past-incomplete.
With this geometric picture of the BGV construction in

hand, we now turn to the case of extended manifolds such
as the conformal cyclic cosmology (CCC), proposed by
Penrose [6]. In Penrose’s construction, the asymptotic
t → ∞ boundary of one expanding universe (dubbed an
aeon), is matched to the asymptotic t → −∞ boundary of a
subsequent aeon, with the metric conformally rescaled at
the matching

ĝμν ¼ Ω̂2gμν ¼ Ω̌2gμν ¼ ǧμν; ð104Þ

where ĝμν is the metric in the future aeon, and ǧμν is the
metric in the past aeon, connected via a bridging metric gμν
and conformal scaling factors Ω. A number of realizations
of this (somewhat vague) prescription have been proposed.
In particular, the exact nature of the conformal rescaling at
the boundary is unspecified, and different conventions are
possible. Reference [7] provides a useful review of various
proposals.
Here we consider Penrose’s matching construction on

manifolds relevant to realistic cosmological models, domi-
nated at late time by a cosmological constant. In this case,
the asymptotic behavior of the spacetime is de Sitter, and
we can construct a bounding de Sitter space on each aeon
exactly as in the usual BGV theorem in Sec. IV. In this case,
matching between aeons will be at the null boundaries J �
of successive aeons. We focus on the k ¼ −1 bubble/
antibubble coordinates, relevant for the BGV construction.
The matching at J � maps the (expanding) bubble coor-
dinates in the past aeon onto the (contracting) antibubble
coordinates in the future aeon, with the geodesics spanning
the aeons continuous across the boundary, as shown in
Fig. 4. By symmetry, the net expansion from the past
bubble boundary s ¼ 0− to the future antibubble boundary
s ¼ 0þ, vanishes, Z

s¼0þ

s¼0−
Θds ¼ 0; ð105Þ

and the geodesics extending between the past and future
singularities are of infinite proper length. However, any
physical observer in the expanding bubble coordinates of
the past aeon will see themselves on a geodesic which is

finite to the past, and any physical observer in the
contracting antibubble coordinates of the future aeon will
see themselves on a geodesic which is finite to the future,
with both ending in singularities at proper time coordinate
s ¼ 0�. The only observers who will see themselves on
geodesics which are both past- and future-complete are the
observers at the asymptotic boundary J �. In this sense, the
cyclic extension of a de Sitter manifold remains geodesi-
cally incomplete. Note especially that this conclusion
depends only on the geodesic structure of the spacetime,
and is independent of the details of how the metric is
conformally rescaled at the boundary, Eq. (104).
Finally, we comment on the nature of the singularities at

s ¼ 0�. In the exact de Sitter space, these are coordinate
singularities detðλijÞ → 0, not physical singularities, since
the Ricci curvature R remains finite at the singularity, and
the space can be spanned by the (nonsingular) closed
coordinates, as pointed out by Aguirre and Gratton [3], who
argue that this means that the geodesically incomplete open
patch can be consistently extended without the presence of

FIG. 4. Matching of asymptotically de Sitter spaces at J �. The
J þ asymptote of the geodesically past-incomplete bubble coor-
dinates map to the J − coordinates of the geodesically future-
incomplete antibubble coordinates. Past singularities are at
s ¼ 0−, and future singularities are at s ¼ 0þ.
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a physical singularity. However, this is true only of the
bounding space, which is protected by the presence of an
exact de Sitter symmetry. The real universe—the target
space—contains matter and radiation, which break the de
Sitter symmetry that protects the Ricci curvature at s ¼ 0�,
so that even inflationary spacetimes are at best asymptoti-
cally de Sitter on the past boundary. The extendibility of
such quasi-de Sitter spacetimes onto geodesically complete
manifolds is discussed in detail by Geshnizjani et al. in
Ref. [8], who argue that physical singularities are generic in
the absence of very special boundary conditions.

V. CONCLUSIONS

In this paper, we have derived a general version of the
geodesic incompleteness theorem of Borde et al. [1], which
states that any spacetime with local net positive expansion
on an interval will be geodesically incomplete on that
interval. Our derivation is in many ways similar to that of
Kothwala in Ref. [9], except instead of defining the
expansion in terms of directly constructed orthogonal
deviation vectors between geodesics, we instead quantify
it using the spatial projection tensor λμν orthogonal to
geodesic flow lines, showing that the expansion rate Θ
integrated over proper time ds along a geodesic is deter-
mined by the trace of the log of the spatial projection tensor
on the boundary,Z

sf

si

Θds ¼ 1

2
Tr½lnðλijÞ�j

sf

si
: ð106Þ

We reproduce the general proof of the BGV theorem
using this formalism, which is purely a kinematic argu-
ment, and does not rely on assumptions about energy
conditions, only that the average expansion rateΘav over an
interval be positive. The BGV theorem relies on construct-
ing a bounding de Sitter space with expansion rate Θav,
such that geodesic incompleteness of the bounding space
implies geodesic incompleteness of the target space. We
apply the Raychaudhuri equation to study the geodesic
structure of the bounding de Sitter space, identifying
incomplete geodesics with rest-frame observers in the open
patch on the invariant hyperboloid. Geodesics which are
noncomoving in the rest frame of a flat (k ¼ 0) exponen-
tially expanding FRW coordinate system define a foliation
which is characterized by a negative curvature (k ¼ −1)
FRW metric, such that the interval t ¼ ½−∞;∞� on the flat
coordinates maps to s ¼ ½0;∞� on the open coordinates,
with a singularity at finite past proper time. In this sense,
the BGV construction is a mapping between flat and open
coordinates on the full de Sitter hyperboloid, and we
demonstrate this correspondence by construction.
Finally, we apply the result to the extension suggested by

Penrose’s conformal cyclic cosmology, which proposes
constructing cyclic cosmology by matching “aeons” at
surfaces at future infinity J �, with a conformal rescaling at

each matching. We apply the matching prescription to
asymptotically de Sitter cosmologies, and consider the
geodesic structure of the extended space, which is indepen-
dent of the details of the conformal rescaling. We show that
the geodesically past-incomplete open patch on de Sitter
extends to a sequence of bubble/antibubble regions, con-
nected by singularities, where the (expanding) bubble regions
are geodesically past-incomplete and the (contracting) anti-
bubble regions are geodesically future-incomplete. We dis-
cuss the application to physically realistic cosmologies, and
argue that these boundaries represent physical singularities in
the absence of an exact de Sitter symmetry [8].
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APPENDIX: COORDINATE SYSTEMS
IN DE SITTER SPACE

Here we detail the coordinate transformations used to
construct the k ¼ 0;�1 patches on de Sitter space shown in
Fig. 2, and to construct the Penrose diagrams in Fig. 3 [10].
We begin by constructing a static hyperbola in a (4þ 1)-
dimensional space, with coordinates ðx; y; z; w; vÞ, with
metric

ds25 ¼ dx2 þ dy2 þ dz2 þ dw2 − dv2: ðA1Þ
We construct de Sitter space as an invariant hyperboloid,
defined as the surface

x2 þ y2 þ z2 þ w2 − v2 ¼ Λ
3
: ðA2Þ

This is a (3þ 1)-dimensional surface in the (4þ 1)-
dimensional embedding manifold.
The closed coordinates on the hyperbola corresponding

to the Θþ solution can be constructed by defining a
coordinate system ðt; χ; θ;ϕÞ as follows:

v ¼ α sinh ðt=αÞ; ðA3Þ
w ¼ α cosh ðt=αÞ cosðχÞ; ðA4Þ

x ¼ α cosh ðt=αÞ sinðχÞ cosðθÞ; ðA5Þ

y ¼ α cosh ðt=αÞ sinðχÞ sinðθÞ cosðϕÞ; ðA6Þ
z ¼ α cosh ðt=αÞ sinðχÞ sinðθÞ sinðϕÞ: ðA7Þ
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Here

Λ
3
≡ α−1: ðA8Þ

The metric on the coordinates ðt; χ; θ;ϕÞ is of the k ¼ þ1
FRW form,

ds2 ¼ −dt2 þ α2 cosh2
�
t
α

�
× ½dχ2 þ sin2ðχÞðdθ2 þ sin2 θdϕ2Þ�: ðA9Þ

The open coordinates on the hyperbola corresponding to
theΘ− solution can be constructed by defining a coordinate
system ðt; χ; θ;ϕÞ as follows:

v ¼ α sinh ðt=αÞ coshðχÞ; ðA10Þ

w ¼ α cosh ðt=αÞ; ðA11Þ

x ¼ α sinh ðt=αÞ sinhðχÞ cosðθÞ; ðA12Þ

y ¼ α sinh ðt=αÞ sinhðχÞ sinðθÞ cosðϕÞ; ðA13Þ

z ¼ α sinh ðt=αÞ sinhðχÞ sinðθÞ sinðϕÞ: ðA14Þ

The metric on the coordinates ðt; χ; θ;ϕÞ is of the k ¼ −1
FRW form,

ds2 ¼ −dt2 þ α2 sinh2
�
t
α

�
× ½dχ2 þ sinh2ðχÞðdθ2 þ sin2 θdϕ2Þ�: ðA15Þ

The flat coordinates on the hyperbola corresponding to
the Θ0 solution can be constructed by defining a coordinate
system ðt; χ; θ;ϕÞ as follows:

v ¼ α sinh ðt=αÞ þ α

2
χ2et=α; ðA16Þ

w ¼ α cosh ðt=αÞ − α

2
χ2et=α; ðA17Þ

x ¼ αχet=α cosðθÞ; ðA18Þ

y ¼ αχet=α sinðθÞ cosðϕÞ; ðA19Þ

z ¼ αχet=α sinðθÞ sinðϕÞ: ðA20Þ

The metric on the coordinates ðt; χ; θ;ϕÞ is of the k ¼ 0
FRW form,

ds2 ¼ −dt2 þ α2e2t=α½dχ2 þ χ2ðdθ2 þ sin2 θdϕ2Þ�: ðA21Þ

To construct the Penrose diagrams in Fig. 3, we
begin with the closed patch, which is especially simple.

We compactify the time dimension from t ¼ ½−∞;∞� →
T ¼ ½−π=2; π=2� by the transformation

T ≡ 2 arctanðet=αÞ − π

2
: ðA22Þ

The metric is then conformally equivalent to spherical
coordinates in Minkowski space,

dS2¼ α2 sec2ðTÞ½−dT2þdχ2þ sin2ðχÞðdθ2þ sin2 θdϕ2Þ�;
ðA23Þ

with the coordinates T and χ spanning

T ¼
�
−
π

2
;
π

2

�
; ðA24Þ

χ ¼
�
−
π

2
;
π

2

�
: ðA25Þ

To construct the Penrose diagram for the k ¼ −1 case, we
first map the coordinates t̄; χ̄ on the open patch Eq. (A14) to
the coordinates t, χ on the closed patch, Eq. (A7),

t ¼ αarcsinh

�
sinh

�
t̄
α

�
coshðχ̄Þ

�
; ðA26Þ

χ ¼ arctan

�
tanh

�
t̄
α

�
sinhðχ̄Þ

�
; ðA27Þ

and then compactify the time dimension using Eq. (A22),

T ≡ 2 arctanðet=αÞ − π

2
: ðA28Þ

To construct the Penrose diagram for the k ¼ 0 case, we
first map the coordinates t̄; χ̄ on the open patch Eq. (A14) to
coordinates on the invariant hyperbola,

v ¼ α sinh ðt̄=αÞ þ α

2
χ̄2et̄=α; ðA29Þ

w ¼ α cosh ðt̄=αÞ − α

2
χ̄2et̄=α; ðA30Þ

r ¼ αχet̄=α; ðA31Þ

where we have suppressed the angular coordinates by
defining r2 ¼ x2 þ y2 þ z2. We then map the coordinates
v, w, r onto the closed patch by the transformation,

t ¼ αarcsinh

�
v
α

�
; ðA32Þ

χ ¼ arctan

�
w
r

�
: ðA33Þ

and then compactify the time-dimension t using Eq. (A22).
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