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The next-generation CMB experiments are expected to constrain the tensor-to-scalar ratio r with high
precision. Delensing is an important process as the observed CMB B-mode polarization that contains the
primordial tensor perturbation signal is dominated by a much larger contribution due to gravitational
lensing. To do so successfully, it is useful to explore methods for lensing reconstruction beyond the
traditional quadratic estimator (QE) (which will become suboptimal for the next-generation experiments),
and the maximum a posterior estimator (which is still currently under development). In Caldeira et al.
[Astron. Comput. 28, 100307 (2019)], the authors showed that a neural network (NN) method using the
ResUNet architectrue performs better than the QE and slightly suboptimally compared to the iterative
estimator in terms of the lensing reconstruction performance. In this work, we take one step further to
evaluate the delensing performance of these estimators on maps with primordial tensor perturbations using
a standard delensing pipeline, and show that the delensing performance of the NN estimator is optimal,
agreeing with that of a converged iterative estimator, when tested on a suite of simulations with r ¼ 0.01
and r ¼ 0.001 for 12.7° × 12.7° maps at a CMB-Stage 4 like polarization noise level 1 μKarcmin and
1’ beam. We found that for the purpose of delensing, it is necessary to train and evaluate the NN on a set of
CMB maps with l < lcut removed, in order to avoid spurious correlations on the scales of interest for the
final delensed B-mode power spectrum l < lcut, similar to what was known previously for the QE and the
iterative estimator. We also present various NN training techniques that can be extended for a simultaneous
treatment of foregrounds and more complex instrumental effects where the modeling is more uncertain.
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I. INTRODUCTION

Recent cosmic microwave background (CMB) measure-
ments have shown that the Universe is consistent with a
ΛCDM model (e.g., [1]), in which initial perturbations that
developed into large-scale structures we see today were
seeded during a process called inflation. These primordial
perturbations could be of scalar or tensor type,1 the latter is
also known as gravitational waves. The scalar perturbations
generate anisotropies in the CMB temperature and E-mode
polarization, while the tensor perturbations generate both E
and B-mode polarization.
While past CMB experiments have put precise con-

straints on the energy content, evolution and initial con-
ditions of the Universe by observing the temperature and
E-mode polarization, the tensor-to-scalar ratio r can only
be determined by measuring the B-modes precisely. The
current upper bound on r from CMB alone comes from the

BICEP-KECK experiment, r0.05 < 0.036 (95% confidence
level) [2], where the subscript means that it is evaluated at
0.05 Mpc−1; combining Planck, BICEP-KECK and LIGO-
Virgo-Kagra gives upper bound at 0.01 Mpc−1 of r0.01 <
0.028 (95% confidence level) when the tensor tilt is left free
to vary [3]. In the rest of this paper, we will only use r0.05
which we abbreviate to r.
It is one of the major goals of next-generation ground-

based CMB experiments such as BICEP-KECK, Simons
Observatory and CMB-Stage 4 (CMB-S4) to detect or
constrain r to a higher precision: The forecasted sensitivity
is σðrÞ ¼ 0.003 for both the BICEP-KECK [2] and Simons
Observatory [4], while CMB-S4 [5] could reach a
σðrÞ ∼ 5–8 × 10−4, capable of a greater than 5σ detection
of r > 0.003 signal, or in the absence of a detection, putting
an upper limit of r < 0.001 at the 95% confidence level.
One crucial aspect of a successful measurement of r is

the removal of the gravitational lensing signal, a process
called delensing. Gravitational lensing of the CMB occurs
when CMB photons are deflected by intervening gra-
vitational potential as they travel from the last surface of
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1Vector types are shown to decay quickly.
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scattering. This deflection causes additional B-mode signal
in our observations that are much higher than the primor-
dial tensor signal, so properly characterizing and removing
this effect is indispensable for precise and unbiased
measurements of r.
Many efforts have been underway for developing del-

ensing techniques which seek to remove the lensing effects
in the data. External delensing uses external data such as
the cosmic infrared background (CIB) observations or deep
galaxy surveys as a proxy for the lensing potential, and
has been shown to be successful in delensing the SPTPol
data with CIB data from Herschel [6]. Internal delensing,
on the other hand, leverages the reconstruction of the
lensing potential using CMB observations themselves,
and has been demonstrated on ACT [7] Planck [8–10]
and POLARBEAR [11]. As the noise level of the
next-generation CMB experiments decreases to ΔP ≲
2 μKarcmin, internal delensing performance is expected
to become more efficient, exceeding that of the external
delensing [12].
Most measurements to date use the quadratic estimator

(QE) for internal reconstruction of the lensing poten-
tial [13–15]. It has been shown however, that the QE will
no longer be an optimal estimator once the polarization
instrumental noise level drops below the lensing B-mode
level, at about ∼5 μKarcmin [16]. We expect this to the be
case for the CMB Stage-4 experiment, so finding more
optimal methods for delensing will be crucial.
A few alternatives have been explored in recent years.

The most well established being the maximum a posteriori
(MAP) estimate of the lensing potential, which was first
proposed in Refs. [16,17] and later received an improved
implementation in Ref. [18] (with accompanying code
LensIt

2) capable of dealing with realistic instrumental effects
such as anisotropic noise, beams and sky cuts without
significant approximations. This solution represents the
optimal solution and is achieved through an iterative
process: First apply the quadratic estimator to get an
estimate of the lensing potential, delens the data with it;
then apply the quadratic estimator and delens again; iterate
until convergence [19].
The MAP estimator has been demonstrated on the

POLARBEAR data [11] and has received improvements
such as more accurate bias modeling when using its lensing
power spectrum estimate for constraining cosmological
parameters [20]. More development is still needed to
understand the effects of bias in the MAP estimator induced
by foregrounds, as well as the large-scale-structure bispec-
trum [21–24] which will be important in cross-correlations
with galaxy surveys.
Alternatively, the authors of Refs. [25–28] have also

explored the Bayesian framework to estimate the lensing
potential, directly maximizing the posterior by running

MCMC chains and simultaneously constraining r and the
amplitude of the lensing potential Aϕ, yielding better
uncertainties on Aϕ than a QE pipeline. The first simulta-
neous estimation of parameters and lensing reconstruction
was applied to the SPTpol data in Ref. [28].
Beside the above advances, the technique of deep

learning has seen tremendous success in industry and
found many applications within cosmology as well.3 The
authors of Ref. [29] have demonstrated successful CMB
lensing reconstructions using a convolutional neural net-
work with a ResUNet architecture, which when trained, can
take as input observed CMB Q and U maps and output
estimates of the lensing potential and delensed E maps.
They found that the lensing reconstruction performance
from the NN exceeded that of the QE and approached a
theoretical estimate for the iterative estimator.
In this work, we extend the work of Ref. [29] by

assessing the delensing performance of the NN estimator
by directly applying a standard delensing pipeline on a suite
of simulated observed CMB maps including primordial
tensor perturbations. We compare the delensing perfor-
mance against the QE and the iterative estimator obtained
using LensIt, and show that the neural network estimator
performs optimally, yielding delensed B-mode power that
agrees well with that of a converged iterative estimator for
our idealized setups. We also find that the NN we trained
yields better delensed E-mode reconstruction than previ-
ously found in Ref. [29]. We take note of various training
techniques we used, especially those for generating a large
sample of training data with varying r-values and instru-
ment noise levels, which can be useful for training NNs
when seeing a distribution of plausible models is helpful.
The paper is divided as follows. In Sec. II, we describe the

background on CMB lensing reconstruction and summarize
current delensing techniques relevant to this work. In Sec. III
we give a brief review of deep learning techniques,
concentrating on the ResUNet architecture. In Sec. IV, we
describe our NN setup, including the generation of data, and
the particular NN implementation and training procedure we
use. In Sec. V, we report the NN performance on lensing
reconstruction using CMB maps including tensor perturba-
tions, and compare with the QE and iterative estimator, as
well as previous results in literature. In Sec. VI, we run the
standard delensing pipeline using the NN lensing estimator
and compare its performance to the QE and iterative
estimators for r ¼ 0.01 and r ¼ 0.001. Finally, we summa-
rize and conclude in Sec. VII.

II. CMB DELENSING

We begin in Sec. II A by summarizing the current lensing
reconstruction technique, the quadratic estimator, which we

2
LensIt: https://github.com/carronj/LensIt.

3See a compilation as of 2022 at https://github.com/
georgestein/ml-in-cosmology.
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use as a baseline when comparing with neural network
performance. Then we introduce the iterative estimator in
Sec. II B, which maximizes the posterior of the lensing
potential by iteratively delensing the maps and represents
the theoretical best estimate. We describe in Sec. II C the
internal delensing techniques and outline the map-level
delensing procedure that we use to make predictions for the
delensing performance.

A. Quadratic estimator

Since the two-point correlations of lensed CMBmodesX
averaged over realizations of the CMB fields has the form

hXðlÞXðl0ÞiCMB ∝ ϕðLÞ; ð1Þ

one can write down, in the flat sky approximation, the
quadratic estimator—the minimum-variance estimator of
the lensing potential that are quadratic combinations of the
CMB observables α ¼ XY, where X; Y ∈ fT; E; Bg [30]

ϕ̂QE
α ðLÞ ¼ Aα

L

Z
d2l
ð2πÞ2 Fαðl; l0ÞXobsðlÞYobsðl0Þ; ð2Þ

where L ¼ l þ l0. Here the weights Fαðl; l0Þ have been
chosen to minimize the variance of the quadratic estimator,
and

Aα
L ¼

�Z
d2l
ð2πÞ2 fαðl; l

0ÞFαðl; l0Þ
�−1

; ð3Þ

the normalization is chosen such that the estimator is
unbiased.
While the quadratic estimator will no longer be the

optimal estimator (as opposed to a maximum a posterior
estimator) for low-noise levels in polarization below about
∼5 μKarcmin, it is still the most competitive form of
lensing reconstruction technique for current experiments’
noise levels. In particular, the EB estimator is expected to
have the highest signal-to-noise out of all possible combi-
nations of quadratic pairs α.
For the EB estimator, we have

FEBðl; l0Þ ¼
fEBðl; l0Þ

CEE;obs
l CBB;obs

l0
; ð4Þ

and

fEBðl; l0Þ ¼ CEE
l ðl · LÞ sin 2ðψ l − ψ l0 Þ; ð5Þ

where ψ l is the polar angle of l with respect to the axes used
to define the Stokes parameters. Here E and B are the
beam-deconvolved observed fields, and CXX;obs

l is the
fiducial observed power spectrum used to inverse-variance
filter the field X

CXX;obs
l ¼ CXX

l þ NXX
l ; ð6Þ

where CXX
l are the fiducial lensed power spectrum and

NXX
l ¼ Δ2

Xe
lðlþ1Þσ2=ð8 ln 2Þ; ð7Þ

is the noise power spectrum. Here σ is the FWHM of the
beam, ΔX is the detector noise in units of μKarcmin and
ΔP ¼ ffiffiffi

2
p

ΔT for fully polarized detectors. These expres-
sions assume no primordial B-mode, which would induce
an additional term in fEB proportional to the primordial
B-mode power spectrum C̃BB

l . We ignore this contribution
since it is negligible given current limits on r.
Given that the neural network reconstruction will make

use of both the observed Q and U maps, to make fair
comparisons, we will use in this paper the minimum-
variance combination of all the polarization pairs,

ϕ̂QEðLÞ ¼
X
α

wαðLÞϕ̂QE
α ðLÞ; ð8Þ

instead of the EB-only estimator used in Ref. [29]. Here the
weights on the individual estimators are

wα ¼
P

βðN−1ÞαβP
βγðN−1Þβγ

; ð9Þ

where N is given by

NαβðLÞ ¼ AαðLÞAβðLÞ
Z

d2l1
ð2πÞ2 Fαðl; l0Þ

h
Fβðl; l0Þ

× C
XαXβ

l C
YαYβ

l0 þ Fβðl0; lÞCXαYβ

l C
YαXβ

l0

i
; ð10Þ

where α ¼ XαYα and β ¼ XβYβ.
The reconstruction noise of the minimum-variance

estimator is then

NL ¼ 1P
αβðN−1Þαβ

: ð11Þ

The quadratic estimator and its reconstruction noise is
computed with weights Fα that use the lensed CMB power
spectra, unless otherwise specified.

B. Iterative estimator

While the quadratic estimator has been the estimator of
choice for previous generations of CMB experiments, the
next-generation CMB experiments will reach a noise level
(≲5 μKarcmin) for which the quadratic estimator is no
longer the minimum variance estimator [31]. In order to
achieve optimal reconstruction, the maximum a posteriori
estimator was first constructed in Ref. [31] under simplify-
ing assumptions, and later extended to work for more
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realistic survey conditions in Ref. [18]. In this work, we
follow Ref. [18] for its framework and make use of the
accompanying public code LensIt. We briefly summarize the
formalism here and refer the reader to Ref. [18] for more
details.
The maximum a posteriori formalism formally solves

for the maximum of the posterior probability density
function of the lensing potential. It assumes Gaussian
unlensed CMB, noise and deflection fields, while account-
ing for beam effects, inhomogeneous noise, and realistic
masks without approximations. Intuitively, it delenses the
data using a QE at first, then applies the QE on the resulting
maps with appropriately modified weights, and repeats this
procedure until convergence. Delensing using this iterative
estimator was shown to improve the forecasted error on the
tensor-to-scalar ratio by a factor of ∼2 compared to the QE
for the CMB Stage-4 experiment [18].
Mathematically, the iterative estimator is computed as

follows. Let the observed CMB be modeled as

Xobs ¼ BDX þ n; ð12Þ

where B is the linear response matrix encoding the beam
and pixel window effects,D is the lensing operator, and n is
the noise. The covariance of the data in pixel space is
therefore

Covα ≡ hXobsXobs;†i ¼ BDCunlD†B† þ N; ð13Þ

where α is the deflection field due to lensing, Cunl is the
covariance of the unlensed CMB and N is the noise
covariance matrix assumed to be diagonal in pixel space.
The log-likelihood of the observed CMB map is then

lnLðXobsjαÞ ¼ −
1

2
Xobs · Cov−1α Xobs −

1

2
ln detCovα: ð14Þ

Using a Gaussian prior on the lensing potential ϕ which
is expected to be nearly linear, the log posterior can be
written as

lnpðϕjXobsÞ ¼ lnLðXobsjϕÞ − 1

2

X
L

ϕ2
L

Cϕϕ
L

; ð15Þ

where we have α ¼ ∇ϕ assuming a pure gradient lensing
deflection.
The iteration scheme used to arrive at the maximum

a posteriori solution for α is the Newton-Raphson scheme.
The starting point is the Wiener-filtered quadratic estimator

α0ðLÞ ¼ Cϕϕ
L

Cϕϕ
L þ Nϕϕ;len

L

iLϕ̂QEðLÞ; ð16Þ

where Nϕϕ
L is the Gaussian reconstruction noise for the

quadratic estimator built from Q and U polarization maps.

The subsequent update at each iteration follows

αNþ1 ¼ αN þ λHNgN; ð17Þ

where gN and HN are the gradient and the curvature matrix
at the Nth step respectively. The rate parameter λ is set to
λ ¼ 1=2, appropriate for CMB-S4-like configurations.
The gradient and the inverse curvature matrix are the

main elements of the Newton-Raphson iteration scheme
needed to find the maximum a posteriori solution. The total
gradient of the posterior with respect to the deflection can
be written as

gtota ≡ δ lnpðαjXobsÞ
δαaðnÞ

¼ gQDa − gMF
a þ gPRa ; ð18Þ

where we have a piece quadratic in the data (QD), a mean-
field piece (MF) that comes from the determinant of the
covariance in the likelihood, and a prior piece (PR) which is
the most straightforward to evaluate.
The QD piece can be computed using

gQDa ðnÞ ¼ ½VαXobs�iðnÞ½Wa
αXobs�iðnÞ; ð19Þ

where

Wa
αXdatðxÞ ¼ D∇aXWF

α ðxÞ; ð20Þ

and

VαXdat ¼ B†N−1
�
Xdat − BDXWF

α

�
: ð21Þ

These are straightforward to evaluate once the Wiener-
filtered data

XWF
α ¼ �ðCunlÞ−1 þD†B†N−1BD

�
−1D†B†N−1Xobs ð22Þ

is constructed, which involves the inversion of large
matrices using the conjugate gradient descent method.
The D† operator in the Wiener-filtering step involves

computing the inverse deflection α−1
Nþ1ðnÞ, which is

solved iteratively using the Newton-Raphson scheme and
converges after three iterations:

α−1
Nþ1ðnÞ ¼ α−1

NðnÞ −M−1
α

�
nþ α−1

NðnÞ
�

·
�
α−1

NðnÞ þ α
�
nþ α−1

NðnÞ
��
; ð23Þ

where the inverse deflection α−1 is defined such that it
remaps the deflected points back to themselves

xþ αðxÞ þ α−1ðxþ αðxÞÞ≡ x; ð24Þ
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and whereM is the magnification matrix due to the change
of coordinates induced by α:

½Mα�abðxÞ ¼ δab þ
∂αa
∂xb

ðxÞ: ð25Þ

The mean-field piece may be evaluated using a large
number of data simulations by observing that

gMF
a ðnÞ ¼ 1

2

δ ln det Covα
δαaðxÞ

¼ 	
gQDa ðnÞ
; ð26Þ

where the average is over data realizations. The LensIt code
offers two options for calculating the mean-field: pertMF or
simMF. The latter uses a number of simulations to calculate
gQDa ðnÞ at each iteration step, and can become expensive
quickly. We use the quicker solution pertMF which is an
approximation that works well for our setup.
Beside the gradient, the Newton-Raphson iteration

scheme also requires the curvature of the likelihood

½H−1�abLL0 ≡ −
δ2 lnpðXobsjαÞ

δαaLδα
b;�
L0

: ð27Þ

This is evaluated iteratively using the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) update [32]
which is able to account for the non-Gaussian and
realization-dependent properties of the likelihood. The
starting inverse curvature is

H0
L ¼

�
1

Nϕϕ;unl
L

þ 1

Cϕϕ
L

�
−1
; ð28Þ

where the first term is the likelihood curvature and second
is the prior curvature.

C. Delensing techniques

Given the reconstructed potential, we can use it to predict
an approximate lensing B-mode template. This template
can then be subtracted from the observed B-mode map to
obtain the delensed map

Bdel ¼ Bobs − Btemp: ð29Þ

Because the delensed B-modes power spectrum

hBdelðlÞBdelðl0Þi≡ ð2πÞ2δDðl þ l0ÞCBB;delensed
l ; ð30Þ

is often reconstructed in order to measure r, one needs to be
careful of the spurious correlations that can be introduced
between the template and the observed B-mode. More
specifically,

hBdelðlÞBdelðl0Þi ¼ hBobsðlÞBobsðl0Þi − 2hBtempðlÞBobsðl0Þi
þ hBtempðlÞBtempðl0Þi: ð31Þ

Because the template B-modes are constructed using the
lensing potential estimate which depends on the observed E
and B fields, the template B-modes are correlated with the
observed B-modes [33].
To eliminate this correlation, we can employ a cut in the

CMB multipoles lcut when performing the lensing potential
reconstruction, so that on the range of interest of the delensed
B-modes l < lcut, the observed B-modes are not used for
the lensing reconstruction calculation [34]. The observed
E-modes in the range l < lcut however can still be lensed to
construct the B-mode template (step 2 below).
To ensure fair comparison, the same lcut on the observed

CMB fields are imposed for evaluating all three estimators
that we consider: The quadratic estimator ϕ̂QE, the iterative
estimator ϕ̂iter and the neural network estimator ϕ̂NN. We
will see later that this also amounts to not training the NN
with input CMB maps including l < lcut, because the
trained model may retain information about the observed
CMB on these scales, even when evaluated on CMB maps
with l ≥ lcut.
We use the following procedure for our delensing

pipeline, given a set of simulated observed Qobs and Uobs

maps (including primordial tensor perturbations, lensing,
and instrument noise) and corresponding lensing estimate ϕ̂
performed on Qobs and Uobs with l ≥ lcut.
(1) Transform the observed total Qobs and Uobs to Eobs

and Bobs maps.
(2) Wiener filter the observed E map using

WE
l ≡ CEE

l

CEE
l þ NEE

l
; ð32Þ

to get an estimate of the E-mode for constructing the
lensed B-mode template: EWFðlÞ ¼ WE

lEobsðlÞ.
(3) Set B-modes to zero, and transform this new set of

E ¼ EWF and B ¼ 0 maps into Q and U maps. The
lensing operation is performed using LensIt by
displacing pixels on the QU map according to
deflections implied by the reconstructed lensing
potential ϕ̂.

(4) Transform the lensedQ andU maps back to E and B
maps, and use this B-mode map as the lensing
template Btemp.

(5) Finally, use Eq. (29) to obtain the delensed
B-mode map.

The QE and NN reconstructed lensing potentials are
Wiener-filtered using

Wϕ
L ≡ Cϕϕ

L

Cϕϕ
L þ Nϕϕ

L

: ð33Þ
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In practice, we use for the QENϕϕ
L ≈ Nð0Þ

L , the disconnected
four-point contribution, which dominates over other

higher-order terms such as Nð1Þ
L [35]. For the NN estimator,

we use an approximate simulation-derived noise curve
which will be defined later in Sec. V using Eq. (36) where
κðlÞ ¼ 1

2
lðlþ 1ÞϕðlÞ. The iterative estimator does not need

to be Wiener-filtered as it is already the optimal solution.
The predicted delensed B-mode power spectrum for

each type of estimator is then calculated by using Eq. (30)
where the ensemble average is replaced by the average over
a set of nsim simulations. We will use this predicted
CBB;delensed
l in Sec. VI as a metric to compare the delensing

performance between the QE, the iterative estimator and
the NN estimator.
Let us now move to describe the background on deep

learning needed for performing the neural network lensing
reconstruction.

III. DEEP LEARNING

In the last few years, deep learning has been applied
to a variety of problems in cosmology. In the CMB field,
it has been applied to infer foregrounds (e.g. [36,37]),
patchy reionization [38], lensing reconstruction [29,39],
finding and applying Wiener filters [40], etc. In particular,
its use for CMB lensing reconstruction was first shown
by Ref. [29].
Motivated by the success of Ref. [29] at performing

lensing reconstruction, we leverage a version of a con-
volution neural network model [41], originally developed
for the image-based learning tasks, for the purposes of
B-mode template delensing. In particular, we employ a
ResUNet neural network as the deep learning model, and
train the network using stochastic gradient descent, in
which the weights in the network are trained to minimize
a loss function that quantifies the distance between the
NN output and the target maps. The result is a nonlinear
transformation that, when applied on valid input maps, can
provide an estimate of the desired target maps, which in our
case is an estimate of the lensing potential map given input
observed CMB maps.
In the following, we briefly summarize the major

components of the ResUNet, and refer the readers to
Ref. [29] for more details on ResUnet and to Ref. [42]
for a more general introduction on deep learning.

A. The ResUNet architecture

The ResUNet is a type of convolutional neural networks
(CNN) [43]. CNNs are composed of a sequence of convo-
lutional layers, typically followed by a set of fully con-
nected layers at the end. Each convolutional layer performs
a 2D convolution on its input images, with a kernel size
specifying the receptive field of each output pixel. For
example, a kernel size of 5 means that each output pixel
receives information from an area of 5 × 5 pixels in the

input image, so the connections between pixels in the input
and output images in a single convolutional layer are local.
Fully connected layers, on the other hand, connect all pixels
in the input images to the output images.
Each convolutional layer is composed of a set of linear

transformations specified by weights (also called neurons)
that can be updated during the training process in order to
minimize the loss function. The linear transformation is
typically followed by an activation function [for we will
choose the rectified linear unit (ReLU) [44]], which adds
nonlinearity to the operation and a max-pooling operation
which downsizes the images by taking the maximum value
over, for example, a 2 × 2 field. The convolutional layer is a
powerful setup that allows for arbitrary nonlinear trans-
formations to be approximated given enough layers and
neurons [45].
The ResUNet was originally developed for road extrac-

tion from aerial images [43], and combines the particular
features of both a ResNet [46] and a UNet (developed for
biomedical image segmentation [47]). See Fig. 1 for an
illustration of the specific implementation used in this
paper. The UNet can be illustrated with an overall U shape:
During the first portion of the network called the encoder,
the dimension of the images decreases with each layer; then
a bottleneck is reached, after which there is the decoder part
of the network, with each layer leading to a larger image
dimension, mirroring the encoder part. The UNet is known
for the skip connections concatenating images at the
encoder level with the images at the corresponding decoder
level, combining feature information from the encoder level
with spatial information from the decoder level.
The number of feature maps after the first layer and the

depth of the encoder, decoder, and any other additional
layers sets the total number of neurons in the network. The
feature maps are generated from the input maps using the
convolutional layers and, when properly trained, extract
useful features that represent relevant information inside the
maps. If the number of feature maps after the first layer is set
to ninit, then the first layer of the encoder transforms nin input
channels into ninit output channels, the second layer trans-
forms ninit into 2ninit channels, the third, 2ninit to 4ninit, etc.
For the decoder in a UNet, each residual block also

receives as input the output of the corresponding layer in
the encoder, so that the last layer in the decoder receives
2ninit channels from the previous decoder layer, and ninit
layer from the first encoder layer, such that it has a total
number of 2ninit þ ninit input channels, and outputs ninit
channels. Similarly, the second to last layer in the decoder
receives a total of 4ninit þ 2ninit channels and outputs 2ninit
channels. The lasts convolutional layer in the decoder is
usually followed by a series of fully connected layers, or
convolutional layers, that transform ninit channels into the
final number of desired output channels nout.
The ResNet, also called the residual network, is

known for its residual block consisting of two or more
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convolutional layers, with residual skip connection con-
necting the beginning of the residual block to the end,
allowing the input to the residual block to be passed directly
to the end and be added to the output of the final con-
volutional layer, so that the neural network optimizes the
residual of the output with respect to the input instead of the
output directly. These residual skip connections make it
easier to train very deep networks, i.e. networks with many
layers, without running into the so-called vanishing gra-
dient problem that can otherwise occur when doing back-
propagation through very deep networks.
The ResUNet is therefore a UNet composed of residual

blocks. We choose the ResUnet for our problem because of
the advantages presented in this section, as well as the fact
that it has worked well when previously applied to the
CMB lensing reconstruction problem in literature [29].

B. The training process

The training is done through stochastic gradient descent,
by minimizing a user-defined loss function that is a
function of the output of the NN and the given target
images. Because of the limited memory of the GPU, it is
generally not possible to process all the images at the same
time, especially for large datasets. Instead, the loss function
is computed for batches of images at a time. The batch size
refers to the number of input images used for each batch;
traditionally, we call it a training epoch when all the input

images have been used once, which may contain many
batches.
The ADAM optimizer is a commonly used optimizer,

which is an adaptive variant of the original stochastic
gradient descent algorithm [48]. with a specified learning
rate for updating the weights. One can also make use of a
learning rate scheduler, which could gradually reduce the
learning rate every few epochs, or only reduce the learning
rate when a performance metric has reached a plateau. An
example of the plateau scheduler would be to reduce the
learning rate by half if the validation error has not improved
after 3 epochs. Hyperparameters such as the batch size, the
learning rate, and the scheduler choice are typically tuned
to suit the problem at hand.
Additional techniques can be used to stabilize the

training process. For example, batch normalization is used
to normalize the output of each layer into a standard normal
distribution across the batch, before feeding it into the
activation function. This generally leads to faster and more
stable training [49]

IV. NEURAL NETWORK SETUP

A. Map generation

To generate simulations of the observed CMB Q and U
maps, we use the software LensIt. We consider a CMB-S4
like experiment with 1 μKarcmin noise and 1 arcmin

FIG. 1. The particular implementation of the ResUNet architecture we used. The input are two channels of observed Q and U maps
with 512 × 512 pixels, while the output are estimates of the κ and Eunlensed maps. The ResUNet architecture combines both features of
the UNet and the ResNet. The UNet is known for its U-shaped architecture with skip-connections (horizontal gray arrows) concatenating
encoder-level (left-half) images with decoder-level (right-half) images. The ResNet is known for the residual skip-connections (cyan
arrows) across the residual layer, optimizing the residual between the output and the input, instead of the output directly. Each residual
layer here is composed of two convolutional layers (blue arrows), and is followed by a downsampling (red arrows) or upsampling (green
arrows) operation, which halves or doubles the resolution respectively. The number of feature maps is increased at each residual level on
the encoder (left) side, and decreased on the decoder (right) side. The data that flow through these operations are represented by the blue
rectangles, where the number of feature maps are listed at the top, and where the resolution of individual maps are shown at the bottom.
We use an initial number of feature maps ninit ¼ 32 at the first layer. See Sec. III A for more details on the ResUNet and Sec. IV B for our
implementation.

CMB DELENSING WITH NEURAL NETWORK BASED LENSING … PHYS. REV. D 109, 043518 (2024)

043518-7



beam. We adopt the LensIt internal resolution parameters
(LDres, HDres) = (9, 10), which makes maps with an area
of about 12.7° × 12.7°, with 512 × 512 pixels. The lensing
operation is actually performed on higher resolution maps
with 1024 × 1024 pixels, while the observed maps are
given at the lower resolution. Although the unlensed E and
B maps are generated at higher resolution for the lensing
operation, we save these, along with the lensing conver-
gence κ, at the observed lower resolution in order to
facilitate neural network training. Given this setup, the
largest mode accessible is l ¼ 28. We will plot results of
Fourier transforms starting at the second nonzero multiple
l ¼ 40 in later sections.
To produce the observed Q and U maps, we first

generate the unlensed E-mode maps from scalar perturba-
tions (for which there are no B-modes) and the unlensed
B-mode maps from tensor perturbations (for which the
E-modes are of comparable amplitude to the B-modes, and
so contribute negligibly to the total E-modes including
from the scalar perturbations, for the small r values we
consider) [50]. We only perform lensing operations on the
scalar-induced E-mode maps to produce lensed Q and U
maps which are then added toQ andU maps obtained from
the unlensed tensor-induced B-mode maps. In principle,
there is also a contribution from lensing the tensor B-mode
maps, but we will neglect this effect since it is a much
smaller second-order effect. Finally, we add to the total
lensed Q and U maps the effects of beam and instrument
noise to create the observed maps used for training the NN.
All maps are generated at a fixed fiducial ΛCDM

cosmology consistent with Planck best-fit: Primordial
power spectrum amplitude As ¼ 2.14 × 10−9 and tilt =
ns ¼ 0.968, matter density Ωch2 ¼ 0.118, baryon density
Ωbh2 ¼ 0.0223, neutrino density Ωνh2 ¼ 6.45 × 10−4

(1 massive neutrino), Hubble constant H0 ¼ 67.9 and
reionization optical depth τ ¼ 0.067.

B. Neural network implementation

We use a particular implementation of the ResUNet
architecture which is publicly available on Github4 (see
Fig. 1 for a detailed illustration). We use the framework
PyTorch

5 [51] for training. We choose an encoder and
decoder with 4 residual blocks each; the encoder and
decoder are separated by a double convolutional layer
between them, and there is 1 additional convolutional layer
at the end of the decoder.
For the particular implementation of the ResUNet

blocks, we use the default settings in the public code.
We did not perform hyperparameter optimization on this
setup, though the original work may have done so in their
own application setting. Each residual block consists of a
double convolutional layer with a residual skip connection

as a CONV(1)-BN operation between the input of the first
layer and the output of the second one. Each convolutional
layer is composed of the operations batch-normalization,
SELU-type activation function and a 2D convolution with
kernel size 5, which we abbreviate to BN-SELU-CONV(5).
For the encoder, a downsampling step happens at the

very end of the residual block (instead of using max-
pooling, we use the default method provided by the code,
which is a convolutional layer with CONV(3)-BN-SELU
where the convolution operation has stride 2). For the
decoder, an upsampling step followed by the UNet skip-
connection happens before the entire residual block. We
choose to use ninit ¼ 32 feature maps output by the first
residual layer.
The inputs are multi-dimensional arrays of shape

2 × 512 × 512, describing a pair of observed CMB Q
and U maps including primordial tensor perturbations,
while the output channels are 1 × 512 × 512, trained on
target maps of κ in our baseline setups, or 2 × 512 × 512 if
unlensed E is included. Figure 2 illustrates a set of sample
input maps and target maps. Each of the input map channels
shown are rescaled by the standard deviation of that
channel over the whole training set before being fed into
the network, to facilitate training by keeping the dynamic
range of inputs close to order unity.
We perform data generation during training by randomly

pairing pre-generated maps with only scalar perturbations,
maps with only tensor perturbations at r0 ¼ 0.1 and noise
maps at 1 μKarcmin scaling appropriately the tensor maps
with

ffiffiffiffiffiffiffiffiffi
r=r0

p
and the noise maps for the appropriate noise

levels. Combining the data this way can in principle
produce 192003 combinations of training maps for a fixed
r and noise level. In reality, we do not use all the available
combinations, as we train over a limited number of epochs
(usually 40). During each epoch, the NN is trained over a
set of 19200 randomly paired data.
In contrast to traditional training which iterates over the

same dataset every epoch, our NN sees a different set of
maps in each epoch by exploiting the additive property of
our input data. This is called sampling without replacement.
It is not an uncommon practice, though it is less well
understood theoretically. The main motivation here is that
we want the NN to see as many examples as possible over
the course of the training. But we do not want to define one
epoch as cycling through all possible combinations, which
would mean a much slower convergence rate since the
gradients are updated at the end of each epoch, and so is the
validation loss which is needed to control the learning rate
scheduling. Indeed, the NN converged after seeing only
40 × 19200 randomly drawn examples out of all 192003

possible examples.
We explore training on a distribution of input r as

well as on random noise levels. We sample r values from a
log uniform distribution from rmin to rmax and perform
validation during training on a set of maps with fixed rval.

4https://github.com/galprz/brain-tumor-segmentation
5https://pytorch.org/
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For example, our baseline results come from using
½rmin; rmax� ¼ ½0.0001; 0.1� and rval ¼ 0.01. Similarly for
the noise level, we train over input maps with noise levels
uniformly distributed in the range [0, 2ΔP;val] where
ΔP;val ¼ 1 μKarcmin is the fixed noise level used for
validation, so that the neural network can see examples
of how the noise impacts the inputs.
We train the NN using the implementation readily

available in PyTorch. The loss function is chosen to be the
L2 norm between the output and target maps averaged over
the batch. We use a small batch size of 4, given the limited
memory of our GPUs. We use the ADAM optimizer with
an initial learning rate of 0.001 and use a plateau scheduler
which decreases the learning rate by half if validation error
has not improved after 3 epochs.

V. LENSING RECONSTRUCTION
PERFORMANCE

We now study the performance of our neural network on
the task of lensing reconstruction. To facilitate comparison
with previous literature, wewill use, in this section only, the
NN trained on two output channels κ and Eunlensed. Later in

the delensing section, we will make use of the NN trained
on a single output channel κ, so that the NN can focus on
optimizing only the κ performance.
To obtain the NN predictions for κ, we start by evaluating

the trained NN model on a set of 2400 validation maps with
fixed rval ¼ 0.01. To analyze the output of the NN on this
dataset, we follow Ref. [29] by first debiasing the direct
output of the NN κoutL using

κ̂NNL ¼ hκtrueL κtrue
�

L ival
hκoutL κtrue

�
L ival

κoutL ; ð34Þ

such that the cross-correlation with the true maps κtrueL
recovers

hκ̂NNL κtrue
�

L ival ¼ hκtrueL κtrue
�

L ival; ð35Þ

and where the averages are over the validation set.
We define also the noise power spectrum from the NN

estimator for a given rval as

Nκκ
L ¼ hκ̂NNL κ̂NN

�
L ival − hκtrueL κtrue

�
L i: ð36Þ

FIG. 2. Left column: the two input channels to the neural network—the observedQ and U polarization maps with their multipoles cut
out below lcut ¼ 300. Right column: The two output channels of the neural network—The true convergence κ and unlensed E
polarization maps used as the target maps for training the neural network. Note that while we use a network with both output channels κ
and E to reproduce (and improve upon) past work, the neural network used for obtaining the delensing results was trained using a single
output channel κ.
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This can be directly compared to the analytic noise power
spectrum for the quadratic estimator and iterative estimator,
for which we choose to use lensed CMB spectra CBB;lensed

l
with r ¼ 0 for the weighting used in the estimator. We have
also verified that using r ¼ 0.01 in the weighting of the
quadratic estimator leads to negligible differences in the
noise curve because of the low value of r.
In Fig. 3, we show the noise power spectrum Nκκ

L from
the NN estimate (blue solid), the quadratic estimator
(purple dashed) and the iterative estimator (orange dotted),
where the last two are evaluated with CMB lmax ¼ 6000.
The fiducial signal Cκκ

L is shown in dark green for reference.
The NN performance is obviously better than the QE and
nears the iterative estimator line which is the theoretically
optimal solution. Note that both the QE and iterative
estimator noise curves are computed analytically using
LensIt, while the NN one is derived from simulations.
Furthermore, in order to compare most fairly with the

NN results (which are evaluated using the Q and U maps),
we use the minimum-variance (MV) weighted combination
of all polarization estimators for the QE and iterative
estimator instead of approximating using the EB estimator
alone as done in Ref. [29] (which could sometimes
underestimate QE performance by a factor of 2 for certain
ranges of L at ΔP ∼ 1–2 μKarcmin [13]). Finally, we
checked that evaluating the NN on a validation set with
r ¼ 0.001 gives a similar reconstruction noise curve as that

shown here, so the plot holds qualitatively for r ¼ 0.001
as well.
We show in Fig. 4 the ratio of the difference spectrum

to the fiducial power spectrum for κ and E in the top
and bottom panels respectively. The difference maps are
obtained by taking the difference between the NN output
Xout (before debiasing) with the true map Xtrue. For κ, the
performance is best at low-L, where the ratio reaches half at
about L ¼ 1250 and becomes close to 1 at L ¼ 3000where
there is much less meaningful information recovered. The
performance is very similar to that seen in the DeepCMB
study in Ref. [29] (cf. the 1 μKarcmin curve in their Fig. 8).
We found however, a better E performance on the large

scales: The ratio reaches about 0.4 at L ¼ 3000 here,

FIG. 4. The difference-map auto-spectrum CðX̂−XÞðX̂−XÞ
L for the

output channel X (where the difference is taken between the pre-
debiased neural network output X̂out and the true X), normalized
to the fiducial signal CXX;fid

L . Top: lensing convergence channel
X ¼ κ. Bottom: unlensed E channel X ¼ Eunlensed. The difference
spectrum is obtained by averaging over the validation set with
nsims ¼ 2400 simulations at fixed r ¼ 0.01 and default noise
level, using the neural network trained with two output channels
E and κ and on CMB maps without lcut for literature comparison
purposes.

FIG. 3. The reconstruction noise curve for various estimators:
Quadratic estimator (purple dashed), iterative estimator (orange
dotted), neural network (blue solid). The NN result is obtained by
evaluating the trained model on the validation set with nsims ¼
2400 simulations at fixed r ¼ 0.01 and fixed fiducial noise level.
The quadratic and iterative estimator curves here are analytic
approximations computed with no cut on the CMB multipoles;
the weightings used in these estimators usedCBB;lensed

l with r ¼ 0.
The fiducial signal Cκκ

L (green solid) is shown here for reference.
Note that the QE and iterative estimators curves are analytic,
whereas the NN curve is simulation-based. The gray portion of
the NN curve is used for averaging estimate in Fig. 5.
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whereas in the DeepCMB study it reaches about 0.9 at
L ¼ 3000, and attains 0.4 much more quickly at about
L ¼ 1750 where we have only 0.1. A similar case was also
observed by the authors of Ref. [38], who reconstructed
the patchy reionization optical depth τðn̂Þ in addition to κ
and E using a modified ResUnet architecture: They found
that their κ reconstruction performance matched that
of Ref. [29], but also had better E-mode reconstruction.6

Our results are roughly consistent with theirs for the
1 μKarcmin noise level. We also note that in both the κ
and E cases, we trained the network on random r values,
and evaluated the plotted metric on a set of validation maps
with a nonzero tensor contribution r ¼ 0.01. It seems
therefore that the inclusion of tensor perturbations at this
level does not degrade the NN performance.
One natural question to ask is whether the NN perfor-

mance can be improved still with a larger dataset. In Fig. 5,
we picked an approximate metric for the NN performance
to show its scaling with nsim;train, the number of simulations
used for training. The approximate metric used here is
simply the N̄κκ

L , which is the average of Nκκ
L in the range

150 ≤ L ≤ 500 (corresponding to the highlighted portion
in gray on the blue NN curve in Fig. 3). The rightmost point
in Fig. 5 with nsim ¼ 19200 corresponds to our fiducial
choice, beyond which there seems to be diminishing return
(the scaling is roughly linear in log space).

We shall see in the next section that though the lensing
reconstruction performance seems to have slight room
for improvement with training set size, the delensing
performance with the current NN reconstructed κ is nearly
indistinguishable from the theoretical best solution pro-
vided by the converged iterative estimator.

VI. DELENSING PERFORMANCE

We now move on to compare the delensed performance
of the various estimators by looking at the predicted
delensed B-mode power spectrum CBB;delensed

l , obtained
by averaging over a test set of 2400 observed CMB maps
using the standard delensing pipeline as described in
Sec. II C.

A. Quadratic and iterative estimator

We calculate the quadratic estimator and iterative
estimators on the test set of 2400 CMB observations
using LensIt. Before estimating the lensing potential, the
observed CMB maps are filtered to only contain l ≥ lcut.
Otherwise, there would be spurious correlations between
the observed B-mode on the scales we are interested
in l < lcut and the κ predictions since the latter would
contain quadratic pairs constructed from E and B-modes
with l < lcut [33].
We Wiener-filter the QE before using it in the delensing

pipeline, where the Wiener filter is constructed using
the analytic estimate of Nκκ

L for QE with lmin ¼ 300. For
the iterative estimator, there is no Wiener-filter needed,
since the converged estimator would already be the
maximum a posteriori solution (at least exactly so for
the case of r ¼ 0). In Fig. 6, we show an example of the κ
map predictions evaluated on the same set of observed
Q and U maps for various estimators: The Wiener-
filtered quadratic estimator (top right), the converged
iterative estimator at 10 iterations (bottom left), as well
as the true input κ map (top left) which has more small-
scale details.
In Fig. 7, we show the convergence of the CBB;delensed

l
for the iterative estimator as we vary niter ¼ 0 to 10. Note
that the 0th iteration is the same as the Wiener-filtered
quadratic estimator since that is the starting point for the
iterative estimator. The delensing result already converges
for niter ¼ 5 (the thinnest blue line), but we will use
niter ¼ 10 (orange line) as our fiducial result for the iterative
estimator.

B. Neural network estimator

For the delensing exercise, we will make use of the NN
trained with only one output channel κ. Furthermore, it
turns out that beside evaluating the NN model on a set of
observed CMB maps with l ≥ lcut as done in the case of the
QE and iterative estimator, it is also necessary to apply the
same cut to inputQ and U maps during training. Otherwise

FIG. 5. Approximate metric for the NN lensing reconstruction
performance as a function of training data size nsim;train. We use
N̄κκ

L , the averaged NN reconstruction noise in the range 150 ≤
L ≤ 500 as the approximate metric (see the corresponding gray
portion in Fig. 3). Beyond our fiducial choice of nsim ¼ 19200
(the rightmost point), we enter the regime of diminishing return,
needing many more simulations (hence more disk space) for
slightly better performance.

6To properly check for the reason for this discrepancy in
E-mode reconstruction performance, it would be useful to apply
the DeepCMBmodel to our simulated data, or to apply our model
to their data.
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the NN model ends up “memorizing” information in the
input Q and U maps at l < lcut, and we end up with
spurious correlations in the final delensed B-mode power
spectrum. In other words, because the set of training maps
sets an implicit prior for the NN model, there is information
retained about B at l < lcut in the trained model itself, and
this information goes into the NN’s κ estimates, even when
the trained model is only evaluated on observed E and B
maps with l ≥ lcut.
We remind the reader that while the E and B maps used

for evaluating the κ estimators have lcut ¼ 300, it is not
necessary to apply a cut to the Wiener-filtered observed
E maps used to construct the B-mode lensing template.
The delensing performance would be worse if those modes
were cut off, since they contribute to the l < 300 lensed
B-modes. Finally, to optimize the delensing performance,
we Wiener-filter the NN predicted κ̂ maps before feeding
it into the delensing pipeline, where the Wiener filter is

constructed using the noise power Nκκ
L estimated using the

same test set. An example of the Wiener-filtered NN
prediction for κ is found on the bottom right of Fig. 6.
Features in the NN are similar to those in the converged
iterative estimator, the optimal solution, and contains more
details than the QE.
The delensed, noise-subtracted B-mode power spectrum

for the NN is shown in blue in Fig. 9, where we have
averaged over a test set of 2400 simulations with r ¼ 0.01
and r ¼ 0.001 in the top and bottom panels respectively.

C. Comparison of all estimators

In Fig. 8, we show a corresponding version of Fig. 3 but
for the maps used for delensing, where the NN is trained on
lcut ¼ 300 CMB maps with a single output channel κ, and
where all estimators are evaluated on lcut ¼ 300 CMB
maps. Instead of using the analytic predictions, we use the

FIG. 6. Convergence maps κ as used in the delensing pipeline. Top left: the true κ map used for training the neural network. Top right:
the Wiener-filtered quadratic estimator applied to the observedQ andU maps in Fig. 2. Bottom left: the iterative estimator applied to the
same Q and U maps after niter ¼ 10 iterations, which is converged. Bottom right: the Wiener-filtered neural network estimate obtained
by evaluating the trained network on the sameQ andU maps. Features in the NN result are similar to those in the iterative estimator, and
contain more details than those in the QE, which corresponds to the niter ¼ 0 iteration of the iterative estimator. All three estimators lose
information on the smaller scales that are originally in the true κ map due to the cosmic variance and other sources of error contributing
to the reconstruction noise.
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simulation-based noise curves, which are derived in the
same way as for the NN [see Eq. (36)].7 For the QE and
iterative estimator, the simulation-based curves are higher
compared to analytic predictions, mostly because they
additionally include the Nð1Þ bias. The Nð1Þ bias might
also be what explains the discrepancy seen in Fig. 9 of
Ref. [29] for the 1 μKarcmin setup, between the analytic
noise curve for the iterative estimator and the simulation-
based NN noise curve. In our apples-to-apples comparison,
the iterative estimator and the NN have very similar noise
curves except for about L≲ 500.8 Wewill see next that this,
however, does not affect the delensing performance.
We now compare all three estimators in Fig. 9 in terms of

their delensing performance for r ¼ 0.01 and r ¼ 0.001 in
the top and bottom panels respectively, where we also
include for reference the result from using the true κ map
while keeping the same Wiener-filtered observed E-modes
as in all other estimators. Remarkably, the iterative and NN
estimators have very similar performance.

This is the first demonstration that a NN-based estimator
is capable of extracting all the information in the CMB
maps needed for delensing, at least in our idealized setup.
The result builds confidence that the NN estimates of κ are
usable for delensing purposes, an important step beyond
just comparing the two-point function of the estimator
noise (as in Ref. [29] and in our previous section).
Compared to the iterative estimator, the NN method has

the advantage that once the NN model is trained, its
evaluation on data or simulations is almost instant. In
our setup the NN took about 40 hours to train on the GPU
including time to ensure its convergence, and 0.13 seconds
to evaluate per realization, giving a total of about 5 minutes
to evaluate all 2400 realizations. The iterative estimator on
the other hand, takes no training time, but each realization
takes about 1 minute to evaluate on a single CPU core for
niter ¼ 5 iterations, and about 2 minutes for niter ¼ 10. So
the total time of evaluating the delensing performance
averaged over 2400 realizations was 40 hours (80 hours)
for the iterative estimator with niter ¼ 5 (niter ¼ 10), similar
to or more than the NN.
The difference in time would be even higher if more

realizations were used, or if a larger sky area was observed.
We also note that in the above calculation we did not count
the training sample generation time for the NN, which is
quite fast because of our simplistic setup, and given our
data augmentation methodology which allows us to reduce

FIG. 7. Noise-subtracted, delensed B-mode power CBB;delensed
l

calculated using the average of 2400 simulations, for various
number of iterations niter of the iterative estimator (solid blue,
decreasing thickness for increasing niter). The niter ¼ 10 result
(thin orange) is our fiducial result and is shown here to be
converged. The quadratic estimator result (purple dashed) is the
same as niter ¼ 0 in the iterative estimator as expected. We also
show the delensed power using the true κ map (red dash-dotted),
which cannot be reached in reality because of the cosmic variance
and other sources of error contributing to the overall
reconstruction noise for κ.

FIG. 8. The analog of Fig. 3 but for the set of maps used for
delensing, where the NN is now trained on lcut ¼ 300 CMB maps
with a single output channel κ, and where all estimators are
evaluated on lcut ¼ 300 CMB maps with r ¼ 0.01 and default
noise level. For an apples-to-apples comparison, we also added
the QE and iterative estimator noise curves derived from simu-
lations, similarly to what was done for the NN [see Eq. (36)]. The
simulation-based noise curves are higher than the analytic
predictions for the QE and iterative estimator, because they
additional include the Nð1Þ bias whereas the analytic curves only
have Nð0Þ. The NN and iterative estimators noise curves are
similar except for L ≲ 500, but this does not affect the delensing
performance as shown in Fig. 9.

7We note that the authors of Ref. [34] found that for the QE, the
delensing performance would be slightly better if instead of using
the non-perturbative pixel remapping, one used the perturbative
remapping when using the observed lensed E-mode to construct
the B-mode template. Furthermore, one way to optimize the
iterative estimator delensing performance is to use the delensed
E-template instead of the observed lensed E-template used in this
work.

8It would be interesting to see if different hyperparameters or
even a different kind of NNmay improve on the large-scale noise.
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the total number of independent simulations generated.
This data generation step could of course become more
involved if more realistic simulations are needed, by
including for example, varying cosmology, varying models
of foreground residuals, inhomogeneous and correlated
noise, irregular masks, etc.

VII. SUMMARY AND DISCUSSION

In conclusion, we used simulated observed CMB maps
to predict the delensing performance of a neural network
lensing estimator and compared it to the quadratic and
iterative estimators.
To do so, we first trained the NN on a set of 19200

simulations where the input maps were the observed Q and
U maps generated from a fiducial cosmology, varying
values of r and instrument noise, and where the target maps
were the κ and unlensed E maps. We evaluated the trained

model on a set of 2400 maps with fixed values of r ¼ 0.01
and noise level 1 μKarcmin and found that the lensing
reconstruction abilities of our NN are similar to those found
in Ref. [29] with r ¼ 0, whereas ourE-mode reconstruction
performed better (a similar conclusion was also found in
Ref. [38]). By looking at the scaling trend of the NN
performance with the number of simulations used for
training, it seems that it may be possible to further optimize
the NN’s performance in lensing reconstruction with many
more simulations, though it would be in the regime of
diminishing returns.
To assess the delensing performance, we used the

standard delensing pipeline, where the B-mode templates
are built by lensing the Wiener-filtered observed E-mode
using the κ estimator. We found that for values of r rele-
vant for the next-generation CMB experiments, such as
r ¼ 0.01 and r ¼ 0.001, the NN was able to attain the same
optimal delensing performance achieved by the converged
iterative estimator. This was true despite the small discrep-
ancy in the simulation-derived noise curves between the
iterative estimator and the NN at L≲ 500.
We also found that it was necessary to train the NN on

input CMB maps for which the scales of interest for the
delensed B-modes are excised. This is similar to what is
known for the quadratic and iterative estimators: One needs
to evaluate these estimators on the observed CMB maps
with l ≥ lcut, or there would be unwanted correlations
between the delensed B-modes and the observed B-modes
on scales l < lcut. This is also true in the NN case, except
that there is an additional step that the training must also be
done on CMB maps with l ≥ lcut. The NN seems to be able
to retain information about the observed CMB modes at
l < lcut during training even when the trained model is only
evaluated on maps with l ≥ lcut.
Moreover, we have used various techniques here in

addition to what was previously explored in Ref. [29]. First,
our training of the NN included observed CMB maps with
tensor perturbations. The training set had a log-uniform
distribution of r-values, so that the NN can learn frommany
examples of how the observed CMB maps change with r.
We have also trained on uniformly distributed noise levels
between [0; 2ΔP

test], where ΔP
test ¼ 1 μKarcmin is the

desired polarization noise level used in the test set.
Finally, we used data augmentation at each epoch during
the training by randomly pairing pre-generated phases of
scalar maps, tensor maps and noise maps, so that the NN
has access in principle to n3sim;train ¼ 192003 combinations
if it was allowed to be trained for long enough.
In this work we have restricted ourselves to an idealistic

setup, including cosmic variance for a fixed cosmology,
varying tensor perturbations, homogeneous instrumental
noise, no foregrounds and a square-shaped mask. In the
future, it would be important to test how the NN does on
more realistic setups such as varying cosmology, including
foreground residuals, more complex instrumental noise

FIG. 9. Noise-subtracted, delensed power spectrum CBB;delensed
l

calculated using the average of 2400 simulations for various
estimators: QE (purple dashed), iterative estimator (orange
dotted) and NN (blue solid). We also plot for reference the
noise-subtracted total B-mode power CBB;tot

l ¼ CBB;lensed
l þ

CBB;tensor
l (black solid) and the delensed power spectrum using

the true κ maps (red dash-dotted).
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models and irregular masks. The training techniques we
used here, which incorporate a distribution of tensor
and noise models, can be further extended to train the
NN with a range of cosmology and foreground contami-
nation models all at once, as well as other models that have
significant theoretical uncertainties in them. One may also
explore varying cosmological parameters with a similar
setup, or even predicting them as auxiliary output of the NN
to help guide the training (e.g., [52]).
Once fully trained, the advantage of the NN is that it is

very fast to evaluate, so studying its noise properties and
delensing performance using a large set of simulations
would be faster than for the iterative estimator, which has a
much longer evaluation time per realization. So although
processing the data once is faster for the iterative estimator
than for the NN (with training time included), the total
compute time needed for validating the analysis pipeline on
a large set of simulations could be smaller for the NN
(unless the generation of training dataset starts to take up a
significant amount of time).
The iterative estimator’s performance in the presence

of realistic foreground residuals—whether they would
degrade the optimality or introduce any bias—is yet to
be tested. It would be interesting to determine if the NN
could perform better compared to the iterative estimator
under certain scenarios. More futuristically, techniques are
being developed to infer foreground contaminations in
CMB observations using NNs (e.g., [36,37]) and may be
combined into a multi-stage or hybrid NN to remove the
foreground contaminations at the same time as the lensing
reconstruction.
Finally, given the ability of the NNs to model nonlinear

mappings, it would be interesting to see whether they could

perform better in reconstructing the lensing convergence
where other nonlinear effects are included, for example,
the post-Born effects (e.g., [53]) which account for the
interaction between more than one lensing deflections
along the line-of-sight, or effects from the nonlinear power
spectrum.
In conclusion, we used a neural-network-based lensing

reconstruction in a standard delensing pipeline, demon-
strating optimal delensing performance, achievable so far
only by the iterative estimator, on a simplified setup in the
range of r relevant to the next-generation experiments
(r≲ 0.01) and for CMB-S4-like noise level. This study
paves the way for using deep learning in delensing
analyses, and provides an alternative to the iterative
estimator. The method represents a successful hybrid of
deep-learning and standard cosmology techniques, making
use of both our prior knowledge of physics as well as
computational advances in deep learning.
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