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Line-intensity mapping (LIM) is quickly attracting attention as an alternative technique to probe large-
scale structure and galaxy formation and evolution at high redshift. LIM one-point statistics are motivated
because they provide access to the highly non-Gaussian information present in line-intensity maps and
contribute to break degeneracies between cosmology and astrophysics. Now that promising surveys are
underway, an accurate model for the LIM probability distribution function (PDF) is necessary to employ
one-point statistics. We consider the impact of extended emission and limited experimental resolution in the
LIM PDF for the first time. We find that these effects result in a lower and broader peak at low intensities
and a lower tail towards high intensities. Focusing on the distribution of intensities in the observed map, we
perform the first model validation of LIM one-point statistics with simulations and find good qualitative
agreement. We also discuss the impact on the covariance, and demonstrate that if not accounted for, large
biases in the astrophysical parameters can be expected in parameter inference. These effects are also
relevant for any summary statistic estimated from the LIM PDF, and must be implemented to avoid biased
results. The comparison with simulations shows, however, that there are still deviations, mostly related with
the modeling of the clustering of emitters, which encourage further development of the modeling of LIM
one-point statistics.

DOI: 10.1103/PhysRevD.109.043517

I. INTRODUCTION

Line-intensity mapping (LIM) is an emerging observa-
tional technique that aims to obtain three-dimensional maps
of the Universe using the integrated flux of bright spectral
lines over cosmological scales [1–4]. Therefore, LIM
probes the aggregate line emission by all sources at a
given redshift. This grants access to otherwise undetectable
faint populations of emitters and makes LIM the optimal
tracer of the large-scale structure at high redshift in the
high-noise or high-confusion regimes [5,6]. Furthermore,
dropping the requirement of resolved detection of individ-
ual emitters enables the use of low-aperture telescopes and
quick scans of large portions of the sky.
Besides tracing the underlying matter density fluctua-

tions, line-intensity fluctuations depend on the astrophysical
phenomena that trigger the line emission. Hence, combining
different spectral lines, LIM also probes galaxy formation
and evolution across cosmic times, complementing lumi-
nosity functions from galaxy surveys. LIM is attracting
increasing attention, with numerous experiments and sur-
veys currently observing [7–13] and many others that will
see first light in the forthcoming years [14–20]. Preliminary
detections (see, e.g., Refs. [21–29]) give rise to optimism
regarding the prospects for this technique and its potential to
bridge between low-redshift galaxy surveys and early

Universe probes like the cosmic microwave background
(see, e.g., Refs. [30–33]).
Most commonly, the main type of summary statistics

employed to analyze line-intensity maps are 2-point
statistics like the correlation function or its Fourier
counterpart, the power spectrum. They benefit from some
robustness against smooth, uncorrelated observational
contaminants and build upon the comprehensive formalism
developed for galaxy surveys. However, line-intensity
fluctuations, which trace the nonlinear, non-Gaussian
large-scale structure and are modulated by nontrivial
astrophysical processes, are very non Gaussian. Therefore,
a significant part of the information contained in line-
intensity maps is not captured by power spectrum mea-
surements. Furthermore, LIM intrinsic sensitivity to both
cosmology and astrophysics may hinder the interpretation
of the LIM power spectra. For instance, the mean intensity
and the bias relating matter and source fluctuations present
a perfect degeneracy in the power spectrum at large scales.
Although the degeneracy can be partially broken using
smaller scales in the mildly nonlinear regime [34,35], the
power spectrum is only sensitive to the first two moments
of the luminosity function, which result in degenerate
astrophysical and cosmological parameters (see, e.g.,
Refs. [36,37] for a discussion on the degeneracies between
astrophysics and cosmology for the power spectrum).
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Accessing non-Gaussian information and breaking
degeneracies between cosmology and astrophysics motivate
the development of alternative summary statistics. Non-
Gaussian information can be obtained using higher-order
statistics like the bispectrum and trispectrum. However,
one-point statistics, which depend directly on the LIM
probability distribution function (PDF), hence on the full
distribution of (non-Gaussian) intensity fluctuations and the
whole line-luminosity function, offer preferable properties.
The simplest one-point statistics is the actual estimator

of the PDF, known as voxel intensity distribution (VID) in
the context of LIM [38,39]. The VID is very comple-
mentary to the power spectrum because while the latter
depends on clustering and the first two moments of the
line-luminosity function, the former depends on sub-
sequent convolutions of the luminosity function and
zero-lag moments of clustering. The potential of the
combination of both summary statistics has been demon-
strated in the literature [40,41]. Furthermore, several
studies have highlighted the sensitivity of the VID not
only to astrophysical parameters but also to beyond-
ΛCDM cosmologies and physics beyond the Standard
Model, either directly or through reducing degeneracies
when combined with the power spectrum [42–46].
First instances of the LIM PDF formalism relied on small

modifications to the probability-of-deflection techniques
(see, e.g., Refs. [47–50]): they considered the conditional
probability of finding a given intensity in a voxel given
number of emitters contained in it [38,39]. Reference [41]
explicitly modeled the dependence on the local emitter
overdensity to derive the first analytic model of the VID
supersample covariance and the VID-power spectrum
covariance. Recently, Ref. [51] adapted the formalism
presented in Refs. [52,53] to compute the LIM PDF using
the halo model, emphasizing the ability of the VID to break
the degeneracy between the mean intensity and the emit-
ter bias.
Nonetheless, all previous work assumes that each emitter

just contributes to the voxel in which it is contained. This in
an unphysical approximation: whether it is due to extended
sources, line broadening caused by the internal peculiar
velocity of the gas or the limited experimental resolution,
the observed emission from each emitter is redistributed to
a finite volume that extends beyond the voxel in which each
emitter is located.
In this work we build upon the halo-model based

formalism from Ref. [51] and model this effect in the
analytic derivation of the LIM PDF. We apply the Ergodic
hypothesis and obtain the PDF of the intensity in a voxel for
a single emitter from the spatial profile of its observed
intensity. From this starting point we can model the LIM
PDF including the smearing of the observed signal due to
extended sources, line broadening, and limited experimen-
tal resolution. For the first time, we show a comparison
between the theoretical analytic prediction of the LIM PDF

and the results for simulations to validate our model.
We find qualitative good agreement, satisfactorily captur-
ing the effects of the extended intensity profiles. Including
extended observed intensity profiles significantly changes
the VID prediction, and they must be taken into account to
ensure unbiased parameter inference. We also find, as
expected, that accounting for the fact that an emitter
contributes to more than one voxel increases the correlation
between intensity bins. However, other parts of the model-
ing, especially those related to matter clustering, must be
improved to match the results from simulations. The
updated VID modeling is now included in the publicly
available code LIM.1

While in this work we focus on the VID, extended
emission and limited experimental resolution must also be
included in the derivation of any summary statistic that
relies on the LIM PDF. Examples beyond the VID include
1-point cross correlations of different datasets, such as the
conditional VID [54] or the deconvolved density estima-
tor [55,56].
We assume the standard ΛCDM cosmology, with best-fit

parameter values from the full Planck analysis without
external observations [57]. In addition, we employ the
following convention for the Fourier transforms. For a
d-dimensional Fourier-space variable u being the conjugate
of a configuration-space variable v, the direct and inverse
Fourier transforms of a function f and its Fourier counter-
part f̃ are given by

f̃ðuÞ ¼
Z

ddvfðvÞe−ivu;

fðvÞ ¼
Z

ddu
ð2πÞd f̃ðuÞe

ivu; ð1Þ

where the tilde denote Fourier-space functions. Given the
large dynamical range of the variables considered for
Fourier transform (spanning orders of magnitude, positive
and negative values), we compute the Fourier transform
using nonuniform fast Fourier transform routines as imple-
mented in FINUFFT2 [58,59].
This article is structured as follows. First, we review the

PDF modeling from Ref. [51] and introduce the effects of
extended intensity profiles in Sec. II. We discuss limited
experimental resolution and line broadening as causes
of the extended profiles and their impact in the PDF
prediction in Sec. III. We compare theoretical predictions
with simulations in Sec. IV. We discuss the relevance of
modeling the extended emission estimating the bias
introduced in parameter inference when point sources
are considered in Sec. V. We summarize and conclude
in Sec. VI.

1https://github.com/jl-bernal/lim.
2https://finufft.readthedocs.io/en/latest/.
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II. LIM 1-POINT PDF

In this section we review the modeling to compute the
line-intensity 1-point PDF and extend it to account for
extended intensity profiles. We build upon the modeling for
point sources presented in Ref. [51] using the halo model,
which in turn adapted the formalism introduced in
Refs. [52,53] for the thermal Sunyaev-Zel’dovich effect
and weak lensing convergence, respectively.

A. LIM signal

The specific line intensity per unit frequency emitted at a
given position x is given by

IνðxÞ ¼
c

4πνHðzÞ ρLðxÞ; ð2Þ

where c is the speed of light, ν is the rest-frame frequency
of the spectral line of interest,HðzÞ is the Hubble parameter
at redshift z corresponding to position x and ρL is the line
luminosity density. Using the Rayleigh-Jeans relation, the
brightness temperature can be defined from the specific
intensity as

TðxÞ ¼ c3ð1þ zÞ2
8πkBν3HðzÞ ρLðxÞ ¼ XLTρLðxÞ; ð3Þ

where kB is the Boltzmann constant and we have defined
XLT as a redshift-dependent multiplicative factor to sim-
plify the expressions. During this work we will use the
brightness temperature as variable to describe line-intensity
maps, but our approach is equally applicable to specific
intensities.
We can model the spatial distribution of the line

luminosity associated to a single source located at xs,
without loss of generality, as

dLs

dx
ðxjϑsÞ ¼ Ls;totðϑsÞϱðx − xsjϑsÞ; ð4Þ

where Ls;tot is the total line luminosity of the source (i.e.,
integrated over its line width and point spread function)
and ϱ is a three-dimensional spatial emission profile
with inverse-volume units that is normalized to unity:R
d3xϱðxjϑsÞ ¼ 1. Any experimental or astrophysical effect

that results in a spatial smoothing of the observed signal in
the final map can be embedded in ϱ, which is generally
anisotropic. BothLs;tot and ϱ depend on a set of astrophysical
properties of the source included in the parameter vector ϑs.
Then, the temperature in a specific point can be expressed as

TðxÞ ¼ XLT

X
s

dLs

dx
ðxjϑsÞ; ð5Þ

where the sum is over all sources, indexed by s.Webuild upon
this expression to derive the PDF for extended profiles.

B. The PDF for extended profiles

Since brightness temperature is an additive quantity,
the PDF of the aggregate emission is the convolution of the
PDF of each emitter. This calculation is much more
tractable in Fourier space applying the convolution theo-
rem. Let us define τ as the Fourier conjugate of the
brightness temperature. The Fourier transform of a given
PDF P of the brightness temperature,

P̃ðτÞ ¼
Z

dTPðTÞe−iTτ ¼ he−iTτi

¼ 1

Vobs

Z
Vobs

d3xe−iTðxÞτ; ð6Þ

is the characteristic function, and angle brackets denote
average over realizations. The characteristic function is
dimensionless, and can also be obtained invoking the
ergodic hypothesis taking the average over the observed
volume Vobs, as done in the last equality above.
Let us explicitly separate the halo massM from ϑ to ease

the readability. Consider first an infinitesimal mass bin
centered atM, for which the brightness temperature PDF is

PðMÞðTÞ ¼
Z

dϑPðϑjMÞ

×
h
PðM;ϑÞ

N¼0 δDðTÞ þ PðM;ϑÞ
N¼1 PðM;ϑÞ

1 ðTÞ
i
; ð7Þ

where we marginalize over the conditional multi-
dimensional distribution PðϑjMÞ of astrophysical properties
given a halo mass (see, e.g., Ref. [60]), PðM;ϑÞ

N¼x is the PDF of
having x emitters (halos) of mass M and set of properties ϑ

contributing to a specific point, and PðM;ϑÞ
x ðTÞ is the PDF of

finding a temperature T in a point in the space receiving
contributions from x emitters with such properties. If there is
no emitter (i.e., N ¼ 0), then there is no signal and P0ðTÞ ¼
δDðTÞ is the Dirac delta. For an infinitesimal mass bin

PðM;ϑÞ
N>1 ¼ 0, hence PðM;ϑÞ

N¼0 ¼ 1 − PðM;ϑÞ
N¼1 .

The characteristic function can therefore be expressed as

P̃ðMÞðτÞ ¼ 1þ
Z

dϑPðϑjMÞPðM;ϑÞ
N¼1

�
P̃ðM;ϑÞ

1 ðτÞ − 1
�
: ð8Þ

Although the profile ϱ of the extended emission extends
arbitrarily in space, in practice we can truncate it at some
distance large enough that there is no sizable signal loss.
Under this assumption, the signal profile covers a finite
volume Vprof , which can depend on M and ϑ, so that

P̃ðM;ϑÞ
1 ðτÞ ¼

Z
d3xdLPðxjM;ϑÞPðLjM;ϑ; xÞe−iTτ; ð9Þ

where we explicitly marginalize over the position [for
which PðxjM;ϑÞ is uniform over Vprof and zero otherwise]
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and PðLjM;ϑ; xÞ accounts for any distribution of the line
luminosity given the halo mass, the astrophysical proper-
ties, and the distance to the center of the profile.3

Equation (9) is equivalent to Eq. (6) for a single source.
Note that the temperature factor in the exponential depends
on all the quantities that are marginalized over.
Finally, assuming Poisson statistics, and neglecting

clustering for now,

PðM;ϑÞ
N¼1 ¼ dM

dn
dM

VprofðM;ϑÞ; ð10Þ

where dn=dM is the halo mass function. For infinitesimal

bins, PðM;ϑÞ
N¼1 ≪ 1, so that we can interpret Eq. (8) as the

linear expansion of the exponential

P̃ðMÞðτÞ ¼ exp

�Z
dϑPðϑjMÞPðM;ϑÞ

N¼1 ðP̃ðM;ϑÞ
1 ðτÞ − 1Þ

�
:

ð11Þ

Now we need to extend this to all halos. Using the
convolution theorem, the characteristic function for the
whole population is the product of the individual character-
istic functions. Thus, the characteristic function P̃ðuÞ for the
whole population without accounting for clustering is

P̃ðuÞðτÞ ¼
Y

P̃ðMÞðτÞ

¼ exp

�Z
dMdϑPðϑjMÞ dn

dM
VprofðM;ϑÞ

×
�
P̃ðM;ϑÞ

1 ðτÞ − 1
��

; ð12Þ

where we directly have substituted the sum of exponents by
the integral limit in the last equality.
From the expression above, and assuming that the

astrophysical properties are uncorrelated with clustering,
it is trivial to include the effect of clustering. Clustering
varies in scales much larger than the observed intensity
profiles of the sources. Therefore, for a specific realization
(or position), we can include the effects of clustering by
adding the halo overdensity field δh ≡ ðnh − hnhiÞ=hnhi to
the halo mass function, where nh is the local halo number
density. Therefore, we promote

dn
dM

→
dn
dM

ð1þ δhðx;MÞÞ: ð13Þ

Then, the characteristic function P̃ðδÞ accounting for
clustering for a single realization is

P̃ðδÞðτÞ ¼ exp

�Z
dMdϑPðϑjMÞ dn

dM
VprofðM;ϑÞ

× ðP̃ðM;ϑÞ
1 ðτÞ − 1Þδh

�
P̃ðuÞ: ð14Þ

The global characteristic function is then the average over
the realizations of P̃ðδÞ. Since P̃ðuÞ does not depend on the
overdensities, we can take it out of the average, and we are
left with the exponential of the term including δh. We
invoke the moment-generating function, which states that
for a random variable X,

heXi ¼ exp

�X∞
p¼1

hXpi=p!
�
: ð15Þ

By definition, hδhi ¼ 0, and all terms with p > 2 vanish for
a Gaussian distribution. Although gravitational collapse
induces non Gaussianities and higher-order terms should
be included, we take a first approximation and truncate the
moment-generating function at p ¼ 2. Furthermore, we
relate δh to the underlying matter density field δm with a

linear, mass-dependent halo bias bh so that δ
ðMÞ
h ¼ bhðMÞδm

and the second cumulant of the halo distribution is

hδðMÞ
h ðxÞδðM0Þ

h ðxÞi≡ bhðMÞbhðM0Þσ2; ð16Þ

where σ2 is the zero-lag variance of the matter distribution.
Finally, the overall characteristic function is given by

P̃ðτÞ ¼ exp

��Z
dMdϑPðϑjMÞ dn

dM
VprofðM;ϑÞ

× ðP̃ðM;ϑÞ
1 ðτÞ − 1ÞbhðMÞ

�
2 σ2

2

�
P̃ðuÞ: ð17Þ

We can obtain the PDF of the brightness temperature in a
point by computing the inverse Fourier transform of the
characteristic function above. Sometimes it can be useful to
consider the PDF of brightness temperature fluctuations
ΔT ≡ T − T̄ as a crude approximation for foreground
subtraction, where T̄ is the mean brightness temperature.
This can be obtained multiplying the characteristic function
by eiT̄τ.

C. Voxelized volume and practical considerations

The derivation in the subsection above returns the PDF
of the brightness temperature in a specific point. In practice,
however, we measure the brightness temperature from
observations in a discretized map, a data cube in which
each cell or voxel (three-dimensional pixels) corresponds to
a comoving volume Vvox. Discretizing the map is relevant
at three stages of the derivation above: the volume of the

3The innermost integral in Eq. (9) is equivalent to PðTjMÞ in
Ref. [51].
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profiles, the characteristic function of a single specific
emitter, and the cumulants of the matter overdensity field.
After discretizing the observed volume, the measured

temperature Ti in a voxel centered at xi is

Ti ¼
XLT

Vvox

X
s

Z
Vvox;i

d3x
dLs

dx
ðxjϑsÞ; ð18Þ

where the sum is over all sources indexed by s.
For isotropic intensity profiles and spherical voxels, the

right hand side of Eq. (9) can be easily evaluated inverting
the relationship between temperature and position for a
given emitter (see Appendix B in Ref. [53]). However, this
is not possible in a more general setup. In particular, the
observed signal profiles in LIM surveys are anisotropic due
to different angular and spectral resolutions, to line broad-
ening only affecting the profile in the direction along the
line of sight, etc. Moreover, although the voxelization can
be arbitrary it is more optimal to follow the experimental
resolutions, which do not need to correspond to similar
distances in the direction along and transverse to the line
of sight.
Instead, we take a different approach and explicitly

compute the spatial integral in Eq. (9), adapted for a
voxelized space. First, we consider a three-dimensional
space and locate the emitter of interest in its center. We grid
the space with cells with the same comoving size as the
voxels and compute the total luminosity on each voxel with
the integral of Eq. (18). We truncate the emission profile at
a minimum relative luminosity Lmin

rel with respect to the
voxel with maximum luminosity [e.g., keeping only the
Nprof

vox voxels with Lvox=maxðLvoxÞ ≥ Lmin
rel ]. We normalize

the luminosity on each voxel so that their sum is again
Ls;tot, and consider Vprof ¼ Nprof

vox Vvox.
Then, we take advantage of the scaling property of the

Fourier transform. Let us consider some scale temperature
T0 so that any T ¼ CT0. We can assume any PDF PT0

for
T0 to account for any scatter in the conditional relations
considered in the previous subsections. We assume a log-
normal distribution

PT0
ðT;T0Þ ¼

exp

(
−log10

�
T
T0

	
−
σ2scat logð10Þ

2

2σ2scat

)
ffiffiffiffiffiffi
2π

p
Tσscat logð10Þ

ð19Þ

with mean T0 and scatter σscat in dex, so that for any T 0 ≡
CT0 we have PT 0 ðT;CT0Þ ¼ PT0

ðT=C;T0Þ=C, which ful-

fills P̃T 0 ðτ;CT0Þ ¼ P̃T0
ðCτ;T0Þ. Grouping all NðiÞ

vox voxels
with the same temperature Ti, the characteristic function for
a halo with mass M and properties ϑ is

P̃ðM;ϑÞ
1 ðτÞ ¼

X
i

NðiÞ
vox

Nprof
vox

P̃T0
ðTiτ=T0;T0Þ; ð20Þ

which corresponds to the weighted average of the charac-
teristic function for each position in the spatial profile, i.e.,
a discretized version of Eq. (9).
Finally, the discretization also affects the impact of

clustering in the PDF. Voxels are the basic unit of
information we have access to, hence halo overdensities
are smoothed over scales of the size of the voxel. This can
be modeled by convolving the overdensity field with the
window function Wvox of the voxel, usually a normalized
top-hat function with the extent of the voxel, leaving

δvhðxÞ ¼
Z

d3x0Wvoxðx − x0Þδhðx0Þ; ð21Þ

where
R
d3xWvox ¼ 1. We substitute δh by δvh, and similarly

for δm, in all their instances in the previous subsection.
This change can be summarized with a slight modification
in Eq. (17), where the cumulant of matter perturbations
must be

σ2vox ¼
Z

d3k
ð2πÞ3 W̃

2
voxðkÞPðsÞ

m ðkÞ; ð22Þ

PðsÞ
m is the nonlinear matter power spectrum in redshift

space and W̃vox is the Fourier transform of the voxel
window function. We estimate the nonlinear power spec-
trum as modeled by HMcode [61]. In this work, we model
redshift-space distortions with the Kaiser factor and a
phenomenological Lorentzian suppression to model the
fingers of God (following, e.g., Ref. [36]) with character-
istic scale

σFoG ¼ 4π

3

Z
dk

ð2πÞ3 P
lin
m ðkÞ; ð23Þ

where Plin
m is the linear matter power spectrum in real space.

Still, the PDF is a continuous quantity which cannot be
directly measured from the observations. Instead, the VID
B, a histogram of the measured brightness temperature in
each voxel normalized by the total number of voxels, can
be used as an estimator of the PDF. The relation between
the VID and the PDF of the signal (i.e., in the absence
of experimental thermal noise) is4

4Previous studies do not normalize the VID by the number of
voxels observed, and therefore include a factor Nvox multiplying
the integral in Eq. (24). We prefer to normalize the VID to deal
with an intensive quantitative, the value of which does not depend
on the size of the survey. This approach allows for a more
intuitive understanding of the VID values, as well as easier
comparisons between experiments.
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BðsÞðΔTiÞ ¼
Z
ΔTi

dΔTPðΔTÞ; ð24Þ

where the integral is limited to the temperature interval
centered on ΔTi. Nonetheless, there is no perfect experi-
ment without noise, and the total VID B is connected to the
total PDF PtotðΔTÞ ¼ ðP � PnoiseÞðΔTÞ through Eq. (24),
where Pnoise is the instrumental noise PDF and “*” denotes
the convolution operator.

III. EFFECTS FROM EXTENDED EMISSION

The derivation above is general enough to account for any
three-dimensional signal profile and any source that can be
embedded in the halo model formalism. Suppose a series of
effects that cause extended signal which independently
correspond to three-dimensional profiles (or window func-
tions) Wi, normalized to unity. Then, the final extended
observed profile is given by the convolution of all of them:

ϱðxÞ ¼ ðW1 �W2 �… �WnÞðxÞ: ð25Þ

As an example, we limit our study to emission coming
from halos and to two of the most prevalent causes of
extended profiles: experimental resolution and line broad-
ening. The former relates to the fact that any experiment has
limited resolution, which prevents to access small scale
information and smears the observed maps; the latter is a
physical effect caused by the Doppler broadening of the
emission line due to the peculiar velocities of the gas
where the emission originates.5

A. Limited resolution and line broadening

The small-scale information in line-intensity maps is
limited by the angular and spectral resolutions of the
experiment. The exact characterization of the beam profiles
and the line-spread function depend on each experiment.
Here, we will consider a Gaussian beam with full-width
half maximum θFWHM and a Gaussian line-spread function
with standard deviation given by the channel width δν of
the experiment. The standard deviation of the Gaussian
window functions for these resolutions correspond to
comoving distance scales transverse to and along the line
of sight given by

σ⊥ ¼ DMðzÞ
θFWHMffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log 2

p ; σk ¼
cδνð1þ zÞ
HðzÞνobs

; ð26Þ

respectively, where DM is the comoving angular diameter
distance, and νobs is the observed frequency. The window

functionWres ¼ W⊥
resW

k
res for the resolution is composed of

W⊥
resðx⊥Þ ¼

exp f−ðx2⊥;1 þ x2⊥;2Þ=2σ2⊥gffiffiffiffiffiffi
2π

p
σ⊥

;

Wk
resðxkÞ ¼

exp f−x2k=2σ2kgffiffiffiffiffiffi
2π

p
σk

; ð27Þ

where the subscript “1” or “2” denote the directions of the
axis transverse to the line of sight.
We assume that the bulk of the line broadening is due to

the rotation of the gas in the halo, which in turn only
depends on the halo mass. Depending on the line of
interest, this may not be the case, especially if the line
is not emitted by hot gas but by colder gas in the galactic
disk. In the latter case, the width of the line also depends on
the disk mass. In this work, we limit our focus to the halo-
mass dependent model proposed in Ref. [62] and leave the
study of further dependencies to future work.
Let us consider that the broadening follows a Gaussian

profile with full-width half maximum determined by the
rotation velocity vðMÞ in units of physical velocity. The
standard deviation of the Gaussian profile in comoving
space is

σvðMÞ ¼ vðMÞð1þ zÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð2Þp

HðzÞ : ð28Þ

Line broadening effectively reduces the map resolution
along the line of sight. Therefore, the window function

capturing its effect is the sameWk
res from Eq. (27), but using

σv instead of σk.
However, a strictly Gaussian profile would consider that

all galaxies have the same angle of inclination with respect
to the line of sight. A much more reasonable assumption
involves randomly oriented emitters, as considered in
Ref. [62]. The actual standard deviation for a galaxy with
an inclination angle φ is 2σv sinφ=

ffiffiffi
3

p
, assuming that the

previously calculated σv corresponds to galaxies with
median inclination over random inclinations. The average
profile can be obtained marginalizing over the inclination
of the galaxy, which follows a uniform distribution on
cosφ≡ μφ:

Wbroadðxk;MÞ ¼
Z

1

−1
dμφ

exp
n
−3x2k=8σ

2
vðMÞð1 − μ2φÞ

o
4σvðMÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − μ2φÞ=3

q

¼
ffiffiffiffiffiffiffiffiffiffi
3π=2

p
4σv

Erfc
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3x2k=8σ
2
v

q �
; ð29Þ

where Erfc is the complementary error function.
If we assume that these are the only contributions to

extended signal, applying Eq. (25) we find

5In the case of the Lyman-α line, radiative transfer also affects
the observed signal profile; we leave the study of this effect for
future work.
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ϱðx;MÞ ¼ WresðxÞ �Wbroadðxk;MÞ
¼ W⊥

resðx⊥Þ
�
Wk

resðxkÞ �Wbroadðxk;MÞ
�
: ð30Þ

If we were to ignore the effect of random inclinations for
the line broadening, then ϱk would be a Gaussian with

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2k þ σ2vðMÞ

q
. However, we have not

found an analytic expression for the convolution of a
Gaussian and Eq. (29). Numerically, it can be quickly
computed using the convolution theorem. For reference, the
Fourier transform of Eq. (29) is

W̃broadðkkÞ ¼
 ffiffiffi

2

3

r
kkσv

!−1

F

 ffiffiffi
2

3

r
kkσv

!
; ð31Þ

where F is the Dawson integral.

B. Experimental case and astrophysical model

By design, the VID depends not only on the intrinsic
signal but also on the experimental setup of the LIM survey,
e.g., through the noise, the resolution, the voxel volume,
etc. For instance, if the spectral resolution is bad enough,
the effect of line broadening will be negligible. This is why
we need to focus on a specific case and generalize the
qualitative effect of extended signal in the VID. To augment
the effect of line broadening, we choose good experimental
resolution.
We consider the spectral line CO(1-0) observed at

νobs ¼ 28.8 GHz (z ¼ 3), with θFWHM ¼ 3 arcmin and
δν ¼ 15 MHz, and a noise-per-voxel standard deviation
of σN ¼ 2.5 μK. This ensures some effect of the line
broadening and that the VID is only dominated by noise
at small brightness temperatures. Since we are interested in
the VID prediction, we assume a good understanding of the
foregrounds, calibration and sky subtraction.
The optimal pixel size for a projected angular map,

balancing the minimization of the correlation between
different intensity bins and the number of pixels to reduce
the statistical uncertainties corresponds to θFWHM [63]. We
find the same to be true for the direction along the line of
sight. Therefore, we choose our voxel size in the direction
transverse to and along the line of sight as the correspond-
ent to θFWHM and δνFWHM ≡ δν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log 2

p
, respectively.

We model the mean relationship between the total line
luminosity Ls;tot and the halo mass using the fiducial
COMAP model [64],

LCO

L⊙
ðMÞ ¼ 4.9 × 10−5

C
ðM=M⋆ÞA þ ðM=M⋆ÞB

; ð32Þ

with A ¼ −2.85, B ¼ −0.42, C ¼ 1010.63, and M⋆ ¼
1012.3M⊙, obtained from a fit to results from Universe
Machine [65], COLDz [66] and COPSS [22]. We apply a

mean-preserving scatter σscat ¼ 0.42 dex in the expression
above, introduced in practice in Eq. (19). We assume the
halo mass function and mass-dependent linear halo bias
from Refs. [67,68], respectively.
Probably the best estimation of the gas dynamics in a

halo comes from the maximum circular velocity calculated
by a halo finder in a simulation. However, there is no given
relationship between this velocity and the halo mass. We
choose to use the virial velocity as a good approximation,
given by

vðMÞ ¼ 50 km=s

�
M

1010M⊙

�
1=3

; ð33Þ

to compute the line width with Eq. (28). We refer the
interested reader to Ref. [62] for a comprehensive dis-
cussion on line broadening, covering the estimation of
vðMÞ from observations, and the modeling of the line
broadening in simulations and in the prediction of the
power spectrum multipoles.

C. Changes in the PDF

Intuitively, we can expect that extended signal profiles
smooths the PDF: as each source contributes to more than
one voxel, there are less very faint or very bright voxels,
since the signal gets redistributed and homogenized. This
scenario corresponds to a PDF with a smoother, smaller
peak at low brightness temperatures and a smaller tail
extending to high brightness temperatures. In this section
we check this intuition by studying the effects of experi-
mental resolution and line broadening in the PDF.
First, let us study the spatial distribution of the signal

along the line of sight. We compare the profile along the
line of sight under different assumptions in the top panel of
Fig. 1. We include results for a point source, accounting
only for the limited resolution of the experiment, and
including line broadening with and without marginalizing
over the inclination of the emitter. Limited resolution
spreads the signal over three voxels,6 but line broadening
results in an even more extended profile for the most
massive halos. Marginalizing over random inclinations
results in a slightly more peaked profile at the center,
but very similar tails.
For our example, only halos with masses ≳4 × 1012M⊙

have a line broadening larger than the line-spread function.
However, as can be seen in the figure, accounting for the
two effects together already results in wider profiles for
lighter halos. This, of course, depends on the voxel size and
the specific vðMÞ relation considered. We can quantify the
relative contribution to the intensity map from the emitters
that extend beyond the resolution limits with the luminos-
ity-weighted distribution of σv (bottom panel of Fig. 1).

6Note that for the more standard voxel size corresponding to δν
instead of δFWHM

ν the signal extends over 5–7 voxels.
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The contribution of halos with emission lines broader than
the line-spread function is small, because although they are
the brightest emitters, their abundance is very small. We
therefore expect a small effect in the VID with respect to
considering only the experimental resolution. Finally, the
random inclination of the emitters broadens the distribution
of σv, but have a similar relative contribution to the line-
intensity map (as seen with the cumulative distribution
function).

We show the effects of the extended profiles in the PDF
in Fig. 2, considering the same cases than in Fig. 1. We
show the VID of the signal alone and including the noise,
using 90 linearly spaced bins of 0.5 μK width in the
interval T ∈ ½−5; 40� μK, as well as the VID corresponding
to only noise. The effects induce a very significant change
in the VID, following the intuition introduced at the
beginning of the section. The extended emission narrows
and smooths the VID, resulting in a lower tail towards
higher brightness temperatures and a broader, lower peak at
low brightness temperatures. Adding fractional contribu-
tions of several emitters to voxels which otherwise would
be empty results in less very faint voxels. At the same time,
distributing the signal of very bright voxels over their
adjacent voxels imply that they are not that bright any more.
As one could expect from the results shown in Fig. 1,

the impact of including the line broadening on top of the
experimental resolution is small and limited only to the
height of the tail at high temperatures. Marginalizing over
the galaxy inclination has a negligible effect for this
example, but it may have some impact for a different set
up. Note that, although the VID at high brightness temper-
atures is significantly smaller after considering extended
emission, we can expect better sensitivity to the signal of

FIG. 1. Top panel: extended profiles in the direction along the
line of sight for our example under different assumptions: we
show a point source in light green, the effects of the limited
resolution in purple, and adding line broadening with and without
random inclination (dotted and dashed lines, respectively) with
different colors for different halo masses. The grid in the
horizontal axis corresponds to the voxel division. Bottom panel:
luminosity-weighted distribution (top) and cumulative distribu-
tion (bottom) of the line broadening with and without random
inclinations (blue and red, respectively). We also show the line
broadening σv for edge-on emitters for the same masses consid-
ered in the top panel, the standard deviation σk of the line-spread
function and the voxel size σFWHM

k .

FIG. 2. VID of the signal (top) and including the contribution
from the instrumental noise (bottom) for our example. We show
the VID for point sources in red, including the effects from
limited resolution in blue, adding line broadening for edge-on
galaxies in magenta and marginalizing also over their inclination
in orange. The inset enlarges the deviation over the noise-alone
VID (black dotted).
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interest, since there is a larger deviation from the noise-only
signal at low brightness temperatures, where the statistical
uncertainties are smaller. Figure 1 is a clear example that
extended profiles must be taken into account when com-
puting the LIM PDF.
The redistribution of signal to different voxels due to the

extended profiles has another consequence for the inter-
pretation of the VID. While the identification of bright
voxels as those hosting more massive halos or brighter
emitters is already nontrivial in the case of point sources
(due to the unknown number of emitters in each voxel), the
redistribution of signal further smears this connection. This
results in a very broad distribution of halo masses without
large differences between bright or faint voxels, as found
in Ref. [69].
We show the dependence of the VID on clustering in

Fig. 3. Higher matter clustering implies a higher clustering
of galaxies and subsequently a larger variance in the
brightness temperature fluctuations. Therefore, it increases
the high-temperature tail of the VID, compensating at
temperatures slightly above zero, as shown in the figure
and in the inset, respectively. Since this effect can be
degenerate with the LðMÞ relation, analyses must margin-
alize over σ2vox to avoid biased results.
Perhaps surprisingly, line broadening has a smaller

impact on the VID than in the power spectrum multipoles
(see Ref. [62]). This is because line broadening is more
severe for brighter, more massive, but much less abundant
halos. While they dominate the contributions to the shot

noise of the power spectrum (which depends on the second
moment of the luminosity function) and the linear power
spectrum (since their fluctuations are more biased), they
almost do not contribute to the overall luminosity (see
Fig. 1). On top of that, the impact of the bias is smaller and
very distributed over all masses in the VID [see Eq. (17)].
Furthermore, the quadrupole of the power spectrum traces
the anisotropy of the clustering, hence it can be very
affected by line broadening, while the VID is not sensitive
to anisotropies.

IV. VALIDATION WITH SIMULATIONS

In this section we compare our predictions with simu-
lations to test the accuracy of the modeling presented in
Sec. II. We assume the astrophysical model and exper-
imental set up described in Sec. III B.
We employ the publicly available code SIMPLE

7 [70],
based on log-normal galaxy distribution simulations8 [71],
to compute the LIM log-normal simulations. We consider
the luminosity-weighted average linear halo bias (b ¼ 4.07)
corresponding to our model. We generate line-intensity
maps for a volume of 0.158 ðGpc=hÞ3 at a single redshift
z ¼ 3, which corresponds to 1503 cuboidlike voxels,
defined as the full-width half maximum of the telescope
beamand channelwidth.We run the simulationswith amesh
three times finer (e.g., 4503 cells) in order to accurately
capture the smoothing and the extended emission.We assign
the intensity emitted by each galaxy to the mesh using the
“nearest grid point” routine, apply as many filters as needed
depending on the case to smooth the simulated line-intensity
map, and then downsample to the voxel-size resolution
using the same routine.9

For each realization, we consider four different cases:
no smoothing applied (i.e., point sources); modeling
the experimental resolution with an anisotropic Gaussian
filter with standard deviations σk ¼ 1.37 Mpc=h and
σ⊥ ¼ 1.62 Mpc=h along and transverse to the line of sight,
respectively; and including on top of it the line broadening
with and without accounting for random inclinations.
We follow Ref. [62] to implement line broadening in the

simulations. We first compute the line width σv for each
galaxy. To do so, we modify SIMPLE to first assign a mass to
each galaxy following the halo mass function. We can
compute the line luminosity and line width associated with
each mass using Eq. (32) with a mean-preserving

FIG. 3. VID including the contribution from the instrumental
noise for our example and accounting for experimental resolution
and the line broadening for randomly oriented galaxies. We show
the prediction for several values of σ2vox with different colors, as
indicated in the legend, and the noise-only VID with a black-
dotted line. The inset in the bottom panel enlarges the deviation
over the noise-alone VID.

7https://github.com/mlujnie/simple.
8https://bitbucket.org/komatsu5147/lognormal_galaxies/src/

master/.
9While “nearest grid point” introduces aliases and ringing for

power spectrum measurements (see Ref. [72] for a thorough
study), we have tested that higher-order mass-assignment kernels
such as “clouds in cell” introduce spurious effects in the VID,
even after compensating their effect on the map by deconvoluting
the kernel. The finer grid also prevents from resolution-dependent
artifacts related with the Fourier transform in the final map.
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logarithmic scatter σscat, and Eqs. (33) and (28), respec-
tively. Random galaxy inclinations are accounted for

multiplying the edge-on σv by a factor 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μ2φÞ=3

q
,

where μφ is sampled from a uniform distribution within
½−1; 1�. We bin galaxies in the simulation by σv and
compute an intensity-weighted average σ̄iv for each bin.
Afterwards, we add the intensity from the galaxies within
each bin to empty meshes and apply a Gaussian filter with
σ⊥ ¼ 0 and σk ¼ σ̄iv. We add all meshes and apply the
resolution filter described above.
In all cases, we remove the mean from the maps, measure

the VID for ΔT, and compute their average

B̄a ¼
1

Nr

XNr

i

BðiÞ
a ð34Þ

and covariance

Cab ¼
1

Nr

XNr

i

��
BðiÞ
a − B̄a

��
BðiÞ
b − B̄b

��
ð35Þ

for the ΔTa and ΔTb bins from Nr ¼ 1008 independent
realizations. Note that we have defined Ba ≡ BðΔTaÞ.
By definition, the galaxy bias in the log-normal simu-

lations used in SIMPLE is linear and the same for all
galaxies. We therefore assume bðMÞ ¼ 4.07 for the com-
parison between the theoretical prediction and the mea-
sured B̄ from the log-normal simulations. Note that for this
validation we use σ2vox ¼ 0.24 computed from Eq. (22)
using also Eq. (23), instead of fitting it to the measurements
(see Fig. 3 for the effect of σ2vox in the VID).
We compare theoretical predictions and measurements

from the simulations in Fig. 4, including
ffiffiffiffiffiffiffi
Caa

p
as a reference

for the uncertainties. Themodel provides a good description
of themeanmeasurements from the log-normal realizations,
successfully capturing the effects of the smoothing.
There is a small absolute deviation between the prediction

and the simulations at intermediate scales, present in all four
cases. We show the relative difference between the theo-
retical prediction and the measurement from simulations in
Fig. 5. Regarding the clustering, we consider the log-normal
simulations introduced above, but also Poisson-sampled
realizations without any clustering of emitters; regarding the
intensity profiles, we consider point sources and extended
profiles with effects from resolution and line broadening
marginalizing over the inclination. Themean and covariance
for the Poisson realizations are obtained from 100 indepen-
dent realizations. Here we can appreciate that although our
model qualitatively captures the effects of extended profiles,
it does not provide an accurate prediction of the VID.
The inaccuracy is most severe at intermediate brightness
temperatures, where the relative deviation is maximum and
the covariance is smaller.

We associate this deviation to two potential sources of
error. First, we can see that even for point sources clustering
is not properly captured. This is because the modeling of
clustering is limited. Truncating the moment-generating
function at second order removes any impact of non
Gaussianity of the halo distribution in the PDF.10 This
could be captured including higher terms in the expansion
of the cumulants of clustering in Eq. (15) [and subsequently
in Eq. (17)]. Note that neglecting nonlinear bias is most
likely a bigger issue, but our log-normal simulations
assume linear bias by definition. Second, there is a small
deviation introduced by the extended profiles even in the
absence of clustering. This may be due to limitations of our
model or to potential numerical artifacts in the implemen-
tation of the line broadening in the simulated line-intensity
maps. While the impact of artifacts related with resolution
and filters in the power spectrum have been thoroughly
investigated, there is significantly less studies on their
effects on the histogram of the map. Furthermore, these
deviations may not depend trivially on the experimental
setup and ratio between σk and σv. We leave a dedicated
study with a deeper study of the numerical artifacts for
future work.

FIG. 4. Meanmeasured VID from 1008 independent log-normal
realizations including instrumental noise (solid step lines) and the
prediction using the formalism described in this work (dotted
lines). Shaded regions correspond to the square root of the diagonal
of the covariance. We show results for point sources in red,
including the effects from resolution in blue, adding line broad-
ening in purple and marginalizing over inclinations in orange.

10Log-normal simulations exhibit a higher degree of non-
Gaussianity in the galaxy distribution than N-body simulations
(see, e.g., [73]). Therefore, deviations from the measurements in
the log-normal realizations related to the truncation of the
moment expansion are expected to be larger than in a more
realistic case.
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Finally, we study the impact of the extended profiles in
the covariance matrix of the VID. An analytic estimation of
the covariance can be obtained from the 2-point PDF,
following the derivation described in Ref. [53] and adapting
it to LIM. However, the covariance of the VID is usually
assumed to be that of a multinomial distribution, since the
VID is a histogram. A multinomial distribution presents a
covariance

Cmultinom
ab ¼

8<
:

Ba
Nvox

ð1 − BaÞ if a ¼ b

− BaBb
Nvox

if a ≠ b
; ð36Þ

so that its correlation matrix, defined in general as
Rab ≡ Cab=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CaaCbb

p
, has off-diagonal terms given

by Rmultinom
ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BaBb=½ð1 − BaÞð1 − BbÞ�

p
.

The diagonal of the numerical covariance computed
using Eq. (35) agrees very well with the multinomial

variance for all cases, but the off-diagonal terms do not.
We show the numerical correlation matrices computed from
the log-normal realizations for the four cases in Fig. 6. We
do not find the strong negative correlations expected for the
multinomial distribution. On the contrary, we find negli-
gible correlation for point sources except for ΔT ≲ 5 μK,
which is dominated by the instrumental noise. Once
emitters are allowed to contribute to more than one voxel,
the off-diagonal correlation grows to ≲0.1; it is slightly
higher once line broadening is considered. The deviation
from the multinomial distribution off-diagonal covariance
is due to physical effects and sources contributing to several
voxels inducing correlations beyond the multinomial dis-
tribution. Note that the correlation would be larger for
smaller voxels, as demonstrated in Ref. [63].
The covariance measured from the simulations does not

include the supersample contributions. These contributions,
derived for a previous formalism of the VID in Ref. [41],
have been found to be generally smaller than statistical
covariance from Poisson sampling of a histogram.
Similarly, the off-diagonal physical covariance is also
expected to be larger than the supersample covariance.

V. PARAMETER-INFERENCE BIAS

We have shown that the VID accounting for extended
emission is very different that the standard computation for

FIG. 5. Relative deviation between the theoretical prediction
and the mean from Poisson realizations and log-normal simu-
lations, considering point sources and extended profiles as
indicated by the titles of the panels. For the cases with clustering
(log-normal), we vary σ2vox, highlighting the fiducial value used
throughout the rest of the study in magenta. Shaded gray areas
show the relative uncertainties related with the diagonal of the
covariance matrix. Note the change of scale in the y axis between
the two top and the two bottom panels.

FIG. 6. Correlation matrices computed numerically from 1008
log-normal realizations. We consider four cases as indicated by
the titles at the top of each panel.
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point sources. Therefore, an analysis assuming point
sources is prone to obtain highly biased results.
We consider an analysis of the VID with the same

experimental set up and model as in previous sections. We
focus on the LðMÞ relation and take C, A, B andM⋆ as free
parameters [see Eq. (32)]. We also include σ2vox as nuisance
parameter. Assuming Gaussian errors, the logarithm
of the likelihood for the VID at position p in the parameter
space is

−2 logLðpÞ ¼
X
ab

ΔBaðpÞ
�
C−1
	
abΔBbðpÞ; ð37Þ

whereΔBa is the difference between the measured VID and
the prediction. We use the covariance matrix numerically
estimated in Sec. IV. However, the inverse of a covariance
matrix estimated from a finite number of realizations is not
unbiased; we apply the correction factor described in
Ref. [74] to the inverse of the covariance matrix. In our
case, the correction amounts to a ∼10% factor.
Let us assume, for this exercise, that the data is perfectly

described by our modeling of the VID including the
extended signal caused by experimental resolution and
line broadening for random galaxy inclinations for a set
of true parameter values pfid. An analysis for this model
would then return best-fit parameter values psmbf ¼ pfid
and ΔBaðpfidÞ ¼ 0.
For an incorrect modeling—assuming point sources in

our case—the best-fit ppsbf inferred will be biased. This bias
can be estimated using a Fisher-matrix analysis, through a
linear approximation of the likelihood. This is not a good
approximation for our case, since we expect large devia-
tions in B for the incorrect model (see Fig. 2). However, this
exercise provides a qualitative estimate of the impact in
parameter inference.
We denote the predictions for the two models with Bsm

and Bps, respectively, standing for “smoothed” and “point
sources.” The estimated systematic bias introduced due to
the poor modeling is [75]

Δpsyst ≡ ppsbf − pfid

¼ F−1
ps

X
ab

∇pB
ps
a jpfidðC−1ps Þab½Bsm

b ðpfidÞ − Bps
b ðpfidÞ�;

ð38Þ

where

F ¼
X
ab

∇pBajpfid
�
C−1
	
abð∇pBbjpfidÞ ð39Þ

is the Fisher matrix computed for the case of interest, and
∇pB

ps
a jpfid is the gradient in parameter space of the VID

evaluated at pfid.
We show marginalized forecasted uncertainties for the

two models including the estimation for the systematic bias

in Fig. 7. All parameters present big systematic biases,
except for log10M⋆, for which the marginalized one-
dimensional bias is ∼1.8σ. In addition, note that the
constraining power and the degeneracies obtained if point
sources are assumed are also different. Incomplete model-
ing may affect the conclusions obtained from a Fisher
forecasts, which motivates the use of more accurate models
even for qualitative forecast sensitivity [76].

VI. CONCLUSIONS

Line-intensity mapping proposes an alternative tracer for
the large-scale structure of the Universe, providing unprec-
edented sensitivity to high redshifts and faint emitters.
Contrary to other tracers, LIM is also sensitive to astro-
physical processes driving galaxy formation and evolution.
This additional dependence adds another layer of complex-
ity to the line-intensity fluctuation maps, which become
very non Gaussian. Therefore, LIM power spectra can only
capture a fraction of the information encoded in line-
intensity maps. Furthermore, the power spectrum is
affected by degeneracies between cosmology and astro-
physics. These are the main motivations to explore one-
point statistics, since they probe the whole distribution of
intensity fluctuations and are more sensitive to features in
the line-luminosity function.
So far, the modeling of LIM 1-point statistics has relied

on an unphysical assumption: that each emitter contributes

FIG. 7. 68% and 95% confidence level forecasted marginalized
constraints on the parameters controlling the LðMÞ relation for
the experimental set up described in Secs. III B and IV. We
compare the results for point sources (red) and modeling the
limited resolution of the experiment and line broadening mar-
ginalizing over the emitter inclination (orange), assuming that the
latter is the correct description of the data. True parameter values
are marked by a star, while the best fit assuming point sources is
marked by a black dot.
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just to the voxel that contains it. This assumption implies
that experiments have perfect resolution and that all
emitters are point sources with negligible line width.
In this work we have dropped this assumption and

implemented for the first time the contribution of an emitter
to several voxels in the LIM PDF theoretical prediction. We
build uponpreviousworkwhich use the halomodel [51–53],
noting the additional complication that LIM implies with
respect to projected angular fields. We circumvent this
complication invoking the ergodic hypothesis and integrat-
ing over the spatial distribution of the intensity profile when
computing the intensity PDF of a single emitter.
We compare four different cases: point sources, adding

the effects of limited resolution, adding on top it line
broadening assuming that all galaxies are perfectly edge-
on, and marginalizing over their inclination. Extended
profiles significantly alter the LIM PDF prediction, with
changes of more than one order of magnitudes. The
resulting PDF has a broader, lower peak at low intensities
and a lower, shorter tail towards high intensities. This
follows our intuition: if an emitter contributes to several
voxels, there will be fewer empty or very faint voxels and
also less very bright voxels, respectively. We find that, for
the example considered, the dominant effect is related to the
limited resolution, while including the effects of line
broadening adds a small modification. Since line broad-
ening only acts in the direction along the line of sight and is
more relevant for massive, rare emitters, it has a smaller
effect on the VID than the experimental resolution, which
acts in the three directions and affects all emitters equally.
The qualitative behaviour agrees with our expectations, and
although the LIM PDF depends a lot on the specific
astrophysical model and experimental setup, we expect
these results to be generally applicable.
We validate, for the first time, the theoretical prediction

of the VID against simulations. We compare our imple-
mentation with log-normal simulations and find good
qualitative agreement. Nonetheless, we still find deviations
that are related with the clustering of emitters, as well as
potential numerical artifacts from the implementation of
line broadening in the simulations or limitations in our
model to include extended profiles in the theoretical
prediction. We leave further development of the modeling
of clustering for the LIM PDF and a deeper study of the
implementation of extended profiles in simulations and its
impact on the measured VID for future work. Alternative
frameworks like the theory of large deviations, which is
being developed for the PDF of cosmic magnification (see
e.g. Ref. [77] and references therein), provide a better
prediction for the matter clustering PDF. Therefore, a

combination of both approaches, for instance combining
the LIM PDF for unclustered sources with a PDF for the
clustering of such sources, might lead to a more accurate
prediction.
We also study the effects of extended profiles in the VID

covariance. First, we see that while the diagonal of the
covariance follows closely the variance for a multinomial
distribution, as expected from a histogram, the off-diagonal
terms significantly deviate. We find negligible correlation
for point sources, instead of the strong negative correlations
expected for a multinomial distribution. Second, we find
that extended profiles increase the correlation between
intensity bins in the VID, reaching correlations of around
10%. Finally, we demonstrate that very large systematic
biases in parameter inference can be expected if pointlike
intensity profiles are assumed.
One-point statistics, especially through its complemen-

tarity with the power spectrum, holds promise to break
parameter degeneracies and significantly increase the
constraining power of LIM surveys. In the case observa-
tional contaminants preclude the use of the VID, there are
alternatives, combining different LIM observations or line-
intensity maps and galaxy catalogs, which are more robust
to observational systematics. However, since these alter-
native summary statistics still depend on the intensity PDF,
they must account for the profiles of the observed signal
from each emitter.
This work is but one of the first steps towards an accurate

and efficient modeling for the LIM PDF. Further research is
required to achieve a successful application to observations.
Nonetheless, the promise of LIM one-point summary
statistics motivates this effort, since only through their
combination with LIM power spectra and other observa-
tions LIM surveys will unlock their full potential.
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