
Solitons and halos for self-interacting scalar dark matter

Raquel Galazo García , Philippe Brax, and Patrick Valageas
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We study the formation and evolution of solitons supported by repulsive self-interactions inside
extended halos, for scalar-field dark matter scenarios. We focus on the semiclassical regime where the
quantum pressure is typically much smaller than the self-interactions. We present numerical simulations,
with initial conditions where the halo is described by the WKB approximation for its eigenfunction
coefficients. We find that when the size of the system is of the order of the Jeans length associated with the
self-interactions, a central soliton quickly forms and makes about 50% of the total mass. However, if the
halo is 10 times greater than this self-interaction scale, a soliton only quickly forms in cuspy halos where
the central density is large enough to trigger the self-interactions. If the halo has a flat core, it takes a longer
time for a soliton to appear, after small random fluctuations on the de Broglie wavelength size build up to
reach a large enough density. In some cases, we observe the coexistence of several narrow density spikes
inside the larger self-interaction-supported soliton. All solitons appear robust and slowly grow, unless they
already make up 40% of the total mass. We develop a kinetic theory, valid for an inhomogeneous
background, to estimate the soliton growth rate for low masses. It explains the fast falloff of the growth rate
as resonances between the ground state and halo excited states disappear. Our results suggest that
cosmological halos would show a large scatter for their soliton mass, depending on their assembly history.
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I. INTRODUCTION

Scalar dark matter [1] is a fruitful alternative to the
weakly interacting massive particle paradigm [2]. nating
from the first axion models [3–5], it has now been extended
to a wide range of scenarios where the mass of the scalar can
be between 10−22 and 1 eV [6–9]. In particular these models
allow for a modification of the distribution of dark matter
inside galaxies where the core-cusp problem [10–12] of
Lambda cold dark matter (Λ-CDM) can be addressed
without any baryonic feedback [13–15]. Scalar dark matter
models can lead to different types of stable configurations
of dark matter, often called solitons [16–20], which would
render the distribution of dark matter smooth on short
scales and evade the cuspy profiles found in the Λ-CDM
model. These solitons result from the balance between
different types of pressures and interactions acting on dark
matter. Gravity is always active but two other sources of
pressure play also a role. The first one is the quantum
pressure whose origin springs from the Schrödinger descrip-
tion of the nonrelativistic scalar (i.e., from the Heisenberg
inequalities that follow from the wavelike properties of the
system). This quantum pressure is always repulsive and can
form solitons by compensating gravity [21]. These solitons
have a radius that decreases with their mass as R ∝ 1=M.
They are a manifestation of the wave nature of models such
as fuzzy dark matter (FDM) [7,22], where the de Broglie
wavelength reaches galactic scales when the mass of the

scalar is m ≃ 10−22 eV. Fuzzy dark matter is described by a
noninteracting massive scalar field. When self-interactions
are present, such as a quartic term in the Lagrangian of the
scalar model [23–25], this can generate a repulsive self-
interaction that can balance gravity on large scales and again
create smooth solitons of finite size [17,18,26–28]. Their size
is directly related to the mass and the self-interaction of the
scalar field and no longer depends on the soliton mass. The
cosmological evolution of such models has been studied for
instance in [28–30].
In this paper we are interested in the formation of

self-interacting solitons inside a larger dark matter halo.
The 1D spherical collapse was studied with a fluid approxi-
mation in [31]. In contrast, in this paper we use the 3D
Schrödinger-Poisson equations with stochastic initial con-
ditions around a mean halo target profile that can have
either a flat or cuspy core. We also consider the cases where
there is initially a small soliton or not superimposed on this
stochastic halo. Thus, we assume that a large halo has
formed by Jeans’s instability [24,28,32,33] and study
whether solitons can emerge dynamically from the time
evolution of the dark matter inside the halo. In particular,
we show that due to the initial density fluctuations around
the initial halo profile, self-interacting solitons always
emerge and swallow a significant portion of the halo mass.
This takes place whether a small soliton already exists or
even when no soliton is present initially. We also compare
what happens when the halo profile is flat or cuspy. In the
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case of cuspy profiles, we find that the formation of a
soliton from no initial one is very fast and happens in a few
dynamical times. In all cases, a soliton forms, grows and
reaches a significant size of the initial halo. This behavior
differs from what happens for fuzzy dark matter where
solitons are only stable if initially present and of a large
enough mass [21,34–36]. In the self-interacting case, the
solitons are spontaneously created.
We confirm these results by deriving a kinetic equation

from the nonlinear Schrödinger equation, which also
applies to a nonhomogeneous background. With the addi-
tion of a simple energy-cutoff ansatz for the occupation
numbers of the halo excited states, we obtain that the
growth rate of solitons is positive but shows a fast falloff
with the increase of the soliton mass.
Our results would have relevant consequences for

astrophysical situations as they suggest that if dark matter
happened to be a scalar with self-interactions, then dark
matter halos would be composed of a mix between a diffuse
halo and a smaller soliton whose size would depend on the
formation history of the halo. This could have phenom-
enological consequences for the dynamics of stars in dark
matter halos that we leave for future studies.
The paper is arranged as follows. In Sec. II we describe

the model and the region in the parameter space that we
focus on, where self-interactions are important. We present
the choice of initial conditions and the numerical procedure
in Sec. III. In the next Sec. IV, we describe the emergence
of solitons in flat halos and then in Sec. V in cuspy halos.
Finally, we develop a kinetic theory in Sec. VI to analyze
the growth rate of solitons. We then conclude in Sec. VII.

II. EQUATIONS OF MOTION

A. The scalar-field action

We consider scalar dark matter models described by the
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 −m2ϕ2

2
− VIðϕÞ

�
; ð1Þ

where the quartic self-interaction potential VI is small as
compared with the quadratic term and given by

VIðϕÞ ¼
λ4
4
ϕ4; ð2Þ

where λ4 dictates the strength of the self-interactions. At
late times, when the Hubble expansion rate is smaller than
the scalar mass,H ≪ m, the scalar field oscillates inside its
potential well with a period 2π=m and can be described by
the nonrelativistic ansatz

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p �
ψe−imt þ ψ�eimt

�
; ð3Þ

where the complex wave function ψ varies on timescales
and lengths much larger than 1=m. In this nonrelativistic
approximation [28], the wave function satisfies the non-
linear Schrödinger equation

i
∂ψ

∂t
¼ −

∇2ψ

2m
þmðΦN þΦIÞψ : ð4Þ

Here and in the following, we consider timescales that are
much shorter than the Hubble time and we neglect the
expansion of the Universe. The Newtonian gravitational
potential ΦN is given by the Poisson equation

∇2ΦN ¼ 4πGNmjψ j2; ð5Þ

and the self-interacting potential is

ΦI ¼
3λ4
4m3

jψ j2: ð6Þ

This a coupled system where the nonlinear Schrödinger
equation couples to the Poisson equation. This can also be
reduced to a single integro-differential equation, which will
be analyzed in Sec. VI,

i
∂ψ

∂t
¼ −

∇2ψ

2m
þm2ψ

�
4πGN∇−2 þ 1

ρa

�
jψ j2; ð7Þ

with

ρa ¼
4m4

3λ4
: ð8Þ

Simple configurations can be understood from the
hydrodynamical picture that follows from the Madelüng
transform [37]

ψ ¼
ffiffiffiffi
ρ

m

r
eiS; whence ρ ¼ mjψ j2; ð9Þ

where the dark matter velocity is identified as v⃗ ¼ ∇S=m.
The real and imaginary parts of the Schrödinger equation
give the continuity and Euler equations

∂tρþ∇ · ðρv⃗Þ ¼ 0;

∂tv⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦI þΦQÞ; ð10Þ

with

ΦI ¼
ρ

ρa
; ΦQ ¼ −

∇2 ffiffiffi
ρ

p
2m2 ffiffiffi

ρ
p ; ð11Þ

where ΦQ is the so-called quantum pressure.
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B. Hydrostatic equilibrium and Thomas-Fermi limit

As seen from Eq. (10), such scalar-field models admit
hydrostatic equilibria given by v⃗ ¼ 0 and ΦN þΦI þ
ΦQ ¼ constant. The spherically symmetric ground state
is also called a soliton or boson star. In the Thomas-Fermi
regime that we will consider in this paper, this soliton is
governed by the balance between gravity and the repulsive
force associated with the self-interactions (for λ4 > 0). This
means that ΦQ ≪ ΦI over most of the extent of the soliton

and the Laplacian term − ∇2ψ
2m can be neglected in Eq. (4).

Then, the wave function reads ψðr; tÞ ¼ e−iEtψ̂ðrÞ with

ΦN þΦI ¼
E
m
: ð12Þ

The soliton density profile is given by [17,28,38]

ρsolðrÞ ¼ ρ0sol
sinðπr=RsolÞ
πr=Rsol

; ð13Þ

with the radius

Rsol ¼ πra; with r2a ¼
3λ4

16πGNm4
¼ 1

4πGNρa
: ð14Þ

In fact, outside of the radius ra where Eq. (13) would give
a zero density we can no longer neglect ΦQ and the
exact solution develops an exponential tail at large radii.
Nevertheless, from Eq. (11) we can see that the approxi-
mation (13) is valid up to r≲ Rsol for

ΦQ ≪ ΦI∶
ρ0sol
ρa

≫
1

r2am2
: ð15Þ

C. Outer halo and semiclassical limit

In this paper, we will study the emergence and the
evolution of these solitons within a larger halo of radius
Rhalo > Rsol. As seen above, the self-interactions can only
support a hydrostatic equilibrium within the radius Rsol of
Eq. (14), independent of the soliton mass. Therefore, while
inside Rsol the self-interactions can balance gravity and
build a flat core when the condition (15) is satisfied, outside
of Rsol the self-interactions are negligible. There, as for
FDM and CDMmodels, gravity is balanced by the velocity
dispersion or the angular momentum of the system. Thus,
in cosmological numerical simulations of FDM halos, one
finds a flat core governed by the quantum pressure inside an
Navarro-Frenk-White (NFW) halo that is similar to the
halos found in CDM simulations [39]. The halo is made of
granules that are stochastic fluctuations with a size of the
order of the de Broglie wavelength. A similar configuration
would then apply to our case, except that the flat core is
now supported by the self-interactions instead of the
quantum pressure.

We will consider the semiclassical limit (i.e., large scalar
mass m), where the de Broglie wavelength is much smaller
than both the core and halo radii. Then, the granules also
correspond to temporary wave packets that play the role of
particles [22] with a velocity dispersion or an angular
momentum that balances gravity and supports a virialized
halo. This means that ΦQ ≪ ΦN . For a system of size L⋆
and density ρ⋆, this gives

ΦQ ≪ ΦN∶ ϵ ≪ 1 with ϵ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
GNρ⋆

p
mL2

⋆
: ð16Þ

For a virialized system governed by gravity, the gravita-
tional dynamical time t⋆ and the virial velocity are

t⋆ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
GNρ⋆

p and v⋆ ¼ L⋆

t⋆
: ð17Þ

Therefore, the de Broglie wavelength λdB reads

λdB ¼ 2π

mv⋆
¼ 2πt⋆

mL⋆
¼ 2πffiffiffiffiffiffiffiffiffiffiffi

GNρ⋆
p

mL⋆
¼ ϵ2πL⋆: ð18Þ

Thus, the limit ϵ → 0 corresponds to the semiclassical
limit, where the de Broglie wavelength is much smaller
than the size of the system. In this paper, we focus on the
semiclassical regime ϵ ¼ 0.01 ≪ 1. Then, the halo is
composed of incoherent stochastic fluctuations of size
λdB, with a velocity dispersion set by the virial velocity,
whereas a coherent static soliton can appear at the center.

D. Parameter space

To set our study within the context of dark matter models
and the formation of large-scale structures, we show in
Fig. 1 the range of parameters allowed by astrophysical and
cosmological constraints and where our computations are
relevant. The exclusion regions, shown by the shaded
domains, are displayed in the planes ðm; λ4Þ (upper panel)
and ðm;RsolÞ (lower panel). At fixed m, the soliton radius
(14) can be used in place of λ4 as the second dark matter
parameter and it can be more convenient for astrophysical
and cosmological purposes. In the upper panel, we also
show the black solid line Rsol ¼ 1 kpc for reference.
A first observational constraint is associated with

cluster mergers, such as the bullet cluster, that provide
an upper bound on the dark matter cross section, σ=mDM ≲
1 cm2=g [40]. This gives the upper bound [28]

σ=m≲ 1 cm2=g∶ λ4 ≲ 10−12
�

m
1 eV

�3
2 ð19Þ

shown by the dashed red line. A second constraint is the
requirement that the quartic term VI of Eq. (2) be much
smaller than the quadratic term in the scalar-field potential
since at least the time of matter-radiation equality teq. This
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ensures that the scalar field behaves as dark matter with a
mean cosmological density that decreases as ρ̄ ∝ a−3,
where aðtÞ is the scale factor. This gives the condition
λ4ρ̄eq=m4 ≪ 1, which reads

VIeq ≪ ρ̄eq∶ λ4 ≪
�

m
1 eV

�
4

; ð20Þ

and is shown by the dotted red line. For the same reason, we
also require that the scalar field has started oscillating in its
almost quadratic potential before the matter-radiation
equality. This gives the constraint

m ≫ Heq ∼ 10−28 eV: ð21Þ

This lower bound does not appear in Fig. 1 because it is less
stringent than the lower bound (22) considered below.
The de Broglie wavelength (18) sets the scale where the

quantum pressure alone and wavelike effects lead to strong
departure from CDM. We require λdB < L with L ∼ 1 kpc,
which gives

λdB < L∶ m>

�
L

1 kpc

�
−1
�

v
100 km=s

�
−1
10−22 eV: ð22Þ

It is shown by the left vertical green line for L ¼ 1 kpc and
v ¼ 100 km=s. The lower limit m ∼ 10−22 eV corresponds
to fuzzy dark matter scenarios, where galactic cores could
be partly explained by the solitons formed at the center of
galaxies, although this is disfavored by observations of the
Lyman-α forest power spectrum. Thus, in this paper we
consider models with masses above 10−22 eV. More gen-
erally, we focus on scenarios where the soliton is governed
by the self-interactions rather than by the quantum pres-
sure. This corresponds to the condition Rsol > λdB, which
reads

Rsol> λdB∶ λ4 > 4×10−48
�

v
100 km=s

�
−2
�

m
1 eV

�
2

; ð23Þ

and is shown by the blue dashed line for v ¼ 100 km=s.
Finally, to treat the system as a classical field, the

occupation number N ∼ ðρ=mÞλ3dB ∼ ρ=ðm4v3Þ must be
much greater than unity. At the soliton scale, with v2 ∼
ΦN ∼ΦI this gives λ4v ≪ 1, which reads

soliton; N ≫ 1∶ λ4 ≪ 3 × 103
�

v
100 km=s

�
−1
: ð24Þ

This upper bound does not appear in Fig. 1 because it is less
stringent than the upper bounds (19) and (20) considered
above. We also require that the field be classical on cosmo-
logical scales, that is, N̄ ∼ ρ̄0=ðm4v3Þ ≫ 1. For the cosmo-
logical density today this gives the condition

cosmology; N ≫ 1∶ m ≪
�

v
100 km=s

�
−3=4

0.7 eV;

ð25Þ

shown by the right vertical green line.
Thus, the white area in Fig. 1 shows the domain of

parameters that we consider, where the scalar field is a
viable dark matter candidate and self-interactions dominate
over the quantum pressure. In our simulations we take
ϵ ¼ 0.01. This typically corresponds to models that are
parallel to the line labeled Rsol > λdB in Fig. 1, with a
coupling λ4 or a radius Rsol that is greater by a factor 100.
However, we expect similar behaviors to hold for smaller ϵ,
that is, further into the allowed domain. The soliton radius
can range from a few kpc down to the meter, depending on
m and λ4. The larger value could allow these scenarios to
play the same role as fuzzy dark matter models, where the
soliton may cure some of the small-scale tensions of CDM.
Smaller solitons would not play such a role and would
behave like CDM on galactic scales. However, they could
be distinguished from CDM by astrophysical probes, such

FIG. 1. Domains in the planes ðm; λ4Þ (upper panel) and
ðm;RsolÞ (lower panel) where our computations are relevant.
See the main text for the explanation of the shaded exclusion
regions.
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as their impact on the orbital dynamics and the emission of
gravitational waves of black hole binary systems [41].

III. INITIAL CONDITIONS AND
NUMERICAL PROCEDURE

A. Dimensionless variables

Going back to the Schrödinger equation, it is convenient
to work with dimensionless quantities denoted with a tilde,

ψ ¼ ψ⋆ψ̃ ; t ¼ t⋆t̃; x⃗ ¼ L⋆
˜x⃗; Φ ¼ L2

⋆

t2�
Φ̃;

ð26Þ

where t⋆ and L⋆ are the characteristic time and length
scales of the system (in our case the halo that may contain a
smaller soliton at the center). This gives the dimensionless
Schrödinger equation

iϵ
∂ψ̃

∂t̃
¼ −

ϵ2

2
e∇2ψ̃ þ ðΦ̃N þ Φ̃IÞψ̃ ; ð27Þ

with

ϵ ¼ t⋆
mL2

⋆
: ð28Þ

We have already introduced in Eq. (16) the parameter ϵ,
which plays the role of ℏ and measures the relevance of
wave effects, such as interferences or the quantum pressure.
The Poisson equation takes the dimensionless form

e∇2Φ̃N ¼ 4πρ̃; with t⋆ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
GNρ⋆

p ; ρ ¼ ρ⋆ρ̃: ð29Þ

As in Eq. (17), t⋆ is the gravitational dynamical time
associated with the characteristic density ρ⋆ of the system.
We also define the characteristic mass M⋆,

M̃ ¼
Z

d ˜⃗x ρ̃; with M ¼M⋆M̃; M⋆ ¼ ρ⋆L3
⋆ ð30Þ

and the characteristic wave function amplitude ψ⋆,

ρ̃ ¼ ψ̃ ψ̃�; with ψ⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ⋆=m

p
: ð31Þ

Then, the self-interaction potential reads

Φ̃I ¼ λρ̃; with λ ¼ 4πr2a
L2
⋆

¼ 1

GNρaL2
⋆
¼ 6πλ4M2

Pl

m4L2
⋆

: ð32Þ

In the following, we remove the tildes for simplicity, as we
always work with the dimensionless variables. We will
choose L⋆ as the radius of our initial spherical halo, so that
in dimensionless coordinates we have Rhalo ¼ 1.

B. Initial conditions and central soliton

In this paper, we study the evolution of solitons inside
self-gravitating halos. As initial conditions of our numerical
simulations, we write the wave function as

ψ initial ¼ ψ sol þ ψhalo: ð33Þ

The first term ψ sol corresponds to a solitonic core, where
gravity is balanced by the self-interactions, whereas the
second term ψhalo corresponds to the halo that makes up
most of the volume and mass of the object, where quantum
pressure and self-interactions are negligible and the scalar
field behaves like cold dark matter.
As seen in Sec. II B, in the Thomas-Fermi limit the

spherically symmetric soliton is given by the hydrostatic
equilibrium

ΦNðrÞ þΦIðrÞ ¼ Esol; ð34Þ

where we used the dimensionless variables and Esol is a
constant with

ψ solðx⃗; tÞ ¼ e−iEsolt=ϵψ̂ solðrÞ: ð35Þ

For a quartic self-interaction λ4ϕ
4, which gives ΦI ¼ λρ,

this yields a linear Helmholtz equation in ρ, with the
solution

ρsolðrÞ ¼ ρ0sol
sinðπr=RsolÞ
πr=Rsol

; ψ̂ solðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsolðrÞ

p
; ð36Þ

over r ≤ Rsol, and ρsol ¼ 0 for r > Rsol, as in Eq. (13). This
is a compact object of dimensionless radius and mass

Rsol ¼
ffiffiffiffiffi
λπ

p

2
; Msol ¼

4

π
ρ0solR3

sol: ð37Þ

In practice, we define our system by Rsol, and the self-
interaction coupling λ follows from Eq. (37) as λ ¼ 4R2

sol=π.
As the size of the halo is Rhalo ¼ 1, we consider cases with
Rsol ≲ 1, whence λ≲ 1.
In our numerical computations, we focus on the semi-

classical regime ϵ ¼ 0.01 ≪ 1. The central soliton is gov-
erned by the balance between gravity and self-interactions if
the condition (15) is satisfied. This reads

ρ0sol ≫
4πϵ2

λ2
; ρ0sol ≫

π3ϵ2

4R4
sol

: ð38Þ

We will consider the cases Rsol ¼ 0.5 and 0.1. In the former
case the soliton is always dominated by the self-interactions
as ρ≳ 1, whereas in the latter case the self-interactions
dominate over the quantum pressure for ρ≳ 10.
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C. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential ΦN þΦI ¼ Φ̄,
Eq. (27) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e−iEt=ϵψ̂Eðx⃗Þ that obey

−
ϵ2

2
∇2ψ̂E þ Φ̄ψ̂E ¼ Eψ̂E: ð39Þ

For a spherically symmetric potential Φ̄, we can expand
these eigenmodes in spherical harmonics,

ψ̂nlmðx⃗Þ ¼ RnlðrÞYm
l ðθ;φÞ; ð40Þ

where the radial parts obey the usual radial time-
independent Schrödinger equation�
−
ϵ2

2

1

r2
d
dr

�
r2

d
dr

�
þ ϵ2

2

lðlþ 1Þ
r2

þ Φ̄
�
Rnl ¼ EnlRnl

ð41Þ
and form an orthonormal basisZ

dr r2Rn1lRn2l ¼ δn1;n2 : ð42Þ

The energy levels Enl depend on the radial and orbital
quantum numbers n and l and are independent of the
azimuthal number m. As the initial condition for the halo,
we take a semiclassical equilibrium solution defined by a
target spherical density profile ρ̄ðrÞ, and hence the asso-
ciated target gravitational potential Φ̄NðrÞ, where we
neglect the self-interactions and the central soliton,

Φ̄ðrÞ ¼ Φ̄NðrÞ; ∇2Φ̄N ¼ 4πρ̄: ð43Þ

More precisely, in a fashion similar to [42,43], we take for
the initial halo wave function

ψhaloðx⃗; tÞ ¼
X
nlm

anlmψ̂nlmðx⃗Þe−iEnlt=ϵ; ð44Þ

where we choose the coefficients anlm of the eigen-
modes as

anlm ¼ aðEnlÞeiΘnlm; ð45Þ

where the amplitude janlmj ¼ aðEnlÞ ≥ 0 is a deterministic
function aðEÞ of the energy while the phases Θnlm are
uncorrelated random variables with a uniform distribution
over 0 ≤ Θ < 2π.
This gives a stochastic halo density ρhalo ¼ jψhaloj2,

which fluctuates between different realizations of the
phases Θnlm. Defining the average h…i over these random

realizations, that is, over the uncorrelated phases Θnlm, we
obtain the averaged density

hρhaloi ¼
X
nlm

aðEnlÞ2jψ̂nlmj2 ¼
X
nl

2lþ 1

4π
aðEnlÞ2R2

nl;

ð46Þ

where we used
P

m jYm
l j2 ¼ ð2lþ 1Þ=ð4πÞ. Then, the

function aðEnlÞ that determines the occupation numbers
is chosen so that hρhaloi ¼ ρ̄; i.e. we recover the target
density profile ρ̄ðrÞ as the averaged profile over the random
realizations. In the classical case of discrete particles, this
corresponds to the construction of the phase-space distri-
bution function fðx⃗; v⃗Þ from the density profile, and the
choice (45) corresponds to an isotropic distribution fðEÞ.
Here we must point out that the average h…i is neither a

spatial nor temporal average, but a statistical average over
the random initial condition, defined by the random phases
Θnlm in Eq. (45). As explained in the next section, we are
looking for a set of coefficients anlm so that the initial
density profile approximates a target spherical profile
ρtargetðrÞ. As in [42,43], a simple procedure is to choose
these coefficients of the form (45) with aðEÞ given by
Eq. (55) below. This ensures that the statistical average (46)
recovers ρtargetðrÞ. In the limit ϵ ≪ 1 that we consider in
this paper, many modes contribute to a fixed radial bin,
which is why the weight of each mode decreases as ϵ3 in
Eq. (55). Therefore, a coarse-graining of the initial con-
dition will also recover ρtargetðrÞ. However, as seen in
Eq. (63) below and in the initial conditions shown in
Figs. 3–6 and 8–11, pointwise the initial density does not
converge to ρtarget as ϵ → 0. It always shows relative
fluctuations of order unity, but their spatial width decreases
as ϵ, so that the coarse-grained density converges to ρtarget.
These fluctuations are thus the minimal fluctuations that

are always shown by the scalar-field dark matter scenario.
They arise from the wavelike nature of the system and are
set by the de Broglie wavelength (18). Thus, ϵ3 or λ3dB plays
the role of 1=N for a continuous classical system that is
approximated by a finite number N of particles. Because of
these fluctuations, the initial density profile is not exactly
ρtargetðrÞ or an equilibrium solution. As found in the
numerical simulations and understood in the kinetic theory
developed in Sec. VI below, these fluctuations drive the
growth of the soliton. They would only cease when all the
matter is within the soliton, that is, when there is only one
eigenmode of the Schrödinger equation left and no more
interference terms.

2. WKB approximation

As we consider the semiclassical regime ϵ ≪ 1, we can
expect the Wentzel-Kramers-Brillouin (WKB) approxima-
tion [43–45] to be valid. This gives for the radial part
RnlðrÞ the form
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r1 < r < r2∶ RnlðrÞ≃
Nnl

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
knlðrÞ

p sin

�
1

ϵ

Z
r

r1

dr0knlðr0Þ þ
π

4

�
ð47Þ

where Nnl is the normalization factor, knlðrÞ is defined by

knlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Enl − Φ̄NðrÞ −

ϵ2

2

lðlþ 1Þ
r2

�s
; ð48Þ

and r1 < r2 are the two turning points of the classical
trajectory, where knlðrÞ ¼ 0. The lower bound r1 is due to
the centrifugal barrier and the upper bound r2 to the
confining gravitational potential Φ̄N . For radial trajectories,
associated with l ¼ 0, we have r1 ¼ 0. Outside of the
interval ½r1; r2� the wave function shows a fast decrease as
this corresponds to the forbidden region in the classical
limit and we consider the semiclassical regime ϵ ≪ 1. The
normalization condition (42) gives

Nnl ¼
�Z

r2

r1

dr
2knlðrÞ

�
−1=2

; ð49Þ

where we neglected the contributions from the classically
forbidden regions and took the average over the fast
oscillations of the wave function. Finally, the quantization
condition of the energy levels is given in this WKB
approximation by

1

ϵ

Z
r2

r1

dr knlðrÞ ¼
�
nþ 1

2

�
π; ð50Þ

where n ¼ 0; 1; 2;… is a non-negative integer. We can see
that in the semiclassical regime, ϵ ≪ 1, the quantum
numbers become large as

n ∼ 1=ϵ; l ∼ 1=ϵ; ð51Þ

and the difference between energy levels decreases as
ΔE ∼ ϵ. In particular, at fixed l we obtain from Eq. (50)

∂n
∂E

¼ 1

πϵ

Z
r2

r1

dr
knlðrÞ

: ð52Þ

In this continuum limit, we can replace the sums in Eq. (46)
by integrals and we obtain

hρhaloðrÞi ¼
1

2π2ϵ3

Z
dEaðEÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E − Φ̄NðrÞ�

q
; ð53Þ

where we used the WKB approximation (47). Comparing
this expression with the classical result that expresses the
density in terms of the particle phase-space distribution [46],

ρclassicalðrÞ ¼ 4π

Z
0

Φ̄NðrÞ
dEfðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E − Φ̄NðrÞ�

q
; ð54Þ

where we normalized the potential so that bound orbits
correspond to E < 0, we obtain

aðEÞ2 ¼ ð2πϵÞ3fðEÞ: ð55Þ

The classical phase-space distribution can be obtained from
the density by Eddington’s formula [46],

fðEÞ ¼ 1

2
ffiffiffi
2

p
π2

d
dE

Z
0

E

dΦNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦN − E

p dρclassical
dΦN

: ð56Þ

In practice, choosing a target halo density profile
ρtargetðrÞ, we obtain the classical phase-space distribution
fðEÞ from Eddington’s formula (56), the eigenmode
coefficients anlm from Eqs. (45) and (55), and the initial
halo wave function from Eq. (44). However, to avoid the
singularity of the WKB approximation at the turning
points, we do not use the WKB expression (47) for the
eigenmodes. Instead, we explicitly solve the linear eigen-
mode problem associated with the radial Schrödinger
equation (41). Therefore, the WKB approximation is only
used for the determination of the initial coefficients anlm.
This is sufficient for our purpose, which is to build random
initial conditions with a target radial density profile.

D. Numerical methods

The system in dimensionless units is fully described by
the Schrödinger equation (27) supplemented by the Poisson
equation (29) and the self-interaction potential (32). We
consider periodic boundary conditions, which allows us to
use Fourier transforms to compute the Poisson equation
and the Laplacian in the Schrödinger equation. In this
setting, the gravitational potential is obtained as

ΦN ¼ −4πF−1k−2F ðρ − ρ̄Þ; ð57Þ

where F and F−1 are the Fourier transform and its inverse,
k⃗ is the wave number in Fourier space and k ¼ jk⃗j. This
means that in real space, as in cosmological codes, we solve
the Poisson equation defined by∇2ΦN ¼ 4πðρ − ρ̄Þ, where
ρ̄ is the mean density in the simulation box. This is the
appropriate form for periodic boundary conditions, in
contrast with the Poisson equation (29) without the ρ̄ term,
which is appropriate for isolated objects. For large simu-
lation box ρ̄ → 0 and one recovers the isolated case.
As found in [47], the choice of the boundary conditions

can have some impact on the dynamics, especially on the
tails of halos around solitons. This is less so in our case
because we consider the relaxation of single compact halos.
As shown by the density profiles found in the simulations
presented in the next sections, the density outside of the
initial halo is very small and negligible amounts of matter
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can reach the boundaries of the simulation box. Therefore,
the periodic boundary conditions mostly differ from truly
isolated simulations by the impact on the gravitational
potential of the neighboring halos in the periodic chain. As
found in Fig. 5, this only affects our results in the case of
the formation of a small-size soliton inside a flat halo. We
find that the formation time is lower in a bigger simulation
box, but the main result on the formation of a soliton
remains true. This is because the formation of this soliton is
triggered by the growth of small perturbations until one of
them reaches a density that is large enough to show strong
self-interactions. This stochastic process is sensitive to the
details of the dynamics. In the other cases, we find that our
results are stable when we compare with a run that has a
twice bigger simulation box.
We have developed a numerical code to compute the 3D

dynamics, using a symmetrized split-step Fourier technique
as in [48,49]. Thus, the wave function is advanced by a time
step Δt as

ψðx⃗; tþ ΔtÞ ¼ exp

�
−
iΔt
2ϵ

Φðx⃗; tþ ΔtÞ
�

× F−1 exp

�
−
iϵΔt
2

k2
�

× F exp

�
−
iΔt
2ϵ

Φðx⃗; tÞ
�
ψðx⃗; tÞ; ð58Þ

where Φ ¼ ΦN þΦI . This operator splitting scheme is
based on the fact that in the Schrödinger equation (27) the
operator Φψ is diagonal in configuration space whereas
the operator ∇2ψ is diagonal in Fourier space. Thus, we
proceed in three steps. First, from ψ we compute ρ ¼ jψ j2,
ΦI ¼ λρ and ΦN by Fourier transforms as explained
in (57). Then, we apply the first real-space operator
e−iΔtΦ=ð2ϵÞ. Second, going to Fourier space, we apply the
Fourier-space operator e−iϵΔtk

2=2. Third, we compute again
ρ, ΦI and ΦN , which have been modified by the Laplacian
operator on ψ , and we perform the last multiplication by the
real-space operator e−iΔtΦ=ð2ϵÞ. Note that this last operation
does not modify ρ,ΦI andΦN , because it only modifies the
local phase of ψ . Thus, the total potentialΦ used in this step
is also the potential at the end of the time stepΔt. We iterate
this process until we reach the final time of the simulation.
The time step satisfies the conditions Δt < 2π=ðϵk2maxÞ
and Δt < 2πϵ=jΦmaxj. In practice, we take a somewhat
smaller time step to ensure that mass and energy are well
conserved over the full simulation time. This numerical
procedure has already been used in many works on fuzzy
dark matter [48–50].
We have employed the FFTW3 libraries [51] to compute

the discrete Fourier transform (DFT). These libraries
adapt the DFT algorithm to details of the underlying
hardware to maximize performance. In addition, we have

taken advantage of the OPENMP tools to parallelize the
multithreaded routines [52,53].

IV. HALO WITH A FLAT-CORE
DENSITY PROFILE

A. Halo eigenmodes

We first investigate the dynamics of systems with a flat
halo density core. Thus, we consider a Lane-Emden profile
with a polytropic index n ¼ 1,

0 ≤ r ≤ 1∶ ρ̄ðrÞ ¼ ρ0
sinðπrÞ
πr

;

Φ̄NðrÞ ¼ −
4ρ0 sinðπrÞ

π2r
; ð59Þ

which corresponds to the phase-space distribution

−
4ρ0
π

< E < 0∶ fðEÞ ¼ 1

8π
ffiffiffiffiffiffiffiffiffi
−2E

p : ð60Þ

Although this halo profile happens to take the same form as
the hydrostatic soliton (36), its physics is quite different.
Indeed, here gravity is not balanced by self-interactions but
by the velocity dispersion, as for collisionless particles. With
ρ0 ¼ 1, this is a simple model for a halo with a flat-core
density profile and ρhalo ∼ 1 within the radius Rhalo ¼ 1.
We solve the eigenvalue problem (41) with a numerical

spectral method. For each orbital quantum number l, we
expand the radial wave functions Rnl on the basis defined
by the eigenvectors of the spherical flat potential well with
infinite walls at r ¼ 1 [they are given by the spherical
Bessel functions jlðknrÞ where kn is a zero of jl]. This
automatically satisfies the boundary condition at r ¼ 0,
Rnl ∝ rl. This also givesRnlðr ¼ 1Þ ¼ 0, which is a good
approximation in the semiclassical regime ϵ ≪ 1, as we
only include bound eigenmodes with E < 0 that are
classically forbidden beyond r ¼ 1. Truncating the basis
at the first 100 eigenvectors, we obtain a finite linear
eigenvalue problem associated with a real symmetric
matrix of size 100 × 100. Then, we obtain the nmaxðlÞ
energy levels with E < 0 and their associated bound-state
eigenvector. Starting from l ¼ 0 we increase l with unit
step until there are no more negative eigenvalues.
We show in Fig. 2 the energy levels and some radial

eigenmodes associated with the gravitational potential (59),
with ϵ ¼ 0.01. These eigenmodes are normalized to unity
as in Eq. (42). We find that there exist bound states until
lmax ¼ 67. The number n of bound radial modes decreases
as l increases and we find nmax ¼ 35 at l ¼ 0. In agree-
ment with (51), because ϵ ≪ 1 there are many eigenmodes
inside the potential well ΦN , which has a depth of the order
of unity. As seen in Fig. 2, high-energy modes with large n
can probe small scales, down to Δr ∼ ϵ ¼ 0.01, while high
orbital momentum modes with large l probe large radii.
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The modes l ¼ 0 correspond to radial trajectories in the
classical limit.

B. Large soliton radius, Rsol = 0.5

We first consider cases where the radius ra associated
with the self-interactions is of the order of the halo radius.
Thus, in this section we take Rsol ¼ 0.5. In the cosmo-
logical context, this corresponds to the first overdensities
that can collapse just above the Jeans length ∼ra, as gravity
can overcome the pressure associated with the repulsive ϕ4

self-interaction.

1. Halo without initial soliton

We first investigate the dynamics when there is no initial
soliton inside the halo, ρ0sol ¼ 0. We show in Figs. 3(a) and
3(b) our initial condition for one realization of the random
phasesΘmlm in Eq. (45). As seen in the upper left panel, the
averaged density hρhaloi defined by Eq. (46) where the
interferences between the different modes ψ̂nlm vanish
provides a good approximation of the target density (59).
Moreover, hρhaloi is identical along any axis that runs

through the origin as there is no angular dependence left in
Eq. (46), which is consistent with the spherical symmetry
of the target profile (59). Thus, for ϵ ¼ 0.01 the WKB
approximation (55) for the amplitude of the coefficients
anlm is already rather good. As expected, it fares somewhat
less well at the center of the halo dominated by low ðn;lÞ
modes. On the other hand, the exact random initial density
ρhalo ¼ jP anlmψ̂nlmj2 shows strong fluctuations around
hρhaloi and depends on the chosen axis running through the
center. In agreement with Eq. (18), these spikes have a
width Δx ∼ ϵ that decreases in the semiclassical regime but
their amplitude remains of order unity. Thus, ρhalo only
converges in a weak sense to the target classical density
profile, after coarse-graining over a finite-size window.
Note that for a classical system of discrete particles the
density field is also very noisy, as it is a sum of Dirac peaks
in the point-mass limit. Here the width of the spikes is set
by the de Broglie wavelength (18). More precisely, from
Eqs. (46) and (55), we can see that the number N of
eigenmodes ψ̂nlm that contribute to the density at a given
point x⃗ grows as 1=ϵ3. We can also write powers of the
exact random halo density, ρhalo ¼ ψψ⋆ ≥ 0, as

FIG. 2. Energy levels Enl in the ðl; EnlÞ plane (upper left panel), for the gravitational potential (59). Eigenmodes RnlðrÞ for l ¼ 0
(upper right panel), l ¼ 1 (lower left panel) and some large values of n or l (lower right panel). These eigenmodes are normalized to
unity as in Eq. (42).
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ρphalo ¼
XN

i1;…;ip¼1

XN
j1;…;ip¼1

ai1 ::aipa
⋆
j1
::a⋆jpψ i1 ::ψ ipψ

⋆
j1
::ψ⋆

jp
;

ð61Þ

where the indices i or j denote fn;l; mg. Taking the
average over the random phases Θi of Eq. (45), the only
terms that contribute are those where each aik can be paired
with a coefficient a⋆jk0 with jk0 ¼ ik. This gives p! possible
permutations,

hρphaloi ¼ p!hρhaloip; ð62Þ

and we obtain the probability distribution

ρhalo ≥ 0∶ PðρhaloÞ ¼
1

hρhaloi
e−ρhalo=hρhaloi; ð63Þ

which does not depend on N or ϵ. In particular, the standard
deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρ2haloic

p
¼ hρhaloi, in agreement with the

relative fluctuations of order unity seen in the upper left
panel in Fig. 3(a). Thus, the initial density shows strong
relative fluctuations of order unity throughout the halo.
We show the evolution with time of the system in the

other panels in Fig. 3. Because the soliton moves somewhat

around the center of the halo, at the last time t ¼ 150 we
show the profiles along the x=y=z axis or on the 2D ðx; yÞ
plane that run through the point r⃗max where ρ is maximum
and reaches the value ρmax. We show the final density
profiles in Figs. 3(c) and 3(d) and the final potentials in
Fig. 3(e). Figure 3(f) displays the total mass M of the
system and the mass Msol enclosed within the radius Rsol
around r⃗max, as a function of time. Figure 4(g) shows the
evolution with time of the energy components of the
system. In our dimensionless units, they are given by

EK ¼ ϵ2

2

Z
dx⃗∇ψ · ∇ψ�; EN ¼ 1

2

Z
dx⃗ρΦN;

EI ¼
Z

dx⃗VI ¼
λ

2

Z
dx⃗ρ2: ð64Þ

The total mass M and the total energy Etot ¼ EK þ EN þ
EI are conserved by the equation of motion and we can
check that they are conserved in the numerical simulations
until the final time shown in the figures. As we consider
compact halos Rhalo ¼ 1, the density is very low at large
radii and negligible matter amounts can reach the bounda-
ries of the simulation box. The kinetic energy EK comes
with a prefactor ϵ2 in Eq. (64). This means that in the
semiclassical limit, ϵ → 0, it is negligible for smooth static

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 3. [Rsol ¼ 0.5, ρ0sol ¼ 0.] (a) Initial density ρ along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis
running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density hρhaloi of Eq. (46) (they can hardly be distinguished in the figure). There is no central soliton in this initial condition.
(b) Initial 2D density map on the ðx; yÞ plane at z ¼ 0. (c) Density profile along the x, y and z axis that runs through the point r⃗max where
the density is maximum, at time t ¼ 150. The lower brown solid line is the initial target density profile as in panel (a), while the upper
purple solid line is the density profile of a soliton (36) that would contain the mass MsolðtÞ enclosed within the radius Rsol around r⃗max.
(d) 2D density map at time t ¼ 150 on the ðx; yÞ plane centered on r⃗max. (e) Total potentialΦ ¼ ΦN þΦI and gravitational potentialΦN
at t ¼ 150, along the x, y and z axis passing through r⃗max. (f) Evolution with time of the total massM of the system and of the massMsol
enclosed within the radius Rsol around r⃗max. The black dotted line is the result obtained from a simulation with a twice bigger box.
(g) Evolution with time of the energy components of the system.
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configurations such as the equilibrium soliton (34), which
is thus governed by the balance between gravity and self-
interactions. However, this is not the case for the halo for
two reasons. First, nonzero orbital velocities v⃗ of order
unity (i.e., of the order of the virial velocity) correspond
locally to a phase eiv⃗·x⃗=ϵ in the wave function (i.e., orbital
quantum number l ∼ 1=ϵ). This implies that ψ shows large
gradients that grow as 1=ϵ and balance the prefactor ϵ2 in
Eq. (64). Second, as seen above the halo also shows strong
density fluctuations on a spatial width Δx ∼ ϵ, which again
lead to large gradients that balance the prefactor ϵ2.
Therefore, even for small ϵ the wavelike nature of the
system, governed by the Schrödinger equation rather than
by the hydrodynamical Euler equation, remains important.
We can see that within a few dynamical times, t≲ 8, the

system reaches a quasistationnary state where about half of
the mass is contained in a central soliton that follows the
profile (36). Afterward, the soliton mass and the energies
only show a slow evolution. The central equilibrium soliton
is clearly seen on the density profiles shown in Figs. 3(c)
and 3(d), with its radius Rsol ¼ 0.5. In Fig. 3(c), the purple
solid line shows the density profile of a soliton of mass
MsolðtÞ given by the enclosed mass within radius Rsol
around the maximum density point r⃗max. We can see that
the density profile obtained in the simulation closely
follows this analytical shape (36) and thatMsolðtÞ is indeed
a good approximation of the soliton mass. Superimposed
on this soliton, there remains a depleted halo, with the
remaining half of the initial mass, with again relative
fluctuations of order unity as in in Eq. (63). The fluctua-
tions are somewhat lower than in the initial state as the halo
mass has been decreased by half. The hydrostatic equilib-
rium (34) is also clearly shown in Fig. 3(e) by the constant
plateau of the total potential Φ ¼ ΦN þΦI over the extent
of the soliton, r ≤ 0.5 (with small wiggles associated with
the excited halo modes that cross the central region).
Outside of the soliton, the rapid decrease of the density
means that the self-interaction potential ΦI becomes small
as compared with the gravitational potential ΦN and
Φ ≃ΦN . This is why we can only distinguish ΦI from
ΦN in the figure in the soliton domain r ≤ 0.5.
In Fig. 3(f) we show the growth of the soliton mass

MsolðtÞ for our fiducial run (red solid line) and for a
simulation with a box size that is twice larger (black dotted
line). We can see that both cases recover the growth of the
soliton to about half the system mass in a few dynamical
time, although the greater box gives a growth rate that is
smaller at late times. Therefore, our main result on the fast
formation of the soliton is robust but the growth rate at late
times may be somewhat overestimated because of the small
box size and the periodic boundary conditions (i.e., the
oscillations of the other halos in the neighboring boxes
might increase the soliton growth rate).
We can see in the last panel that the energy components

(64) show a fast variation during the formation stage of the

soliton and afterward only show a slow and monotonic
evolution, in parallel with the slow growth of the soliton.
We also display the virial quantities

Evir ¼ 2EK þ EN þ 3EI; Ẽvir ¼ EN þ 3EI: ð65Þ

To mitigate the impact of the periodic boundary conditions,
in this sum we renormalize the gravitational energy by a
constant offset, as EN → EN þ ΔENmax, so that ENðr⃗maxÞ
is the gravitational energy at the point r⃗max that would be
computed for an isolated system [i.e. we compute ΦN ¼
−
R
dr⃗0ρðr⃗0Þ=jr⃗0 − r⃗j instead of solving the Poisson equa-

tion by the Fourier transform]. According to the virial
theorem, we expect Evir ¼ 0 for a fully relaxed system.
As the other energy components, Evir shows an early fast
variation and next a slow growth. This slow time depend-
ence is due to the slow growth of the soliton mass.
However, Evir does not seem to converge toward zero until
the end of the simulation, whereas Ẽvir is much closer to
zero. This shows the strong impact of the kinetic energy EK
on Evir. This can be understood as follows. For a fully
relaxed soliton, we have Evir ¼ 0 and Ẽvir ≃ 0, as EK ≃ 0 in
the semiclassical regime that we consider with ϵ ≪ 1. At
the final time t ¼ 150 shown in Fig. 3, about half the mass
of the system is contained in the central soliton. It also
contains most of the self-interaction energy and of the
gravitational energy, as seen in Fig. 3(e). This means that
Ẽvir ≃ 0 as it is then approximately given by the soliton
energies. On the other hand, as seen in Fig. 3(g) the kinetic
energy is not negligible and Evir ≃ 2EK . Therefore, the
violation of the virial equilibrium condition Evir ¼ 0 is
mostly due to the fluctuations of the density field around
the mean soliton profile. Because of their small finite width,
Δx ∼ 1=ϵ, they still give rise to large density gradients and a
significant kinetic energy. If the soliton finally manages to
eat all the mass of the system, then we will eventually have
Evir ¼ 0 and EK ≃ 0. However, the finite time of our
simulations and the increasingly slow growth of the soliton
do not permit us to conclude whether all the mass will
eventually be absorbed by the soliton or a small amount of
fluctuations will remain.

2. Initial soliton ρ0sol = 5

We now consider the case where there is an initial soliton
of density ρ0sol ¼ 5 on top of the halo profile. This initial
condition is shown in Figs. 4(a) and 4(b). We can see that
very quickly, in a few dynamical times t≲ 2, the mass of
the soliton grows to about 85% of the total mass and seems
to remain stable thereafter. This decreases the halo density
and the amplitude of the density fluctuations, as compared
with the initial state. Again, this process is clearly apparent
in the shape of the potential Φ and the density maps shown
in Figs. 4(c) and 4(d). They clearly display the smoothing
of the density field over the soliton extent and the damping
of the initial fluctuations.
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We can check in Figs. 4(f) and 4(g) that the total mass
and energy of the systems are conserved by the numerical
simulation. We now find that the soliton mass is the same
for the larger box simulation. Therefore, this regime is
robust with respect to finite box size effects. The energy
components show small decaying collective oscillations,
left by the early sudden growth of the soliton. Again, Ẽvir is
closer to zero than Evir but their difference is smaller than
for the case shown in Fig. 3 because of the lower kinetic
energy EK, as the fluctuations are much smaller.
Together with the results of Fig. 3, this shows that the

soliton is to some degree an attractor of the dynamics,
when Rsol is not much below the size of the system. It
appears from a random initial state to make 50% of the
total mass, as in Fig. 3, or it can grow to larger values if it is
already present with a significant mass, as in Fig. 4. The
latter results also suggest that the soliton does not grow to
capture all the mass of the system. However, this numerical
simulation cannot rule out secular effects that would
become manifest on timescales that are much greater than
the dynamical time and the time of our simulations.

C. Small soliton radius, Rsol = 0.1

We now consider cases where the radius ra associated
with the self-interactions is much smaller than the halo

radius. Thus, in this section we take Rsol ¼ 0.1. In the
cosmological context, this would correspond to late-time
structures that collapse on a scale that is much greater
than the characteristic length ra associated with the self-
interactions. We also take the mass of the system to be
constant, Msol þMhalo ¼ 4=π, so that all simulations have
about the same mass (up to the random fluctuations asso-
ciated with the stochastic initial conditions).

1. Halo without an initial soliton

We first study in Fig. 5 the dynamics of a halo without an
initial soliton, ρ0sol ¼ 0.
We can see that no soliton dominated by the self-

interactions appears until t ∼ 200. As seen in Figs. 5(b)
and 5(e), at t ¼ 180 the halo is still dominated by strong
fluctuations, associated with the superposition of incoher-
ent modes, and a few rare high-density spikes that appear
randomly. Their spatial width is not set by the radius
Rsol ¼ 0.1 associated with hydrostatic equilibria governed
by the balance between the self-interaction and gravity.
Instead, it is of the order of Δx ∼ ϵ ¼ 0.01 and as in
FDM scenarios it is governed by the quantum pressure,
that is, by wave effects that appear on the de Broglie scale.
This is clearly seen in Fig. 5(b), where the highest-density
peak is much higher and narrower than the soliton profile

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 4. [Rsol ¼ 0.5, ρ0sol ¼ 5.] (a) Initial density ρ along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis
running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density hρhaloi of Eq. (46) (they can hardly be distinguished in the figure). (b) Initial 2D density map on the ðx; yÞ plane at
z ¼ 0. (c) Density profile along the x, y and z axis that runs through the point r⃗max where the density is maximum, at time t ¼ 150. The
lower brown solid line is the initial target density profile as in panel (a), while the upper purple solid line is the density profile of a soliton
(36) that would contain the mass MsolðtÞ enclosed within the radius Rsol around r⃗max. (d) 2D density map at time t ¼ 150 on the ðx; yÞ
plane centered on r⃗max. (e) Total potential Φ ¼ ΦN þΦI and gravitational potential ΦN at t ¼ 150, along the x, y and z axis passing
through r⃗max. (f) Evolution with time of the total massM of the system and of the massMsol enclosed within the radius Rsol around r⃗max.
The black dotted line is the result obtained from a simulation with a twice bigger box. (g) Evolution with time of the energy components
of the system.
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(shown by the purple solid line) that would contain the mass
enclosed within radiusRsol ¼ 0.1 around this point. This can
also be seen in Fig. 5(g), where the total potentialΦ does not
show a flat plateau of radius Rsol. Instead, it closely follows
the gravitational potential and only shows small departures
at the bottom of the potential, associated with the various
narrow density peaks that are close to the center of the
system.

Eventually, at time t ∼ 200, one of these high-density
peaks grows sufficiently to dominate over all other peaks and
to form a stable soliton governed by the quantum pressure
rather than the self-interactions. This leads to a sharp rise of
the central density and of the mass Msol enclosed within
radius Rsol around r⃗max. This corresponds to a change of the
physics of the system, with the formation of a new soliton
that is no longer of the FDM type (balance between gravity

(a) (b) (c)

(d)

(g) (h) (i) (j)

(e) (f)

FIG. 5. [Rsol ¼ 0.1, ρ0sol ¼ 0.] (a) Initial density ρ along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis
running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density hρhaloi of Eq. (46) (they can hardly be distinguished in the figure). There is no central soliton in this initial condition.
(b) Density profile along the x, y and z axis that runs through the point r⃗max where the density is maximum, at time t ¼ 180. (c) Density
profile along the x, y and z axis that runs through the point r⃗max where the density is maximum, at time t ¼ 250. The lower brown solid
line is the initial target density profile as in panel (a), while the upper purple solid line is the density profile of a soliton (36) that would
contain the mass MsolðtÞ enclosed within the radius Rsol around r⃗max. (d) Initial 2D density map on the ðx; yÞ plane at z ¼ 0. (e) 2D
density map at time t ¼ 180 on the ðx; yÞ plane centered on r⃗max. (f) 2D density map at time t ¼ 250 on the ðx; yÞ plane centered on r⃗max.
(g) Total potential Φ ¼ ΦN þΦI and gravitational potential ΦN at t ¼ 180, along the x, y and z axis passing through r⃗max. (h) Total
potentialΦ ¼ ΦN þΦI and gravitational potentialΦN at t ¼ 250, along the x, y and z axis passing through r⃗max. (i) Evolution with time
of the total mass M of the system and of the mass Msol enclosed within the radius Rsol around r⃗max. The black dotted line is the result
obtained from a simulation with a twice bigger box. (j) Evolution with time of the energy components of the system.
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and quantum pressure) but of the self-interaction type
(balance between gravity and self-interactions), as given
by Eq. (34). This is clearly seen in Figs. 5(c) and 5(f)
at t ¼ 250, where we can see the characteristic radius
Rsol ¼ 0.1 of such hydrostatic equilibria and the plateau
in the total potential Φ over the soliton extent. This also
shows as a plateau for Φ in Fig. 5(h). In agreement with the
condition (38), it is only after one of the narrow high-density
peaks has grown sufficiently to reach a density threshold
ρ≳ 15 that this transition takes place and a soliton supported
by the self-interactions can appear.
As seen in Fig. 5(i), the total mass of the system is

conserved in the numerical simulation. However, the larger
box simulation gives an earlier soliton formation time at
t ∼ 150. This can be understood from the nature of the
transition, which is due to the growth of one of the
stochastic density peaks until a density threshold is
reached. The exact transition time thus appears to be
strongly dependent on the details of the dynamics as it
is due to the interactions of the random initial fluctuations,
which may be perturbed by the small gravitational attrac-
tion from the halos in the neighboring boxes (in the case of
periodic boundary conditions).
The oscillations seen in Fig. 5(j) until t≲ 100 are due to

global modes, associated with a pulsation of the halo
radius, whence of its characteristic densities and energies.
These modes appear to be damped after t≳ 100. Thus, by
t ∼ 100, the halo relaxes to a quasistationary state close to
the initial conditions obtained from the WKB approxima-
tion. The halo radius is not significantly modified but
small-scale density fluctuations have grown in the central
region, with the appearance of high-density peaks governed
by the quantum pressure. As expected for such a quasista-
tionary state, the virial quantity Evir is close to zero. At late
times, t > 200, when the soliton has formed and slowly
grows, Evir slowly grows as the system is no longer in
equilibrium and is made of two distinct components with a
time-dependent mass ratio. This is reminiscent of the
growth of Evir found in Fig. 3 for the large soliton case
Rsol ¼ 0.5. However, in the case shown in Fig. 5 all energy
components remain dominated by the halo rather than by
the soliton until the end of the simulation. This is why Evir

remains close to zero and we do not display Ẽvir.
Thus, in this case we find that while the system remains

dominated by FDM spikes for a long time and seems
almost stationary, the secular evolution eventually makes
one spike grow until the self-interactions come into play
and lead to the formation of a broad soliton supported by
these self-interactions. There is thus a transition in the
system from a FDM phase to a self-interacting phase,
embedded in the FDM halo. This transition may only
happen after a long time, much greater than the dynamical
time of the system, as the growth of the central density
peaks is very slow until one of them reaches this threshold

and suddenly builds a unique massive soliton. This also
means that the transition time strongly depends on the
initial conditions and the details of the dynamics.

2. Small initial soliton ρ0sol = 5

We study in Fig. 6 the dynamics of a halo with a small
initial soliton, ρ0sol ¼ 5. In agreement with Eq. (38), it is
initially strongly perturbed by the wave packets from the
halo as it is close to this density threshold, but we can
see that its density slowly grows with time. Until t ∼ 80,
the soliton cannot be clearly seen as it wanders inside the
half-radius of the halo and is somewhat masked by the
large overlying fluctuations associated with higher-energy
modes. This also means that at a given time the location of
the highest-density peak is not perfectly centered at the
bottom of the gravitational potential. This leads to the
anisotropy of the gravitational potential shown in Fig. 6(g),
as well as in Fig. 5(g).
However, as the soliton density slowly grows it becomes

less affected by these small-scale perturbations and by
t ¼ 100we can clearly see the characteristic size Rsol ¼ 0.1
of the central overdensity, much greater than the size ∼ϵ ¼
0.01 of the incoherent fluctuations. This is also apparent in
the potential Φ, which shows a flat plateau at the center
perturbed by the wiggles due to the higher-energy modes.
The main behavior is similar to that found in Fig. 5, where
the initial condition had no soliton but one formed at
t ∼ 200. Here, thanks to the initial soliton seed, a distinct
soliton growth appears earlier at t ∼ 100. Again, the bigger
box simulation gives a somewhat earlier soliton formation
time. However, because the initial condition already con-
tains a significant soliton seed the dependence on the
details of the dynamics is weaker and the difference
between the fiducial and bigger box simulations is smaller
than in Fig. 5. The soliton is still growing at t ¼ 300.
Therefore, even reasonably small solitons, with a density

a few times greater than the halo background, survive and
grow with time. This is despite their energy and potentialΦ
being much smaller than the halo counterparts. This is of
course consistent with the fact that initial conditions
without a soliton eventually form one, as found in the
previous section and in Fig. 5. Therefore, solitons governed
by the self-interactions appear to be robust attractors. We
checked with numerical simulations that initial solitons
with a higher density follow the same pattern, they are not
destroyed and slowly grow with time.

V. HALO WITH A CUSPY DENSITY PROFILE

A. Halo eigenmodes

We now study the dynamics of cuspy halos, as found in
cosmological numerical simulations of both CDM and
FDM models. For simplicity, we consider an initial target
density profile
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0 ≤ r ≤ 1∶ ρ̄ðrÞ ¼ ρ0
cosðπr=2Þ

r
: ð66Þ

This shows a cuspy profile ρ ≃ ρ0=r in the inner region, as
for standard NFW and Hernquist profiles, while again
having a finite radius Rhalo ¼ 1, which is convenient for our
periodic boundary conditions. In the numerical computa-
tions we truncate this density profile at rcut ¼ 0.05, with a
constant density within rcut. The classical phase-space
distribution is obtained from the numerical integration of
Eq. (56). This again gives the initial occupation numbers
from (55).
We compute the eigenmodes and the energy levels by the

same method as for the flat-core potential described in
Sec. IVA. We show these energy levels and some radial
eigenmodes in Fig. 7. Because of the divergent density
at the center, the gravitational potential well is deeper
than for the flat-core profile studied in Sec. IVA. This leads
to a greater number of bound states, as can be seen by
comparing the energy levels in Figs. 2 and 7. There are

62 energy levels for l ¼ 0 and we find bound states until
lmax ¼ 105. Again, high-n modes probe small scales,
down to Δr ∼ ϵ ¼ 0.01, while high-l modes probe
large radii.

B. Large soliton radius, Rsol = 0.5

We show in Fig. 8 the dynamics of a cuspy halo (66)
in the case Rsol ¼ 0.5 without an initial soliton. As for the
flat halo shown in Fig. 3, we can see in Fig. 8(a) that the
WKB approximation for the coefficients anlm provides
a reasonably good agreement between the averaged
density hρhaloi and the target density (66). Again, the
interferences between the different modes ψnlm lead to
strong relative density fluctuations of order unity, in
agreement with (63).
As in the flat halo case of Fig. 3, we can see that in a

few dynamical times, t≲ 4, a central soliton of radius
Rsol ¼ 0.5 forms and contains about 40% of the total mass.
This relaxation depletes the halo that also diffuses beyond

FIG. 6. Evolution of a flat system with Rsol ¼ 0.1, ρ0sol ¼ 5.
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FIG. 8. Evolution of a cuspy system with Rsol ¼ 0.5, ρ0sol ¼ 0.

FIG. 7. Energy levels ðl; EnlÞ and eigenmodesRnl for the halo profile (66). These eigenmodes are normalized to unity as in Eq. (42).
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its initial unit radius, as the process occurs in a rather
fast and violent manner. The growth of the soliton mass
obtained by the larger box simulation is close to the result
of our fiducial simulation. The shape and size of this
soliton, governed by the self-interactions, can be clearly
seen in the final density profiles and in the final total
potential Φ, which is flat over the extent of the soliton.
However, in addition to the small wiggles associated with
high-energy modes that run across the center of the system,
there remains a very high-density spike on top of the
soliton. Its width Δx ∼ ϵ shows that it is not supported by
the self-interactions, but it is a small-scale peak on the de
Broglie wavelength that wanders over the extent of the
former soliton. Thus, in the central region there is a
coexistence of the two types of features, a large smooth
soliton where gravity is balanced by the self-interactions,
and one or a few high-density spikes on the de Broglie
wavelength that are far from hydrostatic equilibrium. This
is embedded within a halo of fluctuating high-energy
modes. However, it is possible that all such narrow spikes
are eventually absorbed by the smooth soliton on time-
scales beyond our simulation time.
As for the flat case of Fig. 4, the virial quantity Ẽvir is

closer to zero than Evir. Again, this is due to the large value
of the kinetic energy EK, associated with the fluctuations of
the wave functions over the soliton and in the outer halo.
This makes the system look far from equilibrium, as seen in
terms of Evir, even though the density profile has already
converged to the soliton shape in the mean.
We show in Fig. 9 the initial and final density profiles

when we start with a soliton of density ρ0sol ¼ 8 on top
of the halo. As for the case of a flat halo shown in Fig. 4,
the system quickly reaches an equilibrium close to the
initial state, where the soliton has slightly increased its
mass and depleted the halo. The most striking result is
that, as for the flat case shown in Fig. 4, the random
fluctuations inside this soliton have been significantly
damped. Thus, the soliton appears to be an attractor,
damping stochastic perturbations. Here there no longer
remains high-density spikes of width ∼ϵ inside the soliton,
which suggests that this is a transient feature. Again, the
larger box simulation gives the same results as our fiducial
simulation.

C. Small soliton radius, Rsol = 0.1

We now consider cases where the radius ra associated
with the self-interactions is much smaller than the halo
radius, taking again Rsol ¼ 0.1 as for the flat case.

1. No initial soliton

We first consider an initial profile without a soliton,
shown in Fig. 10. Because of the high density at the center,
ρhalo ≃ ρ0=r, the self-interaction ΦI ¼ λρ is large in the
central region. This leads to the formation of a central
soliton supported by the self-interaction in a few dynamical
times, t≲ 2. This again depletes somewhat the halo, which
diffuses slightly beyond its initial radius, while the fluc-
tuations inside the soliton are damped. In contrast with
Fig. 8 there is no narrow density spike, supported by the
quantum pressure, inside this soliton. This is presumably
because the hierarchy of scale between the de Broglie
wavelength and the self-interaction soliton is not so large,
only a factor 10 instead of 50.
The larger box simulation gives the same soliton growth

rate as our fiducial simulation. As for the flat case shown in
Fig. 5, the energy components show damped collective
oscillations at early stages while Evir remains close to zero
as the system is dominated by the quasistationary halo.
Nevertheless, Evir again shows a slow growth at later
times, because of the growth of the soliton and the
remaining fluctuations that still provide a significant kinetic
energy.

2. Small initial soliton

We show in Fig. 11 the case where there is an initial
soliton of density ρ0sol ¼ 100. Again, the central soliton
density grows somewhat with time and damps the central
fluctuations, while the halo diffuses slightly beyond its
initial radius. The larger box simulation results for the
soliton growth rate are very close to our fiducial simulation
and can hardly be distinguished in the figure.
Thus, as for the case of a flat halo, we find that the

solitons governed by the balance between gravity and the
self-interactions are robust and always form, either in a
few dynamical times if the initial density is high enough,
or after small-scale density fluctuations are grown large

FIG. 9. Evolution of a cuspy system with Rsol ¼ 0.5, ρ0sol ¼ 8.
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enough by a slow secular process to trigger an instability
and a fast soliton formation.

VI. KINETIC THEORY

A. Kinetic equation

We now derive a kinetic equation for the evolution with
time of the system, that is, for the occupation numbers of
the central soliton and of the halo eigenstates. A similar
approach was presented in [36,54] for the formation of
FDM solitons inside a homogeneous background, which
can be decomposed over plane waves. We go beyond these
results by taking into account the self-interactions and the
nonhomogeneous background. The latter can no longer
be decomposed over plane waves (i.e., we can no longer
use Fourier analysis). However, as described below, it is
possible to derive simple kinetic equations by decomposing
the background over eigenmodes of a reference poten-
tial, in a fashion similar to the description of the halo in
Sec. III C 1. In addition, as one follows the evolution along
this time-dependent background, one needs to separate this

smooth background from the stochastic fluctuations that
drive the dynamics.
The equation of motion (27) is the Schrödinger equation

in a self-force potential Φ ¼ ΦN þΦI sourced by the
system self-gravity and self-interaction. For the quartic
scalar-field model considered in this paper, Φ is quadratic
over the wave function ψ , and the equations of motion read

iϵ
∂ψ

∂t
¼ −

ϵ2

2
∇2ψ þΦψ ; ð67Þ

with

Φ ¼ ð4π∇−2 þ λÞψ⋆ψ : ð68Þ

If the potential Φ is fixed, ψðx⃗; tÞ can be decomposed as
usual in energy eigenmodes with the simple time depend-
ence e−iEt=ϵ. In the semiclassical limit, the system behaves
like a collection of classical particles and the Husimi phase-
space distribution fHðx⃗; v⃗; tÞ [55] defined from ψðx⃗; tÞ
approximately follows the Vlasov equation that governs the

FIG. 11. Evolution of a cuspy system with Rsol ¼ 0.1, ρ0sol ¼ 100.

FIG. 10. Evolution of a cuspy system with Rsol ¼ 0.1, ρ0sol ¼ 0.
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dynamics of the classical distribution fðx⃗; v⃗; tÞ [56,57]. As
described in Sec. III C, in this limit ϵ ≪ 1, we can build
approximate equilibrium configurations by choosing the
eigenmode coefficients anlm in correspondence with a
classical phase-space equilibrium solution, as in Eqs. (45)
and (55). This procedure would give true equilibria if the
potential Φ were only sourced by the average density hρi,
which neglects interferences between different eigenmodes
as in Eq. (46). However, as shown in Eq. (63) and in the
plots of the initial conditions displayed in the previous
sections, the interference terms lead to significant fluctua-
tions of the density profile. They have a relative magnitude
of order unity but a spatial width that decreases as ϵ. Hence
they only become small in a coarse-graining sense. These
random fluctuations mean that even if we start with an
equilibrium configuration in this averaged sense, the
system will not be exactly stationary as the potential Φ
deviates from hΦi. To describe this system, we therefore
split the potential Φ in an average spherically symmetric
part Φ̄ and a fluctuating part δΦ,

Φ̄ðx⃗; tÞ ¼ Φ̄ðrÞ þ δΦðx⃗; tÞ: ð69Þ

Within an adiabatic approximation, we have in mind that
the smooth potential Φ̄ slowly evolves on long timescales
whereas the incoherent stochastic fluctuations δΦ evolve on
short times and drive the averaged dynamics, as an external
noise would do for instance. The potential Φ̄ defines the
energy eigenmodes ψ j,

ψ jðx⃗; tÞ ¼ e−iEjt=ϵψ̂ jðx⃗Þ; ψ̂nlmðx⃗Þ ¼ RnlðrÞYlmðθ;φÞ;
ð70Þ

where the index j denotes fn;l; mg and for future
convenience we use the real spherical harmonics Ylm (also
called tesseral spherical harmonics) instead of the more
usual complex harmonics,

m < 0∶ Ylm ¼
ffiffiffi
2

p
ImY jmj

l ; Yl0 ¼ Y0
l;

m > 0∶ Ylm ¼
ffiffiffi
2

p
ReYm

l : ð71Þ

Therefore, the functions ψ̂ jðx⃗Þ are real and form a complete
orthonormal basis. We can then expand the wave function ψ
over this basis as

ψðx⃗; tÞ ¼
X
j

ffiffiffiffiffiffiffiffiffiffiffiffi
MjðtÞ

q
e−iθjðtÞ=ϵψ̂ jðx⃗Þ; ð72Þ

where Mj ≥ 0 and θj are real. The squared amplitude Mj

is the mass contained in the eigenmode j, if we neglect
interferences. Substituting this expansion into the equation
of motion (67) we obtain

iϵṀj þ 2Mjθ̇j ¼ 2MjEj þ
X
j0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0

p
eiðθj−θj0 Þ=ϵ

×
Z

dx⃗ψ̂ jδΦψ̂ j0 ð73Þ

where the dots denote the derivatives with respect to time.
We define the reference potential Φ̄ as the sum of the
diagonal terms,

Φ̄ ¼ ð4π∇−2 þ λÞ
X
j

Mjψ̂
2
j ; ð74Þ

while the remainder δΦ is given by the off-diagonal
interference terms,

δΦ ¼ ð4π∇−2 þ λÞ
X
j≠j0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MjMj0

p
eiðθj−θj0 Þ=ϵψ̂ jψ̂ j0 : ð75Þ

Then, we assume that Φ̄ evolves slowly with time, so that
we can neglect its time dependence (i.e., the time depend-
ence of the eigenmodes ψ̂ j) in the equation of motion (73).
The evolution of the system is due to the small fluctuations
δΦ, associated with the interferences. They perturb the
occupation numbersMj of the various energy levels, which
will in turn affect the reference potential Φ̄ as the density
profile slowly changes. However, in an adiabatic approxi-
mation, the slow change of Φ̄ only leads to a change of the
phase of the eigenmodes (and of the energy levels) while
keeping their occupation number fixed. Therefore, we
focus here on the driving mechanism associated with
δΦ. Then, we can write the equation of motion (73) as

iϵṀ1 þ 2M1θ̇1 ¼ 2M1E1 þ
X2≠4
234

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2M3M4

p
× eiðθ1þθ2−θ3−θ4Þ=ϵ

×
Z

dx⃗ψ̂1ψ̂3ð4π∇−2 þ λÞψ̂2ψ̂4; ð76Þ

where the indices f1; 2; 3; 4g denote fj1; j2; j3; j4g. Let us
define the vertices V13;24 as

V13;24 ¼
Z

dx⃗ψ̂1ψ̂3ð4π∇−2 þ λÞψ̂2ψ̂4; ð77Þ

which are real and symmetric over f1 ↔ 3g, f2 ↔ 4g and
fð13Þ ↔ ð24Þg. Then, separating the real and imaginary
parts of Eq. (76) gives
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ϵṀ1¼2
X2≠4
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2M3M4

p
V13;24 sin

�
θ1þθ2−θ3−θ4

ϵ

�
;

θ̇1¼E1þ
X2≠4
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2M3M4

M1

s
V13;24cos

�
θ1þθ2−θ3−θ4

ϵ

�
:

ð78Þ
To avoid secular effects associated with trivial resonances
between products of identical oscillatory terms [58], we
define the renormalized frequencies ωj as

ω1 ¼ E1 þ
X2≠1
2

M2V12;21: ð79Þ

Then, the system (78) also reads

Ṁ1 ¼
2γ

ϵ

X
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2M3M4

p
V̂13;24 sinðθ3412=ϵÞ;

θ̇1 ¼ ω1 þ γ
X
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2M3M4

M1

s
V̂13;24 cosðθ3412=ϵÞ; ð80Þ

where we introduced the notation

θ3412 ¼ θ1 þ θ2 − θ3 − θ4 ð81Þ

and the new vertices V̂13;24 defined as

V̂13;24 ¼ V13;24 except V̂13;22 ¼ 0; V̂12;21 ¼ 0: ð82Þ

We also introduced a bookkeeping parameter γ ¼ 1 that
multiplies the vertices V̂, i.e. the potential δΦ. We have in
mind that the fluctuating part δΦ leads to a slow drift of the
system as compared with the orbital motions in the mean
potential Φ̄. Therefore, we will develop a perturbation
theory in δΦ, which corresponds to a perturbation theory in
powers of γ (taking γ ¼ 1 at the end).
The system (80) is similar to those encountered in four-

wave systems [58,59]. However, the vertices V̂ are no longer
fully symmetric and do not contain Krönecker symbols δ3412
in wave numbers. This is because we expand around a
nonhomogeneous equilibrium Φ̄, with a peculiar radial
density profile ρ̄ðrÞ. This breaks the invariance over trans-
lations obeyed by wave systems over a uniform background.
We now look for the perturbative expansion of the

squared amplitudes Mj and the phases θj in powers of γ,

Mj ¼ Mð0Þ
j þ γMð1Þ

j þ γ2Mð2Þ
j þ…: ð83Þ

At zeroth order we obtain

Mð0Þ
1 ðtÞ ¼ M̄1; θð0Þ1 ðtÞ ¼ θ̄1 þ ω̄1t; ð84Þ

with M̄1 ¼ M1ð0Þ, θ̄1 ¼ θ1ð0Þ, setting the initial conditions
of the system at the time t ¼ 0. At first order we obtain

Ṁð1Þ
1 ¼ 2

ϵ

X
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄1M̄2M̄3M̄4

q
V̂13;24 sin

	�
θ̄3412 þ ω̄34

12t
�
=ϵ


;

ð85Þ

and

Mð1Þ
1 ðtÞ ¼ 2

X
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄1M̄2M̄3M̄4

q V̂13;24

ω̄34
12

	
cos

�
θ̄3412=ϵ

�
− cos

	�
θ̄3412 þ ω̄34

12t
�
=ϵ



; ð86Þ

θð1Þ1 ðtÞ ¼ ϵ
X
234

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄2M̄3M̄4

M̄1

s
V̂13;24

ω̄34
12

	
sin

	�
θ̄3412 þ ω̄34

12t
�
=ϵ



− sin
�
θ̄3412=ϵ

�

: ð87Þ

At second order, using trigonometric identities we obtain

Ṁð2Þ
1 ¼

X
234

V̂13;24

X4
m¼1

X
567

V̂m6;57

ω̄67
m5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄1M̄2M̄3M̄4M̄5M̄6M̄7

M̄m

s

×
2

ϵ

	
sin

	�
θ̄3412 þ ω̄34

12t − σmθ̄
67
m5

�
=ϵ



− sin
	�
θ̄3412 þ ω̄34

12t − σmθ̄
67
m5 − σmω̄

67
m5t

�
=ϵ



; ð88Þ

where we introduced σ1 ¼ σ2 ¼ 1, σ3 ¼ σ4 ¼ −1.
At zeroth order we have Ṁð0Þ

1 ¼ 0. At first order we
obtain from Eq. (85)

hṀð1Þ
1 i ¼ 0; ð89Þ

assuming that the initial phases θ̄j are uncorrelated and
uniformly distributed over ½0; 2π½, as in (45). Here we used
the properties (82) of the nonsymmetric vertex V̂. At
second order we obtain from Eq. (88)

hṀð2Þ
1 i ¼ 2

ϵ

X
234

M̄1M̄2M̄3M̄4

�
sinðω̄34

12t=ϵÞ
ω̄34
12

V̂13;24

�
V̂13;24 þ V̂14;23

M̄1

þ V̂23;14 þ V̂24;13

M̄2

−
V̂31;42 þ V̂32;41

M̄3

−
V̂41;32 þ V̂42;31

M̄4

�
þ sinðω̄3

1t=ϵÞ
ω̄3
1

V̂12;23

�
V̂14;43

M̄1

−
V̂34;41

M̄3

�
þ sinðω̄4

2t=ϵÞ
ω̄4
2

V̂23;34

V̂14;21 − V̂12;41

M̄2

�
; ð90Þ
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where we used the properties and symmetries of the
vertices V̂ and V. In usual four-wave systems over a
homogeneous background, with a symmetric vertex V̂,
the last two terms vanish and the first term simplifies as
sinðω̄34

12t=ϵÞð2V̂2
1234=ω̄

34
12Þð1=M̄1 þ 1=M̄2 − 1=M̄3 − 1=M̄4Þ.

In our case, the inhomogeneous background leads to the
more complicated expression (90).

B. Soliton ground state and halo excited states

We are interested in hydrostatic solitons embedded
within a halo formed by a quasicontinuum of excited
states, as described in Sec. III C. As shown in the figures in
the previous sections, in the limit ϵ ≪ 1 the central soliton
follows the density profile (36) with a flat potential
Φ ¼ Esol over its extent, determined by the hydrostatic
equilibrium (34). This is the ground state j ¼ 0 of the
system. Higher-energy states correspond in the classical
limit to particles that orbit up to a radius rmax

j > Rsol, with a

higher energy Ej ¼ v2
2
þΦ ≥ Φðrmax

j Þ > ΦðRsolÞ. The sol-
iton contains a macroscopic mass, that can make up a
significant fraction of the system, whereas the higher-
energy states that build the halo form a quasicontinuum,
with a mass of the order of ϵ3 ≪ 1 as in Eq. (55) and energy
levels separation ΔE ∼ ϵ as in (50).
Therefore, we look for the evolution of Msol ¼ M0 and

we separate the contributions of the soliton from those of
the halo quasicontinuum in the sums in the right-hand side
in Eq. (90). We also consider times much longer than the
orbital periods, using

lim
t→∞

sinðtxÞ
x

¼ πδDðxÞ: ð91Þ

This gives

Ṁ0¼
2π

ϵ

X
12

M2
0M1M2

�
δDðω12

00Þ4V2
01;02

�
1

M0

−
1

M1

�
þδDðω1

0Þ
V02;21V00;01

M0

�
þ2π

ϵ

X
123

M0M1M2M3

×

�
δDðω23

01Þ
1

2
ðV02;13þV03;12Þ2

�
1

M0

þ 1

M1

−
1

M2

−
1

M3

�
þδDðω1

0ÞV02;21V03;31

�
1

M0

−
1

M1

��
; ð92Þ

where the sums only run over the halo excited states j ≠ 0
(and at least one is transformed into an integral in the
continuum limit). Here we dropped the overbars for
simplicity and we replaced V̂ by V as we discarded the
constraints (82) in the sums over the halo excited states, as
each of them only contains a mass of the order of ϵ3.

C. Renormalized frequencies ωj

We also separate the soliton from the quasicontinuum of
halo excited states in the expression (79) of the renormal-
ized frequencies ωj. Thus, we write ωj ¼ Ej þ ΔEj with

ΔE0 ¼
X
1

V01;10M1; ΔE1 ¼ V10;01M0 þ
X
2

V12;21M2;

ð93Þ

where the indices 1 and 2 stand for halo excited states. As in
Eq. (55) for the initial halo configuration, we assume that
the squared amplitudes Mj only depend on the energy Ej,
and hence on the quantum numbers n and l, and are
independent of the azimuthal number m,

Mj ¼ a2j ¼ ð2πϵÞ3fðEn;lÞ: ð94Þ

In particular, as in Eq. (46), we obtain from (72) the
averaged halo density as

hρhaloi ¼
X
j

Mjψ̂
2
j ¼

X
nl

2lþ 1

4π
MnlR2

nl; ð95Þ

where we used again the assumption that the initial phases
θ̄j are uncorrelated.
The vertices V13;24 defined in Eq. (77) can be decom-

posed over their self-interaction and gravitational parts

V13;24 ¼ Vλ
13;24 þ VN

13;24; ð96Þ

with

Vλ
13;24 ¼ λ

Z
dx⃗ψ̂1ψ̂3ψ̂2ψ̂4; ð97Þ

and

VN
13;24 ¼ −

Z
dx⃗dx⃗0

jx⃗ − x⃗0j ψ̂1ðx⃗Þψ̂3ðx⃗Þψ̂2ðx⃗0Þψ̂4ðx⃗0Þ: ð98Þ

Then, we obtain for the self-interaction contribution to the
frequency shifts

ΔEλ
0 ¼ λ

Z
dr r2R2

0hρhaloi;

ΔEλ
1 ¼ Vλ

1001M0 þ λ

Z
dr r2R2

1hρhaloi: ð99Þ

This gives the order of magnitude estimates ΔEλ
0 ∼

λhρhaloiRsol
¼ ΦIhaloðRsolÞ and ΔEλ

1 ∼ λMsolR2
1ðRsolÞ þ

ΦIhaloðR1Þ, where R1 is the radial extent of the eigen-
mode R1. By definition, we consider systems where the
self-interaction is negligible in the halo, which is governed
by gravity and the velocity dispersion. We also have λ ≪ 1
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andMsol ≪ 1. Therefore, the shifts ΔEλ
j ≪ 1 are negligible

as compared with the energies Ej ∼ 1, except for low-
energy modes that are confined within the soliton radius.
The gravitational contribution reads as

ΔEN
0 ¼ −

X
1

M1

Z
dx⃗dx⃗0

jx⃗ − x⃗0j ψ̂0ψ̂1ψ̂
0
1ψ̂

0
0;

ΔEN
1 ¼ VN

10;01M0 −
X
2

M2

Z
dx⃗dx⃗0

jx⃗ − x⃗0j ψ̂1ψ̂2ψ̂
0
2ψ̂

0
1: ð100Þ

A crude estimate, where we would replace the mixed
product ψ̂1ψ̂2ψ̂

0
2ψ̂

0
1 by ψ̂2

1ψ̂
0
2
2, would give ΔEN

j ∼
ΦNhaloðRjÞ. This is much smaller than E0 for the ground
state j ¼ 0, while for halo excited states this would give
ΔEN

j ∼ Ej. However, this is a significant overestimate
because the mixed product ψ̂1ψ̂2ψ̂

0
2ψ̂

0
1 means that we have

significant interferences between the two eigenmodes in the
integrals over both x⃗ and x⃗0. Then, for halo excited states we
also have ΔEN

j ≪ Ej.
Thus, we find that the frequency shifts are small,

ωj ≃ Ej, except for the low-energy modes that are confined
within the soliton radius where ΔEλ

j ≥ 0 can be significant.
The soliton frequency shift is smaller than that of these
low-energy halo states, because it does not contain the
term Vλ

1001M0 in Eq. (99). Therefore, as we checked
numerically, the soliton ground state keeps the lowest
frequency,

ωj > ω0 for j ≠ 0: ð101Þ

Some of the renormalized frequencies ωj are shown in
Figs. 12 and 14 below.

D. Evolution of the soliton mass

We are interested in the evolution with time of the mass
of the soliton given by Eq. (92) Because the halo excited
states have ωj > ω0 from (101), the Dirac factors δDðω12

00Þ
and δDðω1

0Þ vanish and Eq. (92) simplifies as

Ṁ0 ¼
π

ϵ

X
123

M0M1M2M3δDðω23
01ÞðV02;13 þ V03;12Þ2

×

�
1

M0

þ 1

M1

−
1

M2

−
1

M3

�
: ð102Þ

This is actually similar to the usual kinetic equation of
four-wave systems [58,59], but as seen above for excited
states the kinetic equation would take the more complicated
form (92).
The kinetic equation (102) shows at once that if we start

without a central soliton, it will be generated by the
nonlinear dynamics, as we have

Ṁ0 ¼
2π

ϵ

X
123

M1M2M3δDðω23
01ÞðV02;13 þ V03;12Þ2 > 0

ð103Þ

forM0 ¼ 0. However, this expression is not so useful as for
small M0 it is not possible to distinguish the soliton from
the random fluctuations in the central region. In fact, the
constraint (15) shows that low-mass, i.e., low-density,
solitons supported by the self-interactions do not exist.
Low-mass density peaks are first supported by the quantum
pressure and they need to reach a finite density threshold
to make the transition to solitons supported by the self-
interaction pressure. This was discussed above in Sec. IV C 1
for the simulation shown in Fig. 5.
Using the fact that the occupation numbers Mj and the

renormalized frequencies ωj do not depend on the azimuthal
numbersmj, we can perform the sums over fm1; m2; m3g in
Eq. (102). Using the expressions (97) and (98) of the vertices
V we obtain

Ṁ0 ¼
1

2ϵ
dX

123
M0M1M2M3δDðω23

01Þ
�
l1 l2 l3

0 0 0

�
2

× ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
�

1

M0

þ 1

M1

−
1

M2

−
1

M3

��
λ

2π

Z
dr r2R0R1R2R3 −

Z
dx x2

R0R2

2l2 þ 1

×
Z

dx0x02R0
1R

0
3

xl2<
xl2þ1
>

−
Z

dx x2
R0R3

2l3 þ 1

×
Z

dx0 x02R0
1R

0
2

xl3<
xl3þ1
>

�
2

ð104Þ

where cP denotes that we only sum over the quantum
numbers nj and lj, x< ¼ minðx; x0Þ, x> ¼ maxðx; x0Þ, R0

j

denotes Rjðx0Þ, and we used the expansion

1

jx⃗ − x⃗0j ¼
X
l;m

4π

2lþ 1

xl<
xlþ1
>

Ym
l ðx⃗Þ�Ym

l ðx⃗0Þ: ð105Þ

E. Halo with a flat density profile

We consider in this section the growth of the central
soliton inside the flat halo studied in Sec. IV.

1. Modified potential and approximate energy cutoff

As the central soliton grows, it modifies the shape of the
potential Φ. Indeed, as seen in the previous sections, inside
the soliton Φ is roughly constant, in agreement with the
hydrostatic equilibrium (34). At radii slightly beyond the
soliton radius Rsol, Φ is dominated by the gravitational
potential ΦNsol ¼ −Msol=r of the soliton. Finally, at large
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radiiΦ is dominated by the gravitational potentialΦNhalo of
the halo. In principle, we should follow simultaneously the
evolution with time of the potential Φ̄, the halo occupation
numbers Mj, and the soliton mass M0. However, in this
article we investigate a simplified approach where we only
use the kinetic equation (104) to follow the soliton growth
rate and use instead approximate explicit models for the
potential Φ̄ and the halo occupation numbers Mj.
We approximate the potential Φ̄ðrÞ by

r > Rcoll∶ Φ̄ðrÞ ¼ ΦNhaloðrÞ;

Rsol < r < Rcoll∶ Φ̄ðrÞ ¼ −
Msol

r
þMsol

Rcoll
þΦNhaloðRcollÞ;

r < Rsol∶ Φ̄ðrÞ ¼ −
Msol

Rsol
þMsol

Rcoll
þΦNhaloðRcollÞ;

ð106Þ
where ΦNhalo is the initial gravitational potential (59) of the
halo and Rcoll is the radius where the initial enclosed mass
is equal to the soliton mass, Mhaloð< RcollÞ ¼ Msol. This
simple approximation provides a reasonably good descrip-
tion of the potential Φ displayed in Figs. 5 and 6, except in
the outer parts as it does not capture the diffusion of the halo
somewhat beyond its initial radius. It describes the three
regimes where the total potential is (i) dominated by the
halo gravity at large distance, (ii) dominated by the soliton
gravity closer to the soliton, and (iii) constant in the soliton
thanks to the balance between gravity and self-interactions.
This potential Φ̄ defines in turns the eigenmodes ψ j.
Instead of using the kinetic equations (90) to follow the

occupation numbers of the halo excited states, we assume
an adiabatic evolution with Mj ¼ Mjðt ¼ 0Þ, where
Mjð0Þ ¼ ð2πϵÞ3f½Ejð0Þ� are the initial halo occupation
numbers as in Eq. (55). Then, to take into account the
transfer of mass from the halo to the central soliton, we
assume that the soliton mostly builds from the lowest-
energy modes. Therefore, we take Mj ¼ 0 for all modes
with Ej < Ecoll, where the threshold Ecoll is such that the
mass associated with all these modes is equal to the
increase of the soliton mass,

XEj<Ecoll

j

ð2lþ 1ÞMnlð0Þ ¼ Msol −Msolð0Þ; ð107Þ

where Msolð0Þ is the initial soliton mass at time t ¼ 0.
We show in Fig. 12 the potential Φ̄ given by the

approximation (106) and the renormalized frequencies
ωj for the case of a small soliton Msol ¼ 0.05. The soliton
creates a flat potential over Rsol, which is deeper than the
initial halo potential because of the central overdensity.
The new energy levels Ej are close to the initial energy
levels Ejð0Þ of the unperturbed halo for E > Ecoll but are
significantly lowered for E < Ecoll, because of the

increased depth of Φ̄ in the central region. This is why
the ground-state (soliton) level E0 ¼ Φ̄ð0Þ ≃ −1.4 is below
the initial energy level E0 ≃ −1.2 shown in Fig. 2. In
agreement with the analysis in Sec. VI C, the shifts ΔEj

that give the renormalized frequencies ωj are small, except
for the low-energy states that are confined within the
soliton radius. However, these states do not appear in
the lower panel in Fig. 12, because they are removed by the
energy cutoff (107). Nevertheless, the small but nonzero
shifts ΔEj for higher-energy levels explain why the
constant-energy cutoff Ecoll gives a cutoff for ωnl that is
not completely constant with l, as seen in Fig. 12.
We can see in the figure that for the small mass Msol ¼

0.05 there is already a large gap between ω0 and the
remaining halo frequencies ωj. In fact, we have jωjj <
jω0j=2 for all halo modes with Ej > Ecoll. This means that
the Dirac factor δDðω23

01Þ in Eq. (104) is always zero.
Therefore, the soliton growth rate Γsol, defined by

Γsol ¼
Ṁ0

M0

; ð108Þ

FIG. 12. Upper panel: potential Φ̄ without a soliton (red dashed
line) and with a soliton of mass Msol ¼ 0.05 (blue dotted line).
Lower panel: renormalized frequencies ωj such that Ej > Ecoll.
The soliton ground-state frequency ω0 is shown by the lower left
blue point.
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vanishes within the approximation (107). This means that
this approximation is not sufficient to predict the soliton
growth rate in this configuration. We need to follow more
precisely the evolution with time of the low-energy
occupation numbers MjðtÞ as the growth rate Γsol is very
sensitive to the distribution at low energies, for halo modes
that have a significant overlap with the soliton central
region so that the kernel V02;13 is not negligible.

2. Growth of the soliton mass

We show in Fig. 13 the growth with time of the soliton
massMsolðtÞ, for numerical simulations of the Schrödinger
equation (27) with different initial soliton density ρ0sol.
Again we measure MsolðtÞ by counting the total mass
within the radius Rsol from the highest-density peak in the
system. This provides a good proxy for Msol as soon as a
well-characterized soliton forms at the center of the halo.
We can see in the upper panel that, when we start with an

initial soliton Msolð0Þ≳ 0.05, MsolðtÞ typically shows an
early fast growth over a few dynamical times and next
grows at a much slower rate. The initial stage presumably
corresponds to a violent relaxation, where the low-energy

levels of the halo are depleted as they mostly merge with
the soliton, while the late stage corresponds to a slow
accretion limited by the low occupation numbers of these
low halo energy levels. The three bottom curves, where
there is no initial soliton or a very small overdensity at the
center, show the behavior found in Fig. 5. Until a long time,
t ∼ 200 in the case without initial central overdensity, there
is no soliton supported by the self-interaction but only
narrow stochastic peaks. However, they slowly grow and
when one peak reaches the density threshold (38) a broad
soliton supported by the self-interaction appears and
next follows a similar evolution to that displayed by the
other cases.
We show in the lower panel the growth rate ΓsolðtÞ as a

function of the soliton mass. To compute Γsol we first fit the
simulation curveMsolðtÞ with splines and next we compute
the time derivative (108) from this smooth curve. We plot
the result as a function of MsolðtÞ, to see whether the
dynamics reach a scaling regimewhere the growth rate only
depends on the soliton mass (which also defines the halo
mass as Mhalo ¼ Mtot −Msol). We can see that this is not
the case and the growth rate at late times still depends on
the initial conditions. This is thus different from the scaling
regime found in numerical simulations [36] for FDM (i.e.
without self-interactions). Another difference is that the
solitons displayed in Fig. 13 always grow, whereas in [36]
small solitons evaporate. Note that in our simulations the
self-interactions indeed dominate in the central region.
However, all cases follow the same pattern. The growth rate
steadily decreases with time (whileMsol grows increasingly
slowly). This falloff may be understood from the increas-
ingly large gap between the soliton frequency ω0 and the
halo frequencies ωj above the increasingly large cutoff Ecoll

shown in Fig. 12, and the low occupation numbers of the
lower-energy states where resonances with the soliton are
possible. The leftmost red-dashed curve, which starts with a
low central overdensity and mass, starts with a very low
growth rate and oscillations, before reaching the same
pattern as the other cases. As explained above, this is
because before the threshold (38) is reached there is no self-
interaction-supported soliton and the central region is
dominated for a long time by narrow stochastic peaks,
with a size set by the de Broglie wavelength.

F. Halo with a cuspy density profile

We now consider the growth of the central soliton in the
case of the cuspy halo studied in Sec. V. We use the same
approximation (106) for the potential Φ̄ and the energy
cutoff (107) for the removal of the low-energy levels.
As seen in Fig. 14, we recover the flat potential Φ̄ over

the extent of the soliton, somewhat deeper than the initial
halo potential. The gap between the ground-state frequency
ω0 and the lowest levels ωj above the threshold Ecoll is not
as large as in Fig. 12, even though the ratio Msol=Mhalo ≃
0.05 is about the same. This is because the cuspy initial

FIG. 13. Upper panel: growth with time of the soliton mass
MsolðtÞ, for a set of simulations with different initial conditions.
Lower panel: growth rate Γsol from these simulations shown as a
function of Msol.
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density profile means that low-energy levels initially
contain a greater relative fraction of the total mass of the
system. Therefore, a smaller fraction of them is needed to
make up the growing soliton mass. As seen in Fig. 14, the
lowest energy levels above the threshold Ecoll now have
jωjj > jω0j=2. Therefore, the Dirac factor δDðω23

01Þ in
Eq. (104) is no longer always zero. The soliton mass
can grow through the interaction with two low-energy
levels −2.7≲ ω2;ω3 ≲ −1 and a high-energy level ω1 ≃ 0.
However, for higher soliton mass E0 decreases while
more low-energy levels are depleted, within the approxi-
mation (107), so that the gap increases and eventually the
Dirac factor δDðω23

01Þ always vanishes.
We show in Fig. 15 the growth with time of the soliton

mass. As for the flat-core halos displayed in Fig. 13 the
soliton always grows, with a growth rate that decreases
with time. The total mass of the system is M ≃ 2.5, so that
the upper curve corresponds to a central soliton that makes
about 44% of the total mass. Therefore, the numerical
simulations suggest that the central soliton can slowly grow
until it makes a large fraction of the total mass of the
system, of the order of 40% at least.
We show in the lower panel the growth rate as a function

of the soliton mass. As for the flat-core halos displayed in

Fig. 13, there is no clear sign of a scaling regime, as the
growth rate still depends on the initial conditions at late
times. The simple lines are the theoretical predictions from
Eqs. (104) and (107), for the different initial conditions,
while the lines with symbols are the results from numerical
simulations. In agreement with the lower panel in Fig. 14,
at early times when the soliton has not grown too much, the
gap between the renormalized soliton and halo frequencies
ω0 and ωj is not too large and the simple energy-cutoff
ansatz (107) allows for some resonances in the theoretical
prediction (104). This gives a positive growth rate that
shows a fast decrease with Msol and vanishes beyond some
mass threshold as the frequency gap becomes too large to
allow for resonances. This provides a reasonably good
agreement with the results from the numerical simulations,
except close to this mass threshold and beyond. There, our
ansatz underestimates the growth rate, which remains
positive but steadily decreasing in the numerical simula-
tions. As for the flat-core halos displayed in Fig. 13, this
means that the halo low-energy levels are partially refilled
by the interactions between higher-energy states. This

FIG. 15. Growth with time of the soliton mass MsolðtÞ (upper
panel) and growth rate Γsol as a function ofMsol (lower panel), as
in Fig. 13 but for a cuspy halo. The lines with symbols are the
numerical simulations while the simple lines are the theoretical
predictions.

FIG. 14. Potential Φ̄ and renormalized frequencies ωj as in
Fig. 12, but for a cuspy halo and a soliton mass Msol ¼ 0.1.
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cannot be captured by the simple ansatz (107) and is
beyond the scope of this paper. We leave a detailed study of
this regime, where one needs to simultaneously follow the
evolution of all halo excited states, to future works.

VII. CONCLUSION

In this paper we have discussed the emergence of
solitons in self-interacting scalar dark matter models. In
doing so, we have first chosen specific initial conditions for
the initial halo in the form of a decomposition in eigenm-
odes of the Schrödinger equation in the presence of the
Newtonian gravity due to the halo. This has allowed us to
solve for the eigenmodes in the WKB approximation and
then construct an initial state whose projection on this basis
depends on random phases. The modulus of the coefficients
of the decomposition reproduce the halo profile while the
random phases create strong fluctuations in the initial wave
function. We then let the system evolve under the influence
of gravity and the self-interaction and solve the nonlinear
Schrödinger equation.
The WKB approximation for the coefficients anlm of

the eigenmodes of the halo provides a reasonably good
approximation of the target density profile by the averaged
density hρhaloi. This could be expected as we focus on the
semiclassical limit ϵ ≪ 1. However, the actual density
profile ρhalo always shows strong density fluctuations, of
the same order as the mean density hρhaloi, because of the
interferences between the different eigenmodes. The ampli-
tude of these fluctuations does not decrease with ϵ, but their
spatial width decreases as Δx ∝ ϵ.
When halos form on a scale of the order of the length ra

associated with the self-interactions (the cases Rsol ¼ 0.5 in
our units), without initial soliton, a unique central soliton
supported by the self-interactions quickly forms in a few
dynamical times. It contains 30%–50% of the total mass. It
also damps the initial density fluctuations, associated with
interferences, within its radius. This holds whether we start
with a flat or a cuspy halo profile. However, in the cuspy
case, we have found that narrow and very high-density
spikes can survive and wander inside the large central
soliton for a long time. If there is an initial soliton, it grows
in a few dynamical times to reach a quasistationary state
where initial fluctuations are also damped.
Next, we have considered halos with a size much greater

than the self-interaction scale (Rsol ¼ 0.1 in our units). If
the halo has a flat density profile, with density fluctuations
of order unity, it takes a long time for a central soliton
supported by the self-interactions to appear, until the
small-scale spikes on sizes of the order of the de Broglie
wavelength grow and reach densities that are high enough
to trigger the self-interactions. In contrast, if the halo has a
cuspy density profile, the high density at the center leads
at once to significant self-interactions. This gives rise in a
few dynamical times to a central soliton supported by the

self-interactions. Again, the fluctuations are damped within
this soliton. If there is an initial soliton, it slowly grows for
many dynamical times.
We have developed a kinetic theory to follow the

evolution with time of the system for arbitrary profile
(i.e., going beyond plane waves in a homogeneous system).
For the quartic self-interaction λ4ϕ

4 that we have consid-
ered in this paper, which leads to an effective quadratic
pressure P ∝ ρ2 in the nonrelativistic limit, we have
obtained a kinetic equation that is similar to the kinetic
equation of four-wave systems. To estimate the soliton
growth rate, we have further simplified the theory by taking
a simple ansatz for the halo excited modes, assuming that
they keep their initial occupation numbers in an adiabatic
fashion, except for the low-energy levels that are depleted
below a threshold Ecoll to build the soliton. This has
allowed us to compute the soliton growth rate at once,
for a given soliton and halo mass, without following the
precise evolution with time of all occupation numbers. For
a cuspy halo, this provides a reasonably good prediction
for the growth rate Γsol at early times. This simple ansatz
breaks down for large Msol, and for a flat halo, because it
does not follow the replenishing of the low-energy excited
states and predicts an abrupt end of the soliton growth as
there are no more possible resonances.
To improve this theoretical prediction, we would need to

go beyond the energy-threshold ansatz and use the kinetic
theory to follow the simultaneous evolution of all occu-
pation numbers. We leave such a task to future works.
All solitons that are lighter than 40% of the total mass

of the system keep slowly growing until the end of our
numerical simulations, albeit at an increasingly slow rate.
Therefore, our results suggest that the soliton mass
observed at a given time depends on the past history of
the system and can make up a significant fraction of the
total mass of the system.
In a cosmological context, these results suggest that,

in scalar-field dark matter scenarios with repulsive self-
interactions, a soliton with about half of the total mass
forms when overdense regions first collapse just above the
Jeans mass. These solitons should then survive as the halos
grow by accretion or mergings. The solitons should also
grow in the process by accretion or direct mergings of
solitons. The absence of clear relation between the halo and
soliton masses suggests that the complex hierarchical
formation process of cosmological halos will lead to a
large scatter for the mass of the soliton at fixed halo mass,
depending on the assembly history of the system. We leave
a detailed investigation of this point to future works, using
cosmological simulations.
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Technical Report, 1997, https://www.openmp.org/wp-
content/uploads/F95_OpenMPv1_v2.pdf.

[54] M. Jain, M. A. Amin, J. Thomas, and W.
Wanichwecharungruang, Phys. Rev. D 108, 043535 (2023).

[55] K. Husimi, Proc. Phys.-Math. Soc. Jpn. 3rd Series 22, 264
(1940).

[56] C. Uhlemann, M. Kopp, and T. Haugg, Phys. Rev. D 90,
023517 (2014).

[57] P. Mocz, L. Lancaster, A. Fialkov, F. Becerra, and P. H.
Chavanis, Phys. Rev. D 97, 083519 (2018).

[58] S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011).
[59] M. Onorato and G. Dematteis, J. Phys. Commun. 4, 095016

(2020).

GALAZO GARCÍA, BRAX, and VALAGEAS PHYS. REV. D 109, 043516 (2024)

043516-28

https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf
https://doi.org/10.1103/PhysRevD.108.043535
https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.1103/PhysRevD.90.023517
https://doi.org/10.1103/PhysRevD.90.023517
https://doi.org/10.1103/PhysRevD.97.083519
https://doi.org/10.1088/2399-6528/abb4b7
https://doi.org/10.1088/2399-6528/abb4b7

