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Solitons and halos for self-interacting scalar dark matter
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We study the formation and evolution of solitons supported by repulsive self-interactions inside
extended halos, for scalar-field dark matter scenarios. We focus on the semiclassical regime where the
quantum pressure is typically much smaller than the self-interactions. We present numerical simulations,
with initial conditions where the halo is described by the WKB approximation for its eigenfunction
coefficients. We find that when the size of the system is of the order of the Jeans length associated with the
self-interactions, a central soliton quickly forms and makes about 50% of the total mass. However, if the
halo is 10 times greater than this self-interaction scale, a soliton only quickly forms in cuspy halos where
the central density is large enough to trigger the self-interactions. If the halo has a flat core, it takes a longer
time for a soliton to appear, after small random fluctuations on the de Broglie wavelength size build up to
reach a large enough density. In some cases, we observe the coexistence of several narrow density spikes
inside the larger self-interaction-supported soliton. All solitons appear robust and slowly grow, unless they
already make up 40% of the total mass. We develop a kinetic theory, valid for an inhomogeneous
background, to estimate the soliton growth rate for low masses. It explains the fast falloff of the growth rate
as resonances between the ground state and halo excited states disappear. Our results suggest that
cosmological halos would show a large scatter for their soliton mass, depending on their assembly history.
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I. INTRODUCTION

Scalar dark matter [1] is a fruitful alternative to the
weakly interacting massive particle paradigm [2]. nating
from the first axion models [3-5], it has now been extended
to a wide range of scenarios where the mass of the scalar can
be between 1072% and 1 eV [6-9]. In particular these models
allow for a modification of the distribution of dark matter
inside galaxies where the core-cusp problem [10-12] of
Lambda cold dark matter (A-CDM) can be addressed
without any baryonic feedback [13—15]. Scalar dark matter
models can lead to different types of stable configurations
of dark matter, often called solitons [16-20], which would
render the distribution of dark matter smooth on short
scales and evade the cuspy profiles found in the A-CDM
model. These solitons result from the balance between
different types of pressures and interactions acting on dark
matter. Gravity is always active but two other sources of
pressure play also a role. The first one is the quantum
pressure whose origin springs from the Schrodinger descrip-
tion of the nonrelativistic scalar (i.e., from the Heisenberg
inequalities that follow from the wavelike properties of the
system). This quantum pressure is always repulsive and can
form solitons by compensating gravity [21]. These solitons
have a radius that decreases with their mass as R < 1/M.
They are a manifestation of the wave nature of models such
as fuzzy dark matter (FDM) [7,22], where the de Broglie
wavelength reaches galactic scales when the mass of the
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scalar is m ~ 1072? eV. Fuzzy dark matter is described by a
noninteracting massive scalar field. When self-interactions
are present, such as a quartic term in the Lagrangian of the
scalar model [23-25], this can generate a repulsive self-
interaction that can balance gravity on large scales and again
create smooth solitons of finite size [17,18,26-28]. Their size
is directly related to the mass and the self-interaction of the
scalar field and no longer depends on the soliton mass. The
cosmological evolution of such models has been studied for
instance in [28-30].

In this paper we are interested in the formation of
self-interacting solitons inside a larger dark matter halo.
The 1D spherical collapse was studied with a fluid approxi-
mation in [31]. In contrast, in this paper we use the 3D
Schrodinger-Poisson equations with stochastic initial con-
ditions around a mean halo target profile that can have
either a flat or cuspy core. We also consider the cases where
there is initially a small soliton or not superimposed on this
stochastic halo. Thus, we assume that a large halo has
formed by Jeans’s instability [24,28,32,33] and study
whether solitons can emerge dynamically from the time
evolution of the dark matter inside the halo. In particular,
we show that due to the initial density fluctuations around
the initial halo profile, self-interacting solitons always
emerge and swallow a significant portion of the halo mass.
This takes place whether a small soliton already exists or
even when no soliton is present initially. We also compare
what happens when the halo profile is flat or cuspy. In the
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case of cuspy profiles, we find that the formation of a
soliton from no initial one is very fast and happens in a few
dynamical times. In all cases, a soliton forms, grows and
reaches a significant size of the initial halo. This behavior
differs from what happens for fuzzy dark matter where
solitons are only stable if initially present and of a large
enough mass [21,34-36]. In the self-interacting case, the
solitons are spontaneously created.

We confirm these results by deriving a kinetic equation
from the nonlinear Schrodinger equation, which also
applies to a nonhomogeneous background. With the addi-
tion of a simple energy-cutoff ansatz for the occupation
numbers of the halo excited states, we obtain that the
growth rate of solitons is positive but shows a fast falloff
with the increase of the soliton mass.

Our results would have relevant consequences for
astrophysical situations as they suggest that if dark matter
happened to be a scalar with self-interactions, then dark
matter halos would be composed of a mix between a diffuse
halo and a smaller soliton whose size would depend on the
formation history of the halo. This could have phenom-
enological consequences for the dynamics of stars in dark
matter halos that we leave for future studies.

The paper is arranged as follows. In Sec. II we describe
the model and the region in the parameter space that we
focus on, where self-interactions are important. We present
the choice of initial conditions and the numerical procedure
in Sec. III. In the next Sec. IV, we describe the emergence
of solitons in flat halos and then in Sec. V in cuspy halos.
Finally, we develop a kinetic theory in Sec. VI to analyze
the growth rate of solitons. We then conclude in Sec. VII.

II. EQUATIONS OF MOTION

A. The scalar-field action

We consider scalar dark matter models described by the
action

R 1 m2¢?
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where the quartic self-interaction potential V; is small as
compared with the quadratic term and given by

—-Vi(@)|. (1)
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where /1, dictates the strength of the self-interactions. At
late times, when the Hubble expansion rate is smaller than
the scalar mass, H < m, the scalar field oscillates inside its
potential well with a period 2z/m and can be described by
the nonrelativistic ansatz

¢ — (We—imt 4 l//*eimt) , (3)

where the complex wave function y varies on timescales
and lengths much larger than 1/m. In this nonrelativistic
approximation [28], the wave function satisfies the non-
linear Schrodinger equation
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Here and in the following, we consider timescales that are
much shorter than the Hubble time and we neglect the
expansion of the Universe. The Newtonian gravitational
potential @ is given by the Poisson equation

V20O = 4nGymly|?, (5)
and the self-interacting potential is

3

o, = s | (6)

This a coupled system where the nonlinear Schrodinger
equation couples to the Poisson equation. This can also be
reduced to a single integro-differential equation, which will
be analyzed in Sec. VI,

Oy Viy 5 » 1
== AxGyV 2 + — 2 7
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with
4m*
= — 8
Pa=3; (8)

Simple configurations can be understood from the
hydrodynamical picture that follows from the Madeliing
transform [37]

w = \/Ee"s, whence p = m|y|?, 9)
m

where the dark matter velocity is identified as v = V.S/m.
The real and imaginary parts of the Schrodinger equation
give the continuity and Euler equations

dp + V- (pv) =0,
0,0+ (0-V)o = =V(Oy + @, + Dy), (10)

with

V2,/p
2R (11)

where @, is the so-called quantum pressure.
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B. Hydrostatic equilibrium and Thomas-Fermi limit

As seen from Eq. (10), such scalar-field models admit
hydrostatic equilibria given by 7 =0 and ®y + ®; +
®, = constant. The spherically symmetric ground state
is also called a soliton or boson star. In the Thomas-Fermi
regime that we will consider in this paper, this soliton is
governed by the balance between gravity and the repulsive
force associated with the self-interactions (for A, > 0). This
means that ®, < ®; over most of the extent of the soliton

and the Laplacian term —% can be neglected in Eq. (4).

Then, the wave function reads y(r, t) = e~ Efj(r) with

E

The soliton density profile is given by [17,28,38]

( ) sin(n'r/Rsol)
r) = _—
Psol P0sol n'r/Rsol
with the radius

7 |
 162Gym*  4nGyp,’

with 72 (14)

Ry = mr,

In fact, outside of the radius r, where Eq. (13) would give
a zero density we can no longer neglect ®, and the
exact solution develops an exponential tail at large radii.
Nevertheless, from Eq. (11) we can see that the approxi-
mation (13) is valid up to r < R, for

Posol > 1

D) K P,
e Pa  Tam

(15)

R

C. Outer halo and semiclassical limit

In this paper, we will study the emergence and the
evolution of these solitons within a larger halo of radius
Rypao > Ry- As seen above, the self-interactions can only
support a hydrostatic equilibrium within the radius Ry, of
Eq. (14), independent of the soliton mass. Therefore, while
inside R, the self-interactions can balance gravity and
build a flat core when the condition (15) is satisfied, outside
of Ry, the self-interactions are negligible. There, as for
FDM and CDM models, gravity is balanced by the velocity
dispersion or the angular momentum of the system. Thus,
in cosmological numerical simulations of FDM halos, one
finds a flat core governed by the quantum pressure inside an
Navarro-Frenk-White (NFW) halo that is similar to the
halos found in CDM simulations [39]. The halo is made of
granules that are stochastic fluctuations with a size of the
order of the de Broglie wavelength. A similar configuration
would then apply to our case, except that the flat core is
now supported by the self-interactions instead of the
quantum pressure.

We will consider the semiclassical limit (i.e., large scalar
mass m), where the de Broglie wavelength is much smaller
than both the core and halo radii. Then, the granules also
correspond to temporary wave packets that play the role of
particles [22] with a velocity dispersion or an angular
momentum that balances gravity and supports a virialized
halo. This means that ®, < ®y. For a system of size L,
and density p,, this gives

1
VONP« mLi .

For a virialized system governed by gravity, the gravita-
tional dynamical time 7, and the virial velocity are

Oy < Py: ex 1 with e= (16)

Ly

1
ty = and v, =—. 17
* Vv ng* * Ty ( )
Therefore, the de Broglie wavelength 145 reads
2r 27ty 2r
B v, mL, VGypsmL, T (18)

Thus, the limit € — 0 corresponds to the semiclassical
limit, where the de Broglie wavelength is much smaller
than the size of the system. In this paper, we focus on the
semiclassical regime e¢ = 0.01 < 1. Then, the halo is
composed of incoherent stochastic fluctuations of size
Agg, With a velocity dispersion set by the virial velocity,
whereas a coherent static soliton can appear at the center.

D. Parameter space

To set our study within the context of dark matter models
and the formation of large-scale structures, we show in
Fig. 1 the range of parameters allowed by astrophysical and
cosmological constraints and where our computations are
relevant. The exclusion regions, shown by the shaded
domains, are displayed in the planes (m, 4,) (upper panel)
and (m, Ry,) (lower panel). At fixed m, the soliton radius
(14) can be used in place of 4, as the second dark matter
parameter and it can be more convenient for astrophysical
and cosmological purposes. In the upper panel, we also
show the black solid line R,,; = 1 kpc for reference.

A first observational constraint is associated with
cluster mergers, such as the bullet cluster, that provide
an upper bound on the dark matter cross section, 6/mpy <
1 cm?/g [40]. This gives the upper bound [28]

3
o/m<1em?/g: Jy < 10—12(%>2 (19)

shown by the dashed red line. A second constraint is the
requirement that the quartic term V; of Eq. (2) be much
smaller than the quadratic term in the scalar-field potential
since at least the time of matter-radiation equality 7.,. This
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FIG. 1. Domains in the planes (m,A4) (upper panel) and
(m, Ry,) (lower panel) where our computations are relevant.
See the main text for the explanation of the shaded exclusion
regions.

ensures that the scalar field behaves as dark matter with a
mean cosmological density that decreases as p o« a™>,
where a(t) is the scale factor. This gives the condition

AaPeq/m* < 1, which reads

_ m \*
Vieg L Peqs M < (ﬁ) , (20)

and is shown by the dotted red line. For the same reason, we
also require that the scalar field has started oscillating in its
almost quadratic potential before the matter-radiation
equality. This gives the constraint

m>> Hgy~ 1072 eV, (21)

This lower bound does not appear in Fig. 1 because it is less
stringent than the lower bound (22) considered below.

The de Broglie wavelength (18) sets the scale where the
quantum pressure alone and wavelike effects lead to strong
departure from CDM. We require Aqg < L with L ~ 1 kpc,
which gives

. L\ v )

It is shown by the left vertical green line for L = 1 kpc and
v = 100 km/s. The lower limit m ~ 1072 eV corresponds
to fuzzy dark matter scenarios, where galactic cores could
be partly explained by the solitons formed at the center of
galaxies, although this is disfavored by observations of the
Lyman-a forest power spectrum. Thus, in this paper we
consider models with masses above 10722 eV. More gen-
erally, we focus on scenarios where the soliton is governed
by the self-interactions rather than by the quantum pres-
sure. This corresponds to the condition Ry, > A4z, Which
reads

2/ m \2
Ry > dgn: Ay >4x 10748 v . (23
sol 7 AdB - A4 = %X <100km/s rev) s B

and is shown by the blue dashed line for v = 100 km/s.

Finally, to treat the system as a classical field, the
occupation number N ~ (p/m)A3g ~ p/(m*v?) must be
much greater than unity. At the soliton scale, with v ~
Oy ~ D, this gives 44v < 1, which reads

v -1
100 km/s> G

soliton, N> 1: 1, <3 x 103<

This upper bound does not appear in Fig. 1 because it is less
stringent than the upper bounds (19) and (20) considered
above. We also require that the field be classical on cosmo-
logical scales, that is, N ~ py/(m*v*) > 1. For the cosmo-
logical density today this gives the condition

—3/4
> 0.7 eV,

(25)

logy, N> 1: —_
cosmology >1:m< <100km/s

shown by the right vertical green line.

Thus, the white area in Fig. 1 shows the domain of
parameters that we consider, where the scalar field is a
viable dark matter candidate and self-interactions dominate
over the quantum pressure. In our simulations we take
€ = 0.01. This typically corresponds to models that are
parallel to the line labeled Ry, > A4g in Fig. 1, with a
coupling A4 or a radius R that is greater by a factor 100.
However, we expect similar behaviors to hold for smaller e,
that is, further into the allowed domain. The soliton radius
can range from a few kpc down to the meter, depending on
m and A4. The larger value could allow these scenarios to
play the same role as fuzzy dark matter models, where the
soliton may cure some of the small-scale tensions of CDM.
Smaller solitons would not play such a role and would
behave like CDM on galactic scales. However, they could
be distinguished from CDM by astrophysical probes, such
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as their impact on the orbital dynamics and the emission of
gravitational waves of black hole binary systems [41].

III. INITIAL CONDITIONS AND
NUMERICAL PROCEDURE

A. Dimensionless variables

Going back to the Schrodinger equation, it is convenient
to work with dimensionless quantities denoted with a tilde,

L2

v =y, 0, t=1t,1, X = L*;?, o= l—2<I>,

(26)

where 7, and L, are the characteristic time and length
scales of the system (in our case the halo that may contain a
smaller soliton at the center). This gives the dimensionless
Schrodinger equation

W = .
ie L = SV + (By + By, (27)
FA)
with
t
€=—= (28)

mL2 "

We have already introduced in Eq. (16) the parameter e,
which plays the role of # and measures the relevance of
wave effects, such as interferences or the quantum pressure.
The Poisson equation takes the dimensionless form

1
VONDP« ,

As in Eq. (17), t, is the gravitational dynamical time
associated with the characteristic density p, of the system.
We also define the characteristic mass M,

Vidy =4dnp, with ¢, = p=pp. (29)

M—/df?ﬁ, with M=M,M, M,=p,L3 (30)

and the characteristic wave function amplitude v,

with w, = /p,/m. (31)

Then, the self-interaction potential reads

p =gy,

with 71— Axr2 1 B 674, M3, .

&) :/lﬁ, = =
' Ly Gypdli  miL%

(32)

In the following, we remove the tildes for simplicity, as we
always work with the dimensionless variables. We will
choose L, as the radius of our initial spherical halo, so that
in dimensionless coordinates we have Ry, = 1.

B. Initial conditions and central soliton

In this paper, we study the evolution of solitons inside
self-gravitating halos. As initial conditions of our numerical
simulations, we write the wave function as

Winitial = Wsol T Whalo- (33)

The first term ., corresponds to a solitonic core, where
gravity is balanced by the self-interactions, whereas the
second term yy,, corresponds to the halo that makes up
most of the volume and mass of the object, where quantum
pressure and self-interactions are negligible and the scalar
field behaves like cold dark matter.

As seen in Sec. IIB, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

q)N(r> + (I)1<r) = Esol’ (34)

where we used the dimensionless variables and E is a
constant with

Wsol()a t) = e_iEwlt/eli/sol(r)' (35)

For a quartic self-interaction A,¢*, which gives ®; = lp,
this yields a linear Helmholtz equation in p, with the
solution

sin(zr/Ryy)
”r/Rsol

s l/A/sol(r) =V psol(r)’ (36)

psol(r) = Posol

over r < Ry, and py,; = 0 for r > R, as in Eq. (13). This
is a compact object of dimensionless radius and mass

Vi

4
R = T’ My, = ;pOSoleol- (37)

In practice, we define our system by R, and the self-
interaction coupling A follows from Eq. (37) as 1 = 4R2 | /x.
As the size of the halo is Ry},, = 1, we consider cases with
Ry <1, whence 4 < 1.

In our numerical computations, we focus on the semi-
classical regime € = 0.01 < 1. The central soliton is gov-
erned by the balance between gravity and self-interactions if
the condition (15) is satisfied. This reads

2 71'3 62
> . 38
Posol 4 R4 ( )

sol

dre

Posol > 2

We will consider the cases Ry, = 0.5 and 0.1. In the former
case the soliton is always dominated by the self-interactions
as p 2 1, whereas in the latter case the self-interactions
dominate over the quantum pressure for p 2 10.
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C. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential ® + ®; = @,
Eq. (27) takes the form of the usual linear Schrodinger
equation, which can be solved in terms of the energy
eigenmodes e~*E"/€y . (¥) that obey

2
€ A Fu A A
5 Vg + Oy = Efrg. (39)

For a spherically symmetric potential ®, we can expand
these eigenmodes in spherical harmonics,

Rnf(r) Y? (97 fﬂ)’ (40)

where the radial parts obey the usual radial time-
independent Schrodinger equation

l/,\/nfm ()_6) =

21 d d e +1) -
——+®|R,,=E, /R
{ 272 dr< dr> ) r? * "t néne
(41)
and form an orthonormal basis
/d}" rZRnlfanf = 5n1,n2- (42)

The energy levels E,, depend on the radial and orbital
quantum numbers n and ¢ and are independent of the
azimuthal number m. As the initial condition for the halo,
we take a semiclassical equilibrium solution defined by a
target spherical density profile p(r), and hence the asso-
ciated target gravitational potential ®y(r), where we
neglect the self-interactions and the central soliton,

®(r) = dy(r), V20, = 4zp. (43)
More precisely, in a fashion similar to [42,43], we take for
the initial halo wave function

l//halo X t) - Zanfml//nfm< ) IE”L/t/e (44)

ném

where we choose the coefficients a,,, of the eigen-
modes as
Anem = a(Enf)eiG)mn’ (45)
where the amplitude |a,,,,| = a(E,,) > 0 is a deterministic
function a(E) of the energy while the phases ©,,,, are
uncorrelated random variables with a uniform distribution
over 0 <O < 2.
This gives a stochastic halo density ppao = [Whaio|*
which fluctuates between different realizations of the
phases ©,,,,. Defining the average (...) over these random

realizations, that is, over the uncorrelated phases ©,,.,,,, we
obtain the averaged density

Za nf |l//nfm| _sz—i_l

ném

phalo (E”f>2R%lf’

(46)

where we used Y., |Y%|*> = (2¢+ 1)/(4x). Then, the
function a(E,,) that determines the occupation numbers
is chosen so that {py.,) = p; i.e. we recover the target
density profile p(r) as the averaged profile over the random
realizations. In the classical case of discrete particles, this
corresponds to the construction of the phase-space distri-
bution function f(X,7) from the density profile, and the
choice (45) corresponds to an isotropic distribution f(E).

Here we must point out that the average (...) is neither a
spatial nor temporal average, but a statistical average over
the random initial condition, defined by the random phases
O, in Eq. (45). As explained in the next section, we are
looking for a set of coefficients a,,, so that the initial
density profile approximates a target spherical profile
Prarger(7). As in [42,43], a simple procedure is to choose
these coefficients of the form (45) with a(E) given by
Eq. (55) below. This ensures that the statistical average (46)
TECOVETS Pyyeer(7). In the limit € < 1 that we consider in
this paper, many modes contribute to a fixed radial bin,
which is why the weight of each mode decreases as €’ in
Eq. (55). Therefore, a coarse-graining of the initial con-
dition will also recover pi.e (7). However, as seen in
Eq. (63) below and in the initial conditions shown in
Figs. 3—6 and 8-11, pointwise the initial density does not
converge t0 Pure; as € — 0. It always shows relative
fluctuations of order unity, but their spatial width decreases
as €, so that the coarse-grained density converges to ppger-

These fluctuations are thus the minimal fluctuations that
are always shown by the scalar-field dark matter scenario.
They arise from the wavelike nature of the system and are
set by the de Broglie wavelength (18). Thus, €* or A3, plays
the role of 1/N for a continuous classical system that is
approximated by a finite number N of particles. Because of
these fluctuations, the initial density profile is not exactly
Prarger(r) or an equilibrium solution. As found in the
numerical simulations and understood in the kinetic theory
developed in Sec. VI below, these fluctuations drive the
growth of the soliton. They would only cease when all the
matter is within the soliton, that is, when there is only one
eigenmode of the Schrodinger equation left and no more
interference terms.

2. WKB approximation

As we consider the semiclassical regime € < 1, we can
expect the Wentzel-Kramers-Brillouin (WKB) approxima-
tion [43-45] to be valid. This gives for the radial part
R,z(r) the form
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r<r<ry: R,(r)~

Nmo . l/r TL':|
—F————=SI1n |— dr’kn r + -
r\/knf(r) |:€ r f( ) 4

(47)

where N, is the normalization factor, k,,(r) is defined by

62
kwuw=¢4ﬁw—éﬂﬂ—545§9) ()

r

and r; < r, are the two turning points of the classical
trajectory, where k,,(r) = 0. The lower bound r, is due to
the centrifugal barrier and the upper bound r, to the
confining gravitational potential ®. For radial trajectories,
associated with Z =0, we have r; = 0. Outside of the
interval [r|, r,] the wave function shows a fast decrease as
this corresponds to the forbidden region in the classical
limit and we consider the semiclassical regime ¢ < 1. The
normalization condition (42) gives

Mo = (/ Zkir(r)>_l/2’ )

where we neglected the contributions from the classically
forbidden regions and took the average over the fast
oscillations of the wave function. Finally, the quantization
condition of the energy levels is given in this WKB
approximation by

é / lrz dr ko, (r) = <n + ;) . (50)

where n = 0, 1,2, ... is a non-negative integer. We can see
that in the semiclassical regime, € <« 1, the quantum
numbers become large as

£~ 1/, (51)

n~1/e,

and the difference between energy levels decreases as
AE ~ e. In particular, at fixed £ we obtain from Eq. (50)

al_i o dr
OE  me ), ku(r)

(52)

In this continuum limit, we can replace the sums in Eq. (46)
by integrals and we obtain

nan(r)) = 5 [ AE (P 2UE= By (). (53

where we used the WKB approximation (47). Comparing
this expression with the classical result that expresses the
density in terms of the particle phase-space distribution [46],

dE f(E)\/2[E - @y(r)].  (54)

where we normalized the potential so that bound orbits
correspond to E < 0, we obtain

0
pclassical(r) = 47[/

Dy (r)

a(E)* = (2ze)*f(E). (55)

The classical phase-space distribution can be obtained from
the density by Eddington’s formula [46],

— —1 i / 0 d(DN dpclassical (5 6)
2222 dE Jp /Oy —E d®y

In practice, choosing a target halo density profile
Pureer(), We obtain the classical phase-space distribution
f(E) from Eddington’s formula (56), the eigenmode
coefficients a,,,,, from Egs. (45) and (55), and the initial
halo wave function from Eq. (44). However, to avoid the
singularity of the WKB approximation at the turning
points, we do not use the WKB expression (47) for the
eigenmodes. Instead, we explicitly solve the linear eigen-
mode problem associated with the radial Schrodinger
equation (41). Therefore, the WKB approximation is only
used for the determination of the initial coefficients a,,.,,.
This is sufficient for our purpose, which is to build random
initial conditions with a target radial density profile.

f(E)

D. Numerical methods

The system in dimensionless units is fully described by
the Schrodinger equation (27) supplemented by the Poisson
equation (29) and the self-interaction potential (32). We
consider periodic boundary conditions, which allows us to
use Fourier transforms to compute the Poisson equation
and the Laplacian in the Schrodinger equation. In this
setting, the gravitational potential is obtained as

Dy = —4xFk2F(p - p). (57)

where F and F~! are the Fourier transform and its inverse,

k is the wave number in Fourier space and k = |k|. This
means that in real space, as in cosmological codes, we solve
the Poisson equation defined by V2®, = 4z (p — p), where
p is the mean density in the simulation box. This is the
appropriate form for periodic boundary conditions, in
contrast with the Poisson equation (29) without the p term,
which is appropriate for isolated objects. For large simu-
lation box p — 0 and one recovers the isolated case.

As found in [47], the choice of the boundary conditions
can have some impact on the dynamics, especially on the
tails of halos around solitons. This is less so in our case
because we consider the relaxation of single compact halos.
As shown by the density profiles found in the simulations
presented in the next sections, the density outside of the
initial halo is very small and negligible amounts of matter
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can reach the boundaries of the simulation box. Therefore,
the periodic boundary conditions mostly differ from truly
isolated simulations by the impact on the gravitational
potential of the neighboring halos in the periodic chain. As
found in Fig. 5, this only affects our results in the case of
the formation of a small-size soliton inside a flat halo. We
find that the formation time is lower in a bigger simulation
box, but the main result on the formation of a soliton
remains true. This is because the formation of this soliton is
triggered by the growth of small perturbations until one of
them reaches a density that is large enough to show strong
self-interactions. This stochastic process is sensitive to the
details of the dynamics. In the other cases, we find that our
results are stable when we compare with a run that has a
twice bigger simulation box.

We have developed a numerical code to compute the 3D
dynamics, using a symmetrized split-step Fourier technique
as in [48,49]. Thus, the wave function is advanced by a time
step At as

i At
w(X, 1+ Ar) = exp [—IZ—Q()_C', t+ At)]
€

x F~exp [—%Atkz]

x F exp [—%t@(z, t)} w(E 1), (8)

where @ = @, + ;. This operator splitting scheme is
based on the fact that in the Schrodinger equation (27) the
operator @y is diagonal in configuration space whereas
the operator V2y is diagonal in Fourier space. Thus, we
proceed in three steps. First, from y we compute p = |y|?,
®; = Ap and ®, by Fourier transforms as explained
in (57). Then, we apply the first real-space operator
e~181®/(2¢) " Second, going to Fourier space, we apply the
Fourier-space operator e~“A%*/2, Third, we compute again
p, ®; and @y, which have been modified by the Laplacian
operator on y, and we perform the last multiplication by the
real-space operator e ~*2/®/(2¢) Note that this last operation
does not modify p, ®; and @y, because it only modifies the
local phase of y. Thus, the total potential @ used in this step
is also the potential at the end of the time step Ar. We iterate
this process until we reach the final time of the simulation.
The time step satisfies the conditions At < 27/ (ekZ )
and Ar < 27ze/|®|- In practice, we take a somewhat
smaller time step to ensure that mass and energy are well
conserved over the full simulation time. This numerical
procedure has already been used in many works on fuzzy
dark matter [48-50].

We have employed the FFTw3 libraries [51] to compute
the discrete Fourier transform (DFT). These libraries
adapt the DFT algorithm to details of the underlying
hardware to maximize performance. In addition, we have

taken advantage of the OPENMP tools to parallelize the
multithreaded routines [52,53].

IV. HALO WITH A FLAT-CORE
DENSITY PROFILE

A. Halo eigenmodes

We first investigate the dynamics of systems with a flat
halo density core. Thus, we consider a Lane-Emden profile
with a polytropic index n =1,

0<r<t: p(r) = p i)
zr

- 4p, sin(zr)

Dy(r) = -5, (59)
nr
which corresponds to the phase-space distribution
4/70 1

-—<E<O0: f(E) =——. 60
po FE) === (60)

Although this halo profile happens to take the same form as
the hydrostatic soliton (36), its physics is quite different.
Indeed, here gravity is not balanced by self-interactions but
by the velocity dispersion, as for collisionless particles. With
po = 1, this is a simple model for a halo with a flat-core
density profile and py,, ~ 1 within the radius Ry, = 1.

We solve the eigenvalue problem (41) with a numerical
spectral method. For each orbital quantum number ¢, we
expand the radial wave functions R, on the basis defined
by the eigenvectors of the spherical flat potential well with
infinite walls at » =1 [they are given by the spherical
Bessel functions j,(k,r) where k, is a zero of j,]. This
automatically satisfies the boundary condition at r = 0,
R, o« r’. This also gives R,.(r = 1) = 0, which is a good
approximation in the semiclassical regime € < 1, as we
only include bound eigenmodes with E < O that are
classically forbidden beyond r = 1. Truncating the basis
at the first 100 eigenvectors, we obtain a finite linear
eigenvalue problem associated with a real symmetric
matrix of size 100 x 100. Then, we obtain the n,, (¢)
energy levels with £ < 0 and their associated bound-state
eigenvector. Starting from £ = 0 we increase £ with unit
step until there are no more negative eigenvalues.

We show in Fig. 2 the energy levels and some radial
eigenmodes associated with the gravitational potential (59),
with € = 0.01. These eigenmodes are normalized to unity
as in Eq. (42). We find that there exist bound states until
max = 67. The number n of bound radial modes decreases
as ¢ increases and we find n,,, = 35 at £ = 0. In agree-
ment with (51), because € <« 1 there are many eigenmodes
inside the potential well @, which has a depth of the order
of unity. As seen in Fig. 2, high-energy modes with large n
can probe small scales, down to Ar ~ ¢ = 0.01, while high
orbital momentum modes with large £ probe large radii.
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FIG. 2. Energy levels E,, in the (¢, E,») plane (upper left panel), for the gravitational potential (59). Eigenmodes R,.(r) for £ = 0
(upper right panel), Z = 1 (lower left panel) and some large values of n or £ (lower right panel). These eigenmodes are normalized to

unity as in Eq. (42).

The modes ¢ = 0 correspond to radial trajectories in the
classical limit.

B. Large soliton radius, R, =0.5

We first consider cases where the radius r, associated
with the self-interactions is of the order of the halo radius.
Thus, in this section we take R, = 0.5. In the cosmo-
logical context, this corresponds to the first overdensities
that can collapse just above the Jeans length ~r,, as gravity
can overcome the pressure associated with the repulsive ¢*
self-interaction.

1. Halo without initial soliton

We first investigate the dynamics when there is no initial
soliton inside the halo, pg,,; = 0. We show in Figs. 3(a) and
3(b) our initial condition for one realization of the random
phases ©,,,,, in Eq. (45). As seen in the upper left panel, the
averaged density (pp,,) defined by Eq. (46) where the
interferences between the different modes vr,,., vanish
provides a good approximation of the target density (59).
Moreover, (ppa,) is identical along any axis that runs

through the origin as there is no angular dependence left in
Eq. (46), which is consistent with the spherical symmetry
of the target profile (59). Thus, for ¢ = 0.01 the WKB
approximation (55) for the amplitude of the coefficients
a,¢m 18 already rather good. As expected, it fares somewhat
less well at the center of the halo dominated by low (n,?)
modes. On the other hand, the exact random initial density
Phato = | O ApgmWnem|* shows strong fluctuations around
{pnato) and depends on the chosen axis running through the
center. In agreement with Eq. (18), these spikes have a
width Ax ~ e that decreases in the semiclassical regime but
their amplitude remains of order unity. Thus, py,, only
converges in a weak sense to the target classical density
profile, after coarse-graining over a finite-size window.
Note that for a classical system of discrete particles the
density field is also very noisy, as it is a sum of Dirac peaks
in the point-mass limit. Here the width of the spikes is set
by the de Broglie wavelength (18). More precisely, from
Eqgs. (46) and (55), we can see that the number N of
eigenmodes ., that contribute to the density at a given
point X grows as 1/e3. We can also write powers of the
exact random halo density, ph, = wy™* >0, as
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FIG. 3. [Ry = 0.5, posor = 0.] (a) Initial density p along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis
running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density (py,) of Eq. (46) (they can hardly be distinguished in the figure). There is no central soliton in this initial condition.
(b) Initial 2D density map on the (x, y) plane at z = 0. (c) Density profile along the x, y and z axis that runs through the point 7,,,, where
the density is maximum, at time ¢t = 150. The lower brown solid line is the initial target density profile as in panel (a), while the upper
purple solid line is the density profile of a soliton (36) that would contain the mass M (¢) enclosed within the radius Ry, around 7,,,,.
(d) 2D density map at time # = 150 on the (x, y) plane centered on 7,,,,. (¢) Total potential ® = ®y + ®@; and gravitational potential @y
at r = 150, along the x, y and z axis passing through 7,,,,. (f) Evolution with time of the total mass M of the system and of the mass M,
enclosed within the radius Ry, around 7. The black dotted line is the result obtained from a simulation with a twice bigger box.
(g) Evolution with time of the energy components of the system.

N N around the center of the halo, at the last time r = 150 we
P = Z Z aj,..a; a’ ..a;py/,-] ..z//ipl//;‘l l//; show the profiles along the x/y/z axis or on the 2D (x, y)
iveensip=1 ji,osip=1 plane that run through the point 7,,,, where p is maximum

and reaches the value p,... We show the final density
profiles in Figs. 3(c) and 3(d) and the final potentials in
Fig. 3(e). Figure 3(f) displays the total mass M of the
system and the mass M, enclosed within the radius Ry
around 7y, as a function of time. Figure 4(g) shows the
evolution with time of the energy components of the
system. In our dimensionless units, they are given by

(61)

where the indices i or j denote {n,Z,m}. Taking the
average over the random phases ©; of Eq. (45), the only
terms that contribute are those where each a; can be paired
with a coefficient aZ, with j = i;. This gives p! possible

permutations,
p €? . 1 R
<phalo> = p!<phalo>pv (62) E]( = 2/ dez// . VI//*, EN = 2/ prCDN,
. e B 2 .
and we obtain the probability distribution E, = / dxV; = 3 / dxp?. (64)
Phalo = 0 P(ﬂhalo) = e_phalo/<phalo>’ (63)

<phalo>

which does not depend on N or e. In particular, the standard

deviation is \/(pZ,0)c = (Phao)» iN agreement with the
relative fluctuations of order unity seen in the upper left
panel in Fig. 3(a). Thus, the initial density shows strong
relative fluctuations of order unity throughout the halo.
We show the evolution with time of the system in the
other panels in Fig. 3. Because the soliton moves somewhat

The total mass M and the total energy E,,, = Ex + Ey +
E; are conserved by the equation of motion and we can
check that they are conserved in the numerical simulations
until the final time shown in the figures. As we consider
compact halos Ry, = 1, the density is very low at large
radii and negligible matter amounts can reach the bounda-
ries of the simulation box. The kinetic energy Ex comes
with a prefactor €® in Eq. (64). This means that in the
semiclassical limit, € — 0, it is negligible for smooth static
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configurations such as the equilibrium soliton (34), which
is thus governed by the balance between gravity and self-
interactions. However, this is not the case for the halo for
two reasons. First, nonzero orbital velocities 7 of order
unity (i.e., of the order of the virial velocity) correspond
locally to a phase e'”*/¢ in the wave function (i.e., orbital
quantum number £ ~ 1/¢). This implies that y shows large
gradients that grow as 1/e and balance the prefactor € in
Eq. (64). Second, as seen above the halo also shows strong
density fluctuations on a spatial width Ax ~ €, which again
lead to large gradients that balance the prefactor €.
Therefore, even for small ¢ the wavelike nature of the
system, governed by the Schrodinger equation rather than
by the hydrodynamical Euler equation, remains important.

We can see that within a few dynamical times, ¢ < 8, the
system reaches a quasistationnary state where about half of
the mass is contained in a central soliton that follows the
profile (36). Afterward, the soliton mass and the energies
only show a slow evolution. The central equilibrium soliton
is clearly seen on the density profiles shown in Figs. 3(c)
and 3(d), with its radius R,; = 0.5. In Fig. 3(c), the purple
solid line shows the density profile of a soliton of mass
M, (1) given by the enclosed mass within radius Ry
around the maximum density point 7,,,. We can see that
the density profile obtained in the simulation closely
follows this analytical shape (36) and that M () is indeed
a good approximation of the soliton mass. Superimposed
on this soliton, there remains a depleted halo, with the
remaining half of the initial mass, with again relative
fluctuations of order unity as in in Eq. (63). The fluctua-
tions are somewhat lower than in the initial state as the halo
mass has been decreased by half. The hydrostatic equilib-
rium (34) is also clearly shown in Fig. 3(e) by the constant
plateau of the total potential ® = ®, + ®,; over the extent
of the soliton, » < 0.5 (with small wiggles associated with
the excited halo modes that cross the central region).
Outside of the soliton, the rapid decrease of the density
means that the self-interaction potential ®; becomes small
as compared with the gravitational potential ®, and
® ~ ®,. This is why we can only distinguish ®; from
@, in the figure in the soliton domain r < 0.5.

In Fig. 3(f) we show the growth of the soliton mass
M (2) for our fiducial run (red solid line) and for a
simulation with a box size that is twice larger (black dotted
line). We can see that both cases recover the growth of the
soliton to about half the system mass in a few dynamical
time, although the greater box gives a growth rate that is
smaller at late times. Therefore, our main result on the fast
formation of the soliton is robust but the growth rate at late
times may be somewhat overestimated because of the small
box size and the periodic boundary conditions (i.e., the
oscillations of the other halos in the neighboring boxes
might increase the soliton growth rate).

We can see in the last panel that the energy components
(64) show a fast variation during the formation stage of the

soliton and afterward only show a slow and monotonic
evolution, in parallel with the slow growth of the soliton.
We also display the virial quantities

Ey =2Ex + Ey + 3E), E,. = Ey+3E;.  (65)
To mitigate the impact of the periodic boundary conditions,
in this sum we renormalize the gravitational energy by a
constant offset, as Ey — Ey + AEymax, S0 that Ex(Fiay)
is the gravitational energy at the point 7,,,, that would be
computed for an isolated system [i.e. we compute @y =
— [dPp(¥)/|7 — 7| instead of solving the Poisson equa-
tion by the Fourier transform]. According to the virial
theorem, we expect E,;, = 0 for a fully relaxed system.
As the other energy components, E,; shows an early fast
variation and next a slow growth. This slow time depend-
ence is due to the slow growth of the soliton mass.
However, E,;. does not seem to converge toward zero until
the end of the simulation, whereas E,; is much closer to
zero. This shows the strong impact of the kinetic energy Ex
on E. This can be understood as follows. For a fully
relaxed soliton, we have E,;, = 0 and E,;, ~0, as Ex ~ 0 in
the semiclassical regime that we consider with e << 1. At
the final time ¢ = 150 shown in Fig. 3, about half the mass
of the system is contained in the central soliton. It also
contains most of the self-interaction energy and of the
gravitational energy, as seen in Fig. 3(e). This means that
E,; ~0 as it is then approximately given by the soliton
energies. On the other hand, as seen in Fig. 3(g) the kinetic
energy is not negligible and E; ~2FE. Therefore, the
violation of the virial equilibrium condition E; = 0 is
mostly due to the fluctuations of the density field around
the mean soliton profile. Because of their small finite width,
Ax ~ 1/¢, they still give rise to large density gradients and a
significant kinetic energy. If the soliton finally manages to
eat all the mass of the system, then we will eventually have
E,; =0 and Ex ~0. However, the finite time of our
simulations and the increasingly slow growth of the soliton
do not permit us to conclude whether all the mass will
eventually be absorbed by the soliton or a small amount of
fluctuations will remain.

2. Initial soliton pys, =5

We now consider the case where there is an initial soliton
of density po, = 5 on top of the halo profile. This initial
condition is shown in Figs. 4(a) and 4(b). We can see that
very quickly, in a few dynamical times ¢ < 2, the mass of
the soliton grows to about 85% of the total mass and seems
to remain stable thereafter. This decreases the halo density
and the amplitude of the density fluctuations, as compared
with the initial state. Again, this process is clearly apparent
in the shape of the potential ® and the density maps shown
in Figs. 4(c) and 4(d). They clearly display the smoothing
of the density field over the soliton extent and the damping
of the initial fluctuations.
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FIG. 4.

[Reo1 = 0.5, posor = 5.1 (a) Initial density p along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis

running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density {py,) of Eq. (46) (they can hardly be distinguished in the figure). (b) Initial 2D density map on the (x, y) plane at
z = 0. (c) Density profile along the x, y and z axis that runs through the point 7,,,,, Where the density is maximum, at time # = 150. The
lower brown solid line is the initial target density profile as in panel (a), while the upper purple solid line is the density profile of a soliton
(36) that would contain the mass M () enclosed within the radius Ry, around 7y,,. (d) 2D density map at time = 150 on the (x, y)
plane centered on 7. (¢) Total potential ® = ®, + ®; and gravitational potential @ at ¢ = 150, along the x, y and z axis passing
through 7,,,«. (f) Evolution with time of the total mass M of the system and of the mass M, enclosed within the radius R, around 7.
The black dotted line is the result obtained from a simulation with a twice bigger box. (g) Evolution with time of the energy components

of the system.

We can check in Figs. 4(f) and 4(g) that the total mass
and energy of the systems are conserved by the numerical
simulation. We now find that the soliton mass is the same
for the larger box simulation. Therefore, this regime is
robust with respect to finite box size effects. The energy
components show small decaying collective oscillations,
left by the early sudden growth of the soliton. Again, E,;, is
closer to zero than E;. but their difference is smaller than
for the case shown in Fig. 3 because of the lower kinetic
energy Eg, as the fluctuations are much smaller.

Together with the results of Fig. 3, this shows that the
soliton is to some degree an attractor of the dynamics,
when R, is not much below the size of the system. It
appears from a random initial state to make 50% of the
total mass, as in Fig. 3, or it can grow to larger values if it is
already present with a significant mass, as in Fig. 4. The
latter results also suggest that the soliton does not grow to
capture all the mass of the system. However, this numerical
simulation cannot rule out secular effects that would
become manifest on timescales that are much greater than
the dynamical time and the time of our simulations.

C. Small soliton radius, R, =0.1

We now consider cases where the radius r, associated
with the self-interactions is much smaller than the halo

radius. Thus, in this section we take R,,; = 0.1. In the
cosmological context, this would correspond to late-time
structures that collapse on a scale that is much greater
than the characteristic length r, associated with the self-
interactions. We also take the mass of the system to be
constant, M, + My, = 4/ 7, so that all simulations have
about the same mass (up to the random fluctuations asso-
ciated with the stochastic initial conditions).

1. Halo without an initial soliton

We first study in Fig. 5 the dynamics of a halo without an
initial soliton, pge, = 0.

We can see that no soliton dominated by the self-
interactions appears until 7 ~200. As seen in Figs. 5(b)
and 5(e), at t+ = 180 the halo is still dominated by strong
fluctuations, associated with the superposition of incoher-
ent modes, and a few rare high-density spikes that appear
randomly. Their spatial width is not set by the radius
Ry, = 0.1 associated with hydrostatic equilibria governed
by the balance between the self-interaction and gravity.
Instead, it is of the order of Ax ~e¢ =0.01 and as in
FDM scenarios it is governed by the quantum pressure,
that is, by wave effects that appear on the de Broglie scale.
This is clearly seen in Fig. 5(b), where the highest-density
peak is much higher and narrower than the soliton profile
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FIG. 5. [Ry; = 0.1, ppso1 = 0.] (a) Initial density p along the x (blue dash-dot line), y (red dotted line) and z (green dashed line) axis
running through the center of the halo. The smooth brown solid line is the target density profile (59) and the black wiggly solid line is the
averaged density (pp,,) of Eq. (46) (they can hardly be distinguished in the figure). There is no central soliton in this initial condition.
(b) Density profile along the x, y and z axis that runs through the point 7,,,, where the density is maximum, at time # = 180. (c) Density
profile along the x, y and z axis that runs through the point 7,,,, where the density is maximum, at time t = 250. The lower brown solid
line is the initial target density profile as in panel (a), while the upper purple solid line is the density profile of a soliton (36) that would
contain the mass M (¢) enclosed within the radius Ry, around 7y,,. (d) Initial 2D density map on the (x,y) plane at z = 0. (e) 2D
density map at time ¢ = 180 on the (x, y) plane centered on 7p,,,. (f) 2D density map at time 7 = 250 on the (x, y) plane centered on 7.
(g) Total potential ® = ®, + ®; and gravitational potential ®, at r = 180, along the x, y and z axis passing through 7,,,.. (h) Total
potential ® = ®, + @, and gravitational potential ®y at t = 250, along the x, y and z axis passing through 7,,,,. (i) Evolution with time
of the total mass M of the system and of the mass M, enclosed within the radius R, around 7,,,. The black dotted line is the result
obtained from a simulation with a twice bigger box. (j) Evolution with time of the energy components of the system.

(shown by the purple solid line) that would contain the mass Eventually, at time ¢~ 200, one of these high-density

enclosed within radius R,; = 0.1 around this point. This can
also be seen in Fig. 5(g), where the total potential ® does not
show a flat plateau of radius R . Instead, it closely follows
the gravitational potential and only shows small departures
at the bottom of the potential, associated with the various
narrow density peaks that are close to the center of the
system.

peaks grows sufficiently to dominate over all other peaks and
to form a stable soliton governed by the quantum pressure
rather than the self-interactions. This leads to a sharp rise of
the central density and of the mass M, enclosed within
radius R, around 7. This corresponds to a change of the
physics of the system, with the formation of a new soliton
that is no longer of the FDM type (balance between gravity
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and quantum pressure) but of the self-interaction type
(balance between gravity and self-interactions), as given
by Eq. (34). This is clearly seen in Figs. 5(c) and 5(f)
at + = 250, where we can see the characteristic radius
R, = 0.1 of such hydrostatic equilibria and the plateau
in the total potential ® over the soliton extent. This also
shows as a plateau for @ in Fig. 5(h). In agreement with the
condition (38), it is only after one of the narrow high-density
peaks has grown sufficiently to reach a density threshold
p 2 15 that this transition takes place and a soliton supported
by the self-interactions can appear.

As seen in Fig. 5(i), the total mass of the system is
conserved in the numerical simulation. However, the larger
box simulation gives an earlier soliton formation time at
t ~150. This can be understood from the nature of the
transition, which is due to the growth of one of the
stochastic density peaks until a density threshold is
reached. The exact transition time thus appears to be
strongly dependent on the details of the dynamics as it
is due to the interactions of the random initial fluctuations,
which may be perturbed by the small gravitational attrac-
tion from the halos in the neighboring boxes (in the case of
periodic boundary conditions).

The oscillations seen in Fig. 5(j) until # < 100 are due to
global modes, associated with a pulsation of the halo
radius, whence of its characteristic densities and energies.
These modes appear to be damped after ¢ = 100. Thus, by
t ~ 100, the halo relaxes to a quasistationary state close to
the initial conditions obtained from the WKB approxima-
tion. The halo radius is not significantly modified but
small-scale density fluctuations have grown in the central
region, with the appearance of high-density peaks governed
by the quantum pressure. As expected for such a quasista-
tionary state, the virial quantity E,; is close to zero. At late
times, ¢ > 200, when the soliton has formed and slowly
grows, E,;. slowly grows as the system is no longer in
equilibrium and is made of two distinct components with a
time-dependent mass ratio. This is reminiscent of the
growth of E,; found in Fig. 3 for the large soliton case
Ry,; = 0.5. However, in the case shown in Fig. 5 all energy
components remain dominated by the halo rather than by
the soliton until the end of the simulation. This is why E;,
remains close to zero and we do not display E,;.

Thus, in this case we find that while the system remains
dominated by FDM spikes for a long time and seems
almost stationary, the secular evolution eventually makes
one spike grow until the self-interactions come into play
and lead to the formation of a broad soliton supported by
these self-interactions. There is thus a transition in the
system from a FDM phase to a self-interacting phase,
embedded in the FDM halo. This transition may only
happen after a long time, much greater than the dynamical
time of the system, as the growth of the central density
peaks is very slow until one of them reaches this threshold

and suddenly builds a unique massive soliton. This also
means that the transition time strongly depends on the
initial conditions and the details of the dynamics.

2. Small initial soliton p, =5

We study in Fig. 6 the dynamics of a halo with a small
initial soliton, py,, = 5. In agreement with Eq. (38), it is
initially strongly perturbed by the wave packets from the
halo as it is close to this density threshold, but we can
see that its density slowly grows with time. Until ¢ ~ 80,
the soliton cannot be clearly seen as it wanders inside the
half-radius of the halo and is somewhat masked by the
large overlying fluctuations associated with higher-energy
modes. This also means that at a given time the location of
the highest-density peak is not perfectly centered at the
bottom of the gravitational potential. This leads to the
anisotropy of the gravitational potential shown in Fig. 6(g),
as well as in Fig. 5(g).

However, as the soliton density slowly grows it becomes
less affected by these small-scale perturbations and by
t = 100 we can clearly see the characteristic size Ry, = 0.1
of the central overdensity, much greater than the size ~e =
0.01 of the incoherent fluctuations. This is also apparent in
the potential @, which shows a flat plateau at the center
perturbed by the wiggles due to the higher-energy modes.
The main behavior is similar to that found in Fig. 5, where
the initial condition had no soliton but one formed at
t ~200. Here, thanks to the initial soliton seed, a distinct
soliton growth appears earlier at # ~ 100. Again, the bigger
box simulation gives a somewhat earlier soliton formation
time. However, because the initial condition already con-
tains a significant soliton seed the dependence on the
details of the dynamics is weaker and the difference
between the fiducial and bigger box simulations is smaller
than in Fig. 5. The soliton is still growing at t = 300.

Therefore, even reasonably small solitons, with a density
a few times greater than the halo background, survive and
grow with time. This is despite their energy and potential ®
being much smaller than the halo counterparts. This is of
course consistent with the fact that initial conditions
without a soliton eventually form one, as found in the
previous section and in Fig. 5. Therefore, solitons governed
by the self-interactions appear to be robust attractors. We
checked with numerical simulations that initial solitons
with a higher density follow the same pattern, they are not
destroyed and slowly grow with time.

V. HALO WITH A CUSPY DENSITY PROFILE

A. Halo eigenmodes

We now study the dynamics of cuspy halos, as found in
cosmological numerical simulations of both CDM and
FDM models. For simplicity, we consider an initial target
density profile
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FIG. 6. Evolution of a flat system with Ry, = 0.1, poso = 5.

cos(zr/2)

0<r<1:p(r) = po
;

(66)
This shows a cuspy profile p ~ p,/r in the inner region, as
for standard NFW and Hernquist profiles, while again
having a finite radius Ry, = 1, which is convenient for our
periodic boundary conditions. In the numerical computa-
tions we truncate this density profile at 7., = 0.05, with a
constant density within r.,. The classical phase-space
distribution is obtained from the numerical integration of
Eq. (56). This again gives the initial occupation numbers
from (55).

We compute the eigenmodes and the energy levels by the
same method as for the flat-core potential described in
Sec. IVA. We show these energy levels and some radial
eigenmodes in Fig. 7. Because of the divergent density
at the center, the gravitational potential well is deeper
than for the flat-core profile studied in Sec. IV A. This leads
to a greater number of bound states, as can be seen by
comparing the energy levels in Figs. 2 and 7. There are

62 energy levels for £ = 0 and we find bound states until
max = 105. Again, high-n modes probe small scales,
down to Ar~e=0.01, while high-£# modes probe
large radii.

B. Large soliton radius, R, =0.5

We show in Fig. 8 the dynamics of a cuspy halo (66)
in the case Ry, = 0.5 without an initial soliton. As for the
flat halo shown in Fig. 3, we can see in Fig. 8(a) that the
WKB approximation for the coefficients a,,, provides
a reasonably good agreement between the averaged
density (pnao) and the target density (66). Again, the
interferences between the different modes v, lead to
strong relative density fluctuations of order unity, in
agreement with (63).

As in the flat halo case of Fig. 3, we can see that in a
few dynamical times, ¢t <4, a central soliton of radius
Ry, = 0.5 forms and contains about 40% of the total mass.
This relaxation depletes the halo that also diffuses beyond
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its initial unit radius, as the process occurs in a rather
fast and violent manner. The growth of the soliton mass
obtained by the larger box simulation is close to the result
of our fiducial simulation. The shape and size of this
soliton, governed by the self-interactions, can be clearly
seen in the final density profiles and in the final total
potential @, which is flat over the extent of the soliton.
However, in addition to the small wiggles associated with
high-energy modes that run across the center of the system,
there remains a very high-density spike on top of the
soliton. Its width Ax ~ e shows that it is not supported by
the self-interactions, but it is a small-scale peak on the de
Broglie wavelength that wanders over the extent of the
former soliton. Thus, in the central region there is a
coexistence of the two types of features, a large smooth
soliton where gravity is balanced by the self-interactions,
and one or a few high-density spikes on the de Broglie
wavelength that are far from hydrostatic equilibrium. This
is embedded within a halo of fluctuating high-energy
modes. However, it is possible that all such narrow spikes
are eventually absorbed by the smooth soliton on time-
scales beyond our simulation time.

As for the flat case of Fig. 4, the virial quantity E; is
closer to zero than E;.. Again, this is due to the large value
of the kinetic energy Ey, associated with the fluctuations of
the wave functions over the soliton and in the outer halo.
This makes the system look far from equilibrium, as seen in
terms of E.;., even though the density profile has already
converged to the soliton shape in the mean.

We show in Fig. 9 the initial and final density profiles
when we start with a soliton of density pg,, = 8 on top
of the halo. As for the case of a flat halo shown in Fig. 4,
the system quickly reaches an equilibrium close to the
initial state, where the soliton has slightly increased its
mass and depleted the halo. The most striking result is
that, as for the flat case shown in Fig. 4, the random
fluctuations inside this soliton have been significantly
damped. Thus, the soliton appears to be an attractor,
damping stochastic perturbations. Here there no longer
remains high-density spikes of width ~e inside the soliton,
which suggests that this is a transient feature. Again, the
larger box simulation gives the same results as our fiducial
simulation.

C. Small soliton radius, R, =0.1

We now consider cases where the radius r, associated
with the self-interactions is much smaller than the halo
radius, taking again R, = 0.1 as for the flat case.

1. No initial soliton

We first consider an initial profile without a soliton,
shown in Fig. 10. Because of the high density at the center,
Phalo = Po/ 1> the self-interaction ®; = Ap is large in the
central region. This leads to the formation of a central
soliton supported by the self-interaction in a few dynamical
times, ¢ < 2. This again depletes somewhat the halo, which
diffuses slightly beyond its initial radius, while the fluc-
tuations inside the soliton are damped. In contrast with
Fig. 8 there is no narrow density spike, supported by the
quantum pressure, inside this soliton. This is presumably
because the hierarchy of scale between the de Broglie
wavelength and the self-interaction soliton is not so large,
only a factor 10 instead of 50.

The larger box simulation gives the same soliton growth
rate as our fiducial simulation. As for the flat case shown in
Fig. 5, the energy components show damped collective
oscillations at early stages while E ;. remains close to zero
as the system is dominated by the quasistationary halo.
Nevertheless, E,; again shows a slow growth at later
times, because of the growth of the soliton and the
remaining fluctuations that still provide a significant kinetic
energy.

2. Small initial soliton

We show in Fig. 11 the case where there is an initial
soliton of density pg., = 100. Again, the central soliton
density grows somewhat with time and damps the central
fluctuations, while the halo diffuses slightly beyond its
initial radius. The larger box simulation results for the
soliton growth rate are very close to our fiducial simulation
and can hardly be distinguished in the figure.

Thus, as for the case of a flat halo, we find that the
solitons governed by the balance between gravity and the
self-interactions are robust and always form, either in a
few dynamical times if the initial density is high enough,
or after small-scale density fluctuations are grown large
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FIG. 11.

enough by a slow secular process to trigger an instability
and a fast soliton formation.

VI. KINETIC THEORY

A. Kinetic equation

We now derive a kinetic equation for the evolution with
time of the system, that is, for the occupation numbers of
the central soliton and of the halo eigenstates. A similar
approach was presented in [36,54] for the formation of
FDM solitons inside a homogeneous background, which
can be decomposed over plane waves. We go beyond these
results by taking into account the self-interactions and the
nonhomogeneous background. The latter can no longer
be decomposed over plane waves (i.e., we can no longer
use Fourier analysis). However, as described below, it is
possible to derive simple kinetic equations by decomposing
the background over eigenmodes of a reference poten-
tial, in a fashion similar to the description of the halo in
Sec. II C 1. In addition, as one follows the evolution along
this time-dependent background, one needs to separate this
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Evolution of a cuspy system with R,,; = 0.1, poe,; = 100.

smooth background from the stochastic fluctuations that
drive the dynamics.

The equation of motion (27) is the Schrédinger equation
in a self-force potential ® = ®y + ®; sourced by the
system self-gravity and self-interaction. For the quartic
scalar-field model considered in this paper, @ is quadratic
over the wave function y, and the equations of motion read

J 2
e —%Vzl//—l-d)q/,

o (67)

with

@ = (42V72 + Dy*y. (68)
If the potential @ is fixed, y/(X, ) can be decomposed as
usual in energy eigenmodes with the simple time depend-
ence e~'F'/¢_In the semiclassical limit, the system behaves
like a collection of classical particles and the Husimi phase-
space distribution fy(X,7,¢) [55] defined from w(X,7)
approximately follows the Vlasov equation that governs the
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dynamics of the classical distribution f(X, 7, ) [56,57]. As
described in Sec. III C, in this limit ¢ < 1, we can build
approximate equilibrium configurations by choosing the
eigenmode coefficients a,,, 1in correspondence with a
classical phase-space equilibrium solution, as in Eqgs. (45)
and (55). This procedure would give true equilibria if the
potential ® were only sourced by the average density (p),
which neglects interferences between different eigenmodes
as in Eq. (46). However, as shown in Eq. (63) and in the
plots of the initial conditions displayed in the previous
sections, the interference terms lead to significant fluctua-
tions of the density profile. They have a relative magnitude
of order unity but a spatial width that decreases as €. Hence
they only become small in a coarse-graining sense. These
random fluctuations mean that even if we start with an
equilibrium configuration in this averaged sense, the
system will not be exactly stationary as the potential @
deviates from (®). To describe this system, we therefore
split the potential ® in an average spherically symmetric
part ® and a fluctuating part 6®,

B(F. 1) = B(r) + 6D(3. 1). (69)

Within an adiabatic approximation, we have in mind that
the smooth potential ® slowly evolves on long timescales
whereas the incoherent stochastic fluctuations 6@ evolve on
short times and drive the averaged dynamics, as an external
noise would do for instance. The potential ® defines the
energy eigenmodes v/,

l/A/nfm ()_é) = ,R'm”(r) Yfm (9’ (p)’
(70)

w(X1) = e B (X),

where the index j denotes {n,#,m} and for future
convenience we use the real spherical harmonics Y, (also
called tesseral spherical harmonics) instead of the more
usual complex harmonics,

m<0:Y,, =vV2Imy", Y=Y
m>0: Yy, = V2Rel”. (71)

Therefore, the functions yr;(X) are real and form a complete
orthonormal basis. We can then expand the wave function y
over this basis as

w(X. 1) = Z /M () e e (3), (72)

where M; > 0 and 6; are real. The squared amplitude M ;
is the mass contained in the eigenmode j, if we neglect
interferences. Substituting this expansion into the equation
of motion (67) we obtain

lSMJ + 2Mj9j = 2MjEj + ZZ\/M/MJ-IEII(GJ_G/)/G
j'/
x / % ;500 ; (73)

where the dots denote the derivatives with respect to time.
We define the reference potential @ as the sum of the
diagonal terms,

® = 42V +2)> M2, (74)
J

while the remainder 6® is given by the off-diagonal
interference terms,

80 = (42V2 4+ 1) /MMy &0 Yy s (75)

J#J

Then, we assume that © evolves slowly with time, so that
we can neglect its time dependence (i.e., the time depend-
ence of the eigenmodes ;) in the equation of motion (73).
The evolution of the system is due to the small fluctuations
0®, associated with the interferences. They perturb the
occupation numbers M ; of the various energy levels, which
will in turn affect the reference potential ® as the density
profile slowly changes. However, in an adiabatic approxi-
mation, the slow change of @ only leads to a change of the
phase of the eigenmodes (and of the energy levels) while
keeping their occupation number fixed. Therefore, we
focus here on the driving mechanism associated with
0®. Then, we can write the equation of motion (73) as

2#4
i€M1+2M191 :2M1E1+22 M1M2M3M4
234
X ei(9]+92—03—6'4)/6

x / AR 95 (42Y2 + s, (76)

where the indices {1,2,3,4} denote {ji, j, j3,/4}. Let us
define the vertices V3.4 as

Vizps = /dﬁi/ﬂ% 42V + Do, (77)

which are real and symmetric over {1 <> 3}, {2 <> 4} and
{(13) <> (24)}. Then, separating the real and imaginary
parts of Eq. (76) gives
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2#4
. 0,+60,—65—6
€M|:2£ \/M1M2M3M4V13;24Sin<w>,
€

234
2 M2M3M4 0,+6,—05—06,
91 E1+Z —————Vpucos{ ——— |.
234 €
(78)

To avoid secular effects associated with trivial resonances
between products of identical oscillatory terms [58], we

define the renormalized frequencies w; as
2#1
w = E, +ZM2V12;21- (79)
2

Then, the system (78) also reads

_ % YR YRV
Z MM2M3M4 V1324sln ]2/6)

234

: MMM,
0= +ry %V,w cos(634/e).  (80)
234 I

where we introduced the notation
9:;’3:91+62—93—94 (81)
and the new vertices V, 304 defined as

Visps = Visps  except Vigpy =0, Viso1 =0.  (82)
We also introduced a bookkeeping parameter y = 1 that
multiplies the vertices V, i.e. the potential 5®. We have in
mind that the fluctuating part 6@ leads to a slow drift of the
system as compared with the orbital motions in the mean
potential ®. Therefore, we will develop a perturbation
theory in 6®, which corresponds to a perturbation theory in
powers of y (taking y = 1 at the end).

The system (80) is similar to those encountered in four-
wave systems [58,59]. However, the vertices V are no longer
fully symmetric and do not contain Kronecker symbols 533
in wave numbers. This is because we expand around a
nonhomogeneous equilibrium ®, with a peculiar radial
density profile p(r). This breaks the invariance over trans-
lations obeyed by wave systems over a uniform background.

We now look for the perturbative expansion of the
squared amplitudes M; and the phases €; in powers of y,
|

. 2 _
<M<12)> = —ZM1M2M3M4

My =M M+ 2m (83)
At zeroth order we obtain
650)(1) = 91 + wqt, (84)

with M, = M,(0), 8, = 0,(0), setting the initial conditions
of the system at the time 7 = 0. At first order we obtain

Z\/M M2M3M4V1324 Sln 12+CO )/6']

€54
(85)
and
= 22 \/ M, M2M3M4 13 24 [cos (63 /¢)
234
—cos (033 + @ur)/e]], (86)

MMMV
0= e3P Pt i 3+ ot

234

—sin (9?‘2‘/6)] : (87)

At second order, using trigonometric identities we obtain

ZV1324ZZ 11166757 M1M2M3MM4M5M6M7

234 m=1567 Pms
2 [sin[ (B33 + @1 — 0,055 /]

éfn75 — Op@ mS )/6]] (88)

m

—sin [((_9?‘2‘ + @?ét ~Om

where we introduced 6, =0, =1, 65 = 04 = —1.

At zeroth order we have M 0~ = 0. At first order we
obtain from Eq. (85)

My = o, (89)

assuming that the initial phases 9]- are uncorrelated and
uniformly distributed over [0, 2z[, as in (45). Here we used
the properties (82) of the nonsymmetric vertex V. At
second order we obtain from Eq. (88)

Vozaa + Vosus Viiao + Voo Vazo + Vs

{Sm(wnt/G) ¥ i3s {‘713;24 + Vigos

€ 34 %% Ml M2 M3 M4
sin(@j1/e) o Vigas Vaga]  sin(@3t/e) o Visar = Vigan
—— V., L. Vs s 90
3 1223 | 7y i, + P 2334 i, (90)
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where we used the properties and symmetries of the
vertices V and V. In usual four-wave systems over a
homogeneous background, with a symmetric vertex V,
the last two terms vanish and the first term simplifies as
sin(@y31/€)(2Viysa/@13) (1/ My + 1/My = 1/ M5 = 1/My).
In our case, the inhomogeneous background leads to the
more complicated expression (90).

B. Soliton ground state and halo excited states

We are interested in hydrostatic solitons embedded
within a halo formed by a quasicontinuum of excited
states, as described in Sec. III C. As shown in the figures in
the previous sections, in the limit ¢ < 1 the central soliton
follows the density profile (36) with a flat potential
o = E,; over its extent, determined by the hydrostatic
equilibrium (34). This is the ground state j = 0 of the
system. Higher-energy states correspond in the classical
limit to particles that orbit up to a radius r™** > Ry, with a
higher energy E; = ”72 + @ > O(rf™) > O(Ry,). The sol-
iton contains a macroscopic mass, that can make up a
significant fraction of the system, whereas the higher-
energy states that build the halo form a quasicontinuum,
with a mass of the order of ¢* < 1 as in Eq. (55) and energy
levels separation AE ~ ¢ as in (50).

Therefore, we look for the evolution of M ,; = M, and
we separate the contributions of the soliton from those of
the halo quasicontinuum in the sums in the right-hand side
in Eq. (90). We also consider times much longer than the
orbital periods, using

fim S0 _ s, (91)

t—oo X

This gives

. 27 1 1
M,= ?;M%Mle {513 (@05)4V51.02 (ﬁo_ﬁ)

Vo221 Voo.01 2r
+5D(w(1))T +—ZM0M1M2M3
0 123

1 1 1 1 1
X {51)(0)(2)?)5(‘/02;13 +Vo3:12)? (ﬁo+ﬁ1_ﬁz_ﬁ3)
1 1
+6p (@) Vo1 Vsl <ﬁo_ﬁ1> } (92)

where the sums only run over the halo excited states j # 0
(and at least one is transformed into an integral in the
continuum limit). Here we dropped the overbars for
simplicity and we replaced V by V as we discarded the
constraints (82) in the sums over the halo excited states, as
each of them only contains a mass of the order of €.

C. Renormalized frequencies w;

We also separate the soliton from the quasicontinuum of
halo excited states in the expression (79) of the renormal-
ized frequencies ;. Thus, we write w; = E; + AE; with

AE, = ZVOI;IOMla AE; = Vg0 Mo+ ZV12;21M2,
i P
(93)

where the indices 1 and 2 stand for halo excited states. As in
Eq. (55) for the initial halo configuration, we assume that
the squared amplitudes M only depend on the energy E;,
and hence on the quantum numbers n and #, and are
independent of the azimuthal number m,

M; = a? = (27€)*f(E,,). (94)

In particular, as in Eq. (46), we obtain from (72) the
averaged halo density as

N 20+ 1
(Phato) = ZM jl//? = dn
J

nt

MnfRﬁf’ (95)

where we used again the assumption that the initial phases
0 ; are uncorrelated.

The vertices V3,4 defined in Eq. (77) can be decom-
posed over their self-interaction and gravitational parts

Vizoa = Vil3;24 + V]1V3;24’ (96)

with
V%3;24 = /l/d)_C)VA/ll/A/ﬂ/A/zlf/m (97)

and

dxXdxX’ | . e
V11\]3;24 = —/mwl(x)yg(x)y/z(x’)yu(x’). (98)

Then, we obtain for the self-interaction contribution to the
frequency shifts

AE?) :l/dr rzR(2)<phalo>’
AE} = Vi My +/1/dr PR3 (Phato) - (99)

This gives the order of magnitude estimates AEé ~
/1<phalo>Rsol = D ppalo (Rsol) and AE/} ~ AMSOIR% (Rsol> +
@0 (Ry), where R, is the radial extent of the eigen-
mode R;. By definition, we consider systems where the
self-interaction is negligible in the halo, which is governed
by gravity and the velocity dispersion. We also have 1 < 1
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and M, < 1. Therefore, the shifts AE} < 1 are negligible

as compared with the energies E; ~ 1, except for low-

energy modes that are confined within the soliton radius.
The gravitational contribution reads as

dxd .
AE) = ZM L = v/owlwlwo,

dxdx' | . ., .
AEY = Vi My ZMz / i (100

A crude estimate, where we would replace the mixed
product o) by Giph% would give AEY ~
®ypao(R;). This is much smaller than E for the ground
state j = 0, while for halo excited states this would give
AE;V ~ E;. However, this is a significant overestimate
because the mixed product .5} means that we have
significant interferences between the two eigenmodes in the
integrals over both X and X'. Then, for halo excited states we
also have AEY < E;.

Thus, we find that the frequency shifts are small,
w; =~ E;, except for the low-energy modes that are confined
within the soliton radius where AEf. > 0 can be significant.
The soliton frequency shift is smaller than that of these
low-energy halo states, because it does not contain the
term V4, My in Eq. (99). Therefore, as we checked
numerically, the soliton ground state keeps the lowest
frequency,

w; > w, for j#0. (101)
Some of the renormalized frequencies w; are shown in
Figs. 12 and 14 below.

D. Evolution of the soliton mass

We are interested in the evolution with time of the mass
of the soliton given by Eq. (92) Because the halo excited
states have w; > @, from (101), the Dirac factors &, (w)3)
and 5p(w}) vanish and Eq. (92) simplifies as

ZMOM M>M36p (@) (Voris + Vos2)?
123

(102)

This is actually similar to the usual kinetic equation of
four-wave systems [58,59], but as seen above for excited
states the kinetic equation would take the more complicated
form (92).

The kinetic equation (102) shows at once that if we start
without a central soliton, it will be generated by the
nonlinear dynamics, as we have

. 27
My = _ZM1M2M35D(0’%%)(V02;13 + Voz12)? > 0
23

(103)

for M, = 0. However, this expression is not so useful as for
small M|, it is not possible to distinguish the soliton from
the random fluctuations in the central region. In fact, the
constraint (15) shows that low-mass, i.e., low-density,
solitons supported by the self-interactions do not exist.
Low-mass density peaks are first supported by the quantum
pressure and they need to reach a finite density threshold
to make the transition to solitons supported by the self-
interaction pressure. This was discussed above in Sec. [V C 1
for the simulation shown in Fig. 5.

Using the fact that the occupation numbers M; and the
renormalized frequencies w; do not depend on the azimuthal
numbers m ;, we can perform the sums over {n;, m,, ms} in
Eq. (102). Using the expressions (97) and (98) of the vertices
V we obtain

‘0 b”3>2

— E 23
M() —Z 123M0M1M2M35D(a)01)< 0 0 O

x (2¢, +1)(2¢, + 1)(2¢5 + 1 )<1 11

1 A
—> [2”/drr RoRRyR5 — /dxx22f2+1

)f’
? RoR
2 X< 2 0113
/dx/x/ R/Rg f+l /dxx m

4
dx’x’zR’R’ x<3 2
2 f+1

where ) denotes that we only sum over the quantum
numbers n; and #;, x. = min(x, x'), x.. = max(x, x’), R}
denotes R;(x), and we used the expansion

(104)

< m m ¥

E. Halo with a flat density profile

We consider in this section the growth of the central
soliton inside the flat halo studied in Sec. IV.

1. Modified potential and approximate energy cutoff

As the central soliton grows, it modifies the shape of the
potential ®. Indeed, as seen in the previous sections, inside
the soliton @ is roughly constant, in agreement with the
hydrostatic equilibrium (34). At radii slightly beyond the
soliton radius R,,, ® is dominated by the gravitational
potential ®y,,; = —M,;/r of the soliton. Finally, at large
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radii @ is dominated by the gravitational potential @y, of
the halo. In principle, we should follow simultaneously the
evolution with time of the potential ®, the halo occupation
numbers M i and the soliton mass M. However, in this
article we investigate a simplified approach where we only
use the kinetic equation (104) to follow the soliton growth
rate and use instead approximate explicit models for the
potential ® and the halo occupation numbers M i
We approximate the potential ®(r) by

r> RCOH: q_)(r) = q)Nhalo<r)7

- My, | Mgy
Rsol <r< Rcoll: CI)(I‘) =—-— + = + q)Nh‘dIO(RCOH>’
r Rcoll
- My, | Mgy
r< Rsol: (I)<l") =-_= + = + q)Nhalo(RcoH)’
Rsol Rcoll
(106)

where @y, 18 the initial gravitational potential (59) of the
halo and R, is the radius where the initial enclosed mass
is equal to the soliton mass, My,(< Reon) = M. This
simple approximation provides a reasonably good descrip-
tion of the potential @ displayed in Figs. 5 and 6, except in
the outer parts as it does not capture the diffusion of the halo
somewhat beyond its initial radius. It describes the three
regimes where the total potential is (i) dominated by the
halo gravity at large distance, (ii) dominated by the soliton
gravity closer to the soliton, and (iii) constant in the soliton
thanks to the balance between gravity and self-interactions.
This potential ® defines in turns the eigenmodes V.

Instead of using the kinetic equations (90) to follow the
occupation numbers of the halo excited states, we assume
an adiabatic evolution with M; = M;(t = 0), where
M;(0) = (2z¢)*f[E;(0)] are the initial halo occupation
numbers as in Eq. (55). Then, to take into account the
transfer of mass from the halo to the central soliton, we
assume that the soliton mostly builds from the lowest-
energy modes. Therefore, we take M; = 0 for all modes
with E; < Eqy, where the threshold E . is such that the
mass associated with all these modes is equal to the
increase of the soliton mass,

Ej<Ecnll
D 26+ 1)M,(0) = Mgy — My (0).  (107)
J

where M, (0) is the initial soliton mass at time 7 = 0.
We show in Fig. 12 the potential ® given by the
approximation (106) and the renormalized frequencies
w; for the case of a small soliton M, = 0.05. The soliton
creates a flat potential over R, which is deeper than the
initial halo potential because of the central overdensity.
The new energy levels E; are close to the initial energy
levels E;(0) of the unperturbed halo for E > E,; but are
significantly lowered for E < E_,, because of the

—-1.0

—-1.2

—-1.4

—-1.0 —0.5 0.0 0.5 1.0

0 20 40 60
£

FIG. 12. Upper panel: potential ® without a soliton (red dashed
line) and with a soliton of mass M, = 0.05 (blue dotted line).
Lower panel: renormalized frequencies w; such that £; > E.q.
The soliton ground-state frequency @, is shown by the lower left
blue point.

increased depth of @ in the central region. This is why
the ground-state (soliton) level E, = ®(0) ~ —1.4 is below
the initial energy level Ey~ —1.2 shown in Fig. 2. In
agreement with the analysis in Sec. VIC, the shifts AE;
that give the renormalized frequencies w; are small, except
for the low-energy states that are confined within the
soliton radius. However, these states do not appear in
the lower panel in Fig. 12, because they are removed by the
energy cutoff (107). Nevertheless, the small but nonzero
shifts AE; for higher-energy levels explain why the
constant-energy cutoff E_; gives a cutoff for w,, that is
not completely constant with #, as seen in Fig. 12.

We can see in the figure that for the small mass M, =
0.05 there is already a large gap between @, and the
remaining halo frequencies @;. In fact, we have |w,;| <
|wy|/2 for all halo modes with E; > E. This means that
the Dirac factor 6p(@3}) in Eq. (104) is always zero.
Therefore, the soliton growth rate I'y,, defined by

(108)
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vanishes within the approximation (107). This means that
this approximation is not sufficient to predict the soliton
growth rate in this configuration. We need to follow more
precisely the evolution with time of the low-energy
occupation numbers M (¢) as the growth rate 'y, is very
sensitive to the distribution at low energies, for halo modes
that have a significant overlap with the soliton central
region so that the kernel V.15 is not negligible.

2. Growth of the soliton mass

We show in Fig. 13 the growth with time of the soliton
mass M (), for numerical simulations of the Schrodinger
equation (27) with different initial soliton density pgq-
Again we measure M, () by counting the total mass
within the radius R, from the highest-density peak in the
system. This provides a good proxy for M, as soon as a
well-characterized soliton forms at the center of the halo.

We can see in the upper panel that, when we start with an
initial soliton M, (0) = 0.05, M (¢) typically shows an
early fast growth over a few dynamical times and next
grows at a much slower rate. The initial stage presumably
corresponds to a violent relaxation, where the low-energy

0.5

0-4/\/~mﬂw"/ﬁ
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FIG. 13. Upper panel: growth with time of the soliton mass
M (1), for a set of simulations with different initial conditions.
Lower panel: growth rate Iy, from these simulations shown as a
function of M.

levels of the halo are depleted as they mostly merge with
the soliton, while the late stage corresponds to a slow
accretion limited by the low occupation numbers of these
low halo energy levels. The three bottom curves, where
there is no initial soliton or a very small overdensity at the
center, show the behavior found in Fig. 5. Until a long time,
t ~ 200 in the case without initial central overdensity, there
is no soliton supported by the self-interaction but only
narrow stochastic peaks. However, they slowly grow and
when one peak reaches the density threshold (38) a broad
soliton supported by the self-interaction appears and
next follows a similar evolution to that displayed by the
other cases.

We show in the lower panel the growth rate [y, (7) as a
function of the soliton mass. To compute I'y; we first fit the
simulation curve M (¢) with splines and next we compute
the time derivative (108) from this smooth curve. We plot
the result as a function of M,(¢), to see whether the
dynamics reach a scaling regime where the growth rate only
depends on the soliton mass (which also defines the halo
mass as My, = Mo — Mg1)- We can see that this is not
the case and the growth rate at late times still depends on
the initial conditions. This is thus different from the scaling
regime found in numerical simulations [36] for FDM (i.e.
without self-interactions). Another difference is that the
solitons displayed in Fig. 13 always grow, whereas in [36]
small solitons evaporate. Note that in our simulations the
self-interactions indeed dominate in the central region.
However, all cases follow the same pattern. The growth rate
steadily decreases with time (while M, grows increasingly
slowly). This falloff may be understood from the increas-
ingly large gap between the soliton frequency w, and the
halo frequencies w; above the increasingly large cutoff E
shown in Fig. 12, and the low occupation numbers of the
lower-energy states where resonances with the soliton are
possible. The leftmost red-dashed curve, which starts with a
low central overdensity and mass, starts with a very low
growth rate and oscillations, before reaching the same
pattern as the other cases. As explained above, this is
because before the threshold (38) is reached there is no self-
interaction-supported soliton and the central region is
dominated for a long time by narrow stochastic peaks,
with a size set by the de Broglie wavelength.

F. Halo with a cuspy density profile

We now consider the growth of the central soliton in the
case of the cuspy halo studied in Sec. V. We use the same
approximation (106) for the potential ® and the energy
cutoff (107) for the removal of the low-energy levels.

As seen in Fig. 14, we recover the flat potential ® over
the extent of the soliton, somewhat deeper than the initial
halo potential. The gap between the ground-state frequency
w, and the lowest levels w; above the threshold E; is not
as large as in Fig. 12, even though the ratio M./ M, =~
0.05 is about the same. This is because the cuspy initial
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FIG. 14. Potential ® and renormalized frequencies w; as in

Fig. 12, but for a cuspy halo and a soliton mass M, = 0.1.

density profile means that low-energy levels initially
contain a greater relative fraction of the total mass of the
system. Therefore, a smaller fraction of them is needed to
make up the growing soliton mass. As seen in Fig. 14, the
lowest energy levels above the threshold E., now have
lw;| > |wy|/2. Therefore, the Dirac factor &p(wf;) in
Eq. (104) is no longer always zero. The soliton mass
can grow through the interaction with two low-energy
levels —2.7 < @w,, w3 < —1 and a high-energy level w; ~ 0.
However, for higher soliton mass E, decreases while
more low-energy levels are depleted, within the approxi-
mation (107), so that the gap increases and eventually the
Dirac factor 6p(w?]) always vanishes.

We show in Fig. 15 the growth with time of the soliton
mass. As for the flat-core halos displayed in Fig. 13 the
soliton always grows, with a growth rate that decreases
with time. The total mass of the system is M =~ 2.5, so that
the upper curve corresponds to a central soliton that makes
about 44% of the total mass. Therefore, the numerical
simulations suggest that the central soliton can slowly grow
until it makes a large fraction of the total mass of the
system, of the order of 40% at least.

We show in the lower panel the growth rate as a function
of the soliton mass. As for the flat-core halos displayed in

1.0 PO L[l L
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=
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0.0
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t
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FIG. 15. Growth with time of the soliton mass M, () (upper
panel) and growth rate Iy, as a function of M, (lower panel), as
in Fig. 13 but for a cuspy halo. The lines with symbols are the
numerical simulations while the simple lines are the theoretical
predictions.

Fig. 13, there is no clear sign of a scaling regime, as the
growth rate still depends on the initial conditions at late
times. The simple lines are the theoretical predictions from
Egs. (104) and (107), for the different initial conditions,
while the lines with symbols are the results from numerical
simulations. In agreement with the lower panel in Fig. 14,
at early times when the soliton has not grown too much, the
gap between the renormalized soliton and halo frequencies
@, and w; is not too large and the simple energy-cutoff
ansatz (107) allows for some resonances in the theoretical
prediction (104). This gives a positive growth rate that
shows a fast decrease with M, and vanishes beyond some
mass threshold as the frequency gap becomes too large to
allow for resonances. This provides a reasonably good
agreement with the results from the numerical simulations,
except close to this mass threshold and beyond. There, our
ansatz underestimates the growth rate, which remains
positive but steadily decreasing in the numerical simula-
tions. As for the flat-core halos displayed in Fig. 13, this
means that the halo low-energy levels are partially refilled
by the interactions between higher-energy states. This
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cannot be captured by the simple ansatz (107) and is
beyond the scope of this paper. We leave a detailed study of
this regime, where one needs to simultaneously follow the
evolution of all halo excited states, to future works.

VII. CONCLUSION

In this paper we have discussed the emergence of
solitons in self-interacting scalar dark matter models. In
doing so, we have first chosen specific initial conditions for
the initial halo in the form of a decomposition in eigenm-
odes of the Schrodinger equation in the presence of the
Newtonian gravity due to the halo. This has allowed us to
solve for the eigenmodes in the WKB approximation and
then construct an initial state whose projection on this basis
depends on random phases. The modulus of the coefficients
of the decomposition reproduce the halo profile while the
random phases create strong fluctuations in the initial wave
function. We then let the system evolve under the influence
of gravity and the self-interaction and solve the nonlinear
Schrodinger equation.

The WKB approximation for the coefficients a,,,, of
the eigenmodes of the halo provides a reasonably good
approximation of the target density profile by the averaged
density (ppao)- This could be expected as we focus on the
semiclassical limit ¢ < 1. However, the actual density
profile py., always shows strong density fluctuations, of
the same order as the mean density (py,,), because of the
interferences between the different eigenmodes. The ampli-
tude of these fluctuations does not decrease with ¢, but their
spatial width decreases as Ax « €.

When halos form on a scale of the order of the length r,
associated with the self-interactions (the cases R,,; = 0.5 in
our units), without initial soliton, a unique central soliton
supported by the self-interactions quickly forms in a few
dynamical times. It contains 30%—-50% of the total mass. It
also damps the initial density fluctuations, associated with
interferences, within its radius. This holds whether we start
with a flat or a cuspy halo profile. However, in the cuspy
case, we have found that narrow and very high-density
spikes can survive and wander inside the large central
soliton for a long time. If there is an initial soliton, it grows
in a few dynamical times to reach a quasistationary state
where initial fluctuations are also damped.

Next, we have considered halos with a size much greater
than the self-interaction scale (R,,; = 0.1 in our units). If
the halo has a flat density profile, with density fluctuations
of order unity, it takes a long time for a central soliton
supported by the self-interactions to appear, until the
small-scale spikes on sizes of the order of the de Broglie
wavelength grow and reach densities that are high enough
to trigger the self-interactions. In contrast, if the halo has a
cuspy density profile, the high density at the center leads
at once to significant self-interactions. This gives rise in a
few dynamical times to a central soliton supported by the

self-interactions. Again, the fluctuations are damped within
this soliton. If there is an initial soliton, it slowly grows for
many dynamical times.

We have developed a kinetic theory to follow the
evolution with time of the system for arbitrary profile
(i.e., going beyond plane waves in a homogeneous system).
For the quartic self-interaction A4¢* that we have consid-
ered in this paper, which leads to an effective quadratic
pressure P « p? in the nonrelativistic limit, we have
obtained a kinetic equation that is similar to the kinetic
equation of four-wave systems. To estimate the soliton
growth rate, we have further simplified the theory by taking
a simple ansatz for the halo excited modes, assuming that
they keep their initial occupation numbers in an adiabatic
fashion, except for the low-energy levels that are depleted
below a threshold E_,; to build the soliton. This has
allowed us to compute the soliton growth rate at once,
for a given soliton and halo mass, without following the
precise evolution with time of all occupation numbers. For
a cuspy halo, this provides a reasonably good prediction
for the growth rate I'y, at early times. This simple ansatz
breaks down for large M, and for a flat halo, because it
does not follow the replenishing of the low-energy excited
states and predicts an abrupt end of the soliton growth as
there are no more possible resonances.

To improve this theoretical prediction, we would need to
go beyond the energy-threshold ansatz and use the kinetic
theory to follow the simultaneous evolution of all occu-
pation numbers. We leave such a task to future works.

All solitons that are lighter than 40% of the total mass
of the system keep slowly growing until the end of our
numerical simulations, albeit at an increasingly slow rate.
Therefore, our results suggest that the soliton mass
observed at a given time depends on the past history of
the system and can make up a significant fraction of the
total mass of the system.

In a cosmological context, these results suggest that,
in scalar-field dark matter scenarios with repulsive self-
interactions, a soliton with about half of the total mass
forms when overdense regions first collapse just above the
Jeans mass. These solitons should then survive as the halos
grow by accretion or mergings. The solitons should also
grow in the process by accretion or direct mergings of
solitons. The absence of clear relation between the halo and
soliton masses suggests that the complex hierarchical
formation process of cosmological halos will lead to a
large scatter for the mass of the soliton at fixed halo mass,
depending on the assembly history of the system. We leave
a detailed investigation of this point to future works, using
cosmological simulations.
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