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We revisit the one-loop corrections on cosmic microwave background scale perturbations induced from
small-scale modes in single field models which undergo a phase of ultraslow-roll inflation. There were
concerns that large loop corrections are against the notion of the decoupling of scales and that they are
canceled out once the boundary terms are included in the Hamiltonian. We highlight that the nonlinear
coupling between the long and short modes and the modulation of the short mode power spectrum by the
long mode are the key physical reasons behind the large loop corrections. In particular, in order for
the modulation by the long mode to be significant there should be a strong scale-dependent enhancement in
the power spectrum of the short mode, which is the hallmark of the ultraslow-roll inflation. We highlight the
important roles played by the would-be decaying mode which were not taken into account properly in
recent works claiming loop cancellation. We confirm the original conclusion that loop corrections are
genuine and that they can be dangerous for primordial black hole formation unless the transition to the final
attractor phase is mild.
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I. INTRODUCTION

The question involving one-loop corrections in the power
spectrum in models of single field inflation containing an
intermediate phase of ultraslow-roll (USR) inflation has
attracted considerable interest recently [1–20]. The models
incorporating a phase of USR have been employed as a
mechanism to enhance the power spectrum on small scales
to source the primordial black holes (PBHs) as a candidate
for dark matter [21–23]; for a review see [24–26].
It was argued in [1,2] that the one-loop corrections

induced from small USR modes can significantly affect the
observed cosmic microwave background (CMB) scale
perturbations. Therefore, in order to keep these loop
corrections under perturbative control, it was argued that
the model is not trusted to generate the desired PBHs
abundance. On the other hand, this conclusion was criti-
cized in [3,4], where it was argued that this conclusion
cannot be viewed as a no-go theorem and that the danger-
ous one-loop corrections can be harmless in a smooth
transition. This question was studied in further detail in [9],
in which the effects of both cubic and quartic Hamiltonians
were included. In addition, the effects of the sharpness of
the transition from the intermediate USR phase to the final
attractor phase were highlighted as well. The analysis in [9]
supports the conclusion of [1] when the transition from the
USR phase to the final attractor phase is sharp. However, it
was argued in [9] that the dangerous one-loop corrections

can be washed out in a mild transition. This question was
also studied in [11], where the one-loop corrections was
calculated using the δN formalism. It was shown in [11]
that for a mild transition the one-loop corrections are
suppressed by the slow-roll parameters, so the setup is
still reliable for PBH formations.
On the other hand, the question of loop corrections was

revisited in [27,28], inwhich it was claimed that the one-loop
correction cancels in the setup of interest. Specifically, in [27]
the roles of boundary terms which were not incorporated
into [1,2] and the following works were highlighted. On the
other hand, in [28], relying on the Maldacena consistency
condition [29], it was argued that the large loop corrections
are canceled once the UV limit of the momentum is taken
care of by an appropriate iε prescription. Note that in both
[27,28] only the cubic interactionswere considered and, as in
many other previous works, the contributions of the quartic
interactions were not considered.
In this work first we study the physical origins of the

large loop corrections in this setup. This is more important,
as the existence of large loop corrections on long CMB
scales induced by small scales is somewhat counterintui-
tive. One may argue that the existence of large loop
corrections is against the common sense of “naturalness”
and the concept of “decoupling of scales.” In addition, we
revisit the claims in [27,28] that the loop corrections cancel
and highlight some conceptual and technical points with
which we disagree. We conclude that the large loop
corrections on CMB scales are genuine and can be danger-
ous if the transition to the final attractor phase is sharp.*firouz@ipm.ir
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II. USR INFLATION SETUP

The USR setup is a model of inflation in which the
potential is flat [30–32]. Originally, the USR setup attracted
interest as a nontrivial example for the violation of the
Maldacena non-Gaussianity consistency condition [29,33].
Since the potential is flat in the USR setup, the inflaton
velocity falls off exponentially and the curvature perturba-
tions grow on superhorizon scales [34]. The enhancement
of curvature perturbations on superhorizon scales is the key
behind the violation of the Maldacena consistency con-
dition in the USR setup [34–45]. The amplitude of the
local-type non-Gaussianity in the USR model is calculated
in [34] to be fNL ¼ 5

2
. This question was further inves-

tigated in [46], where it was shown that the final amplitude
of fNL depends on the sharpness of the transition from
the USR phase to the final slow-roll (SR) phase. In
particular, in the example of an extremely sharp transition
from the USR phase to the SR phase, as considered in [34],
fNL acquires its maximum value 5

2
. However, for a mild

transition the curvature perturbations evolve after the USR
phase until it reaches its final attractor value. As a result,
much of the amplitude of fNL is washed out toward the end
of inflation. The important lesson is that the sharpness of
the transition from the USR phase to the final SR phase
plays an important role when looking at the final amplitude
of the cosmological observables.
The setup we study here, as in [1,2], comprises three

phases of inflation, SR → USR → SR, with a single field
inflation driven by the scalar field ϕ with the potential
VðϕÞ. The first stage of inflation is in the SR phase during
which the large CMB scales leave the horizon. This period
may take 20–30 e-folds, depending on the mass and
abundance of the PBHs. The curvature perturbation is
nearly scale invariant and Gaussian with an amplitude fixed
by the Cosmic Background Explorer (COBE) normaliza-
tion. The second stage is the USR phase in which the
potential becomes exactly flat and the curvature perturba-
tion grows exponentially to seed the PBH formation on
small scales. Typically, the duration of the USR phase is
assumed to be about a few e-folds to obtain a sizable
fraction of the dark matter from the PBH formation. The
USR phase is glued to a second SR phase, which is the final
stage of inflation. Depending on the model parameters, the
transition to the final attractor phase can be either mild or
sharp, which plays an important role in the amplitude of the
loop corrections.
Starting with the Friedmann-Lemaître-Robertson-Walker

metric

ds2 ¼ −dt2 þ aðtÞ2dx2; ð1Þ

the inflaton field equation in the USR phase is given by

ϕ̈ðtÞ þ 3Hϕ̇ðtÞ ¼ 0; 3M2
PH

2 ≃ V0; ð2Þ

in which MP is the reduced Planck mass, H is the Hubble
rate during inflation, and V0 is the value of the potential
during the USR phase. Since V0 is constant, H is nearly
constantwhile ϕ̇ ∝ a−3 during theUSRphase. The slow-roll
parameters related to H are defined as follows:

ϵ≡ −
Ḣ
H2

¼ ϕ̇2

2M2
PH

2
; η≡ ϵ̇

Hϵ
: ð3Þ

During the SR phases both ϵ and η are nearly constant and
small. However, during the USR phase, ϵ falls off like a−6

while η ≃ −6, which is the hallmark of USR inflation [30].
Going to conformal time dτ ¼ dt=aðtÞwith aHτ ≃ −1, ϵðτÞ
is given as

ϵðτÞ ¼ ϵi

�
τ

τs

�
6

; ð4Þ

in which ϵi is the value of ϵ prior to the USR phase. We
assume that the USR phase is extended during the period
τs < τ < τe, so ϵ at the end of the USR phase is ϵe ¼ ϵiðτeτsÞ6.
When the number of e-folds is defined as dN ¼ Hdt, the
duration of theUSRphase is given byΔN ≡ NðτeÞ − NðτsÞ,
so ϵe ¼ ϵie−6ΔN .
As in [46], suppose the potential after the USR phase

supports a period of SR inflation such that

VðϕÞ ¼ VðϕeÞ þ
ffiffiffiffiffiffiffiffi
2ϵV

p
VðϕeÞðϕ − ϕeÞ

þ ηV
2
VðϕeÞðϕ − ϕeÞ2 þ � � � : ð5Þ

Here 2ϵV ≡M2
PðV 0ðϕeÞ=VðϕeÞÞ2 and ηV ≡M2

PV
00ðϕeÞ=

VðϕeÞ are the usual slow-roll parameters defined in terms
of the first and second derivatives of the potential. We
assume that the potential is continuous at ϕ ¼ ϕe. If we
further require the derivative of the potential to be continu-
ous as well, then ϵV ¼ 0 and the transition becomes smooth.
However, if ϵV ≠ 0, then the derivative of the potential is not
continuous and there is a kink in the potential. Depending on
the value of ϵV

ηV
the transition can be either mild or sharp. As

we are interested mostly in a sharp transition, below we
consider ηV ¼ 0. However, this is not a restrictive
assumption and most of our analysis will be carried out
to the case where ηV ≠ 0.
The background field equation in the final SR phase is

given by [46] (see also [47])

d2ϕ
dN2

þ 3
dϕ
dN

þ 3MP

ffiffiffiffiffiffiffiffi
2ϵV

p
≃ 0; 3M2

PH
2 ≃VðϕeÞ: ð6Þ

Without loss of generality, assume the time of the transition
to the final SR phase to be at N ¼ 0. Imposing the
continuity of ϕ and dϕ

dN at N ¼ 0, we obtain
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M−1
P ϕðNÞ ¼ C1

3
e−3N þ h

6

ffiffiffiffiffiffiffiffi
2ϵV

p
N þ C2; ð7Þ

where the constants of integration C1 and C2 are given by

C1 ¼
ffiffiffiffiffiffiffi
2ϵe

p �
1þ h

6

�
; C2 ¼ M−1

P ϕe −
ffiffiffiffiffiffiffi
2ϵe

p
3

�
1þ h

6

�
:

ð8Þ

Following [46] we have defined the parameter h as

h≡ 6
ffiffiffiffiffiffiffiffi
2ϵV

p
ϕ̇ðteÞ

MP ¼ −6
ffiffiffiffiffi
ϵV
ϵe

r
: ð9Þ

Since we assume that ϕ is decreasing monotonically during
inflation, ϕ̇ < 0, so h < 0. As emphasized in [9,46], h is the
key parameter of the setup, controlling the sharpness of the
transition from the USR phase to the final attractor phase.
The slow-roll parameters, as defined in Eq. (3), in the

final SR phase (N > 0) are given by

ϵðτÞ ¼ ϵe

�
h
6
−
�
1þ h

6

��
τ

τe

�
3
�

2

ð10Þ

and

ηðτÞ ¼ −
6ð6þ hÞ

ð6þ hÞ − hðτeτ Þ3
: ð11Þ

Toward the final stage of inflation, τ → τ0 → 0, we see that
ϵ → ϵeðh6Þ2, while η vanishes like τ3. While ϵ is smooth at
the transition point, it is important to note that η has a
discontinuity at τ ¼ τe. Just prior to the transition (i.e.,
during the USR phase) η ¼ −6, while right after the
transition η ¼ −6 − h. As a result, near the transition point
we can approximate η as follows [46]:

η ¼ −6 − hθðτ − τeÞ; τ−e < τ < τþe : ð12Þ

Correspondingly, the above approximation yields

dη
dτ

¼ −hδðτ − τeÞ; τ−e < τ < τþe : ð13Þ

For an infinitely sharp transition h → −∞. In this case, ϵ
after the transition evolves rapidly to a larger value, so at
the end of inflation the final value of ϵ is given by
ϵðτ0Þ ≃ ϵV ¼ ϵeðh6Þ2. For an “instant” sharp transition stud-
ied in [1,2], h ¼ −6. In this case ϵ in the final SR phase is
frozen to its value at the end of USR, ϵe.
We comment that in order to perform the analysis, as

in [1,2], we have considered the idealized case where the
transitions are instantaneous with delta functions localized
at τ ¼ τs and τ ¼ τe. However, in a realistic case one
should consider a smooth transition. This in turn makes the

theoretical analysis intractable, and a full numerical analy-
sis is required as in [13].

III. ORIGINS OF LOOP CORRECTIONS

The fact that small scales can induce large loop correc-
tions on long CMB scales is somewhat counterintuitive.
Intuitively speaking, based on the concept of decoupling of
scales, one expects the effects of small scales to be
negligible and under perturbative control. Therefore, it is
important to ask what the physical origins of the large loop
corrections on long CMB scales are. Here we try to answer
this question.

A. Nonlinear long and short mode coupling

There are two physical effects as the origins of the loop
corrections on large scales. The first effect is that there are
nonlinear couplings between the long and short modes
which are inherited from the nonlinearity of general
relativity. These nonlinear couplings induce source terms
for the evolution of the long mode. Second, the long mode
which leaves the horizon in the early stage of inflation
rescales the background expansion so that it modulates the
power spectrum of the short modes. The combination of
these two effects induce a backreaction on the long mode
itself which is the origin of the loop corrections. This
method was nicely employed in [3] to calculate the loop
corrections, which we also follow in this subsection with
some modifications.
The cubic action for the curvature perturbation ζ is given

by [2,29]

S ¼ M2
P

Z
dτd3xa2ϵ

�
ζ02 − ð∂iζÞ2 þ

η0

2
ζ0ζ2

�
; ð14Þ

where here and below a prime indicates the derivative with
respect to the conformal time. Technically speaking, the
above action is for ζn as defined in [29], which is
nonlinearly related to ζ via ζ ¼ ζn þOðζ2nÞ. The variable
ζn is employed to eliminate the boundary terms [48] with
the expense of inducing quartic order Hamiltonians, which
should be taken care of. Since we look at the cubic
interaction at this stage to understand the nature of loop
corrections, the difference is not important, and we keep
using ζ instead of ζn in this section.
The evolution of the Fourier space mode function ζpðτÞ

to second order in perturbation theory from the above
action is given by

ζp
00 þ ða2ϵÞ0

a2ϵ
ζ0p þ

ða2ϵη0Þ0
4a2ϵ

Z
d3q
ð2πÞ3 ζqζp−q ¼ 0: ð15Þ

From the above equation we see a nonlinear source term for
the evolution of the long mode ζp from the small-scale
modes, which plays a crucial role in our discussions below.
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To handle the analysis analytically, we consider a setup
with an instant transition from the USR phase to the final
attractor phase at τ ¼ τe. In addition, the transition to the
final attractor phase is sharp with jhj ≫ 1. In this limit,
there is a delta source in η0 as given in Eq. (13), so Eq. (15)
can be solved easily, yielding [2]

ζL;pðτ0Þ ¼ ζð0ÞL;p þ c
Z

d3q
ð2πÞ3

�
ζSqðτeÞζSp−qðτeÞ

−
2

3qe
ζ0SqðτeÞζSp−qðτeÞ

�
; ð16Þ

in which ζL and ζS represent the long and short modes, ζð0ÞL
represents the linear solution of Eq. (15) in the absence of
mode couplings, and qe represents the scale which leaves
the horizon at the end of USR, qe ¼ −1=τe. The parameter
c is a constant which depends on the details of the transition
to the final attractor phase, which from Eq. (13) is given
by [2] c ¼ −Δη=4 ¼ −h=4. There can be other terms
involving either ζq or ζ0q at higher orders in addition to
the quadratic source terms given in Eq. (16). Our analysis
can be extended to these general higher order sources as
well without limitations. Finally, we comment that in the
analysis of [3] the last term in Eq. (16) is further simplified,
noting that ζ0 ¼ −ð3=τÞζ, which is valid for the modes
which become superhorizon during the USR phase. Here
we keep ζ0 since we consider subhorizon modes as well.
It is important to note that the left-hand side of Eq. (16) is

calculated at the end of inflation τ ¼ τ0, while the source
terms are calculated at the end of the USR phase τ ¼ τe.
This is because of our technical assumption that η0 has a
delta source at τ ¼ τe, as given in Eq. (13). However, if the
transition is not instantaneous and the evolution of ηðτÞ is
continuous, then there are additional time integrals when
solving for ζL;pðτÞ, so Eq. (16) will have a more compli-
cated form [2]. Finally, note that there will be additional
source terms at the start of USR phase τ ¼ τs in Eq. (16),
but since the mode function grows only toward the end of
the USR phase, we can safely ignore the contribution of the
source term at τ ¼ τs.
We are interested in two-point functions of the long

mode ζL;p, with p → 0 representing the CMB scale modes.
The short modes are denoted by the momentum q which
run inside the loop integral with the hierarchy p ≪ q. The
power spectrum of the long mode is given by

hζL;p1
ζL;p2

i

¼ hζð0ÞL;p1
ζð0ÞL;p2

i þ 2c
Z

d3q
ð2πÞ3

�
hζð0ÞL;p1

ζSqðτeÞζSp2−qðτeÞi

−
2

3qe
hζð0ÞL;p1

ζ0SqðτeÞζSp2−qðτeÞi
�
þOðc2Þ: ð17Þ

It is understood that ζS are calculated at τ ¼ τe, while ζL are
calculated at τ ¼ τ0. The long mode leaves the horizon

during the early stage of inflation, long before the USR
phase, so ζL is nearly constant. More specifically, the
decaying mode actually grows during the USR phase.
However, it was suppressed for a long time before the start
of USR phase, so its enhancement during the short USR
phase is not significant enough to compete with the
constant mode. As a result, we can take ζL to be constant
and simply set ζLðτ0Þ ≃ ζLðτeÞ so that all modes in Eq. (17)
are calculated at τ ¼ τe. As we will see, it is important to
realize that there is no time integral in the two-point
function (17) while the integration is purely over the
momentum space.
Finally, with a bit of calculation one can check that the

terms in Eq. (17) containing c2 are subleading. A repre-
sentative contribution of these terms is given by

c2
Z

d3q1

ð2πÞ3
Z

d3q2

ð2πÞ3 hζ
S
q1ζ

S
p1−q1ζ

S
q2ζ

S
p2−q2i; ð18Þ

but as they do not contain the extra factor 1=p3 we discard
these terms.
Now our job is to calculate the three-point correlations

hζð0ÞL;p1
ζSqζ

S
p2−qi and hζð0ÞL;p1

ζ0SqζSp2−qi between one long mode
and two short modes. To calculate this, note that the effects
of the long mode is only to rescale the background [29,33].
More specifically, going to comoving gauge, the metric is
given by

ds2 ¼ −dt2 þ aðtÞ2e2ζLdx2: ð19Þ

As we discussed above, the long mode leaves the horizon
long before the USR phase, so ζL is nearly constant. As a
result it can be absorbed into the spacelike coordinate via
xi → eζLxi so that in momentum space q → e−ζLq.
Consequently, the effects of the long mode can be viewed
as a modulation for the short modes. More specifically, for

the three-point correlation hζð0ÞL ζSζSi we can write

hζð0ÞL ζSζSi ≃ hζð0ÞL hζSζSiζLi

≃ hζð0ÞL ihζSLζSLi þ hζð0ÞL ζð0ÞL i ∂

∂ζL
hζSζSi: ð20Þ

As ζð0ÞL is statistically incoherent, hζð0ÞL i ¼ 0, and corre-
spondingly the three-point function can be given in terms of
the power spectrum Pζ as follows:

hζð0ÞL ζSζSi ≃ Pð0Þ
ζL

∂PζS

∂ζL
: ð21Þ

To calculate the other correlations hζð0ÞL;p1
ζ0SqζSp2−qi, we

first symmetrize the noncommutative quantum operators ζ
and ζ0 so 2ζ0ζ → ζ0ζ þ ζζ0, yielding
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2hζð0ÞL ζ0SζSi ¼ hζð0ÞL ζ0SζSi þ hζð0ÞL ζSζ0Si: ð22Þ

Following the same logic as above, we obtain

2hζð0ÞL ζ0SζSi ¼ Pð0Þ
ζL

∂

∂ζL

dPζS

dτ
: ð23Þ

Plugging the relations (21) and (23) in our starting
Eq. (17) with the understanding that p1 ¼ −p2 → 0, we
obtain

PζLðpÞ ¼ Pð0Þ
ζL
ðpÞ

�
1þ 2c

Z
d3q
ð2πÞ3

�
∂PζSðτeÞ
∂ζL

−
1

3qe

∂

∂ζL

dPζSðτeÞ
dτ

��
: ð24Þ

As we discussed before, the role of the long mode is to
rescale the background quantity such that

∂PζS

∂ζL
¼ −

∂PζS

∂ ln q
¼ ð1 − nζÞPζS ; ð25Þ

in which nζ represents the scale dependence of the short
modes.
Plugging Eq. (25) into Eq. (24) and defining the

dimensionless power spectrum Pζ related to Pζ as

PζðqÞ≡ q3

2π2
PζðqÞ; ð26Þ

we obtain

PζLðpÞ ¼ Pð0Þ
ζL
ðpÞ

�
1 − 2c

Z
d ln q

�
∂PζS

∂ ln q

−
1

3qe

∂

∂ ln q

dPζS

dτ

�����
τ¼τe

�
: ð27Þ

The integral above is in the form of a total derivative,
yielding the following fractional loop correction in the long
mode power spectrum:

ΔPζL

PζL

¼ −2c
Z �

dPζS −
1

3qe
dP0

ζS

�����
τ¼τe

: ð28Þ

Defining the “modified” power spectrum P̄ via

P̄ζSðq; τeÞ≡ PζSðq; τeÞ −
1

3qe
P0

ζS
ðq; τeÞ; ð29Þ

the loop correction in the long mode power spectrum is
given by

ΔPζL

PζL

¼ −2c
�
P̄ζSðqmax; τeÞ − P̄ζSðqmin; τeÞ

	
; ð30Þ

in which qmax and qmin represent the higher UV and the
lower IR regimes of the integration over the short modes. A
similar result was originally obtained by [3], who simpli-
fied the second term in Eq. (16) via ζ0 ¼ −ð3=τÞζ, which is
valid for the modes which become superhorizon during the
USR phase. Here, since we need to consider the subhorizon
modes as well, we keep the contribution of P0

ζS
ðq; τeÞ in

P̄ζSðq; τeÞ in its general form. Having said this, we note that
for practical purposes P̄ζSðq; τeÞ ∼ PζSðq; τeÞ. The above
result is also in line with the result obtained by [28], who
assumed Maldacena’s consistency condition for the origi-
nal field ζ. From Eq. (27) we see that in order for the loop
correction to be significant, we require a strong scale
dependence for the short modes. In other words, only
the small scales which show scale dependence will con-
tribute to the integral in Eq. (27).
In estimating the loop corrections, as in [1,2], a good

prescription is to consider the modes which become
superhorizon during the USR phase corresponding to
qmax ¼ qe ¼ −1=τe and qmin ¼ qs ¼ −1=τs. If we use this
prescription, and noting that the power increases exponen-
tially during the USR phase such that P̄ζðqe; τeÞ∼
Pðqe; τeÞ ∼ e6ΔNPζðqsÞ, then one can safely ignore the
contribution from the lower bound of the integral ðqminÞ
and

ΔPζL

PζL

∼ −2cPζðqe; τeÞ ∼ e6ΔNPCMB; ð31Þ

in which PCMB ∼ 2 × 10−9 is the power spectrum on the
CMB scales. The above result is qualitatively in agreement
with the results of [1,2], highlighting the dangerous one-
loop correction if one considers a large enough value of
ΔN, i.e., a long enough period of USR inflation, so the
factor e6ΔNPCMB can become order unity.
The authors of [28] argued that the contribution of

the UV part in Eq. (28) is negligible after implementing
the usual iε prescription τ → ð1þ iετÞ such that
e−iqτ → e−iqτþεqτ, so the UV contribution becomes negli-
gible. However, by looking at our derivation of the loop
correction in Eq. (30), this prescription is unjustified, as we
have no integration over τ. More specifically, the iε
prescription τ → ð1þ iετÞ is usually performed to kill
the rapid oscillations in the UV region when one is dealing
with an integral over τ. However, in our analysis, there is no
integration over τ. This is because the source term in
Eq. (15) receives a delta source at τ ¼ τe, so all the mode
functions are calculated at a fixed time τ ¼ τe. The rapid
oscillations occur only in q space since modes which are
deep inside the horizon at the time τe still experience the
Minkowski background, and naturally they oscillate rap-
idly. As we demonstrate shortly, there will be a quadratic
divergence in the momentum space which should be
regularized as in a standard quantum field theory (QFT)
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analysis. In essence this is similar to regularizing the quartic
divergence associated with short modes when dealing
with the vacuum zero point energy and the cosmological
constant problem.
Motivated by discussions in [28], now suppose that

we do not follow the prescription of [1,2] and take qmax to
the extreme UV value allowed. In the dimensional regu-
larization approach, qmax can go to infinity. However, in a
simple regularization employing the UV momentum cutoff
approach, the largest allowed value of qmax is qf, the mode
which leaves the horizon just at the end of inflation,
τ ¼ τ0 → 0. Then, the question is, what is the power
spectrum for that scale at τ ¼ τe, i.e., P̄ζðqf; τeÞ? To
answer this question, we have to calculate the mode
function ζqðτÞ for the small-scale modes, i.e., modes which
are subhorizon during the USR phase but become super-
horizon after the USR phase.

B. Mode function after the USR phase

To obtain the outgoing mode function, we have to
impose the matching conditions at the start and at the
end of the USR phase for an arbitrary mode q.
Starting with the Bunch-Davies initial condition during

the first phase of inflation, the mode function in the USR
phase is given by [9]

ζð2Þq ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffi
4ϵiq3

p
�
τs
τ

�
3�
αð2Þq ð1þ iqτÞe−iqτ

þ βð2Þq ð1 − iqτÞeiqτ	; ð32Þ

with the coefficients αð2Þq and βð2Þq given by

αð2Þq ¼ 1þ 3i
2q3τ3s

ð1þ q2τ2sÞ;

βð2Þq ¼ −
3i

2q3τ3s
ð1þ iqτsÞ2e−2iqτs : ð33Þ

The mode function after the USR phase is given by

ζð3Þq ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵðτÞq3

p �
αð3Þq ð1þ iqτÞe−iqτþβð3Þq ð1− ikτÞeiqτ	;

ð34Þ

in which ϵðτÞ is given by Eq. (10), while αð3Þq and βð3Þq are
given by

αð3Þq ¼ 1

8q6τ3sτ3e

�
3hð1 − iqτeÞ2ð1þ iqτsÞ2e2iqðτe−τsÞ

− ið2q3τ3s þ 3iq2τ2s þ 3iÞð4iq3τ3e − hq2τ2e − hÞ	

and

βð3Þq ¼ −1
8q6τ3sτ3e

�
3ð1þ iqτsÞ2ðhþ hq2τ2e þ 4iq3τ3eÞe−2iqτs

þ ihð1þ iqτeÞ2ð3iþ 3iq2τ2s þ 2q3τ3sÞe−2iqτe
	
:

To calculate the loop corrections in the long mode power

spectrum in Eq. (30), we only need ζð2Þq ðτeÞ to calculate
P̄ζðq; τeÞ. However, for later purposes, we also calculate
the outgoing power spectrum at the end of inflation
τ ¼ τ0 → 0, which is given by

Pζðq; τ0Þ ¼
H2

8M2
Pπ

2ϵV

���αð3Þq þ βð3Þq

���2; ð35Þ

in which ϵV is the value of the slow-roll parameter at the
end of inflation.
With the mode function ζð2Þq ðτeÞ at hand, we can

calculate the one-loop corrections from Eq. (30). A
schematic plot of P̄ðq; τeÞ is presented in Fig. 1. For the
modes which leave the horizon during the first stage of
inflation q ≪ qs, the power spectrum has a plateau given
by the COBE normalization PCMB. There is a dip prior to
the USR phase and a sharp rise in the power spectrum in the
intermediate USR phase, followed by a peak with oscil-
lations superimposed. All of these properties are well
understood; see, for example, [49–53]. In particular, the
power spectrum grows as Pζ ∝ q4 just prior to the peak.

FIG. 1. The (log-log) plot of the modified power spectrum
P̄ζðq; τeÞ calculated at τe for h ¼ −6 and ΔN ¼ lnð10Þ ≃ 2.3.
The USR phase starts at q ¼ 1, while the small-scale modes
which leave the horizon long after the USR phase correspond to
q ≫ 1. The red dashed line represents the overall factor in
Eq. (36) indicating the q2 divergence for the UV modes, while
the rapid oscillations superimposed on top of this scaling can be
seen as well. The position of the dip is prior to the USR phase,
and the rapid rise of the power spectrum Pζ ∝ q4 prior to the peak
is the hallmark of the USR setup.
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This is essential for the loop corrections given in Eq. (25).
On the other hand, the modes with q > qe are subhorizon
during the USR phase and the power spectrum grows as q2

with rapid oscillations superimposed on top of it. More
specifically, for q ≫ qe, we have

jP̄ζðq; τeÞj ≃
1

3

�
q
qe

�
2

e6ΔNPCMB

�
1 − 6 cos

�
2q
qs

�
e−3ΔN

�
;

ð36Þ

so we see a quadratic divergence in loop corrections for
q → ∞, while the rapid oscillations have subleading
amplitudes. These behaviors can be seen in Fig. 1 as well.
The quadratic divergence of the power spectrum for

the UV scale is expected, which is the hallmark of the
QFT corrections. To find a finite physical result, we have to
renormalize the divergent loop corrections order by order.
However, in order for the renormalization procedure to
work at each order, we have to make sure that the starting
one-loop corrections are under control. In order for the one-
loop corrections to be small, we require e6ΔNPCMB ≪ 1
since this quantity controls the common amplitude of the
loop corrections, as can be seen in both Eqs. (31) and (36).
To perform the renormalization, one may set qmax ¼ qf, the
modes which leave the horizon at the end of inflation. In
this way, one counts the contribution of all modes which
become superhorizon by the end of inflation.
It is important to note that the final renormalized loop

corrections are not necessarily zero. On the other hand, it
was argued in [28] that the leading loop corrections vanish
after one kills the rapid oscillations using an iε prescription
on τ. As we argued previously, this is unjustified. First, we
have no integration over the time coordinate, as the mode
functions in Eq. (30) are calculated at a fixed time τ ¼ τe.
Second, the rapid oscillations in q are subleading compared
to the dominant quadratic divergence, so the renormalized
power spectrum is not zero. Finally, one has to employ
standard QFT methods, such as the dimensional regulari-
zation scheme, to regularize and renormalize the quadratic
divergence. For earlier works concerning the loop correc-
tions and renormalizations in slow-roll setups, see [54–56].
While the power spectrum at τ ¼ τe has the behavior

shown in Fig. 1, it is also instructive to look at the final
power spectrum Pζðq; τ0Þ measured at the time of end of
inflation, τ ¼ τ0. A schematic view of the power spectrum
is presented in Fig. 2. We see that for modes which leave
the horizon by the end of the USR phase with q ≲ qe the
power spectrum is similar to that in Fig. 1. However, for the
modes which become superhorizon after the USR phase the
power spectrum shows a significant difference in which it
reaches a plateau instead of growing quadratically. When
we define x≡ −qτs, the final power spectrum for x ≫ 1 is
given by

Pζðq; τ0Þ ≃ e6ΔNPCMB

�
h − 6

h

�
2
�
1þ 3

sinð2xÞ
x

�

≃
H2

8π2ϵVM2
P

�
h − 6

6

�
2

: ð37Þ

The power spectrum reaches a plateau given by Eq. (37). In
addition, the sharper the transition, the larger the final value
of the power spectrum [46].
In conclusion, we have reproduced the results in [1,2],

indicating that the loop correction is a genuine phenomena.
The loop corrections are under perturbative control if
e6ΔNPCMB ≪ 1.
After performing the technical analysis, here we sum-

marize the physical reasons behind the nontrivial loop
correction. There are two important effects which should be
taken into account: first, the nonlinear coupling between
the long and short modes which provide the source term for
the evolution of the long mode. Second, the long mode
provides a modulation to the spectrum of the short mode.
This modulation becomes significant if the power spectrum
of the short mode experiences a significant scale-dependent
enhancement. In our case at hand, this corresponds to a
maximum scale-dependentPζ ∝ q4 just prior to the peak of
the power spectrum. Finally, the combination of the non-
linear coupling between the long and short modes and the
modulation of the short modes by the long mode backreacts
on the long mode itself and induces the one-loop correc-
tion. This picture was first put forward in [3]; see also [13].

FIG. 2. Power spectrum Pζðq; τ0Þ measured at the time of end
of inflation τ ¼ τ0 for h ¼ −6 and ΔN ¼ lnð10Þ ≃ 2.3 with a
USR phase starting at q ¼ 1. For modes leaving the horizon by
the end of a USR phase with q≲ 1, the behavior is the same as in
Fig. 1, while for small scales with q ≫ 1 there is a significant
difference when the power spectrum reaches an asymptotic value
given by Eq. (37).
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IV. ONE-LOOP CORRECTION
FROM A CUBIC HAMILTONIAN

In this section we revisit the analysis of [27], who
calculated the one-loop corrections from the cubic inter-
action Hamiltonian and concluded that the loop corrections
cancel out.

A. In-in analysis

To calculate the loop corrections, we employ the
standard in-in formalism [54] in which the expectation
value of the operator Ô at the end of inflation τ0 is given by
the following perturbative series:

hÔðτ0Þi ¼

�

T̄ exp

�
i
Z

τ0

−∞
dτ0Hinðτ0Þ

��

× Ôðτ0Þ
�
T exp

�
−i

Z
τ0

−∞
dτ0Hinðτ0Þ

���
; ð38Þ

in which T and T̄ represent the time ordering and antitime
ordering respectively, while HinðτÞ represents the interac-
tion Hamiltonian, which in our case is HinðτÞ ¼ H3.
The one-loop correction from the cubic self-interaction is

calculated in [27] in two different methods. The first
method incorporates the boundary terms directly into the
cubic Hamiltonian, yielding

H3 ¼ Ha þHb; ð39Þ

in which Ha is a bulk term given by

Ha ¼ −M2
P

Z
d3x

�
a2ϵ
2

η0ζ2ζ0
�
; ð40Þ

while Hb is a boundary term [48],

Hb ¼ M2
P

Z
d3x

d
dτ

�
a2ϵ
2

ηζ2ζ0
�
: ð41Þ

Note that here, following [27], we work with ζ itself, while
in previous sections we were working with ζn. The effects
of the boundary term Hb were not considered in [1,2]. It
was argued in [27] that once its contributions are added
along with the bulk termHa, the one-loop corrections in the
power spectrum cancel each other to order p3=q3 ≪ 1.
In the second method used in [27], the term containing η0

in Ha is traded via a boundary term. The new boundary
term cancels exactly the boundary term Hb. After using the
linear field equation, one obtains the following equivalent
Hamiltonian:

H3¼HcþHd¼M2
P

Z
d3xa2ϵη

�
ζ02ζþ1

2
ζ2∂2ζ

�
; ð42Þ

in which Hc and Hd are both bulk terms, given by

Hc ¼ M2
P

Z
d3xa2ϵηζ02ζ ð43Þ

and

Hd ¼
M2

P

2

Z
d3xa2ϵηζ2∂2ζ: ð44Þ

Interestingly, we see that the Hamiltonian (42) is exactly
the same as the cubic Hamiltonian obtained in [9,38]
in which ζ ¼ −Hπ þOðπ2Þ, where π represents the
Goldstone boson associated with the fluctuations of the
inflaton field. On the other hand, no cancellation of the one-
loop corrections was observed in [9] at the cubic order
(even in the presence of quartic interactions). This indicates
that something is going wrong in the analysis of either [9]
or [27]. Here, we pay careful attention to find the source of
disagreement between [9,27] and whether or not the one-
loop corrections cancel out, as claimed in [27].
To perform the in-in analysis, the following relations for

τs ≤ τ ≤ τe have been used in [27]:

½ζqðτÞ; ζ0pðτ0Þ� ¼ ð2πÞ3δ3ðqþ pÞ i
2a2M2

PϵðτÞ
ð45Þ

and

½ζqðτÞ; ζpðτ0Þ� ≃ 0: ð46Þ

A careful investigation shows that Eq. (45) is correct but
Eq. (46) is incorrect. Indeed, it was argued in [27] that since
for the long mode ζp is nearly conserved on superhorizon
scales, ζpðτ0Þ ≃ ζpðτÞ for τs ≤ τ ≤ τe, and since the equal
time commutator of the field vanishes, one obtains Eq. (46).
However, there is a subtle flaw in this argument in which
the role of the decaying mode is neglected during the USR
phase. More specifically, the decaying mode will grow
during the USR phase, so the approximation ζpðτ0Þ ≃ ζpðτÞ
may not be consistent when one is dealing with a nested
integral. As shown in [9] [see Eq. (A.23) in [9] ], for
τs ≤ τ ≤ τe one instead has

½ζqðτÞ;ζpðτ0Þ�≃ð2πÞ3δ3ðqþpÞ iτ
6a2M2

PϵðτÞ
�
1þ6−h

h
τ3

τ3e

�
:

ð47Þ

When Eqs. (45) and (47) are compared, it is not guaranteed
that inside the nested integral one can automatically neglect
Eq. (47) while keeping Eq. (45).
In the following, we repeat the analysis of [27] using the

Hamiltonian given in Eq. (42). We also compare the results
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with those in [9], which were obtained via a different in-in
method.
The analysis in [27] is based on the commutator

approach [54], in which

hζpðτ0Þζp0 ðτ0Þi

¼−
Z

τ0
dτ1

Z
τ1
dτ2h½H3ðτ2Þ;½H3ðτ1Þ;ζpðτ0Þζp0 ðτ0Þ��i:

ð48Þ
Depending on whereHc andHd are located in the nested

integrals, we obtain

hζpζp0 i ¼ hζpζp0 i½c;c� þ hζpζp0 i½d;c� þ hζpζp0 i½c;d�; ð49Þ

in which, for example,

hζpζp0 i½c;c�
¼−

Z
τ0
dτ1

Z
τ1
dτ2h½Hcðτ2Þ; ½Hcðτ1Þ;ζpðτ0Þζp0 ðτ0Þ��i;

ð50Þ

and so on.
In the analysis of [27] it was argued that the first two

terms in Eq. (49) cancel each other to the volume order
p3=q3 ≪ 1, while the last term in Eq. (49) is subleading.
Indeed, as we check specifically below, the conclusion that
hζpζp0 i½c;d� is subleading is correct. However, we show that
the cancellation between the first two terms in Eq. (49) is
not exact, which is the source of the discrepancy between
the results of [9,27].
To perform the in-in analysis, as in [9,27], we only

consider the contributions for the time interval τs ≤ τ ≤ τe.
Performing all the contractions and incorporating the
symmetric factors, one obtains

hζpζp0 i0½c;c� ¼ −8M4
P

Z
τe

τs

dτ1

Z
τ1

τs

dτ2

×
Z

d3q
ð2πÞ3 Im

�
X�
1ðτ2Þðc1δðτ1Þ þ 2βðτ1ÞÞ

	
;

ð51Þ
in which the coefficient c1 is added for bookkeeping, as we
discuss below. Here and below, h� � �i0 means that we
absorbed the overall factor ð2πÞ3δ3ðqþ pÞ. In addition,

X1ðτÞ≡ ηϵa2ζ�pðτ0ÞζpðτÞζ0qðτÞ2; ð52Þ

δðτÞ≡ 2ϵηa2ζ0qðτÞ2Im
�
ζ�pðτ0ÞζpðτÞ

	
; ð53Þ

and

βðτÞ≡ 2ϵηa2ζ0qðτÞζqðτÞIm
�
ζ�pðτ0Þζ0pðτÞ

	
: ð54Þ

Note that there are additional subleading terms containing
ζ0pðτ2Þ which are not included in Eq. (51). This is because
these terms are suppressed by a factor p2 compared to the
term denoted by X1ðτ2Þ.1
Looking at the expressions of δðτÞ and βðτÞ, we note that

δðτÞ originated from the commutator (47) while βðτÞ
originated from the commutator (45). Consequently, in
the analysis of [27], who uses Eq. (46) instead of Eq. (47),
the term containing δðτÞ does not exist. This corresponds to
setting c1 ¼ 0. However, in our analysis we have c1 ¼ 1.
We have verified that if we set c1 ¼ 0, then Eq. (51) agrees
exactly with the corresponding result in [27] [Eq. (50)
in [27] ].
Proceeding similarly, we obtain

hζpζp0 i0½d;c� ¼ 8M4
P

Z
τe

τs

dτ1

Z
τ1

τs

dτ2

Z
d3q
ð2πÞ3 q

2

× Im
�
Y�ðτ2Þðc1δðτ1Þ þ 2βðτ1ÞÞ

	
; ð55Þ

in which

YðτÞ≡ ηϵa2ζ�pðτ0ÞζpðτÞζqðτÞ2: ð56Þ

As in the previous case, if we set c1 ¼ 0, the above result
agrees exactly with hζpζp0 i½d;c� obtained in [27].
Finally, calculating hζpζp0 i½c;d�, we obtain

hζpζp0 i0½c;d� ¼ −16M4
P

Z
τe

τs

dτ1

Z
τ1

τs

dτ2ϵðτ1Þaðτ1Þ2

×
Z

d3q
ð2πÞ3 q

2Im
�
ζ�pðτ0Þζpðτ1Þ

	

× Im
�
X�
1ðτ2Þζqðτ1Þ2

	
:

Combining the results for hζpζp0 i½c;c�, hζpζp0 i½d;c�, and
hζpζp0 i½c;d�, the total one-loop correction at the cubic order
is obtained to be

hζpζp0 i0H3
¼ 8M4

P

Z
τe

τs

dτ1

Z
τ1

τs

dτ2

Z
d3q
ð2πÞ3 F ðτ1; τ2; qÞ;

ð57Þ

in which

F ðτ1; τ2; qÞ≡ Im
�
X�
1ðτ2Þ

�ðc1δðτ1Þ þ 2βðτ1ÞÞ
×ð1 − f�qðτ2ÞÞ − c1fqðτ1Þδðτ1Þ

	 ð58Þ

and

1In the analysis of [9], these subleading terms are denoted by
X2; see the discussion after Eq. (A.10) in [9].
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fqðτÞ≡ q2
Y
X1

¼ q2ζ2q
ζ02q

: ð59Þ

As mentioned before, our result in Eq. (63) reduces to the
result of [27] if we set c1 ¼ 0. In addition, performing the
nested integral, one can show that the last term in F ,
containing fqðτ1Þδðτ1Þ, is subleading, which agrees with
the conclusion in [27] that the contribution of hζpζp0 i½c;d� is
subleading compared to hζpζp0 i½c;c� and hζpζp0 i½d;c�.
Finally, Eq. (57) agrees with our earlier result in [9],

which was obtained using a somewhat different method to
implement the in-in analysis. More specifically, in [9] the
in-in analysis is performed as follows:

hζpðτ0Þζp0 ðτ0ÞiH3
¼ hζpðτ0Þζp0 ðτ0Þið2;0Þ
þ hζpðτ0Þζp0 ðτ0Þið1;1Þ
þ hζpðτ0Þζp0 ðτ0Þið0;2Þ; ð60Þ

in which

hζpðτ0Þζp0 ðτ0Þið2;0Þ
¼ −

Z
τ0

−∞
dτ1

Z
τ1

−∞
dτ2hH3ðτ2ÞH3ðτ1Þζpðτ0Þζp0 ðτ0Þi

¼ hζpðτ0Þζp0 ðτ0Þi†ð0;2Þ ð61Þ

and

hζpðτ0Þζp0 ðτ0Þið1;1Þ
¼

Z
τ0

−∞
dτ1

Z
τ0

−∞
dτ2hH3ðτ1Þζpðτ0Þζp0 ðτ0ÞH3ðτ2Þi: ð62Þ

Combining all contributions one obtains the same result as
Eq. (57); see [9] for detailed derivations.

B. Loop cancellation?

Our goal here is to examine the loop cancellation at the
cubic order, as advocated for in [27]. Plugging the mode
functions (32) and (34) into Eq. (57) and performing the
nested integrals for the range τs ≤ τ2 ≤ τ1 ≤ τe and
− 1

τs
≤ q ≤ − 1

τe
, we obtain

hζpζp0 i0H3
¼ 9c1ðh − 12Þ

8h
ðΔNe6ΔNÞ H4

2π2M4
Pϵ

2
i p

3
: ð63Þ

Correspondingly, the correction in one-loop power spec-
trum from the cubic Hamiltonian ΔPH3

is obtained to be

ΔPH3
≡ p3

2π2
hζ2piH3

¼18c1ðh−12Þ
h

ðΔNe6ΔNÞP2
CMB: ð64Þ

As expected, we see that if c1 ¼ 0, then the loop correction
cancels to leading order, as advocated for in [27]. However,

the consistent analysis requires c1 ¼ 1 and there is no loop
cancellation.
The above result is qualitatively consistent with the result

obtained [1]. However, with h ¼ −6, which is the case
studied in [1], the above result is larger than the result
obtained in [1] by a factor of 6. There may be a number
of reasons for this numerical discrepancy. Note that in [1]
they used the new variables ζn defined in [29] with
ζ ¼ ζn þOðζ2nÞ, while here we work with ζ. It is possible
that the nonlinear relation between ζ and ζn induces quartic
interactions from the starting cubic interactions, which were
not taken into account in [1]. In addition, the boundary term
was not included in the analysis of [1], which may also
contribute to the numerical mismatch.
The conclusion is that there is no cancellation in the one-

loop correction at the cubic order. The source of the
disagreement with the conclusion of [27] is that
½ζpðτ0Þ; ζqðτÞ� ≠ 0, as summarized in Eq. (47). This is
because one cannot neglect the roles of the would-be
decaying mode, which grows exponentially during the
USR phase.
Now we can compare our result in Eq. (63) with the

corresponding result obtained in [9]. We see that Eq. (63)
agrees exactly with the result obtained in [9] when the
integration2 is over τs ≤ τ2 ≤ τ1 ≤ τe; see Eq. (5.39) in [9].
This is not surprising, since the starting cubic Hamiltonian
in both [9,27] is the same, as given in Eq. (42).
Finally, we comment that the contribution of the quartic

Hamiltonian in loop correction was calculated in [9], which
we present here:

hζ2pi0H4
¼ 3

8h
ðh2 þ 6hþ 36ÞðΔNe6ΔNÞ H4

2π2M4
Pϵ

2
i p

3
: ð65Þ

We see that it has a somewhat different dependence on the
sharpness parameter h such that the quartic one-loop
corrections scales linearly with h for jhj ≫ 1.
Combining the cubic and quartic one-loop corrections

from Eqs. (63) and (65), and, setting c1 ¼ 1, the total one-
loop correction is given by

ΔPH3þH4
¼ ð6hþ 54ÞðΔNe6ΔNÞP2

CMB: ð66Þ

We see that the total one-loop correction scales linearly
with h. There is no cancellation in the total one-loop

2In performing the nested integrals, two different strategies
were considered in [9]. In the first strategy, one calculates the
nested integral considering only the modes which become super-
horizon during the USR phase. This means cutting the time
integral in the range − 1

q ≤ τ2 ≤ τ1 ≤ τe so the lower bound of the
integral is − 1

q instead of τs. The second strategy is similar to that
followed here (as in [27]), integrating over all modes, whether
subhorizon or superhorizon during the USR phase, corresponding
to τs ≤ τ2 ≤ τ1 ≤ τe. This corresponds to simply setting the lower
bound of the time integral to be τs, as given in Eq. (57).
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correction for a general value of h except at h ¼ −9. Of
course, there are subleading terms in one-loop contribu-
tions which were not included in our analysis here, so we
believe that, even for h ¼ −9, the one-loop cancellation
does not occur. Finally, for h ¼ −6, which is the case
studied in [1,2], the total one-loop correction in Eq. (66) is
larger than the result in [1,2] by a factor of 2. Having said
this, it is interesting that the final result, once the effects of
the boundary terms and the quartic interaction are incorpo-
rated, is qualitatively in agreement with the results of [1,2].
As argued in [1,2], the loop corrections in the form of

Eq. (66) can get out of control if one enhances the short-
scale power spectrum during the USR phase by a factor of
107 to generate the desired PBH abundance. Furthermore,
as argued in [9], this gets even worse if one considers
extremely sharp transitions with h → −∞. However, for a
mild transition with h ∼ ηV , the loop corrections will be
slow-roll suppressed and the model is reliable for PBH
formation [3,11].

V. SUMMARY AND DISCUSSIONS

In this work we have revisited the question of one-loop
corrections in the setup which contains an intermediate
phase of USR inflation. First, we have provided physical
arguments on the reality of loop effects. More specifically,
one may worry that large loop corrections on long modes
induced from small scales may be in conflict with the
notion of the decoupling of scales. We have tried to clarify
this puzzle. We have argued that the nonlinear couplings
between the long and short modes generate a second order
source term for the evolution of the long mode perturba-
tions. On the other hand, the long mode rescales the
background coordinate, so its effects can be viewed as a
modulation of the short mode power spectrum. These two
effects combine to induce a nontrivial backreaction on the
long mode itself, which can be viewed as the source of the
loop corrections [4]. In order for the loop corrections to be
noticeable, we require a significant scale dependence for
the power spectrum of the short modes. This is guaranteed
in the USR phase, as the power spectrum of the modes
which leave the horizon during the USR phase experiences
a rapid rise like Pζ ∝ q4.
In the first part of this work we have found that our

expression for the loop correction in Eq. (28) has the same
structure as advocated for in [28]. However, we disagree
with the argument in [28] that the contribution of qmax is
negligible after performing the iε prescription. Indeed, a
natural prescription for qmax is qmax ¼ qe, as advocated for
in [1,2]. This leads to the expected result in Eq. (31).
However, if we follow the prescription of [28] and push
qmax to the maximum allowed value, then the power
spectrum has a quadratic divergence in the UV region,
with rapid small oscillations superimposed on top of it.

We have argued that these oscillations are harmless, as they
are much smaller than the overall quadratic divergence.
Indeed, the situation here is similar to the standard QFTs in
which one has to employ a renormalization scheme, such as
the dimensional regularization approach, to regularize and
renormalize the divergent power spectrum. For this to be
consistent, one requires the loop corrections to be pertur-
batively under control order by order. Consequently, we
need the fractional one-loop correction in Eq. (31) with the
amplitude e6ΔNPCMB to be small.
In the second part of this work we have revisited the claim

in [27] that the loop contributions cancel out to leading order
when using the cubic Hamiltonian. We have highlighted the
important roles played by the would-be decaying mode
during theUSR phase. As is well known, the decayingmode
grows exponentially during the USR period, which is the
main reason behind the violation of Maldacena’s consis-
tency condition [34]. Correspondingly, one cannot simply
take for granted that ½ζpðτ0Þ; ζqðτÞ� ≠ 0, so one should use
Eq. (47) instead of Eq. (46). The contribution of Eq. (47) in
our analysis is captured by the term δ in Eq. (58). To follow
the contribution of the term δ, we have inserted the fiducial
parameter c1 into the follow-up analysis. We have verified
that if c1 ¼ 0, then one reproduces the result of [27] inwhich
the loop corrections by cubic interactions cancel out to
leading order.However, in the correct treatmentwith c1 ¼ 1,
the loop correction does not cancel out, as seen explicitly
in Eq. (63).
As the one-loop corrections are genuine and are not

canceled out, one has to worry about their cosmological
implications. In particular, it may not be easy to generate
PBHs in the models employing an intermediate phase of
USR inflation, as highlighted in [1,2]. The amplitude of
loop corrections scales linearly with the sharpness para-
meter h. Correspondingly, for sharp transitions the loop
corrections can get out of control for ΔN > 1. However, as
shown in [11], the loop corrections will be slow-roll
suppressed if the transition is mild. Another interesting
question is the loop effects on the bispectrum. Experience
with the case of the power spectrum suggests that the loop
corrections can have significant impacts in the fNL param-
eter on large CMB scales as well. This is a nontrivial
question since the corresponding in-in analysis involves
higher order nested integrals. Another question of interest is
to look at two loops and higher order loop corrections for
both the power spectrum and the bispectrum. As we see in
Eq. (66), at the one-loop level, the loop corrections scale
linearly with h for large values of jhj. It is interesting to
examine the dependence of the two loops and higher order
loops on h. These nontrivial dependences on the sharpness
parameter may put additional constraints on the model for it
to be perturbatively under control. We would like to come
back to these questions in the future.
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