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In the preceding article, we introduce 21cmFirstCLASS, a new code for computing the 21-cm anisotropies,
assembled from the merger of the two popular codes 21cmFAST and CLASS. Unlike the standard 21cmFAST,
which begins at z ¼ 35 with homogeneous temperature and ionization boxes, our code begins its
calculations from recombination, evolves the signal through the dark ages, and naturally yields an
inhomogeneous box at z ¼ 35. In this paper, we validate the output of 21cmFirstCLASS by developing a
new theoretical framework which is simple and intuitive on the one hand, but robust and precise on the
other hand. As has been recently claimed, using consistent inhomogeneous initial conditions mitigates
inaccuracies, which according to our analysis can otherwise reach the Oð20%Þ level. On top of that, we
also show for the first time that 21cmFAST overpredicts the 21-cm power spectrum at z≳ 20 by another
Oð20%Þ, due to the underlying assumption that δb ¼ δc, namely that the density fluctuations in baryons
and cold dark matter are indistinguishable. We propose an elegant solution to this discrepancy by
introducing an appropriate scale-dependent growth factor into the evolution equations. Our analysis
shows that this modification will ensure subpercent differences between 21cmFirstCLASS and the
Boltzmann solver CAMB at z ≤ 50 for all scales between the horizon and the Jeans scale. This will
enable 21cmFirstCLASS to consistently and reliably simulate the 21-cm anisotropies both in the dark ages
and cosmic dawn, for any cosmology.
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I. INTRODUCTION

It is truly remarkable how much we can learn about our
Universe from hyperfine transitions in neutral hydrogen
atoms that once permeated the intergalactic medium (IGM).
Each said transition results in the emission of a ∼21-cm
wavelength photon that is redshifted as it propagates to
Earth. This is the cosmic 21-cm signal [1–7].
Studies of the 21-cm signal have shown that the rich

astrophysical information contained in it can be exploited
to learn about the formation of the first galaxies and stars
[8–18], probe the epoch of reionization [19–31], and trace
the thermal history of the IGM [32–40]. All of that potential
lies within the high-frequency bands (∼50–200 MHz) of
the 21-cm signal which can be measured by ground-based
detectors. Worldwide efforts in pursuit of the signal are
ongoing by numerous collaborations. Some of them aim at
detecting the 21-cm global signal, like EDGES [41],
SARAS [42], REACH [43], LEDA [44], and PRIzM [45],
while others, such as LOFAR [46], MWA [47], GMRT
[48], PAPER [49], HERA [50], and SKA [51] focus on the
spatial structure of the signal. All of these experiments are
limited to the cosmological epochs of cosmic dawn and
afterward, at redshifts z≲ 35, since lower frequencies are

obscured by Earth’s ionosphere. In the next decades, radio
receivers deployed on the far side of the moon or in lunar
orbit [52–60] will give us access to the poorly constrained
epoch of the dark ages, enabling us to challenge the very
foundations of the standard model of cosmology [Λ cold
dark matter (ΛCDM)] [61].
Codes that can compute the 21-cm anisotropies both

at the cosmic dawn and the dark ages, like 21cmFirstCLASS,
will therefore become invaluable. This code, introduced
in the preceding article [62] (hereafter referred to as
Paper I), is based on two popular codes widely used in
the literature, 21cmFAST [63,64] and CLASS [65]. Unlike the
standard 21cmFAST, which begins its calculations at z ¼ 35
with homogeneous temperature and ionization boxes,
21cmFirstCLASS is able to begin from recombination and
evolve the boxes through the dark ages. Hence, temperature
and ionization fluctuations are naturally developed, leading
to an inhomogeneous box at z ¼ 35. According to Ref. [66]
(hereafter referred as JBM23), these early temperature
fluctuations can have an important impact on the 21-cm
power spectrum at low redshifts.
Currently, the only state-of-the-art code that can calcu-

late these early fluctuations is CAMB, following the work
of Ref. [67] (hereafter LC07). Unlike 21cmFirstCLASS,
CAMB works in a completely different way; it does not
evolve a coeval box, but rather solves the linear coupled*jordanf@post.bgu.ac.il
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Boltzmann-Einstein equations to obtain the fluctuations
in Fourier space. This is achievable because in ΛCDM,
above z ¼ 35, the fluctuations are expected to be linear,
i.e., small, and thus higher terms in perturbation theory can
be neglected. Assuming that all early fluctuations are
indeed linear during the dark ages, consistency requires
21cmFirstCLASS to agree with CAMB.
In this paper, we first quantify the effect of including

temperature and ionization fluctuations in 21cmFirstCLASS

as early as recombination, thereby leading to inhomo-
geneous initial conditions at the onset of cosmic dawn.
We then proceed to validate the output of 21cmFirstCLASS

during the dark ages, by comparing its output with CAMB.
Although a direct comparison between the two codes is the
most straightforward approach to do so, it can be affected
by different physical effects which are not taken into
account in both codes, as well as different approximations
that are adopted.
Instead, we take an analytical approach and develop a

theoretical framework to predict the output of these two
codes. This framework is arguably more tractable than the
one presented in LC07 and so allows us to gather new
insights on the nature of the linear fluctuations of the 21-cm
signal at the relevant scales for 21-cm interferometry.
Our validation process is thus divided into three steps, as

schematically presented in Fig. 1. First, we derive the linear
fluctuations of all the relevant physical quantities during
the dark ages. Second, we compare our scale-independent
theory with the output of 21cmFirstCLASS. And third, we
compare our scale-dependent theory with the output of
CAMB. Because the comparison in the last two steps is
successful, we deduce that scale-dependent growth is the
only ingredient missing in 21cmFirstCLASS to make it
consistent with CAMB. This modification in the code of

21cmFirstCLASS is feasible and will be implemented in its
next version, which shall be made public.
The remaining parts of this paper are organized as

follows. In Sec. II we quote the standard equations used
in 21-cm analysis. In Sec. III we analyze the evolution of
early temperature and ionization fluctuations and their
impact on the 21-cm power spectrum at low redshifts. In
Sec. IV we derive the brightness temperature fluctuations
and relate them to the temperature and ionization fluctua-
tions that were discussed at the previous section. In that
section we also compare our scale-independent formalism
with the output of 21cmFirstCLASS. In Sec. V we discuss the
effect of nonlinearities in the density field on the 21-cm
power spectrum. We then compare our scale-dependent
formalism with the output of CAMB in Sec. VI. We conclude
in Sec. VII.
As in Paper I, we adopt in this work the best-fit values

for the cosmological parameters from Planck 2018 [68]
(without baryon acoustic oscillations), namely we assume
a Hubble constant h ¼ 0.6736, total matter and baryon-
density parameters Ωm ¼ 0.3153, Ωb ¼ 0.0493, and a
primordial curvature amplitude As ¼ 2.1 × 10−9 with a
spectral index ns ¼ 0.9649. For the fiducial values of
the astrophysical parameters in 21cmFAST, we adopt the
EOS2021 values listed in Table 1 of Ref. [64]. To reduce
clutter, we often do not explicitly write the independent
arguments of the physical quantities (e.g., redshift, wave
number, etc.) and they should be inferred from the context.
All of our formulas are expressed in the centimeter-gram-
second unit system.

II. 21-CM THEORY

In Paper I we give a brief description of the 21-cm signal
physics. Here we are only going to rewrite the fundamental
equations that will serve us later in the derivations of this
paper. Readers who wish to understand the origin of these
equations can find classic reviews in Refs. [1–5].
The 21-cm signal is the measurement of the physical

quantity known as the brightness temperature,

T21 ¼
Ts − Tγ

1þ z
ð1 − e−τ21Þ; ð1Þ

where Tγ ∝ ð1þ zÞ is the redshift-dependent temperature
of the cosmic microwave background (CMB), Ts is the spin
temperature, and τ21 ≪ 1 is the 21-cm optical depth,

τ21 ¼
3ℏA10cλ221ð1 − xeÞnH

16HkBTs

�
1þ 1

H
dðn̂ · vbÞ
dðn̂ · xÞ

�
−1
: ð2Þ

Here, c is the speed of light, ℏ is the (reduced) Planck
constant, kB is the Boltzmann constant, H is the redshift-
dependent Hubble parameter, λ21 ≈ 21 cm is the wave-
length of a 21-cm photon, A10 ¼ 2.85 × 10−15 sec−1 is
the spontaneous emission coefficient from the excited

FIG. 1. Schematic representation of our comparison strategy.
We compare between the analytical derivations of this work
with 21cmFirstCLASS (CAMB), which uses a scale-independent
(-dependent) theory for calculating the anisotropies in the 21-cm
signal during the dark ages. As these comparisons are successful,
our conclusion is that implementing the scale-dependent theory in
21cmFirstCLASS will make it fully consistent with CAMB.
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hyperfine level to the ground state, and xe≡ne=ðnHþnHeÞ
is the ionization fraction where ne, nH, and nHe are the free-
electron, hydrogen-nuclei, and helium-nuclei number den-
sities, respectively. Finally, the last term accounts for the
comoving derivative of the baryons peculiar velocity1 along
the line of sight n̂.
In thermal equilibrium the spin temperature obeys

T−1
s ¼ xCMBT−1

γ þ xcollT−1
k þ x̃αT−1

α

xCMB þ xcoll þ x̃α
; ð3Þ

where Tk is the IGM gas kinetic temperature, Tα ≈ Tk is
the color temperature of Lyα photons, and xCMB ¼
ð1 − e−τ21Þ=τ21 ∼ 1, x̃α, and xcoll are the CMB [69], Lyα
[70], and collisional [4] couplings, respectively. The
evolution of Tk is determined from

dTk

dz
¼ dt

dz

�
−2HTk þ ΓCðTγ − TkÞ þ

2

3

Tk

1þ δb

dδb
dt

þ ϵext −
Tk

1þ xe

dxe
dt

�
; ð4Þ

where dt=dz ¼ −½Hð1þ zÞ�−1, and ΓC is the Compton
heating rate,

ΓC ≡ 8π2σTðkBTγÞ4
45ℏ3c4me

xe
1þ xe

; ð5Þ

where me is the electron mass and σT is Thomson cross
section. The term ϵext in Eq. (4) denotes the heating rates
from external sources, mainly x-ray heating (but Lyα
and CMB heating rates [69,71,72] can be included),
and δb ≡ δρb=ρ̄b is the contrast in the baryon-density
fluctuations.
The last equation we need in order to study the fluctua-

tions in the signal during the dark ages is the evolution
equation for xe. In general, this equation is very compli-
cated and tracks the recombination states of both hydrogen
and helium, while taking into account excitations to high-
order energy levels. These effects have been implemented
in the publicly available code HyRec [73,74], which we have
incorporated in our 21cmFirstCLASS code (see Paper I
for more details). However, we will see in Sec. III that,
in order to derive analytically the evolution of temperature
and ionization fluctuations, it is sufficient to consider the
Peebles effective three-level atom model [75], in which the
evolution of xe is given by

dxe
dz

¼ dt
dz

�
dxe
dt

����
reio

þ Cðβionð1 − xeÞ − αrecnHx2eÞ
�
; ð6Þ

where αrec is the recombination rate (in units of cm3=sec),
βion is the early photoionization rate, and C is the Peebles
coefficient (see Appendix A for more details on the Peebles
coefficient). The term dxe=dtjreio represents the reioniza-
tion rate at late times. At early times (prior the epoch of
reionization), the recombination rate and photoionization
rates were in equilibrium, and thus

βion ¼ αrec

�
mekBTγ

2πℏ2

�
3=2

e−ϵ0=ðkBTγÞ; ð7Þ

where ϵ0 ¼ 13.6 eV denotes the ionization energy of the
hydrogen atom from its ground state.

III. EARLY TEMPERATURE AND IONIZATION
FLUCTUATIONS

One of the advantages of 21cmFirstCLASS is that it allows
one to study nonlinear evolution above z ¼ 35 in models
beyond ΛCDM. It is tempting, however, to examine if
small, linearΛCDM fluctuations prior to z ¼ 35 can induce
a measurable impact on the brightness temperature during
the cosmic dawn or afterward.
To study the evolution of early linear temperature

fluctuations, let us consider the temperature evolution
equation (4) prior to cosmic dawn, when ϵext ¼ 0. We
also neglect the last term in Eq. (4), and we will show that it
has indeed a negligible effect on the analysis contained in
this section. Thus

dTk

dz
¼ 2Tk

1þ z
−
ΓCðTγ − TkÞ
Hð1þ zÞ þ 2

3

Tk

ð1þ δbÞ
dδb
dz

: ð8Þ

We now expand Tk ¼ T̄k þ δTk, ΓC ¼ Γ̄C þ δΓC in linear
perturbation theory. Throughout this work we shall assume
that the CMB temperature is homogeneous, that is we
assume δTγ ≡ 0. This is an excellent approximation
because at the relevant subhorizon scales and redshifts
the linear fluctuations in the CMB temperature are more
negligible than all other fluctuations. The evolution equa-
tion for the background temperature T̄k is similar to Eq. (8),
though without the last term, while the evolution equation
for δTk is

dδTk

dz
¼2δTk

1þz
þ Γ̄CδTk

Hð1þzÞ−
δΓCðTγ− T̄kÞ
Hð1þzÞ þ2

3
T̄k

dδb
dz

: ð9Þ

We see that the Compton heating term in Eq. (8) induces
the second and third terms on the rhs of Eq. (9), which
we refer to collectively as “Compton fluctuations.” From
Eq. (5) it is straightforward to find that the linear fluctua-
tions in the Compton heating rate are given by

δΓC ¼ Γ̄C
δxe

x̄eð1þ x̄eÞ
; ð10Þ

1Note that in our notation, vb ≡ dxb=dt is the comoving
peculiar velocity of the baryons. The proper comoving velocity is
obtained by multiplying that quantity with the scale factor.
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where xe ¼ x̄e þ δxe. Thus, Eq. (9) becomes [76]

dδTk

dz
¼ 2δTk

1þ z
þ Γ̄CδTk

Hð1þ zÞ −
Γ̄CðTγ − T̄kÞ
Hð1þ zÞ

δxe
x̄eð1þ x̄eÞ

þ 2

3
T̄k

dδb
dz

: ð11Þ

For cold dark matter, the linear density fluctuations
evolve in an almost scale-invariant fashion (especially at
high redshifts before the baryons had settled in the CDM
gravitational potential wells) according to δcðzÞ ¼ DðzÞδ0,
where DðzÞ is the scale-independent growth factor and
δ0 ≡ δcðz ¼ 0Þ. For the baryons, we now define a scale-
dependent growth factor Dbðk; zÞ as

Dbðk; zÞ≡ T b=cðk; zÞDðzÞ; ð12Þ

where T b=cðk; zÞ≡ T bðk; zÞ=T cðk; zÞ is the ratio between
the baryon-density and the CDM-density transfer func-
tions, so that δbðk; zÞ ¼ T b=cðk; zÞδcðzÞ ¼ Dbðk; zÞδ0.
In Fig. 2 we show T b=cðk; zÞ as a function of redshift at

the relevant scales for 21-cm interferometers. Initially,
at high redshifts (z ∼ 1000), δb ≪ δc, or T b=cðk; zÞ ≪ 1,
since the baryons have recently been freed from the strong
coupling with the CMB; before the baryons decoupled
from the CMB photons, their density contrast was oscillat-
ing in a scale-dependent manner, while the CDM-density
contrast was continuously growing, especially after matter-
radiation equality (z ≈ 3300) where DðzÞ ∝ ð1þ zÞ−1.
Afterward, for scales larger than the Jeans scale, the
baryons can be considered as collisionless particles and
they obey the same equation of motion as CDM. Therefore,
for the scales of interest, the baryons and the CDM become
indistinguishable at low redshifts, after enough time has
passed and their different initial conditions no longer play
an important role in their evolution. Hence, at low redshifts
δb → δc and T b=cðk; zÞ → 1. This is the assumption made
in the standard 21cmFAST, where the simulation begins at
z ¼ 35. However, the error induced by this assumption can

be of the order of Oð10%Þ for z≳ 20. Since the 21-cm
power spectrum Δ2

21ðk; zÞ is proportional to T 2
bðk; zÞ, at

least at redshifts prior to the nonlinear cosmic dawn epoch
[cf. Eq. (40)], this error becomes Oð20%Þ in the evaluation
of Δ2

21ðk; zÞ. Another interesting feature that can be seen in
Fig. 2 is that the relative suppression of T bðk; zÞ at high
redshifts is not necessarily stronger at smaller scales (or
larger k). This is because different modes begin with
different initial conditions, depending on their oscillatory
phase at the moment of decoupling. However, adiabatic
fluctuations imply δb ≡ δc and T b=cðk; zÞ≡ 1 on super-
horizon scales [77].
The solution for δTk in Eq. (11) can be expressed

analytically in the following way:

cTðk; zÞ ¼ −
2

3

ð1þ zÞ2
T̄kðzÞDbðk; zÞ

Z
∞

z
dz0

T̄kðz0Þ
ð1þ z0Þ2

dDbðk; z0Þ
dz0

;

−
ð1þ zÞ2

T̄kðzÞDbðk; zÞ
Z

∞

z
dz0

Γ̄Cðz0ÞT̄kðz0ÞDbðk; z0Þ
ð1þ z0Þ3Hðz0Þ cTðk; z0Þ;

þ ð1þ zÞ2
T̄kðzÞDbðk; zÞ

Z
∞

z
dz0

Γ̄Cðz0Þ½Tγðz0Þ − T̄kðz0Þ�Dbðk; z0Þ
ð1þ z0Þ3Hðz0Þ½1þ x̄eðz0Þ�

cxeðk; z0Þ; ð13Þ

where cT ≡ δTk=ðT̄k · δbÞ and cxe ≡ δxe=ðx̄e · δbÞ. Note
that Eq. (13) can be compared to Eq. (47) in JBM23
where Compton fluctuations were neglected and the second
and third terms are absent. Moreover, we see that cT is a

scale-dependent quantity due to the nontrivial scale
dependence of Dbðk; zÞ. The first term in Eq. (13) repre-
sents adiabatic temperature fluctuations due to structure
growth. This term is positive because dDb=dz < 0.

FIG. 2. The ratio between the baryon transfer function T bðk; zÞ
and the CDM transfer function T cðk; zÞ as a function of redshift,
for three different scales. For the smallest scales shown here (not
including k ¼ 0.01 Mpc−1), T b=cðk; zÞ ¼ 0.97, 0.96, 0.92, 0.88
for z ¼ 6, 10, 20, 35, respectively. At smaller scales, the resulting
curve almost overlaps with the red curve of k ¼ 0.5 Mpc−1. This
figure was made with CLASS.
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The sign of the second and third terms is not clear at first
sight and depends on the sign of cT and cxe . We claim,
however (and we verify this statement below), that these
two terms give a negative contribution to cT and thus lower
its value. The second term is negative because cT > 0, as
overdense regions are expected to be overheated. The third
term is negative because cxe < 0, as the recombination rate
in overdense regions is higher and therefore the number of
free electrons is reduced.
The fact that cT depends on the integrated histories of

both cT and cxe complicates its evaluation compared to the
case where there are no Compton fluctuations. We will see
below, however, that including all sources of fluctuations is
absolutely necessary in order to obtain the correct solution.
In order to continue with the analytic derivation, we must

include the differential equation for δxe. We shall not
attempt to find the exact evolution equation for xe, and
instead we shall adopt the simpler Peebles model, Eq. (6).
Omitting the late time reionization term, the evolution
equation for xe reads

dxe
dz

¼ C
Hð1þ zÞ ðαrecnHx

2
e − βionð1 − xeÞÞ

¼ dxe
dz

����
rec

þ dxe
dz

����
ion
; ð14Þ

where we identified the recombination and ionization
contributions to dxe=dz. We then find, after working out
the algebra, that [76]

dδxe
dz

¼
�
2

x̄e

dx̄e
dz

����
rec

−
1

1 − x̄e

dx̄e
dz

����
ion

�
δxe

þ dx̄e
dz

����
rec
δb þ

�
δC

C̄
þ δαrec

ᾱrec

�
dx̄e
dz

: ð15Þ

In the name of brevity, we now ignore fluctuations in the
Peebles coefficient C, although they have non-negligible
contributions to δxe at high redshifts. We provide more
details on the calculation of δC in Appendix A. In addition,
we assume αrec is the case-B recombination rate and a
function of Tk only, αrec ¼ αBðTkÞ. With these assump-
tions, we can write Eqs. (11) and (15) in matrix form,

dδvðk; zÞ
dz

¼ AðzÞδvðk; zÞ þ Bðk; zÞ

¼
�
A11ðzÞ A12ðzÞ
A21ðzÞ A22ðzÞ

�
δvðk; zÞ þ

�
B1ðk; zÞ
B2ðk; zÞ

�
;

ð16Þ

where δvT ¼ ½ δv1δv2 �≡ ½ δTkδxe � and the elements of the
matrices A and B are

A11ðzÞ ¼
2

1þ z
þ Γ̄C

Hð1þ zÞ ; ð17Þ

A12ðzÞ ¼ −
Γ̄CðTγ − T̄kÞ
Hð1þ zÞ

1

x̄eð1þ x̄eÞ
; ð18Þ

A21ðzÞ ¼
∂ ln αBðT̄kÞ

∂T̄k

dx̄e
dz

; ð19Þ

A22ðzÞ ¼
2

x̄e

dx̄e
dz

����
rec

−
1

1 − x̄e

dx̄e
dz

����
ion
; ð20Þ

B1ðk; zÞ ¼
2

3
T̄k

dDbðk; zÞ
dz

δ0; ð21Þ

B2ðk; zÞ ¼ Dbðk; zÞ
dx̄e
dz

����
rec
δ0: ð22Þ

Then, Eq. (16) has a closed form solution, which for zero
initial conditions δvðk; z → ∞Þ ¼ 0 reads

δvðk; zÞ ¼ −
Z

∞

z
dz0 exp

�
−
Z

z0

z
Aðz00Þdz00

�
Bðk; z0Þ: ð23Þ

Note that, in the absence of Compton fluctuations, Eq. (23)
is consistent with the first line of Eq. (13) [and Eq. (47) in
JBM23]. Because Bðk; zÞ ∝ δ0, δvðk; zÞ ∝ δ0, and for the
calculation of cT we can choose any arbitrary nonzero value
of δ0 when we evaluate Eq. (23), we then get

cTðk; zÞ ¼
δv1ðk; zÞ

T̄kðzÞDbðk; zÞδ0
; ð24Þ

cxeðk; zÞ ¼
δv2ðk; zÞ

x̄eðzÞDbðk; zÞδ0
: ð25Þ

Note that cxe is an inevitable by-product of the calculation
of cT .
In what follows, we solve numerically2 Eq. (16)

from recombination, defined by x̄eðzrecÞ≡ 0.1, while
assuming zero initial conditions [76]. In addition, in our
analytical calculations we adopt the recombination model
of RECFAST [78–80],

αBðTkÞ ¼ Fα
aαðTk=104KÞbα

1þ cαðTk=104KÞdα
cm3

sec
; ð26Þ

where aα ¼ 4.309 × 10−13, bα ¼ −0.6166, cα ¼ 0.6703,
dα ¼ 0.5300, and Fα ¼ 1.125 is a fudge factor to repro-
duce the result of a multilevel atom calculation [74,81].

2While Eq. (23) is analytically correct, we found it numerically
challenging to evaluate the double integration to good precision.
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A. Scale independence

In order to gain some intuition for the qualitative features
in the solution for cT and cxe , let us begin the discussion
by assuming that these quantities evolve in a scale-
independent manner, i.e., cTðk; zÞ ¼ cTðzÞ, cxeðk; zÞ ¼
cxeðzÞ. Mathematically speaking, this is equivalent to
setting T b=cðk; zÞ≡ 1, valid only on superhorizon scales.
However, it is important to bear in mind that on these scales
the fluctuations in the CMB temperature cannot be ignored,
as we do in our analysis.
For the scale-independent evolution scenario, the sol-

utions for cTðzÞ and cxeðzÞ are presented by the solid
blue curves in Figs. 3 and 4. As expected, cTðzÞ > 0 and
cxeðzÞ < 0. Therefore, as can be seen from Eq. (13),
Compton fluctuations tend to decrease the value of cTðzÞ
considerably compared to the case when these fluctuations
are not taken into account (represented by the blue dashed
and dotted curves in Fig. 3). In addition, we see that
Compton fluctuations are responsible for driving cTðzÞ to
zero at high redshifts. This is physically well understood;
at high redshifts, z≳ 400, Tk is strongly coupled to the
homogeneous Tγ (see Fig. 1 in Paper I), hence cTðzÞ ≈ 0 at
these redshifts. And indeed, at z ∼ 400, once Tk begins to
depart from Tγ, cTðzÞ begins to grow via the source term of

Eq. (21). Eventually, it reaches ∼0.39 at z ¼ 35. In fact, we
find that, at the vicinity of z ¼ 35, cTðzÞ can be approxi-
mated by the following fit:

cTðzÞ ≈ 0.39 − 0.0056ðz − 35Þ ðthis workÞ: ð27Þ

This fit is more precise than the fit found in JBM23
(originally derived in Ref. [82]),

cTðzÞ ≈ 0.43 − 0.006ðz − 35Þ ðJBM23Þ: ð28Þ

The fit of JBM23, which is now used by default in the
public version of 21cmFAST (version 3.3.1) to account for
early temperature fluctuations, is consistent with our
calculations when the fluctuations in xe are ignored (the
dashed curve in Fig. 3 indeed reaches 0.43 at z ¼ 35).
Unlike the monotonous growth of cTðzÞ, the cxeðzÞ curve

exhibits a minimum at z ∼ 700. The origin for this mini-
mum is due to the following. We find that δxe ≡ δxe=x̄e is
monotonously decreasing toward lower negative values,
but its rate of decrease is substantially higher above
z ∼ 700. Since during matter domination the decrease in
D−1ðzÞ is roughly constant, D−1ðzÞ ∝ ð1þ zÞ, which is
faster (slower) than the decreasing rate of δxe at z≲ 700

(z≳ 700), the slope of cxeðzÞ ∝ δxeðzÞD−1ðzÞ changes its
sign at z ∼ 700. This does not happen in the cTðzÞ curve;
between 35 ≤ z ≤ 400 the growth in δTk

≡ δTk=T̄k is
always faster than the growth in DðzÞ.

FIG. 3. The scale-independent cTðzÞ. The solid blue curve is
the solution to Eq. (16) [or Eq. (23)] when accounting for Peebles
fluctuations (see Appendix A), while the orange (green) curve
corresponds to the median of the cTðx; zÞ box in 21cmFirstCLASS
when the considered recombination model is from RECFAST

(HyRec). For comparison, we also show the contribution of
Compton fluctuations to the solution. The blue dotted curve
corresponds to accounting only for the first row in Eq. (13), the
dashed blue curve corresponds to accounting for the first two
rows in Eq. (13), and the solid blue curve corresponds to
accounting for all three rows in Eq. (13).

FIG. 4. The scale-independent cxeðzÞ. The blue curve is the
solution to Eq. (16) [or Eq. (23)] when accounting for Peebles
fluctuations (see Appendix A), while the orange (green) curve
corresponds to the median of the cxeðx; zÞ box in 21cmFirstCLASS

when the considered recombination model is from RECFAST

(HyRec). The calculation of all solid curves begins at zrec ¼
1069 [corresponds to x̄eðzrecÞ ¼ 0.1], while the calculation of the
blue dashed curve begins at z ¼ 1200.
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Figure 4 displays an unphysical behavior; even though
cxeðzÞ begins at zero, its derivative does not. Of course,
there is no reason to believe that cxeðzÞ vanishes exactly at
our initial redshift (z ¼ 1069), and it is an indication that
the calculation has to begin at a higher redshift [76]. We
show, however, in Fig. 4 that if we begin the evolution at
z ¼ 1200, the result remains the same after the turning
point at z ∼ 700. Nevertheless, as we shall see in Sec. IV,
cxe will only have a small effect on the brightness temper-
ature fluctuations at low redshifts, and we will therefore not
concern ourselves with obtaining the correct solution for
cxe at redshifts higher than z ∼ 700.
We also make a comparison in Figs. 3 and 4 between

our analytical solution and the output from 21cmFirstCLASS.
To achieve the latter, we compute the redshift-dependent
median of the coeval boxes cTðx; zÞ and cxeðx; zÞ at each
redshift iteration. When we disable HyRec in 21cmFirstCLASS

and adopt our simple toy model for the evolution of xe,
the agreement between 21cmFirstCLASS and the scale-
independent theory is excellent, especially when inspecting
the cxeðzÞ curve. For cTðzÞ, minor differences can be seen at
low redshifts. There could be two reasons for this tiny
discrepancy; either small nonlinear fluctuations slightly
shift the median of the cTðx; zÞ box, or it could be the
consequence of small numerical errors that increase as the
box evolves.
Regardless, these differences are smaller than the errors

due to the approximated recombination model. Activating
HyRec in 21cmFirstCLASS results in increasing slightly the
value of cTðzÞ, most likely due to a more precise evolution
of T̄k at high redshifts. Note, however, that because the
absolute errors in cTðzÞ remain roughly constant over a
wide redshift range, the relative errors are significantly
larger at higher redshifts. Specifically, at z ¼ 35 (z ¼ 100)
the error in cTðzÞ is ∼1% (∼4%). This small discrepancy
will become relevant in our discussion in Sec. VI, where we
make a comparison with CAMB.

B. The 21-cm power spectrum in 21cmFirstCLASS

Now that we have established the consistency of
21cmFirstCLASS, at least when linear, scale-free, early tem-
perature, and ionization fluctuations are considered, a
natural question arises: do these early fluctuations alter
the observable, the 21-cm power spectrum at low redshifts,
at a significant level? In other words, does the state of the
box at z ¼ 35matter for its evolution afterward? To answer
these questions, we calculate with 21cmFirstCLASS the 21-cm
power spectrum, given by

Δ2
21ðk; zÞ ¼

k3T̄2
21ðzÞP21ðk; zÞ

2π2
; ð29Þ

where T̄21 is the global brightness temperature and
P21ðk; zÞ is the angle-averaged Fourier transform of the

FIG. 5. Comparison of the 21-cm power spectrum between
21cmFirstCLASS and 21cmFAST, for three different wave numbers.
The blue (orange) curves show the output of 21cmFAST without
(with) the cT correction, given by the fit of JBM23 [Eq. (28)]. The
green curve is the output of 21cmFirstCLASS. Solid (dashed) curves
correspond to evolving the density field with 2LPT (linearly). See
more details on 2LPT in Sec. V.
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two-point correlation function hδ21ðx; zÞδ21ðx0; zÞi, while
δ21 is the local contrast in the brightness temperature,
δ21ðx; zÞ≡ T21ðx; zÞ=T̄21ðzÞ − 1. We use the POWERBOX

package [83] to compute Δ2
21ðk; zÞ from chunks of the light

cone box of 21cmFirstCLASS.
Our conclusions are shown in Fig. 5. The blue curves

represent the output of the standard 21cmFAST, where
homogeneous Tk and xe boxes are assumed at z ¼ 35.
In comparison, we also plot the 21-cm power spectrum of
21cmFirstCLASS (which begins with homogeneous boxes at
zrec ¼ 1069). At 25≲ z≲ 35, the early fluctuations lead to
an enhancement of Oð10%Þ. In Sec. IV we will understand
the origin of this enhancement. However, as we enter
the nonlinear regime, the opposite trend can be seen at
12≲ z≲ 25, where early fluctuations cause a suppression
of Oð20%Þ in the power spectrum. Afterward, at z≲ 12,
the highly nonlinear fluctuations of the star formation rate
density (SFRD) become dominant and the initial conditions
of the box at z ¼ 35 are forgotten.
We also show in Fig. 5 the 21-cm power spectrum of the

updated version of 21cmFAST, where the fit of JBM23
[Eq. (28)] has been implemented in the code to generate
an inhomogeneous Tk box at z ¼ 35. We see that the fit
of JBM23 captures very well the power spectrum of
21cmFirstCLASS, even though this fit is slightly different
than ours, Eq. (27). Moreover, it is interesting that the
21-cm power spectrum is insensitive to early fluctuations
in xe. We will understand the reason for this in Sec. IV.

C. Scale dependence

Although Figs. 3 and 4 show a nice agreement between
21cmFirstCLASS and the scale-independent theory, the

assumption of T b=cðk; zÞ≡ 1 has to be relaxed if we wish
to find the correct cT and cxe . We do that now. Using our
analytical formalism above, we solve for cTðk; zÞ and
cxeðk; zÞ, focusing on scales relevant for 21-cm interfer-
ometers. The results are shown in Figs. 6 and 7.
Let us analyze first how cxe depends on scale. From

Eq. (22), we can see that the source term of δxe is
suppressed when Dbðk; zÞ is considered instead of the
scale-independent growth factorDðzÞ. Thus, we can expect
that, on scales for which T b=cðk; zÞ is smaller, the ampli-
tude of δxe and cxe will become smaller. This is the
qualitative feature that can be seen in Figs. 2 and 7.
For cT on the other hand, the scale dependence changes

it in the opposite manner—scales in which T b=cðk; zÞ is
smaller lead to a higher cT. This counterintuitive behavior
can be traced back to Eq. (13); the terms in the second and
the third rows, which tend to decrease the value of cT ,
are now smaller.3 Thus, even though the source term
which drives cT to higher values is also decreased, cT is
increased compared to the scale-free analysis. Specifically,
for k ¼ 0.3 Mpc−1 we find the following linear fit:

cTðk ¼ 0.3 Mpc−1; zÞ ≈ 0.46 − 0.0044ðz − 35Þ: ð30Þ

IV. THE 21-CM SIGNAL DURING DARK AGES

Because 21cmFirstCLASS can be initialized at recombina-
tion, it can be used to calculate Δ2

21ðk; zÞ both in the

FIG. 6. The scale-dependent cTðk; zÞ. For comparison, we
show the scale-independent cTðzÞ with a blue curve (identical
to the blue curve in Fig. 3). The green curve of k ¼ 0.3 Mpc−1

completely overlaps with the pink curve of k ¼ 0.5 Mpc−1.

FIG. 7. The scale-dependent cxeðk; zÞ. For comparison, we
show the scale-independent cxeðzÞ with a blue curve (identical to
the blue curve in Fig. 4).

3Although Dbðk; zÞ appears both in the numerator and in the
denominator of Eq. (13), the impact of T b=cðk; zÞ in the numerator
is stronger. This is because the numerator is inside the integral and
thus suffers more suppression from high redshifts.
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nonlinear cosmic dawn epoch, like 21cmFAST, and in the
dark ages. During the dark ages, the fluctuations are
expected to be small, and linear perturbation theory can
be applied.4 This approach was taken in LC07, where the
fully relativistic Boltzmann equations were solved. In order
to test the output of 21cmFirstCLASS and compare with their
work, we rederive the expressions for the linear brightness
temperature fluctuations, but in a more tractable way. We do
this step by step and identify the most dominant terms. In the
derivation we present below, we make some simplifying
assumptions that help us to get a nice, short, approximated
expression for the 21-cm fluctuations, Eq. (43). Our full
derivation, where these assumptions are relaxed, can be
found in Appendixes B and C. The only differences between
our full derivation and the derivation of LC07 are that (1)
we ignore CMB temperature fluctuations, i.e., we assume
Tγ ¼ T̄γ as fluctuations in the CMB temperature are much
smaller than δb on subhorizon scales after decoupling;
and (2) we ignore derivatives in the gravitational potential,
which is justified during matter domination [84,85].
First, let us assume for simplicity that there are no

fluctuations in Tk and xe, i.e., δTk ¼ δxe ¼ 0. This
assumption is justified, at least at low redshifts, because
we know from Fig. 5 that the fluctuations in these fields
barely change the 21-cm power spectrum at the end of
the dark ages, at z ∼ 35. We will shortly understand why.
Since x̄coll ∝ ρb, under these assumptions we have
δxcoll=x̄coll ¼ δb. Before cosmic dawn, the spin temperature
is given simply by

Ts ¼
xCMB þ xcoll

xCMB=Tγ þ xcoll=Tk
; ð31Þ

and thus the fractional fluctuation in the spin temperature,
in linear theory, is

δTs

T̄s
¼ −

ð1 − T̄k=TγÞx̄collx̄CMB

ðx̄CMB þ x̄collÞðx̄CMBT̄k=Tγ þ x̄collÞ
δb: ð32Þ

The minus sign on the rhs of Eq. (32) makes sense, as in
overdense regions collisions are more efficient and the spin
temperature is driven to lower values.
In the limit τ21 ≪ 1, the brightness temperature is

T21 ∝ ð1 − xeÞnH
�
1 −

Tγ

Ts

��
1þ 1

H
dðn̂ · vbÞ
dðn̂ · xÞ

�
−1
; ð33Þ

where the factor of proportionality contains terms that are
uniform in space. Assuming δxe ¼ 0, we then find that the
fractional fluctuation in the brightness temperature in linear
theory is

δ21 ≡ δT21

T̄21

¼ δb −
δTs

T̄s

1

1 − T̄s=Tγ
−

1

H
dðn̂ · vbÞ
dðn̂ · xÞ : ð34Þ

Then, using Eqs. (31), (32), and (34), it is straightforward to
show that

δ21 ≡ c21;isoδb −
1

H
dðn̂ · vbÞ
dðn̂ · xÞ ; ð35Þ

where

c21;iso ¼
2x̄CMB þ x̄coll
x̄CMB þ x̄coll

: ð36Þ

The physical meaning of c21;iso is the ratio between δ21 and
δb in the absence of peculiar velocity which introduces
anisotropies in δ21 (see below). From the very simple
expression of Eq. (36), we see that overdense regions lead
to a stronger 21-cm signal, as expected. Moreover, the
fluctuations in the signal grow in time, not only because δb
grows, but also because c21;iso grows; initially, x̄coll ≫
x̄CMB ≈ 1 and c21;iso → 1, but at late times x̄coll ≪ x̄CMB ≈ 1

and c21;iso → 2.
Equation (35) is a relation in real space. In Fourier

space, we know from the continuity equation (assuming
matter domination, when the gravitational potential was
constant) that

n̂ · vb ¼ i
n̂ · k
k2

dδb
dt

¼ i
n̂ · k
k2

dz
dt

dδb
dz

¼ −iH
n̂ · k
k2

d ln T bðk; zÞ
d ln ð1þ zÞ δb; ð37Þ

and thus in Fourier space Eq. (35) becomes

δ21 ¼
�
c21;iso −

ðn̂ · kÞ2
k2

d ln T bðk; zÞ
d ln ð1þ zÞ

�
δb: ð38Þ

From here, we see that the peculiar velocity results
in c21 ≡ δ21=δb, which is not only scale-dependent,
but also nonisotropic due to the line-of-sight effect. The
21-cm anisotropic power spectrum can then be given
in terms of the primordial curvature power spectrum
Δ2

RðkÞ ¼ Asðk=k⋆Þns−1,

Δ2
21ðk; μ; zÞ ¼ Δ2

RðkÞT̄2
21ðzÞc221;isoðk; zÞT 2

bðk; zÞ

×

�
1 − μ2c−121;iso

d ln T bðk; zÞ
d ln ð1þ zÞ

�
2

; ð39Þ

where μ≡ ðn̂ · kÞ=k. Finally, the isotropic (or angle-
averaged) 21-cm power spectrum is

4Though nonlinear effects can contribute at the few-percent
level [67,76].
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Δ2
21ðk; zÞ ¼

1

4π

Z
dΩΔ2

21ðk; μ; zÞ

¼ 1

2

Z
1

−1
dμΔ2

21ðk; μ; zÞ

¼ Δ2
RðkÞT̄2

21ðzÞc221;isoðk; zÞT 2
bðk; zÞ

×

�
1 −

2

3
c−121;iso

d ln T bðk; zÞ
d ln ð1þ zÞ

þ 1

5
c−221;iso

�
d ln T bðk; zÞ
d ln ð1þ zÞ

�
2
�
: ð40Þ

In the last equality of Eq. (40), the term in front of the
square brackets can be viewed as the 21-cm power
spectrum in the absence of peculiar velocity, while the
term inside the square brackets represents its contribution.
Let us estimate the logarithmic derivative of Tbðk; zÞ that
appears in the square brackets,

d ln T bðk; zÞ
d ln ð1þ zÞ ¼ d ln T cðk; zÞ

d ln ð1þ zÞ þ d ln T b=cðk; zÞ
d ln ð1þ zÞ

¼ −1þ d ln T b=cðk; zÞ
d ln ð1þ zÞ < 0; ð41Þ

where the second equality follows T cðk; zÞ ∝ DðzÞ ∝
ð1þ zÞ−1 and the inequality is due to the fact that the
slope of T b=cðk; zÞ is nonpositive; from Fig. 2 we see that
this derivative is almost zero at low redshifts, while at
high redshifts it can be Oð−10Þ. Thus, we see from
Eqs. (40) and (41) that the peculiar velocity tends to add
power to the 21-cm signal. If we ignore the logarithmic
derivative of T b=cðk; zÞ and adopt the expression for
c21;iso from Eq. (36), then we see from Eq. (40) that at
high redshifts the peculiar velocity enhances Δ2

21ðk; zÞ
by a factor of 1þ 2

3
þ 1

5
¼ 28

15
¼ 1.87 [21,67,86], while

at low redshifts it enhances Δ2
21ðk; zÞ by a factor of

1þ 1
3
þ 1

20
¼ 83

60
¼ 1.38.

Although Eq. (40) is theoretically correct,5 the expres-
sion we derived for c21;iso in Eq. (36) is too simplistic and
lacks the contribution of fluctuations in Tk and xe. Once
these fluctuations are taken into account, the expression for
c21;iso becomes (still assuming τ21 ≪ 1, see details in
Appendix B)

c21;isoðk; zÞ ¼
2x̄CMB þ x̄coll
x̄CMB þ x̄coll

þ
�
x̄CMBC̄−1

10 n̄Hx̄e
x̄CMB þ x̄coll

ðf−1H κ̄eH1−0 þ κ̄pH1−0 − κ̄HH1−0Þ þ
x̄e

1 − x̄e

�
cxeðk; zÞ

þ
�
x̄CMBC̄−1

10 n̄HT̄k

x̄CMB þ x̄coll

�
ð1 − x̄eÞ

∂κ̄HH1−0
∂T̄k

þ f−1H x̄e
∂κ̄eH1−0
∂T̄k

þ x̄e
∂κ̄pH1−0
∂T̄k

�
−

1

1 − T̄k=Tγ

�
cTðk; zÞ: ð42Þ

Note that since cT and cxe are scale-dependent quantities,
so too is c21;iso. In addition, note that the contribution of cxe
to c21;iso is proportional to x̄e, which is very small between
recombination and reionization, and we can therefore take
the approximation x̄e ≈ 0 in Eq. (42),

c21;isoðk; zÞ

≈
2x̄CMB þ x̄coll
x̄CMB þ x̄coll

þ
�

x̄CMB

x̄CMB þ x̄coll

∂ ln κ̄HH1−0
∂ ln T̄k

−
1

1− T̄k=Tγ

�
cTðk; zÞ: ð43Þ

Although this expression may still appear rather simplistic,
we stress that it results in only a subpercent error below
z≲ 80 (above this redshift, corrections from the optical
depth become more important, but are still not very
significant, see Fig. 8). Together with Eqs. (39)–(41), it
can therefore be used to gain insight as to how the 21-cm
power spectrum behaves during the dark ages.
Notice that if the expression in the square brackets of

Eq. (43) vanishes, then c21;iso does not depend on early
temperature fluctuations, and it becomes completely scale

independent. We find that the special redshift where that
happens is z ≈ 37. This explains why the power spectrum in
21cmFAST is not very sensitive to early temperature fluctua-
tions at the vicinity of z ¼ 35, as was demonstrated in
Fig. 5. At lower redshifts, the weight of cT becomes
positive and larger, and since its evolution depends on
its past values, the initial conditions at z ¼ 35 carry more
importance, until the nonlinearities of the SFRD dominate
the power spectrum.
In Fig. 8 we show how each of the lines in Eq. (42)

contributes to c21;isoðzÞ, including the Oðτ21Þ term that we
have neglected above, while taking the scale-independent
quantities of cTðzÞ and cxeðzÞ. As expected, the crude
approximation of Eq. (36) works well at low redshifts, at
z ∼ 35. The cxe correction barely modifies c21;iso, while the
cT correction modifies c21;iso by ∼30% at z ∼ 100 and its
impact becomes smaller toward lower redshifts. The τ21
correction is mainly important at high redshifts, z≳ 100
(τ̄21 monotonically decreases from ∼0.08 at z ∼ 700 to
∼0.02 at z ∼ 35). We note that we cut Fig. 8 at z ¼ 300

5Neglecting Oðτ21Þ corrections in the square brackets, see
Appendixes B and C.
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because of a theoretical uncertainty arising from the last
term in Eq. (43); while we know that cT becomes very
small at high redshifts, this is the regime where T̄k → Tγ

and it is not clear which one approaches zero more quickly,
the numerator or the denominator.
As a sanity check, we also plot in Fig. 8 the median of the

c21ðx; zÞ box in 21cmFirstCLASS. For this test we have turned
off the peculiar velocity in 21cmFAST such that c21 ≡ ciso;21.
We see again that the agreement between 21cmFirstCLASS and
the linear scale-independent theory is excellent at high
redshifts. Below z ∼ 80 the black curve becomes jagged.
This feature is of course unphysical and it is the result of the
evaluation of κHH1−0ðTkÞ in 21cmFAST. This quantity (as well as
κpH1−0 and κ

eH
1−0) is linearly interpolated from an external table.

According to Eq. (43), the derivative of κHH1−0 with respect to
Tk has to be considered, and thus the jagged artifact6 is the

consequence of 21cmFirstCLASS evaluating δκHH1−0=δTk from
a piecewise linear function. Because this artifact has no
effect on the results shown in this paper, we defer its fix for
future work.

V. NONLINEARITIES

Unlike the linear Boltzmann solver CAMB, 21cmFirstCLASS
can take into account nonlinear fluctuations that arise
from nonlinear growth of the density field. Below we
outline the Lagrangian perturbation theory [88–94] scheme
used in 21cmFAST to evolve the density field nonlinearly, but
we generalize our formulas to account for scale-dependent
growth.
The basic idea is to relate the initial (comoving)

Lagrangian coordinates x of the density field, evaluated
linearly at some high redshift z0 with the Eulerian coor-
dinates xE of the density field at a lower redshift z.
These two coordinates are related by the displacement
field vector ψðx; zÞ,

xEðx; zÞ ¼ xðz0Þ þ ψðx; zÞ: ð44Þ

The information encoded in ψðx; zÞ maps the spatial
displacement between redshift z0 and redshift z of a mass
located initially at coordinate x. Knowing the value of
ψðx; zÞ then allows one to coherently add masses together
at xE, resulting in nonlinear fluctuations at sufficiently low
redshifts. By construction, the time derivative of ψðx; zÞ is
the velocity field, ψ̇ðx; zÞ ¼ ẋEðx; zÞ ¼ vbðx; zÞ, where we
use the subscript b to emphasize that we are focusing on the
baryon velocity. In the Zel’dovich approximation [95–97],
the velocity of the baryons can be expressed with the
baryon-density contrast δb via the continuity equation,
which in Fourier space reads [98–100]

vbðk; zÞ ¼
ik
k2

δ̇bðk; zÞ ¼
ik
k2

Ḋbðk; zÞδ0ðkÞ: ð45Þ

Thus, in the Zel’dovich approximation, the displacement
field vector in Fourier space is given by

ψðk; zÞ ¼ ik
k2

½Dbðk; zÞ −Dbðk; z0Þ�δ0ðkÞ: ð46Þ

Note that, unlike the scale-independent scenario, here
ψðk; zÞ cannot be separated into its spatial and temporal
components.
Despite the fact that the Zel’dovich approximation

correctly reproduces the linear growth of density and
velocity perturbations, it fails to conserve momentum in
the nonlinear regime. Therefore, second-order Lagrangian
perturbation theory (2LPT) is implemented in 21cmFAST.
The basic equations of 2LPT can be found in Appendix D
of Ref. [101] and the references therein. These equations

FIG. 8. The scale-independent c21;isoðzÞ. The blue curve shows
our crude approximation, Eq. (36). The orange curve shows the
contribution from early ionization fluctuations, the first and the
second rows in Eq. (42), and it completely overlaps with the blue
curve. The green curve shows the contribution from early temper-
ature fluctuations, which is achieved by considering all the rows in
Eq. (42), or alternatively via Eq. (43) with excellent precision. The
red curve shows the contribution from τ21 fluctuations, see details
in Appendixes B and C. The black curve shows the redshift-
dependent median of the c21ðx; zÞ box in 21cmFirstCLASS (when the
peculiar velocity and HyRec are turned off) and it completely
overlaps with the red curve at high redshifts. At low redshifts, the
jagged artifact is the result of the linear interpolation used in
21cmFAST, see text for more details.

6In Fig. 8 we have evaluated all the colorful curves by
using SciPy’s interpolation function with a cubic interpolation
scheme [87]. We have replicated the jagged artifact shown in the
black curve by using instead a linear interpolation scheme.
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are expressed in terms of the scale-independent growth
factor DðzÞ, and the scale dependence can be accounted for
by replacing DðzÞ with Dbðk; zÞ, as we did above for the
Zel’dovich approximation.
For the time being, as we have yet to incorporate the

scale-dependent growth factor Dbðk; zÞ in 21cmFirstCLASS,
we can currently study how the nonlinear evolution
scheme of 2LPT modifies the analytical results we
previously obtained for the scale-independent scenario.
In that context, we have already seen in Fig. 5 the effect
of nonlinearities at low redshifts on the 21-cm power
spectrum. On large scales (k ¼ 0.1 Mpc−1) nonlinearities
enhance the power spectrum by Oð100%Þ at z ∼ 7, while
on small scales (k ¼ 0.5 Mpc−1) they suppress the power
spectrum by Oð25%Þ. This will be revisited in follow-
up work.

VI. COMPARISON WITH CAMB

So far, we have compared our scale-independent
linear theory with 21cmFirstCLASS and we have general-
ized the equations to account for scale-dependent growth
by simply replacing DðzÞ with Dbðk; zÞ. The key ques-
tion that emerges now is the following: once scale-
dependent growth is implemented in 21cmFirstCLASS, will
it be able to predict the 21-cm anisotropies during the
dark ages?
Currently, the code that computes the linear 21-cm

anisotropies during the dark ages most comprehensively
is CAMB. Similarly to CLASS, this code solves the fully
relativistic coupled Boltzmann and Einstein equations
for the linear scale-dependent perturbations in the
density, velocity, and temperature fields. Once CAMB

has evaluated these perturbations, it can compute the
fluctuations in the spin temperature and the brightness
temperature with very similar equations to those derived
in Sec. IV (except that CAMB also accounts for
fluctuations in the CMB temperature and does not ignore
the small impact of gravitational fields, see more details
in LC07).
Because the scale-dependent formalism we developed

in this work is less rigorous than what CAMB does, it is not
a priori clear that our formalism gives the correct results.
We therefore present a comparison with CAMB in Fig. 9
for a wide range of scales between 35 ≤ z ≤ 100. The
vertical dashed curves represent the wave numbers
associated with the horizon scale (times 10) and the
Jeans scale (divided by 10). In the intermediate scales that
span between these lines the comparison is very success-
ful; for z ≤ 40, 50, 100 the relative error is less than 0.5%,
1%, 5%, respectively. As expected, our formalism fails to
predict the 21-cm anisotropies on superhorizon scales,
since we have neglected in our equations the fluctuations
in the CMB temperature. On scales smaller than the Jeans
scale, the discrepancy is less severe, but still exists

because at these small scales the evolution equations
of δb and δTk are coupled [102,103], and we cannot
simply take Dbðk; zÞ from CLASS to emulate the evolution
of the baryon-density field. Plus, Jeans suppression
causes δb to approach δγ , the density contrast of the
CMB photons which we have neglected.
A very nice feature that can be seen in Fig. 9 is that, on

subhorizon scales, the relative error is constant at z ¼ 37,
confirming our discussion below Eq. (43) that c21;iso
becomes scale independent at this special redshift.
Another feature that can be noticed is that the relative
error increases with redshift. We suspect that the origin
of this feature is that CAMB does not only evaluate the
fluctuations differently than us, it also computes the
background quantities differently. For example, throughout
this paper we have assumed that the spin temperature is
given by its expression in equilibrium, Eq. (3). Yet, CAMB

solves the Boltzmann equation for the background spin
temperature, Eq. (28) in LC07, thereby accounting for out-
of-equilibrium effects in the spin temperature.
All this notwithstanding, it is important to realize that

once the scale dependence is implemented in 21cmFirstCLASS,
we still should not expect it to match CAMB with less than a
few-percent difference. As was discussed at the end of
Sec. III A, 21cmFirstCLASS works with the more precise
recombination model of HyRec, while CAMB works with
RECFAST. As we demonstrated in Fig. 3, the different
recombination models lead to a relative difference of∼4% in
cT at z ¼ 100, and according to Fig. 8, the weight of cT in
determining c21;iso becomes important at that redshift.

FIG. 9. Comparison of the scale-dependent c21;isoðk; zÞ between
the formalism developed in this work and CAMB, as a function of
wave number, for various redshifts. The vertical dashed curves
represent the wave numbers associated with the horizon scale
(times 10) and the Jeans scale (divided by 10).

JORDAN FLITTER and ELY D. KOVETZ PHYS. REV. D 109, 043513 (2024)

043513-12



Moreover, 21cmFirstCLASS includes two effects7 that
CAMB does not in the evaluation of Δ2

21ðk; zÞ; both of
them were first included in 21cmFAST in Ref. [106]. The first
one is redshift space distortions (RSDs). The peculiar
velocity impacts the brightness temperature in two ways.
First, local peculiar velocity gradients modify the amplitude
of the brightness temperature [this effect is already included
in CAMB and is captured by our Eqs. (1) and (2)]. And
second, because observations are performed in redshift
space rather than real space, the signal shifts from real
space coordinates x to redshift space coordinates s via
s ¼ xþ n̂ðn̂ · vbÞ=H [21,76,86]. In order to simulate
this effect, cells in the box of 21cmFAST are shifted
accordingly. The second effect that is already accounted
in 21cmFirstCLASS is the light cone effect [107–114]—
measurements of modes parallel to the line of sight probe
the brightness temperature at different redshifts. The light
cone effect is addressed in 21cmFAST by building the light
cone box from interpolating adjacent coeval boxes (the
latter are boxes for which all their cells correspond to a
single redshift) along the line of sight. The RSD is a
nonlinear effect and is beyond the scope of this work (but
see analytical treatment in Refs. [76,86]). The light cone
effect is even more challenging to analytically model as it
mixes between time and space coordinates (but see an
analytical estimate of the effect at the beginning of
reionization in Ref. [107]). We thus leave a more thorough
comparison with CAMB for future work, once the scale
dependence is implemented in 21cmFirstCLASS.

VII. CONCLUSIONS

The 21-cm signal is expected to provide a new window
to the thermal and ionization states of the high-redshift
Universe. The rich information in that signal, especially in
its anisotropies pattern, cannot be utilized without having
robust theoretical models. There are two important epochs
in the history of the signal, each of which is modeled
nowadays by a different theoretical framework. During the
dark ages, above z ∼ 35, the fluctuations in the signal are
expected to be linear, hence they can be evolved via linear
perturbation theory. This is what the CAMB code does
rigorously, by solving the full Einstein-Boltzmann equa-
tions for all the linear fluctuations. At low redshifts, below
z ∼ 35, nonlinearities due to structure formation become
important and seminumerical codes, like 21cmFAST, are
required for studying the vast cosmological and astrophysi-
cal parameter space.

In the preceding article [62], we introduced our new
code, 21cmFirstCLASS. As an extension to 21cmFAST, it is
automatically able to calculate the 21-cm power spectrum
during the nonlinear cosmic dawn epoch. To test the output
of our code, we have developed here a new analytical
framework to predict the linear contribution to the bright-
ness temperature anisotropies. We first showed that initial-
izing the evolution at recombination can lead to differences
at theOð20%Þ level in the cosmic dawn signal compared to
the standard 21cmFAST result.
In addition, the equations we derived indicate that

21cmFAST overpredicts the brightness temperature fluctua-
tions at z≳ 20 by as much as Oð10%Þ, which leads to a
Oð20%Þ error in the 21-cm power spectrum at these
redshifts. This arises because of a basic underlying
assumption in 21cmFAST, that the densities of baryons
and cold dark matter are the same, i.e., δb ¼ δc.
We then proposed an elegant solution to this problem:

simply replace the scale-independent growth factor DðzÞ
with the scale-dependent growth factor Dbðk; zÞ. Then,
instead of solving dozens of coupled differential equations
like CAMB, only two are required, one for δTk and one for
δxe. These two equations are given in Eqs. (16)–(22) [along
with Eqs. (A7)–(A9) to account for Peebles fluctuations],
and their analytical solution is given by Eq. (23). For the
brightness temperature fluctuations, only the early fluctua-
tions in Tk matter, and we have managed to derive a simple
analytical formula for c21;iso ≡ δ21=δb (defined without the
contribution of the peculiar velocity), Eq. (43), that works
particularly well below z≲ 80. This equation can then be
used alongside Eqs. (39) and (40) in the evaluation of the
21-cm dark ages power spectrum.
As a by-product of this work, we have found that at

z ≈ 37 the 21-cm power spectrum becomes scale indepen-
dent and completely independent from the history of
temperature fluctuations. Below that redshift, temperature
fluctuations can matter in the evolution of the brightness
temperature fluctuations, as mentioned above. Their weight
at redshifts 25≲ z≲ 35 is still small, however, explaining
why 21cmFirstCLASS, as well as the fit of JBM23, yields only
a ∼10% difference there.
In order to verify that the formalism we have developed

can be incorporated in the future in 21cmFirstCLASS for
predicting Δ2

21ðk; zÞ at the dark ages with a good precision
level, our strategy was the following (see Fig. 1): First,
we compared between the scale-independent theory and
21cmFirstCLASS. The results of this comparison, shown in
Fig. 8, are excellent; 21cmFirstCLASS does exactly what it
was designed to do (except for the jagged artifact at low
redshifts which can be easily fixed in future versions of the
code). And second, we compared between the scale-
dependent theory and CAMB. The results of this comparison
are presented in Fig. 9. At the scales of interest for 21-cm
interferometers, between the horizon and the Jeans scale,
our formalism appears to be robust, and there is only a

7Another effect, which is absent in both 21cmFirstCLASS and
CAMB, is the inclusion of supersonic relative velocity between
baryons and CDM [103–105]. This is a nonlinear effect arising
from very small scales (k ≳ 100 Mpc−1) and can enhance the 21-
cm power spectrum at the relevant scales (0.005≲ k≲ 1 Mpc−1)
by a few percent [76].
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subpercent discrepancy with CAMB at z ≤ 50 over a wide
dynamic range of scales. As was discussed above, in the
end, few-percent differences between 21cmFirstCLASS and
CAMB are unavoidable because of the different recombi-
nation models used by the two codes, as well as other
effects that are accounted for in 21cmFirstCLASS but not in
CAMB (nonlinearities in the density field, RSD, and the
light cone effect).
We are therefore optimistic that our formalism can be

incorporated in 21cmFirstCLASS, making its upcoming public
release a desirable code for studying the 21-cm anisotropies
not only at cosmic dawn, but also during the dark ages. Its
greatest strength, though, will be in the study of nonlinear
models, as we demonstrate in Paper I [62]. 21cmFirstCLASS is
thus poised to become a widely used tool for cosmological
simulations of ΛCDM and beyond.

The supporting codes for this paper are openly available
from the GitHub repository [115–119].
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APPENDIX A: PEEBLES FLUCTUATIONS

The Peebles coefficient in Eq. (6) represents the
probability that a hydrogen atom in the first excited state
reaches the ground state before being ionized. It is given
by [75,84,85]

C ¼ Λα þ Λ2γ

Λα þ Λ2γ þ βð2Þion

; ðA1Þ

where Λ2γ ¼ 8.227 sec−1 is the two-photon decay rate
from the 2s level to the 1s level, Λα is the resonance escape
of Lyα photons,

Λα ¼
8πH

λ3αnHð1 − xeÞ
; ðA2Þ

where λα ¼ 121.6 nm is the Lyα wavelength, and
the photoionization rate from the first excited state is given
by

βð2Þion ¼ βione3ϵ0=ð4kBTγÞ ¼ αrec

�
mekBTγ

2πℏ2

�
3=2

e−ϵ0=ð4kBTγÞ:

ðA3Þ

Applying linear perturbation theory on Eq. (A1), one
finds that

δC

C̄
¼ C̄

β̄ð2Þion

Λ̄α þ Λ2γ

�
−
δβð2Þion

β̄ð2Þion

þ Λ̄α

Λ̄α þ Λ2γ

δΛα

Λ̄α

�
: ðA4Þ

From Eqs. (A2) and (A3) we see that

δΛα

Λ̄α
¼ −δb þ

δxe
1 − x̄e

; ðA5Þ

δβð2Þion

β̄ð2Þion

¼ δαrec
ᾱrec

¼ ∂ ln αB
∂T̄k

δTk; ðA6Þ

where we assumed αrec ≈ αBðTkÞ, just as in Sec. III. From
Eqs. (15) and (16) and Eqs. (A4)–(A6) we see that the
Peebles fluctuations modify the elements of the A and B
matrices according to

A21 → A21 − C̄
β̄ð2Þion

Λ̄α þ Λ2γ

∂ ln αB
∂T̄k

dx̄e
dz

; ðA7Þ

A22 → A22 þ C̄
β̄ð2Þion

ðΛ̄α þ Λ2γÞ2
1

1 − x̄e

dx̄e
dz

; ðA8Þ

B2 → B2 − C̄
β̄ð2Þion

ðΛ̄α þ Λ2γÞ2
dx̄e
dz

Dbðk; zÞ: ðA9Þ

It should be noted that, in principle, Eq. (A5) is missing
a term proportional to k · vb [67,76,120], whose origin
comes from modifications in Λα due to local peculiar
velocities. It is justified, however, to discard this term in our
analysis because (1) Peebles fluctuations only affect cxe at
high redshift, leaving cT unchanged, and (2) fluctuations in
the brightness temperature are mostly determined by cT,
not cxe [see Eq. (43)].

APPENDIX B: BRIGHTNESS TEMPERATURE
FLUCTUATIONS AT THE DARK AGES

In this appendix we derive the linear brightness temper-
ature fluctuations during the dark ages. This is similar to
the calculation presented in Sec. IV but here we relax the
assumptions that were made in the main text. To make the
calculation as tractable as possible, we begin by assuming
τ21 ≪ 1, but let the temperature and ionization fraction
fluctuate.
The collision coupling is given by xcoll¼T⋆C10=ðA10TγÞ,

where T⋆ ¼ 68.2 mK is the hydrogen hyperfine energy gap
(in units of mK), and

C10 ¼ ð1 − xeÞnHκHH1−0 þ xeðnH þ nHeÞκeH1−0 þ xenHκ
pH
1−0:

ðB1Þ
The κiH1−0 parameters are the collision rates (in units of
cm3=sec) of hydrogen atoms with particles of species i and
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are functions of Tk only. In 21cmFAST, their tabulated values
are taken from [121–123]. Thus, the fractional fluctuation in
xcoll to linear order is

δxcoll
x̄coll

¼ δb þ C̄−1
10 n̄H

��
f−1H κ̄eH1−0 þ κ̄pH1−0 − κ̄HH1−0

�
δxe

þ
�
ð1 − x̄eÞ

∂κ̄HH1−0
∂T̄k

þ f−1H x̄e
∂κ̄eH1−0
∂T̄k

þ x̄e
∂κ̄pH1−0
∂T̄k

�
δTk

�
;

ðB2Þ
where fH ≡ n̄H=ðn̄H þ n̄HeÞ ≈ 0.925. Taking temperature
fluctuations into account modifies Eq. (32),

δTs

T̄s
¼ −

ð1 − T̄k=TγÞx̄collx̄CMB

ðx̄CMB þ x̄collÞðx̄CMBT̄k=Tγ þ x̄collÞ
δxcoll
x̄coll

þ x̄coll
x̄CMBT̄k=Tγ þ x̄coll

δTk

T̄k
; ðB3Þ

while taking ionization fluctuations into account modifies
Eq. (34),

δ21 ¼ δb −
δTs

T̄s

1

1 − T̄s=Tγ
−

1

H
dðn̂ · vbÞ
dðn̂ · xÞ þ δxe

1 − x̄e
: ðB4Þ

Then, combining Eqs. (B2)–(B4) and using the definitions of
cT , cxe , and c21;iso results in Eq. (42). We note that Eq. (B3)
is consistent with Eq. (32) in LC07 when the small Oðτ21Þ
term and CMB temperature fluctuations are ignored.
To account for the fluctuations in the optical depth, we

need to modify Eq. (B3), as fluctuations in xCMB contribute
to the fluctuations in Ts,

δTs

T̄s
→

δTs

T̄s
þ ð1 − T̄k=TγÞx̄collx̄CMB

ðx̄CMB þ x̄collÞðx̄CMBT̄k=Tγ þ x̄collÞ
δxCMB

x̄CMB
;

ðB5Þ
where to linear order,

δxCMB

x̄CMB
¼ δ

�
ln

�
1− e−τ21

τ21

��
¼
�

τ̄21
eτ̄21 − 1

− 1

�
δτ21
τ̄21

: ðB6Þ

The fractional fluctuations in the optical depth δτ21=τ̄21 are
given by an expression very similar to Eq. (B4), but not
exactly the same,

δτ21
τ̄21

¼ δb −
δTs

T̄s
−

1

H
dðn̂ · vbÞ
dðn̂ · xÞ þ δxe

1 − x̄e
: ðB7Þ

In addition, the assumption τ21 ≪ 1 in Eq. (33) has to be
relaxed,

T21 ∝ ð1− xeÞnH
�
1−

Tγ

Ts

��
1þ 1

H
dðn̂ · vbÞ
dðn̂ · xÞ

�
−1 1− e−τ21

τ21
;

ðB8Þ

where again the factor of proportionality contains terms
that are uniform in space. As a consequence, Eq. (B4) is
modified,

δ21 ¼ δb −
δTs

T̄s

1

1 − T̄s=Tγ
−

1

H
dðn̂ · vbÞ
dðn̂ · xÞ þ δxe

1 − x̄e

þ δ

�
ln

�
1 − e−τ21

τ21

��
: ðB9Þ

It should be noted that Eqs. (B6)–(B9) are consistent with
Eq. (22) in LC07.
Combining Eqs. (B6) and (B9) yields the following

modification to δ21:

δ21 → δ21 þ
�

τ̄21
eτ̄21 − 1

− 1

�
δτ21
τ̄21

: ðB10Þ

Because of the peculiar velocity term in Eq. (B7), we need
to modify our definition of c21;iso in Eq. (35),

δ21 ≡ c21;isoδb −
τ̄21

eτ̄21 − 1

1

H
dðn̂ · vbÞ
dðn̂ · xÞ : ðB11Þ

It can be shown that δτ21=ðτ̄21 · δbÞ is positive (i.e., over-
dense regions lead to a stronger optical depth), and since
the expression in the parentheses of Eq. (B10) can be
Taylor expanded to −τ̄21=2, we conclude that c21;iso
receives a negative contribution from the optical depth
(see Fig. 8). Also, we note that the factor τ̄21=ðeτ̄21 − 1Þ ∼
1 − τ̄21=2 has to be properly inserted into Eqs. (39) and (40)
when the 21-cm power spectrum is evaluated.

APPENDIX C: DISENTANGLING Ts AND xCMB

An inevitable challenge arises when attempting to
calculate Ts in Eq. (31). It depends on xCMB, while
xCMB depends on τ21 which depends on Ts. Therefore,
Ts and xCMB are mathematically entangled.
To overcome this difficulty numerically, we use the value

of Ts from the previous iteration in calculating the current
value of the optical depth. This is a very good approxi-
mation provided that the redshift step is small enough and
Ts remains roughly the same between two consecutive
redshift iterations (see another approach of solution by
iterations in Refs. [71,124]). As for the initial value of Ts,
we expand xCMB to first order in τ21,

Ts ≈
1 − τ21

2
þ xcoll

ð1 − τ21
2
ÞT−1

γ þ T−1
k xcoll

≈
1þ xcoll

T−1
γ þ T−1

k xcoll

−
τ21
2

ð1 − Tk=TγÞxcoll
ðT−1

γ þ T−1
k xcollÞðTk=Tγ þ xcollÞ

: ðC1Þ
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Using the zeroth order in τ21, the solution to Ts can be
written in the following form:

1 −
Ts

Tγ
¼ ð1 − Tk=TγÞxcoll

Tk=Tγ þ xcoll
: ðC2Þ

Combining Eqs. (C1) and (C2), it follows that

Ts ¼
1þ xcoll

T−1
γ þ T−1

k xcoll

−
1

2
τ21Ts

�
T−1
s

T−1
γ þ T−1

k xcoll
−

Tk=Tγ

Tk=Tγ þ xcoll

�
: ðC3Þ

Now, using once again the zeroth-order solution to Ts in the
rhs of Eq. (C3), we arrive at

Ts ¼
1þ xcoll

T−1
γ þ T−1

k xcoll
−
1

2

τ21Tsð1 − Tk=TγÞxcoll
ðTk=Tγ þ xcollÞð1þ xcollÞ

: ðC4Þ

It is worthwhile to note that Eq. (C4) is identical to Eq. (31)
in LC07, thus their expression for Ts is the first-order
solution in τ21. Because τ21 ∝ T−1

s , Eq. (C4) is a closed
form solution to Ts, and we use it to set the initial value for
Ts (which at recombination is ≈Tγ).
The mathematical entanglement of Ts and τ21 also poses

another challenge when calculating their fluctuations ana-
lytically. From Eqs. (B5) and (B6), δTs depends on δτ21,
but from Eq. (B7) the latter depends on the former. Since
we have two equations with two unknowns, the disentan-
glement is straightforward, although tedious,

�
1

1 − T̄s=Tγ
þ x̄CMBFðτ̄21Þ
x̄CMB þ x̄coll

�
δTs

T̄s
¼ −

x̄CMB

x̄CMB þ x̄coll

δxcoll
x̄coll

þ 1

1 − T̄k=Tγ

δTk

T̄k
þ x̄CMBFðτ̄21Þ
x̄CMB þ x̄coll

�
δb −

1

H
dðn̂ · vbÞ
dðn̂ · xÞ þ δxe

1 − x̄e

�
;

ðC5Þ

where we have defined for brevity

Fðτ̄21Þ≡ τ̄21
eτ̄21 − 1

− 1 ¼ −
τ̄21
2

þOðτ̄221Þ: ðC6Þ

As a consistency check, note that Eq. (C5) reduces to
Eq. (B3) in the limit τ̄21 → 0. The above solution for δTs
can now be substituted in the expression for δτ21, Eq. (B7).
In addition, because δTs explicitly depends on the peculiar
velocity, our definition of c21;iso has to be further modified,

δ21 ≡ c21;isoδb −
1

H
dðn̂ · vbÞ
dðn̂ · xÞ

�
1þ Fðτ̄21Þ

þ x̄CMBFðτ̄21Þ
x̄CMB þ x̄coll þ ð1 − T̄s=TγÞx̄CMBFðτ̄21Þ

�
; ðC7Þ

and we stress that the expression in the brackets has to be
accounted for when evaluating Eqs. (39) and (40).
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