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In this work we present 21cmFirstCLASS, a modified version of 21cmFAST, the most popular code in the
literature for computing the inhomogeneities of the 21-cm signal. Our code uses the public cosmic
microwave background (CMB) Boltzmann code CLASS, to establish consistent initial conditions at
recombination for any set of cosmological parameters and evolves them throughout the dark ages, cosmic
dawn, the epoch of heating and reionization. We account for inhomogeneity in the temperature and
ionization fields throughout the evolution, crucial for a robust calculation of both the global 21-cm signal
and its fluctuations. We demonstrate how future measurements of the CMB and the 21-cm signal can
be combined and analyzed with 21cmFirstCLASS to obtain constraints on both cosmological and astro-
physical parameters and examine degeneracies between them. As an example application, we show
how 21cmFirstCLASS can be used to study cosmological models that exhibit nonlinearities already
at the dark ages, such as scattering dark matter (SDM). For the first time, we present self-consistent
calculations of the 21-cm power spectrum in the presence of SDM during the nonlinear epoch of cosmic
dawn.
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I. INTRODUCTION

After a rapid inflationary epoch ended, our Universe
continued to expand and cool down. At some point, nearly
400,000 years after the big bang, its temperature was low
enough that atoms could first form in a key cosmological
moment called recombination. Meanwhile, collapsing
halos of cold dark matter (CDM) provided the first gravi-
tational seeds for galaxy and star formation. Efficient
radiation that was emitted from the first stars and their
remnants then ionized the surrounding intergalactic
medium (IGM) during the epoch of reionization (EoR).
Recently on cosmic timescales, the expansion of the
Universe has become dominated by the mysterious force
of dark energy. This is a brief description of the concord-
ance cosmological model (ΛCDM) [1–4].
Many observables support ΛCDM as being the correct

cosmological model of our Universe. Galaxy surveys of our
local Universe at redshift z≲ 1 [5–20], and measurements
of the Lyα forest (z≲ 2.5) [21–25] have found very good
agreement between the observed spatial distribution
of galaxies and the theoretical predicted distribution.
But perhaps it was the cosmic microwave background
(CMB) [26–36]—a form of radiation that has been nearly
freely propagating since recombination at z ∼ 1100—that
gave ΛCDM its greatest triumph; measurements of the
temperature and polarization anisotropies of the CMB,
carried out by the Planck satellite [37] and ground based

experiments [38,39], allowed one to constrain the six
parameters of ΛCDM to a subpercent precision level [40].
Despite its success, the ΛCDM model does suffer

from tensions with observations (see recent reviews in
Refs. [41–44]), and more cosmological data are required
to resolve them, especially in the large volume between
2.5≲ z≲ 1100 where our Universe has not been system-
atically mapped yet. Since according to big-bang nucleo-
synthesis [45,46] the IGM in our Universe is expected to
contain huge amounts of neutral hydrogen before reioni-
zation, the 21-cm signal, being sourced by hyperfine
energy transitions in hydrogen atoms [47–54], has become
an important target for cosmologists.
Nowadays there are ongoing efforts to detect the 21-cm

signal by many different collaborations. Some of them
focus on detecting the global signal, that is the sky-
averaged signal. These include the Experiment to Detect
the Global reionization Signature (EDGES) [55], Shaped
Antenna measurement of the background RAdio Spectrum
(SARAS) [56], Large-Aperture Experiment to Detect the
Dark Ages [57], the Radio Experiment for the Analysis of
Cosmic Hydrogen [58] and Probing Radio Intensity at
high-Z from Marion [59]. In addition, radio interferometer
telescopes, such as the Giant Metrewave Radio Tele-
scope [60], the Murchison Widefield Array [61], Low
Frequency Array [62], the Precision Array for Probing
the Epoch of Reionization [63], the Hydrogen Epoch of
Reionization Array (HERA) [64] and the Square Kilometre
Array [65] are devoted to probing the spatial fluctuations in
the signal. While most of these experiments are in the*jordanf@post.bgu.ac.il
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stages of noise calibration and have only placed upper
bounds on the amplitude of the power spectrum of the
signal, the HERA Collaboration for example has already
extracted a meaningful upper bound on the x-ray luminos-
ity of the first stars [66–68] (see also Ref. [69]).
There are several approaches in the literature for com-

puting the anisotropies in the 21-cm signal. One way is to
perform full radiative-transfer hydrodynamic simulations,
e.g. CoDA [70–72], 21SSD [73] and THESAN [74].
Alternatively, postprocessing of N-body simulations can
be applied with ray-tracing algorithms such as C²-RAY [75]
or CRASH [76]. While these simulations improved our
understanding of the physics of the EoR and helped to
refine reionization models, they are computationally expen-
sive and cannot be used for parameter inference. Faster
approximated schemes that solve the one-dimensional
radiative transfer equation can be found in the codes of
BEARS [77], GRIZZLY [78] and BEoRN [79]. There are also
approximated purely analytic prescriptions in the literature,
e.g. [80]. In Zeus21 [81] the 21-cm power spectrum at z≳ 10
can be evaluated in seconds, thanks to an approximated
exponential fit that relates the linear matter density fluc-
tuations to the nonlinear fluctuations of the star formation
rate density (SFRD). Finally, seminumerical codes that
implement the excursion-set formalism [82] are widely
used in the literature, from [83] to SimFast21 [84] to the ever-
popular 21cmFAST [85,86].
In this paper we introduce our code for calculating the

21-cm anisotropies. We call it 21cmFirstCLASS. It is essen-
tially the merger of the two well-known codes—21cmFAST

1

and the linear Boltzmann solver CLASS
2 [87]. In this

version, the Lyman-Werner (LW) feedback [88–90] as
well as the relative velocity between baryons and CDM
(Vcb) [91–94] are taken into account in each cell, while
pop-II and pop-III stars are separated into atomic and
molecular cooling galaxies, respectively. In addition, the
code contains our past modifications to 21cmFAST to
incorporate the Lyα heating mechanism [83,95,96], as
well as the ability to consider fuzzy dark matter (FDM)
with an arbitrary mass and fraction [97].
There are three main advantages to 21cmFirstCLASS: (1) It

generates consistent initial conditions (via CLASS) and
thereby allows one to study degeneracies between cosmo-
logical parameters and astrophysical parameters. (2) It
allows a combined analysis of CMB and 21-cm anisotro-
pies, which improves constraining power and allows for
degeneracy breaking. (3) Unlike the standard 21cmFAST

code which is designed to begin the simulation at z ¼ 35
with a homogeneous temperature field, the user can control
the initial redshift of 21cmFirstCLASS, and even set it to
recombination. As a consequence, the fields in the box are

evolved nonuniformly from an early redshift, naturally
leading to the correct state of the box at z ¼ 35. This is
particularly important for beyond ΛCDM models which
exhibit nonlinear fluctuations early on, e.g. in scenarios
with primordial magnetic fields [98].
To demonstrate the last point, we consider as an example

an exotic dark matter (DM) model which we refer to as
scattering dark matter (SDM). In this model, some part of
the dark matter is composed of particles which are able to
interact nongravitationally with ordinary matter and scatter
off of it elastically [99–124]. In that context, this work
resembles the work of Ref. [107], but there are a few
important differences. First, Ref. [107] used ARES

[125,126] in their astrophysical calculations. This code
assumes a simpler astrophysical model than 21cmFAST; it
does not account for halo mass dependence in the calcu-
lation of the star formation efficiency, and it lacks treatment
for star suppression feedbacks in molecular cooling gal-
axies. Moreover, it computes global astrophysical quan-
tities (e.g. emissivity) from global cosmological quantities
(e.g. halo mass function) and therefore does not take into
account important nonlinear fluctuations at low redshifts.
And secondly, in Ref. [107], the astrophysical parameters
were fixed in the analysis, and it focused on the global
signal. We on the other hand vary both cosmological and
astrophysical parameters and derive forecasts with respect
to the 21-cm power spectrum while simulating HERA’s
noise. We demonstrate that HERA in its design sensitivity
is expected to easily probe SDMwith cross sections smaller
by an order of magnitude than e.g. forecasted constraints
for CMB-S4 [101].
This is not the first work to consider the 21-cm power

spectrum in the presence of SDM. However, it is the first
work that computes consistently the 21-cm power spectrum
in the presence of SDM during the nonlinear cosmic dawn
epoch. For example, Refs. [102,115,124] have estimated
the 21-cm power spectrum by considering only the initial
Maxwellian fluctuations in the relative velocity between the
SDM and the baryons. In 21cmFirstCLASS, nonlinear fluctu-
ations in the density and the SFRD fields are automatically
captured. In follow-up work, we will use 21cmFirstCLASS to
extend the work of Ref. [105], which focused on the linear
dark ages epoch, to make detailed forecasts for constraining
SDM at cosmic dawn.
While working on this project, inspired by the work of

Ref. [81] (that introduced the Zeus21 code), we have also
studied in detail the impact of early linear fluctuations on
the late nonlinear 21-cm power spectrum at low redshifts.
The results of that analysis can be found in a companion
paper [127] (hereafter referred to as Paper II).
The remaining parts of this paper are organized as

follows. In Sec. II we briefly outline the physics of the
21-cm signal. In Sec. III we describe the initial conditions
used in our code, and in Sec. IV we compare the output of
21cmFirstCLASS with 21cmFAST. In Sec. V we demonstrate

1https://github.com/21cmfast/21cmFAST (we currently use
v. 3.3.1).

2https://github.com/lesgourg/class_public.

JORDAN FLITTER and ELY D. KOVETZ PHYS. REV. D 109, 043512 (2024)

043512-2

https://github.com/21cmfast/21cmFAST
https://github.com/21cmfast/21cmFAST
https://github.com/lesgourg/class_public
https://github.com/lesgourg/class_public


how 21-cm and CMB data can be readily combined using
21cmFirstCLASS to relax degeneracies between cosmological
parameters. We then move on to discuss the SDM physics
and its implementation in 21cmFirstCLASS in Sec. VI. At the
end of that section, the results of the SDM evolution and its
impact on the 21-cm power spectrum are presented, as well
as forecasts for its detectability by HERA. We provide our
conclusions in Sec. VII.
Throughout this paper, we adopt the best-fit values for

the cosmological parameters from Planck 2018 [40] (with-
out baryon acoustic oscillations), namely we assume a
Hubble constant h ¼ 0.6736, a primordial curvature ampli-
tude As ¼ 2.1 × 10−9 with a spectral index ns ¼ 0.9649,
and total matter and baryon density parameters Ωm ¼
0.3153, Ωb ¼ 0.0493. For the CMB calculations we also
assume an optical depth to reionization τre ¼ 0.0544
and a single species of massive neutrinos with mass
mν ¼ 0.06 eV. For the fiducial values of the astrophysical
parameters in 21cmFAST and 21cmFirstCLASS, we adopt the
EOS2021 values listed in Table 1 of Ref. [86]. All of our
formulas are expressed in the centimeter-gram-second unit
system. To reduce clutter, we often do not explicitly write
the independent arguments of the physical quantities (e.g.
redshift, wave number, etc.) and they should be inferred
from the context.

II. 21cm THEORY

The observed physical quantity of the 21-cm signal is
known as the brightness temperature, which reflects the
excess or deficit of CMB photons at a given frequency
(or redshift),

T21 ¼
Ts − Tγ

1þ z
ð1 − e−τ21Þ; ð1Þ

where Tγ ∝ ð1þ zÞ is the redshift-dependent CMB temper-
ature, Ts is the spin temperature, and τ21 ≪ 1 is the 21-cm
optical depth (see classic reviews of the 21-cm signal in
Refs. [47,48,50–52]). The spin temperature is a character-
istic property of the IGM that measures the relative
abundance of hydrogen atoms in the triplet and singlet
states, in which the spins of the proton and the electron are
aligned and antialigned, respectively. As the Universe
evolves, various processes excite the hydrogen gas and
compete between themselves on setting the value of the
spin temperature. In thermal equilibrium the spin temper-
ature reads as

T−1
s ¼ xCMBT−1

γ þ xcollT−1
k þ x̃αT−1

α

xCMB þ xcoll þ x̃α
: ð2Þ

Here, Tk is the IGM gas kinetic temperature, Tα ≈ Tk is
the color temperature of Lyα photons, and xCMB ¼
ð1 − e−τ21Þ=τ21 ∼ 1, xcoll and x̃α are the CMB [95], colli-
sional [51], and Lyα [128] couplings, respectively.

As we demonstrate in Fig. 1, the globally averaged value
of the spin temperature changes with time. Not long after
recombination, at z ∼ 1000, Ts ≈ Tk ≈ Tγ . As the Universe
expands, the gas adiabatically cools, and its temperature
departs from the CMB temperature, and so the spin
temperature settles on an intermediate value, which is
determined by the ratio of xcoll and xCMB. Since xcoll is
inversely proportional to the volume of the Universe,
xcoll > 1 at z≳ 100, and Ts approaches Tk. Afterward,
the Universe becomes large enough so that collisional
excitations are no longer efficient, xcoll < 1, and Ts is
driven back toward Tγ . As can be seen in Fig. 2, the
departure of Ts from Tγ at 25≲ z≲ 700 results in the first
absorption feature in the globally averaged brightness
temperature. This cosmological epoch is known as the
dark ages. It should be stressed that during this epoch stars
have not been formed yet, and therefore the signal is
completely determined from cosmology. Hence, within the
standard model paradigm, the 21-cm dark ages signal is
considered to be well understood theoretically, although it
has yet to be measured at that epoch.
The theoretical uncertainty in the 21-cm signal begins

after z ∼ 25, once the first stars have been formed. Lyα
radiation emitted from the first stars strongly couples the
spin temperature back to Tk via the Wouthuysen-Field
(WF) effect [129,130], and a second absorption feature in
the 21-cm signal is expected to be found, although its exact
shape and location depend on the assumed astrophysical
model and are thus highly uncertain. This epoch is known
as cosmic dawn. Depending on the astrophysical param-
eters, x rays emitted from stars may heat the surrounding

FIG. 1. The evolution of the globally averaged CMB temper-
ature, gas kinetic temperature and the spin temperature. This
figure was made with 21cmFirstCLASS.
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IGM (taking the spin temperature with it) above the CMB
temperature, which would lead to an emission feature in the
signal. Eventually, stellar radiation reionizes the gas in the
IGM and bubbles of ionized hydrogen begin to emerge.
After the reionization epoch is over, τ21 → 0, and the
21-cm signal vanishes.
There are three important quantities which govern the

brightness temperature during the cosmic dawn and after-
ward. These are the Lyα flux Jα (since x̃α ∝ Jα), the gas
kinetic temperature Tk, and the ionization fraction xe≡
ne=ðnH þ nHeÞ, where ne, nH and nHe, are the free-electron,
hydrogen-nuclei and helium-nuclei number-densities,
respectively. We will not focus on prescriptions for evalu-
ating Jα in this paper and instead refer the reader to
Refs. [85,125,128,131] for more details. The evolution
of Tk is determined from

dTk

dz
¼ dt

dz

�
−2HTk þ ΓCðTγ − TkÞ þ

dTk

dt

����
ext

�
; ð3Þ

where dt=dz ¼ −½Hð1þ zÞ�−1, H is the Hubble parameter,
and ΓC is the Compton heating rate,

ΓC ≡ 8π2σTðkBTγÞ4
45ℏ3c4me

xe
1þ xe

: ð4Þ

Here, c is the speed of light, ℏ is the (reduced) Planck
constant, kB is Boltzmann’s constant, me is the electron
mass, and σT is the Thomson cross section. The term
dTk=dtjext that appears in Eq. (3) represents the “external”
heating rates,

dTk

dt

����
ext

¼ ϵext þ
2

3

Tk

1þ δb

dδb
dt

−
Tk

1þ xe

dxe
dt

; ð5Þ

where ϵext denotes the heating rates that come from external
sources, mainly x-ray heating (but Lyα as well as CMB
heating rates [83,95,96] can be included), and δb ≡ δρb=ρ̄b
is the contrast in the baryon-density fluctuations. The
reason why we classify the last two terms in Eq. (5) as
“external” heating rates, even though they are sourced by
the adiabatic cooling of the IGM, will become clear in
Appendixes B and C where we derive the tight coupling
approximations.
From Eqs. (3)–(5) it can be seen that the evolution of Tk

depends on xe, especially at early times when the Compton
heating rate dominates. The exact detailed evolution of xe at
early times on the other hand is quite intricate as it requires
tracking the recombination states of both hydrogen and
helium, while taking into account excitations to high-order
energy levels. In the seminal work of Refs. [132,133],
these effects have been shown to have a subpercent impact
on the evolution of xe, making them crucial for analyzing

FIG. 2. Top panel: global brightness temperature as a function of redshift. Botton panel: fluctuations in the brightness temperature as a
function of redshift. Here we present the facet of the lightcone box that is generated by 21cmFirstCLASS. For better visualization, the box
that was used for this simulation was of size 400 Mpc and contained 2003 cells. The fluctuation pattern seen here is derived from an
approximated scale-independent growth, whereas in principle scale-dependent growth should be considered. This assumption will be
relaxed in the next version of 21cmFirstCLASS. See more details on that point in Paper II.
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the CMB anisotropies at the precision level of the
Planck satellite data. A state-of-the-art recombination
code that implements these effects and is publicly avai-
lable is HyRec,3 which we have incorporated in our
21cmFirstCLASS code.
Yet, in order to derive the evolution of temperature and

ionization fluctuations within an error of a few percentages,
we show in Paper II that it is sufficient to consider Peebles’
effective three-level atom model [134], in which the
evolution of xe reads as

dxe
dz

¼ dt
dz

�
dxe
dt

����
reio

þ C
�
βionð1 − xeÞ − αrecnHx2e

��
; ð6Þ

where αrec is the recombination rate (in units of cm3= sec),
βion is the early photoionization rate, and C is the Peebles
coefficient (see Appendix A in Paper II for more details on
the Peebles coefficient). The term dxe=dtjreio denotes the
reionization rate at late times. At early times (long before
reionization started), the recombination rate and photoioni-
zation rates were in equilibrium, implying that

βion ¼ αrec

�
mekBTγ

2πℏ2

�
3=2

e−ϵ0=ðkBTγÞ; ð7Þ

where ϵ0 ¼ 13.6 eV is the ionization energy of the hydro-
gen atom from its ground state.
Since the standard 21cmFAST code begins its calculations

at z ¼ 35, the βion term is completely negligible and was
omitted. The recombination rate is the case-A recombina-
tion rate which accounts for recombination to the ground
state [135]. In addition, the factor C is not inter-
preted as the Peebles coefficient but rather as the clumping
factor hx2ei=hxei2 [136], which the code sets as a constant
with a value of 2 to account for unresolved subgrid
fluctuations. This serves as an excellent approximation
to the evolution of xe at late times. We have confirmed with
21cmFirstCLASS that using HyRec at all redshifts almost
replicates the same xe evolution at low redshifts,4 while
not introducing errors in the 21-cm power spectrum that are
larger than HERA’s sensitivity (see for example Fig. 3 and
further discussion in Sec. IV).

III. INITIAL CONDITIONS

Our code, 21cmFirstCLASS, is composed of two main
codes: (1) CLASS, which generates the consistent initial
conditions at recombination, and (2) a modification of
21cmFAST, which uses the initial conditions from CLASS to

generate the initial box and then evolves this box until the
21-cm signal vanishes. In the remaining parts of this paper,
we use a box of comoving size 256 Mpc and a resolution5

of 1283 cells, and initialize the evolution at recombination.
We have confirmed that increasing these specifications
does not alter the 21-cm power spectrum beyond HERA’s
sensitivity.

A. CLASS

In the standard 21cmFAST, the user can vary the cosmo-
logical parameters fairly easily from the Python wrapper. The
varied parameters however only enter in the C code, while
the initial conditions for the simulation remain the same,
regardless of the values of the cosmological parameters that
were set by the user. This property of 21cmFAST makes it
inadequate for studying degeneracies between the cosmo-
logical parameters and the astrophysical parameters, espe-
cially if physics beyond the standard model is considered
(see Sec. VI). In our code, 21cmFirstCLASS, the initial
conditions for the simulation are completely consistent
with the input set of cosmological parameters.
To get the correct initial conditions we use CLASS. We

allow the user to work with either the primordial curvature
amplitude As (which is commonly used in the CMB and
inflation communities), or with the standard 21cmFAST σ8
parameter, the matter-density variance, smoothed on a
sphere of radius R8 ¼ 8h−1 Mpc. Given the current mat-
ter-density transfer function T mðk; z ¼ 0Þ, which is one of
the outputs of CLASS, they are related by

σ28 ¼ As

Z
∞

0

dk
k

�
k
k⋆

�
ns−1

W2ðkR8ÞT 2
mðk; z ¼ 0Þ; ð8Þ

where k⋆ ¼ 0.05 Mpc−1 is the CMB pivot scale and
WðkR8Þ ¼ 3ðkR8Þ−3½sin ðkR8Þ − kR8 cos ðkR8Þ� is the
Fourier transform of a top-hat filter of radius R8. We note
that in ΛCDM simulations we run CLASS with a high
kmax ¼ 4000 Mpc−1, which is necessary to get the correct
σðRÞ at the relevant scales for 21cmFAST. CLASS also
computes the background quantities T̄kðzÞ, and x̄eðzÞ,
the latter via HyRec.6 We then define the moment of
recombination, and the starting point of our simu-
lation, to be the redshift that solves xeðzrecÞ≡ 0.1. For
the fiducial set of cosmological parameters we use, it
is zrec ≈ 1069.
In addition, we also evaluate T vcbðk; zrecÞ, the transfer

function of Vcb during recombination, with
3https://github.com/nanoomlee/HYREC-2.
4The incorporation of HyRec was done only at the code sec-

tion of 21cmFAST that evolves xe, while leaving the reionization
code unchanged. Therefore, the reionization history remains
almost the same in 21cmFAST and 21cmFirstCLASS—see more in
Sec. IV.

5To be perfectly clear, by 128 we refer to the parameter
HII_DIM, and not the parameter DIM, which is 3 times larger.

6Care has to be taken when converting from CLASS conven-
tions for xe, which is ne=nH, to 21cmFAST conventions, for which
xe ≡ ne=ðnH þ nHeÞ.
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T vcbðk; zrecÞ ¼
���� θcðk; zrecÞ − θbðk; zrecÞ

kc

����; ð9Þ

where θc (θb) is the Fourier transform of the divergence
of the CDM (baryons) velocity, quantities that are also
given by CLASS. We construct interpolation tables for
T mðk; z ¼ 0Þ, T vcbðk; zrecÞ, T̄kðzÞ and x̄eðzÞ, and they are
then used to replace the default tables used by 21cmFAST.
Finally,7 we also save CLASS’s scale-independent growth

factor DðzÞ in a new interpolation table that goes into
21cmFAST. This quantity is obtained in CLASS by solving a
second order differential equation. To avoid solving this
equation for DðzÞ, in the standard 21cmFAST the “Dicke
growth” factor is used [137,138]. This is an analytical fit to
the growth factor that works particularly well below
z ¼ 35. However, this fit underestimates the true growth
factor at z≳ 100, and that can lead to an error of a few
percentages in the fluctuation pattern of Tk and xe at low
redshifts. Moreover, these errors can propagate to the
global signal at 10≲ z≲ 20, when nonlinearities become
important. To avoid introducing errors in the calculation,
without sacrificing run-time or computational cost, we
adopt CLASS’s growth factor in 21cmFirstCLASS. For more
details on the scale-independent growth factor and its effect
on the 21-cm signal, see Appendix A.

B. 21cmFAST

The initial density and velocity boxes in 21cmFirstCLASS

are generated in a similar manner as in the standard
21cmFAST. Prior to z ¼ 35, we evolve the matter-density
fluctuations linearly,8 though we have confirmed that
evolving the density box nonlinearly at high redshifts
yields the same 21-cm power spectrum at low redshifts.
As for the initial TkðzrecÞ and xeðzrecÞ boxes, we assume
that they are homogeneous. As we discuss in Paper II, an
homogeneous TkðzrecÞ box is an excellent assumption,
much more than the homogeneous Tkðz ¼ 35Þ box that
is assumed in the standard 21cmFAST. For the xe box, the
assumption of homogeneity at zrec ≈ 1069 is not justified
(though it is still better than assuming homogeneity at

z ¼ 35), but we show in Paper II that the resulting 21-cm
power spectrum is not very sensitive to this assumption.
Ideally, one could use the Tk and xe transfer functions from
CLASS to draw the initial boxes, as was done in Ref. [105].
In ΛCDM, such an approach would remove the necessity
of starting the simulation at recombination, since all the
fluctuations prior to z ¼ 35 are linear to a very good
approximation. Yet, we stress that this approach is no
longer valid in some beyond ΛCDM cosmologies (like the
one we discuss in Sec. VI) where nonlinearities have an
important role even before z ¼ 35.
We then solve numerically the differential equation for

Tk [Eq. (3)] at each cell, using the Euler method, to promote
Tk to the next redshift step, as in the standard 21cmFAST.
The difference, though, is the step size. In 21cmFAST,
a logarithmic redshift sampling is used such that
ð1þ znÞ=ð1þ znþ1Þ ¼ 1.02, where zn is the nth redshift
sample in the simulation, such that the step size Δzn ¼
zn − znþ1 is ∼0.1 at z ¼ 6 and ∼0.6 at z ¼ 35. This redshift
sampling scheme is insufficient at higher redshifts, and we
therefore work with a constant step size of Δzn ¼ 0.1 at
35 ≤ z ≤ 980. Above z ¼ 980 this step size is also not
enough, and we have to switch to Δzn ¼ 0.01 to simulate
the evolution precisely. This fine redshift sampling above
z ¼ 980 comes with a price; although no computationally
expensive astrophysical calculations are required, the many
redshift samples extend the run-time of the code consid-
erably. Yet, there is a much more clever way to evolve Tk
above z ¼ 980with excellent precision, without generating
so many redshift samples. Briefly, the idea is to treat the
baryons and the CMB as a single fluid when the conditions
for the Compton-tight coupling approximation (TCA) are
satisfied. We provide more details on that method in
Appendix B.
The normal evolution of xe in 21cmFirstCLASS is done with

HyRec, though our code can be configured to solve instead
the Peebles model, Eq. (6), with the recombination rate
αrec ¼ αB of RECFAST [139,140], where αB is the case-B
recombination rate (which accounts for recombination only
to the first excited state). As in CLASS, we use the default
“SWIFT” model of HyRec when Tk=Tγ < 0.1, and other-
wise we use its “PEEBLES” model, which is quite similar
to Eq. (6) above. In CLASS, however, two quantities are
solved with HyRec; these are xH and xHe. Their relation to xe
is xe ¼ xH þ ðnHe=nHÞxHe. From this equation the physical
meaning of xH (xHe) should be clear—it is the contribution
of the ionized hydrogen (helium) number density to the
total free-electron number density. In 21cmFirstCLASS we
assume xe ≈ xH, which is justified because (1) helium
recombination is over long before hydrogen recombination
begins, at z ∼ 1500; (2) the freeze-out value of xHe is an
order of magnitude smaller than the freeze-out value of xH;
and (3) the contribution of xHe to xe is suppressed by the
factor nHe=nH ≈ 0.08. As can be seen in Fig. 3, the
assumption xe ≈ xH is indeed an excellent approximation.

7We also adopt from CLASS the helium mass-fraction YHe as
well as the mean of the relative velocity between CDM and
baryons during recombination hVcbðzrecÞi. In addition, our code
also has the ability to compute the fitting parameters Ap, kp and
σp on the fly [see more details in Eq. (14) of Ref. [86]], though we
find that their effect on the brightness temperature is negligible
compared to the effect that Vcb has on the minimum halo mass
that can still host stars—see Sec. VI D.

8In this paper we assume δbðzÞ ¼ DðzÞδbðz ¼ 0Þ. We com-
ment that although such a scale-independent growth of δb is
inadequate at high redshifts, our conclusions in this paper are not
affected by this crude assumption, which shall be relaxed in the
version of 21cmFirstCLASS that will soon be made public. We
elaborate much more on this subtlety in Paper II.
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IV. COMPARING 21cmFirstCLASS

WITH 21cmFAST

In ΛCDM, all fluctuations at the relevant scales prior
to z ¼ 35 can be considered linear to a very good
approximation. Consistency therefore implies that
21cmFirstCLASS must be able to generate the same initial
conditions as in 21cmFAST, at z ¼ 35. Such a sanity check is
demonstrated in Fig. 3, where we present the evolution of
x̄e in the two codes. At z ¼ 35 the two codes agree.
Afterward, the solution of the two codes deviates because
of the different evolution, as was outlined at the end of
Sec. II. This leads to a maximum 5% difference.
Yet, this error does not propagate to the observable—the

brightness temperature—as can be seen in Fig. 4. This is
because τ21 is not proportional to xe but rather to xHI, the
neutral hydrogen fraction. Before the onset of reionization,
we can approximate xHI ≈ 1 − xe, and a simple calculation
shows that the 5% difference in x̄e translates to merely a
0.001% error in x̄HI.
Even though the first-order statistics of the box, namely

its mean, is consistent in both codes, it does not imply that
higher-order statistics, like the two-point function, are
the same. The Fourier transform of the two-point correla-
tion function is the power spectrum. For the 21-cm signal,
it is customary to work with a power spectrum that has
units of mK2,

Δ2
21ðk; zÞ ¼

k3T̄2
21ðzÞP21ðk; zÞ

2π2
; ð10Þ

where T̄21 is the global brightness temperature and
P21ðk; zÞ is the angle-averaged Fourier transform of the
two-point function hδ21ðx; zÞδ21ðx0; zÞi, while δ21 is the
local contrast in the brightness temperature, δ21ðx; zÞ≡
T21ðx; zÞ=T̄21ðzÞ − 1. We use the POWERBOX

9 package [141]
to compute Δ2

21ðk; zÞ from chunks of the light cone box of
21cmFirstCLASS.
In Fig. 5, we compare the 21-cm power spectrum of

21cmFirstCLASS and 21cmFAST. Unlike the global signal, clear
differences can be seen—only because we started the
simulation at a different initial time (recombination in
21cmFirstCLASS and z ¼ 35 in 21cmFAST). The origin of this
effect comes from early temperature and ionization fluc-
tuations. The impact of the former kind of fluctuations—
temperature fluctuations—on the 21-cm power spectrum
was first discussed in Ref. [81]. In Paper II we extend the
discussion on early fluctuations and explore in great detail
the contribution of both temperature and ionization fluc-
tuations. Still, Fig. 5 suggests that taking into account early
temperature and ionization fluctuations results in a maxi-
mum distortion of ∼20% to the 21-cm power spectrum at
k ¼ 0.3 Mpc−1, z ¼ 17, which is below HERA’s noise
level. We note that this is in slight contrast with the
conclusions of Ref. [81], where larger deviations are

FIG. 4. Comparison of the global brightness temperature
between 21cmFirstCLASS and 21cmFAST. The curves almost totally
overlap.

FIG. 3. Comparison of the global xe evolution between
21cmFirstCLASS and 21cmFAST (in both cases we use CLASS to
obtain the correct initial conditions). In the former, HyRec is used
all the way from recombination to z ¼ 6. In the latter, the
simulation begins at z ¼ 35, and xe is evolved differently (see
more details at the end of Sec. II). Note the consistency at z ¼ 35
(though early ionization fluctuations slightly change the mean of
the box in 21cmFirstCLASS—see more details in Paper II).

9https://github.com/steven-murray/powerbox.
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claimed. Again, we refer the reader to Paper II for an
elaborate discussion on that point.

V. COMBINING 21cm AND CMB DATA

The anisotropies in the CMB have been proven to be an
invaluable source for studying different cosmological
models. Likewise, the global 21-cm signal and its inho-
mogeneities are expected to contain rich information that
can be employed in cosmological studies of ΛCDM and
beyond. Because 21cmFirstCLASS already calculates the
CMB anisotropies via CLASS, it is only natural to include
them as part of our analysis. These two observables are
uncorrelated and thus can be used to break degeneracies in
the other observable. We will demonstrate this point below
while working with the Fisher formalism.

A. Fisher formalism

In the Fisher formalism, the covariance matrix is given
by the inverse of the Fisher matrix [142,143],

F21cm
α;β ¼

X
k;z

∂Δ2
21ðk; zÞ
∂α

∂Δ2
21ðk; zÞ
∂β

1

½δΔ2
21ðk; zÞ�2

: ð11Þ

Here, α and β denote the free parameters that we vary.
We vary both cosmological parameters and astrophysical
parameters10 [144],

ðα; βÞ∈
n
h;Ωm;Ωb; As; L

ðIIÞ
X ; fðIIÞ� ; fðIIÞesc ; ALW; Avcb ; T

ðIIÞ
vir

o
:

ð12Þ

The varied astrophysical parameters in our analysis are

displayed in the second row. LðIIÞ
X is the x-ray luminosity

(normalized by the star formation rate, in units of

erg sec−1M−1
⊙ year), fðIIÞ� is the star formation efficiency,

fðIIÞesc is the escape fraction of ionizing photons, ALW (Avcb)
characterizes the amplitude of the LW (Vcb) feedback on

Mmol;min, and TðIIÞ
vir is the minimum halo virial temperature.

Quantities with a superscript (II) correspond to pop-II stars.
We also vary the analogous pop-III parameters, around the
same fiducial values as the pop-II ones.
The parameters listed in Eq. (12) are not the only

parameters that control the 21-cm signal and the CMB.
There are many more astrophysical parameters, like the
mean-free path of photons through ionized regions, yet for

FIG. 5. Comparison of the 21-cm power spectrum between
21cmFirstCLASS and 21cmFAST, for three different wave numbers.
The error bars correspond to HERA’s noise in its design
sensitivity under the assumption of optimistic foregrounds
(see Sec. V). As we explain in the text, the source for the
differences between the curves is early temperature and ioniza-
tion fluctuations—see more details in Paper II.

10Although some of the astrophysical parameters in 21cmFAST

are defined logarithmically (e.g. LðIIÞ
X ¼ 40.5), in our analysis we

make sure we vary the linear parameters (e.g. LðIIÞ
X ¼ 1040.5). In

Fig. 6, when we present the confidence level ellipses of log10 LX,
we apply the appropriate Jacobian transformation.
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our purposes of demonstrating the joint analysis of 21-cm
and CMB, the astrophysical parameters in Eq. (12)
suffice. Another subtlety in our analysis is that we fix
τre, although its value can be inferred from the reionization
model [145]. A consistent treatment to incorporate τre in
21cmFirstCLASS would require computing it from the output
of 21cmFAST and feeding its value to CLASS. We leave this
kind of analysis for future work.
The quantity δΔ2

21ðk; zÞ that appears in the denominator
of Eq. (11) denotes the noise of the experiment, in our case,
HERA. We simulate HERA’s design sensitivity noise with
21cmSense

11 [146,147]. In its final stage, HERAwill have in
its core 331 antennas, each of which has a diameter of 14 m,
arranged in a hexagonal array with 11 antennas at its base.
We assume the frequency range of HERA will span
between 50 MHz (z ¼ 27.4) and 225 MHz (z ¼ 5.3) with
a bandwidth of 8 MHz. This gives a total number of
22 different frequency bands, but in our analysis, to be
conservative, we discard the bands below z ¼ 6 as in
that regime the exact reionization details are highly
uncertain, leaving us with 19 redshift bins in total. In each
frequency band we assume there are 82 channels, corre-
sponding to 1024 channels over 100 MHz bandwidth [64].
In addition, we assume HERA operates for six hours
per night during 540 days in total, the receiver temper-
ature is Trec ¼ 100 K and the sky temperature follows
TskyðνÞ ¼ 60 Kðν=300 MHzÞ−2.55.
Finally, we consider in our analysis “pessimistic,”

“moderate,” and “optimistic” foreground scenarios. In the
moderate (pessimistic) foreground scenario, the wedge12

is assumed to extend to Δkjj ¼ 0.1h Mpc−1 beyond the
horizon wedge limit, and all baselines are added coherently
(incoherently), while in the optimistic foreground scenario
the boundary of the foreground wedge is set by the FWHM
of the primary beam of HERA, and there is no contami-
nation beyond this boundary.
As motivated above, to break degeneracies in the

21-cm signal, we consider future measurements from
CMB-S4 [150]. We follow Refs. [145,151–153] and
evaluate the Fisher matrix associated with CMB-S4 mea-
surements via

FCMB
α;β ¼

X3000
l¼30

2lþ 1

2
fskyTr

�
C−1
l

∂Cl

∂α
C−1
l

∂Cl

∂β

�
; ð13Þ

where fsky ¼ 40% is the sky-fraction coverage and the
matrices ClðνÞ are (neglecting the lensing contribution)

ClðνÞ ¼
"
C̃TT
l ðνÞ CTE

l ðνÞ
CTE
l ðνÞ C̃EE

l ðνÞ

#
: ð14Þ

Here, tilde-less quantities are the noise-free CMB anisot-
ropies power spectrum that we take from CLASS, while
tilde-full quantities include the CMB-S4 noise contribution,
C̃XX
l ¼ CXX

l þ NXX
l . The noise power spectra are given by

NTT
l ðνÞ ¼ Δ2

TðνÞelðlþ1Þσ2bðνÞ; NEE
l ðνÞ ¼ 2 × NTT

l ðνÞ;
ð15Þ

where ΔTðνÞ is the temperature sensitivity and σbðνÞ ¼
θFWHMðνÞ=

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
, with the full-width-half-maximum

θFWHM given in radians. We consider a single fre-
quency channel, centered at ν ¼ 145, GHz with ΔT ¼
1.5 μK · arcmin and θFWHM ¼ 1.4 arcmin. Finally, we add
the HERA and CMB-S4 Fisher matrices,

Ftot
α;β ¼ F21cm

α;β þ FCMB
α;β : ð16Þ

B. Forecasts

Armed with our Fisher formalism, we now vary the
free parameters of Eq. (12), while imposing Planck 2018
priors [40] on the cosmological parameters. In our analysis,
we only impose priors on h,Ωm,Ωb and As. Figure 6 shows
our results. As expected, adding the CMB-S4 information
helps in mitigating all the degeneracies between the differ-
ent parameters, especially in the cosmological parameters.
Because the CMB anisotropies depend only on the cos-
mological parameters, and the cosmological parameters
are not strongly degenerate with the free astrophysical
parameters in our analysis, including the information of the
CMB power spectra does not help considerably in allevi-
ating degeneracies in the astrophysical parameters. Unlike
the cosmological parameters, the well-known degeneracy

between fðIIÞ� and fðIIÞesc is evident [143,154,155]. These
parameters exhibit a negative correlation as the ionization

efficiency is proportional to the product of fðIIÞ� and fðIIÞesc .
Similarly, as the x-ray heating efficiency is proportional to

the product of fðIIÞ� and LðIIÞ
X , there is a negative correlation

between these parameters as well. Note that the degeneracy

of fðIIÞesc and L
ðIIÞ
X with fðIIÞ� is not complete because the latter

also determines the efficiency of the Lyα flux.
Not unexpectedly, for ΛCDM, CMB-S4 will have more

constraining power than HERA, as indicated by Fig. 7.
Here, all the astrophysical parameters were marginalized
(fixed) when only the information of HERA (CMB- S4)
was considered. As we shall see in the next section, this
statement can be different for beyond ΛCDM cosmologies,
and the 21-cm data can play a more dominant role.

11https://github.com/rasg-affiliates/21cmSense.
12Our analysis here follows the HERA approach of using only

data outside the foreground “wedge” [148,149], thus effectively
avoiding foregrounds instead of trying to remove them from
the data.
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VI. SCATTERING DARK MATTER

To demonstrate the potential of 21cmFirstCLASS in study-
ing nonlinear models beyond the standard model, we now
consider SDM. In this model, a fraction fχ of the dark
matter consists of particles of mass mχ that interact directly
in a nongravitational manner with baryons. In this paper,
we focus on fχ ¼ 100% and mχ ¼ 1 MeV, although these
parameters can be varied in our code (we vary them in
future work). The cross section for the baryons-SDM
interaction is parametrized by σ ¼ σnðv=cÞn, where v is
the relative velocity between the interacting baryon and
SDM particles. We also fix n ¼ −4 to correspond to a
Coulomb-type interaction (we will relax this assumption in
future work), and thus σ−4 is the only free parameter in the
model we are considering.
There are two consequences to the direct interaction

between the baryons and the SDM: (1) they transfer energy,
whereby the cold SDM is able to cool the hotter baryonic
gas, while the baryons heat the SDM and increase its
temperature Tχ , and (2) the bulk relative velocity Vχb

between the two fluids is decreased via a drag force that
they apply on each other. The former effect made the SDM
a very popular dark matter candidate after the EDGES
Collaboration announced they measured a minimum value
of T̄21 ¼ −500þ200

−500 mK (at 99% confidence level) [156],
which is 3.8σ below ΛCDM expectation. More recent
results from the SARAS-3 experiment [157] do not
reproduce the detection, however.

A. Evolution equations

Below we write the differential equations that have to be
solved in the SDM model. These equations were originally
derived in Ref. [100] and appeared since then in many
works in the literature. We use a slightly different notation
which will be useful for the derivation of the DM-TCA
equations (see Appendix C). The SDM interaction modifies
the evolution equation for Tk, Eq. (3), which now reads as
(note that from this point on we will mostly denote the gas
temperature with Tb in order to have symmetrical expres-
sions for the baryons and SDM)

dTb

dz
¼ dt

dz

�
−2HTb þ ΓCðTγ − TbÞ þ

2Q̇b

3kB
þ dTb

dt

����
ext

�
;

ð17Þ

and a similar equation for the SDM temperature exists,

dTχ

dz
¼ dt

dz

�
−2HTχ þ

2Q̇χ

3kB
þ dTχ

dt

����
ext

�
; ð18Þ

where

dTχ

dt

����
ext

¼ 2

3

Tχ

1þ δχ

dδχ
dt

; ð19Þ

and δχ ≡ δρχ=ρ̄χ is the SDM density contrast. To solve
for Tb and Tχ , we need a third differential equation, for

FIG. 6. Forecasts of 1-σ and 2-σ confidence levels of some of the free parameters in Eq. (12) (the rest of the parameters not shown here
have been marginalized), while imposing Planck 2018 priors [40] on the cosmological parameters. Blue ellipses correspond to HERA-
only forecasts, while the green ellipses account for information coming from CMB-S4 as well. Results are shown for the moderate
foreground scenario, although they barely change when a pessimistic foreground scenario is considered.
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the evolution of the bulk relative velocity between the
fluids Vχb,

dVχb

dz
¼ dt

dz



−HVχb −DðVχbÞ

�
¼ dt

dz

h
−HVχb −

X
t

DtðVχbÞ
i
; ð20Þ

where DðVχbÞ is the mutual drag force that acts on the
baryons and SDM fluids. It is the sum of all the drag forces
that arise from the interaction of an SDM particle with a
standard model target particle of type t,

DtðVχbÞ ¼
ρtotσ−4c4

ρbu2χt

ρtFðrtÞ
mt þmχ

: ð21Þ

Here, ρb (ρχ ¼ fχρc) is the baryon (SDM) energy density,
ρtot ¼ ρb þ ρχ (it is not the total matter energy density
if fχ < 1), mt is the mass of the target particle, and ρt is
the energy density of the target particles. The function
FðrtÞ is

FðrtÞ ¼ r−2t

�
erf

�
rtffiffiffi
2

p
�
−

ffiffiffi
2

π

r
rte−r

2
t =2

�
≈

rt≪1

ffiffiffiffiffiffi
2

9π

r
rt; ð22Þ

where rt ≡ Vχb=uχt and uχt is the thermal velocity,

uχt ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTb

mt
þ kBTχ

mχ

s
: ð23Þ

The cooling/heating rates Q̇b and Q̇χ that appear in
Eqs. (17) and (18) are given by

Q̇b ¼
3

2
ΓχbkBðTχ − TbÞ þ

ρχ
ρtot

Vχb

X
t

mχmb

mχ þmt
DtðVχbÞ

ð24Þ

Q̇χ ¼
3

2

nb
nχ

ΓχbkBðTb − TχÞ þ
ρb
ρtot

Vχb

X
t

mχmt

mχ þmt
DtðVχbÞ;

ð25Þ

where nb ¼ ρb=mb (nχ ¼ ρχ=mχ) is the baryon (SDM)
number density. Finally, the energy transfer rate Γχb is

Γχb ¼
ffiffiffi
2

π

r
2σ−4c4ρχ

3nb

X
t

ρte−r
2
t =2

ðmt þmχÞ2u3χt
: ð26Þ

Two SDM models are typically considered in the liter-
ature.13 The first one considers millicharged DM [107–115],
in which the target particles are free electrons and protons,
nt1 ¼ nt2 ¼ ne, mt1 ¼ me, mt2 ¼ mp. Because the number
density of the target particles is proportional to xe, which is
very small between recombination and reionization, this
model does not generate strong signatures in the 21-cm
signal, unless very large cross sections (that are already ruled
out by CMB measuerments) are considered. Instead, we
focus on a baryophilic SDM [99–107], in which SDM
interacts with all standard model particles, i.e. ρt ¼ ρb and
mt ¼ mb, where the mean baryon mass is given by

mb ¼
mH

½1 − ð1 −mH=mHeÞYHe�ð1 − xeÞ
; ð27Þ

with mH (mHe) the mass of the hydrogen (helium) atom and
YHe ¼ ρHe=ρb ≈ 0.245 the helium mass fraction.
As in ΛCDM, we solve Eqs. (17)–(20) at each cell using

the Euler method, with a step size of Δzn ¼ 0.1. At low
temperatures, the logarithmic redshift sampling of the
standard 21cmFAST below z ¼ 35 is not enough, and
we continue to work with Δzn ¼ 0.1 at the low redshift
regime. Furthermore, we note that attempting to solve

FIG. 7. Forecasts of 1-σ and 2-σ confidence levels of the free
cosmological parameters in Eq. (12), while imposing Planck
2018 priors [40] on the cosmological parameters. Blue (orange)
ellipses correspond to forecasts when only information from
HERA (CMB-S4) is considered, while the green ellipses account
for information coming from both HERA and CMB-S4. All the
astrophysical parameters have been marginalized (fixed) in the
calculation of the HERA (CMB-S4) Fisher matrix. For HERA,
results are shown for the moderate foreground scenario, although
they barely change when the pessimistic foreground scenario is
considered.

13There are also models in which the SDM interacts with either
protons or electrons, but not both [116–122], and there are
models in which the SDM directly interacts with CDM [123,124].
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Eqs. (17)–(20) via the Euler method for large cross sections
results in overshooting of the solution due to the strong
coupling between the baryons and the SDM at low red-
shifts. We therefore had to devise a dedicated method for
solving the equations in the strong coupling limit—this is
the DM-TCA (in contrast with Compton-TCA). We elabo-
rate more on that method in Appendix C.

B. Initial conditions

To generate the SDM initial conditions for 21cmFAST we
use a modified version of CLASS14 in which the SDM fluid
variables δχ , θχ , Tχ are solved simultaneously with the rest
of the standard fluid variables of the baryons and CDM
(more details on that version can be found in Ref. [101]).
The present total matter density transfer function is
then given by ΩmT m ¼ Ωc½ð1 − fχÞT c þ fχT χ � þ ΩbT b.
There is a subtlety in the calculation of T mðk; z ¼ 0Þ that
we would like to address. The evolution of δb and δχ
depends on the gas temperature Tb since the momentum
exchange rate depends on the thermal velocity uχt. Even
though CLASS uses a toy model for the x-ray heating rate ϵX
[see Eq. (5)], the resulting transfer function is still correct.
The reason for this is that uχt competes with Vχb in the
evolution equations of δb and δχ , and since Vχb becomes
very small already at high redshifts (cf. Fig. 8), uχt turns out
to have minimal impact on the low-redshift evolution.
We also extract from CLASS the quantity T vχbðzrec; kÞ, the

transfer function of the relative velocity between baryons
and SDM at recombination, with an equation similar to
Eq. (9). In 21cmFirstCLASS, we then generate a Vχbðk; zrecÞ
box in Fourier space via [158]

Vχbðk; zrecÞ ¼ i
kc
k

T vχbðk; zrecÞ
T mðk; z ¼ 0Þ δmðk; z ¼ 0Þ: ð28Þ

This yields a Vχbðk; zrecÞ field that is curlfree and com-
pletely correlated with δmðk; z ¼ 0Þ. In real space, the
box of Vχbðx; zrecÞ ¼ ½Vχbðx; zrecÞ · Vχbðx; zrecÞ�1=2 has a
Maxwell-Boltzmann distribution with an rms of

hV2
χbðzrecÞi ¼ As

Z
kmax

kmin

dk
k

�
k
k⋆

�
ns−1

T 2
vχbðk; zrecÞ; ð29Þ

where kmin (kmax) are determined from the box (cell) size.
Two notes must be made on the above prescription.

First, the mean of the Vχbðx; zrecÞ box is hVχbðzrecÞi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð3πÞp hV2

χbðzrecÞi1=2 ≈ 0.92hV2
χbðzrecÞi1=2. Because of

the finite box and cell size this is not the true globally
averaged value of Vχb at recombination. For example, in
Fig. 8 the initial value of Vχb in all curves is off by ∼3%. As
a consequence, when we plot the mean values of our box at

Sec. VI E, they do not correspond precisely to the true global
values. Since in this paper we are mostly interested in the
fluctuations of the 21-cm signal, we are not bothered by that
nuance. Secondly, theMaxwellianity ofVχb breaks right after
recombination. This is because of the drag term in Eq. (20),
as it renders the differential equation for Vχb nonlinear. Of
course, there is no reason to expect that precisely at re-
combination Vχb was Maxwellian. In fact, in the derivation
of Eqs. (17)–(20), Maxwellianity was assumed throughout.
We are therefore being conservative and solve in this
work the same equations commonly found in the general
SDM literature, despite the inherent inconsistency that this
model has. Clearly, the Maxwellianity assumption has to be
relaxed, and we leave the study of non-Maxwellianities for
future work (see, however, very interesting insights from
Refs. [159,160] on that particular subject).

C. Small temperature corrections

The direct coupling between SDM and baryons may
cause the temperature of the latter to reach very low values,
much less than 1 K (cf. Fig. 9). This requires modifying
some of the key quantities used in 21cmFAST.
We take the small temperature correction for the bright-

ness temperature from Ref. [124],

T21 ¼
1

1þ z

�
ζðzÞ

eζðzÞ − 1
Ts − Tγ

�
ð1 − e−τ21Þ; ð30Þ

where ζðzÞ ¼ T⋆=TsðzÞ and T⋆ ¼ 68.2 mK is the hydro-
gen hyperfine energy gap (in units of mK). Normally,
Ts ≫ T⋆, and so the new ζ correction in Eq. (30)
approaches 1. When Ts becomes comparable to T⋆, the

FIG. 8. Evolution of the “global” Vχb [see caveat below
Eq. (29)] for three different cross sections. In this figure and
in the upcoming figures we fix mχ ¼ 1 MeV and fχ ¼ 100%.

14https://github.com/kboddy/class_public/tree/dmeff.
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new term becomes important. Yet, because of the following
modification, we will see in Sec. VI E that Ts does not
become very small even if Tb does.
The Lyα coupling coefficient x̃α is proportional to the

Lyα flux times a correction factor S̃α. In the standard

21cmFAST, S̃α is evaluated from the fit of Ref. [128].
This fit becomes inadequate at low temperatures (when
Tb ≲ 2 K). We therefore follow Ref. [107] and adopt the
wing approximation from Refs. [161,162] to evaluate S̃α
(see more details in Appendix D).
Another modification that has to be done is in the

recombination rate αrec. In the standard 21cmFAST, a fit
for the case-A recombination rate is used [135]. Again, the
validity of this fit breaks at low temperatures. We thus adopt
our HyRec scheme that was described in Sec. III (the SDM
does not alter the physics of recombination, and so no
further modifications in HyRec are required).
Finally, we comment that in 21cmFAST, the collisional

coupling xcoll is evaluated from tabulated values of κiH1−0.
These are the collision rates of hydrogen atoms with
species of type i (in units of cm3= sec). The tabulated
values stop at Tb ¼ 1 K, and the logic of the code is to use
κiH1−0ðTb ¼ 1 KÞ if Tb < 1 K. Because the extrapolation to
lower temperatures is not trivial and is beyond the scope of
this paper, we leave it for future work. Having said that, we
emphasize that xcoll is mainly relevant during the dark ages,
and thus the forecasts we derive in Sec. V (which depend
on the physics during cosmic dawn) are insensitive to the
exact values of κiH1−0.

D. Small velocity corrections

The contribution of pop-III stars comes from halos that
are massive enough to host them. In 21cmFAST, pop-III stars
reside in molecular cooling halos, and the aforementioned
minimum threshold halo mass is proportional to [86]

Mmol;minðx; zÞ ∝
�
1þ Avcb

Vcbðx; zrecÞ
hV2

cbðzrecÞi1=2
�
βvcb

; ð31Þ

where Vcbðx; zrecÞ is the relative velocity between baryons
and CDM at the time of recombination (obtained in a
very similar process to the one outlined in Sec. VI B), and
Avcb , βvcb > 0 are free phenomenological parameters. Note
that Eq. (31) is the source for the velocity acoustic
oscillations—a standard ruler imprinted on the 21-cm
power spectrum at large scales [158,163,164].
In the presence of SDM, there are two dark matter

species that hamper pop-III structure formation due to their
relative velocities with the baryons—CDM and SDM. We
weigh their contributions to Mmol;min in the following way:

Mmol;minðx; zÞ ∝
�
1þ Avcb

�
ð1 − fχÞ

Vcbðx; zrecÞ
hV2

cbðzrecÞi1=2

þ fχ
Vχbðx; zÞ

hV2
cbðzrecÞi1=2

1þ zrec
1þ z

�

βvcb

: ð32Þ

The reason for this modeling is because of the following.
If fχ ¼ 0 then Eq. (32) becomes identical to Eq. (31). If
fχ ≈ 1, then the second term in Eq. (32) dominates. Note
that in the special case of fχ ≈ 1 and very small σ−4, SDM
behaves as CDM, Vχb ≈ Vcb ∝ ð1þ zÞ, and Eq. (31) is
again restored in that scenario. For cross sections large
enough, Vχb ≪ Vcb (cf. Fig. 8). Thus, in an SDM universe,
Eq. (32) implies that Mmol;min is smaller, and hence more
pop-III stars can be born, thereby pulling cosmic dawn to
higher redshifts. It is worthwhile to note that the free
parameters Avcb and βvcb were calibrated in [86] to match
with hydrodynamical N-body simulations [165,166]. As
fitting our model to such simulations is beyond the scope of
this work, we adopt the simple model of Eq. (32) with the
same fiducial parameters. We defer the exploration of more
complicated prescriptions (where, for instance, the weights
fχ and 1 − fχ include power laws with free indices) to
future work.
The SFRD in 21cmFAST depends both onMmol;min and on

the halo mass function (HMF). The latter is modified by
SDM in two ways. First, the matter-density variance σðMÞ
is reduced because of the suppression in the matter power
spectrum [107]. And secondly, the fitting function that is
used for the evaluation of the HMF is modified. In this
work, the former effect is already taken into account in our
analysis, while the second is not. We use the Sheth-Tormen
fitting function [167], which was calibrated based on CDM

FIG. 9. Evolution of the global gas kinetic temperature, SDM
kinetic temperature and the spin temperature, for three different
cross sections. Solid, dashed and dotted lines correspond to
σ−4 ¼ 2 × 10−42; 10−42; 10−43 cm2, respectively. We note that the
Ts solid green curve is most likely too high between 20≲ z ≲ 30;
see text for further details.
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N-body simulations. It is not clear how the fitting para-
meters of the Sheth-Tormen HMF are modified if SDM is
considered instead of CDM. We leave the exploration of
this subtlety15 for future work.

E. Results–SDM
In what follows wewill consider three case studies where

σ−4 is equal to 2 × 10−42 cm2, 10−42 cm2 or 10−43 cm2.
The impact of these cross sections on the evolution of the
baryons and SDM fluids is most clearly seen in Fig. 8
where we plot the “global” Vχb [see caveat below Eq. (29)].
The green curve that corresponds to σ−4 ¼ 10−43 cm2 can
be considered as “almost ΛCDM” because Vχb ∝ ð1þ zÞ,
which is indeed the evolution of Vcb when there is no drag
term in Eq. (20). In contrast, the blue curve of σ−4 ¼
2 × 10−42 cm2 decays very quickly; initially the Hubble
term dominates, then at z ∼ 100 the drag term wins, and
finally at z ∼ 15 the Hubble term dominates again once Vχb

is small enough. The case of σ−4 ¼ 10−42 cm2 (orange
curve) exhibits a similar decay, although milder.
Next, we consider the evolution of Tb and Tχ as it

appears in Fig. 9. Let us focus first on the solid curves
of σ−4 ¼ 2 × 10−42 cm2 where the new physics is most
extreme. As expected, the rapid interactions between
the baryons and the cold SDM cool down the former
considerably. Once stars have been formed, their radiated x
rays heat up the gas, as in ΛCDM. Note that the turning
point of the pink solid curve appears before the other
pink curves; this is because a very cold baryonic gas reacts
to the slightest source of heating. In fact, without x rays,
the baryons would have been tightly coupled to the SDM
at z ∼ 17 because the interaction rate increases as Vχb

decreases, and Vχb already approaches zero at low red-
shifts. As for Tχ, we can see that the Hubble cooling in
Eq. (18) mostly dominates with respect to the Q̇χ heating
term. Unlike the baryons, which undergo a lot of
SDM scattering, the SDM particles barely feel the
baryons. This is because ρχ is comparable to ρb for
fχ ¼ 100%. However, their number densities are not;
mb ≈ 1 GeV ≫ mχ in the model that we are considering
and thus nχ ≫ nb, namely the SDM particles vastly out-
number the baryons. Nevertheless, the SDM is not com-
pletely oblivious to the presence of the baryons, and
it begins to heat up at z ∼ 15 once the temperature differ-
ence becomes large enough. Then, at z ∼ 10 the Hubble
cooling wins again, and the SDM is further cooled down.
All the physics discussed above applies as well to the
dashed and dotted curves in Fig. 9, although to a much
lesser extent.

Figure 9 also presents the evolution of the spin temper-
ature. Let us begin the discussion this time with the dashed
and dotted curves that correspond to σ−4 ¼ 10−42 cm2 and
σ−4 ¼ 10−43 cm2, respectively. It appears that the WF
coupling is stronger for the dashed curve, and thus the
cosmic dawn allegedly arrives earlier when the cross
section is larger. In the SDM model there are many factors
that affect the onset of cosmic dawn. For example, as
Ref. [107] pointed out, the matter power spectrum is
suppressed on small scales due to the presence of the
SDM. This fact contributes to the delaying of cosmic dawn
(in a mechanism similar to that in FDM [96,97]). However,
there are other competing effects. First, since Tα ≈ Tk,
smaller Tk tends to drive Ts to smaller values (note however
that this effect has nothing to do with the onset of cosmic
dawn). Secondly, the lower Vχb values imply a smaller
Mmol;min [cf. Eq. (32)], which means that smaller halos (that
are much more abundant) can form stars more easily. On
the other hand, there are two more effects that tend to
weaken the coupling of Tk to Ts for larger cross sections:
(1) Smaller Tk implies smaller S̃α (see Appendix D), and
(2) smaller Mmol;min leads to a stronger LW radiation that
impedes star formation (although the LW feedback effect
may yield a weaker LW flux, so it is not clear a priori if this
effect enhances or degrades the coupling of Ts to Tk). All
in all, we find that for the model that we are considering,16

Ts is more strongly coupled to Tk when the cross section
is larger.
As for the solid green curve in Fig. 9, the similar trend

continues. For the fiducial parameters we have used, we
find that cross sections larger than σ−4 ¼ 2 × 10−42 cm2

can result in extremely low temperatures that reach below
Tk ¼ 1 K. As was discussed at the end of Sec. VI C,
21cmFAST interpolates a table of κiH1−0 that has no entries
below Tk ¼ 1 K. Thus, unless the interpolation table of
21cmFAST is extended to lower temperatures, larger cross
sections may yield unphysical behaviors at the Ts curve.
It is also interesting to inspect the evolution of xe in an

SDM universe. For σ−4 ¼ 10−42 cm2 and σ−4 ¼ 10−43 cm2,
Fig. 10 shows that SDM barely makes any difference in the
evolution of xe compared to ΛCDM. However, a surprising
feature can be seen when we consider σ−4 ¼ 2× 10−42 cm2;
at z ∼ 40 we see that xe departs from the ΛCDM expect-
ation toward lower values. Normally, in ΛCDM the
temperature of the baryons at this redshift is insufficient
to allow an efficient recombination, because their number
density is too low. But for the SDM that we are considering,
recombination becomes efficient again at z ∼ 40 because
baryons are combined into atoms more easily when the
temperature decreases. Without x-ray heating, we find that

15We thank Mihir Kulkarni for drawing our attention to this
assumption in our analysis.

16We did witness a weaker WF coupling with much stronger
cross sections, or when we considered mχ ¼ 1 GeV.
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FIG. 10. Evolution of the global xe in the SDM universe, for
three different cross sections. The green curve of σ−4 ¼
10−43 cm2 is practically indistinguishable from the ΛCDM curve
shown in Fig. 3. The extra drop seen in the blue curve of
σ−4 ¼ 2 × 10−42 cm2, although it can be physically justified, is
subject to theoretical uncertainties; see main text for more details.

FIG. 11. The global 21cm signal in the SDM universe, for three
different cross sections.

FIG. 12. The 21-cm power spectrum in SDM universe, for three
different cross sections. Here, unlike Fig. 5, we assume moderate
foreground scenario for the error bars.
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for this scenario xe would stabilize on a lower freeze-out
value of ∼2 × 10−6. Yet, it is important to stress that at low
temperatures HyRec uses the fit of Ref. [168] for the re-
combination rate, but this fit is valid only to Tk ¼ 40 K, so
the second drop in xe shown in Fig. 10 should not be taken
too seriously.
The global 21-cm signal, shown in Fig. 11, reflects the

same physics previously discussed. Larger cross sections
lead to a deeper absorption signal that begins at higher
redshifts, but ends roughly at the same redshift. We show
the corresponding 21-cm power spectrum in Fig. 12. It can
be clearly seen that HERA will not be able to distinguish
between ΛCDM and SDM of cross section σ−4 ¼
10−43 cm2. In contrast, it appears that HERA will be able
to easily detect SDM with cross section σ−4 ¼ 10−42 cm2

(or higher) but only in the low frequency band that
corresponds to 10≲ z≲ 20. Two remarks on the blue
curve of σ−4 ¼ 2 × 10−42 cm2: (1) Although its global
signal reaches much lower values than the orange curve of
σ−4 ¼ 10−42 cm2, the amplitude of the 21-cm power
spectrum for both cross sections is of the same order of
magnitude. This is most likely because the absorption
profile of σ−4 ¼ 2 × 10−42 cm2 is quite narrow, and we
calculate the power spectrum from slices of the light cone
box, which unlike the coeval box contains samples from
different redshifts along the line of sight. (2) The smaller
power at low redshifts is due to a shallower emission profile
which is caused by the large cooling effect.

F. Forecasts–SDM
Figure 12 suggests that HERA will not be sensitive to

cross sections below 10−43 cm2, but cross sections of the
order of 10−42 cm2 or higher can be probed. Yet, all we did
in Fig. 12 was to vary the cross section while keeping other
parameters fixed. If we wish to forecast the sensitivity of
HERA to SDM, we must vary other cosmological and
astrophysical parameters and study their degeneracies, like
we did in Sec. V. For the following analysis, we focus on
the SDM scenario where σ−4 ¼ 10−42 cm2. This particular
value has not been ruled out by Planck 2018 CMB
measurements, and it lies beyond the sensitivity range of
CMB-S4 by almost an order of magnitude [101,103].
Our forecasts are displayed in Fig. 13. Interestingly, the

forecasts for Ωm seem to be less affected when combining
the information from the two observables. We will see why
shortly. Furthermore, we see a strong degeneracy between

σ−4 and L
ðIIÞ
X . This feature in our forecasts is not surprising;

stronger σ−4 yields more efficient cooling, while stronger

LðIIÞ
X yields more efficient heating; thereby any small

correlated variation in both of them is almost canceled
in the observed brightness temperature. Hence, these two
parameters exhibit a positive correlation. Since the CMB

anisotropies do not depend on the value of LðIIÞ
X , their

measurement cannot relax this degeneracy.
It is also interesting to compare HERA’s performance in

detecting SDM with CMB-S4. We make this comparison

FIG. 13. Forecasts of 1-σ and 2-σ confidence levels of some of the free parameters in Eq. (12) and the SDM cross section σ−4 (the rest
of the parameters not shown here have been marginalized), while imposing Planck 2018 priors [40] on the ΛCDM cosmological
parameters. Blue ellipses correspond to forecasts when only information from HERA is considered, while the green ellipses account for
information coming from CMB-S4 as well. Results are shown for a moderate foreground scenario, although they barely change when a
pessimistic foreground scenario is considered.
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in Fig. 14. As we saw in Fig. 7 when we discussed
degeneracies in ΛCDM, for most cosmological parameters
CMB-S4 has a better constraining power than HERA.
However, in the SDM scenario, HERA has the upper hand
when it comes to constrainingΩm (which is now comprised
of SDM, unlike in ΛCDM) and σ−4. In particular, for SDM
with σ−4 ¼ 10−42 cm2, HERA will be able to constrain its
value within a 2-σ confidence level, while CMB-S4 will
barely be able to do so within a 1-σ confidence level. This
demonstrates the potential of HERA in detecting new
physics that cannot be probed by CMB-S4.

VII. CONCLUSIONS

In this paper we have introduced our novel pipeline,
21cmFirstCLASS, for studying the cosmological 21-cm signal
and its anisotropies. It is composed of two codes
that are commonly used in the literature—CLASS and
21cmFAST. Because CLASS provides the proper initial con-
ditions for the simulation, as well as the more precise scale-
independent growth factor, our code in that sense is more

consistent than the standard 21cmFAST. Moreover, since our
simulation begins from recombination, our calculations
naturally capture early temperature and ionization fluctua-
tions, an effect which distorts the 21-cm power spectrum to
some extent17 (cf. Fig. 5). To achieve the most precise
evolution of the early Universe, we have incorporated in
21cmFirstCLASS the state-of-the-art recombination code HyRec

as an integral part of our calculation.
Unlike 21cmFAST, our code is not fast. For the box settings

we used in this work, starting the simulation at recombi-
nation results in a run-time which is ∼3 times longer
compared to the normal 21cmFAST simulation that begins at
z ¼ 35, even though no complicated astrophysics calcu-
lations are performed at high redshifts. The run-time ratio
becomes even greater when either SDM (which requires
more redshift samples below z ¼ 35) or higher resolution
boxes are considered. The source for this longer run-time is
the huge amount of redshift samples used in 21cmFirstCLASS

and the current architecture of 21cmFAST; at each redshift
iteration the evolution of the box is done at the C level
(where multiple CPUs can facilitate the computation),
but at the end of the iteration the box is transferred
back to the Python wrapper, where the box can be processed
with only a single CPU. We therefore think that changing
the 21cmFAST architecture such that the C code will be
able to promote the box over more than one redshift
iteration may speed up significantly the calculations of
21cmFirstCLASS. Implementing this is beyond the scope of
this paper, and we defer this necessary modification to
future work.
One of the main motivations to begin the simulation from

recombination is to study highly nonlinear models. As a
case study, we focused on SDM, which is one of the most
popular candidates of dark matter in the recent literature.
This required us using the modified CLASS version of
Ref. [101] to get the correct initial conditions. Moreover,
besides implementing the SDM differential equations in
21cmFAST, we had to make several modifications in the
astrophysics part; the most important one is the correction
factor S̃α for the WF coupling. As a first thorough study of
the effect that SDM has on the 21-cm power spectrum, we
limited ourselves to SDM with parameters fχ ¼ 100%,
mχ ¼ 1 MeV and a velocity-dependent cross section with a
power law of n ¼ −4. For very large cross sections that
change the 21-cm signal extremely, our results suffer from
an inconsistency at z≳ 20 due to an approximated model-
ing of the collisional rates κiH1−0 at low temperatures. For
milder cross sections, our results are consistent at all
redshifts.
Focusing on σ−4 ¼ 10−42 cm2, which on the one hand

has not been ruled out by Planck 2018 measurements, but
on the other hand lies beyond the CMB-S4 sensitivity

FIG. 14. Forecasts of 1-σ and 2-σ confidence levels of the free
cosmological parameters in Eq. (12) and the SDM cross section
σ−4, while imposing Planck 2018 priors [40] on the ΛCDM
cosmological parameters. The assumptions made in this figure
are similar to those of Fig. 13, but here we have marginalized over
all astrophysical parameters, allowing us to present forecasts for
only CMB-S4. Blue (orange) ellipses correspond to forecasts
when only information from HERA (CMB-S4) is considered,
while the green ellipses account for information coming from
both HERA and CMB-S4. All the astrophysical parameters
have been marginalized (fixed) in the calculation of the HERA
(CMB-S4) Fisher matrix. For HERA, results are shown for the
moderate foreground scenario, although they barely change when
a pessimistic foreground scenario is considered.

17We elaborate more on that subtle point in Paper II.
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range, we found that HERA in its design sensitivity will
be able to easily probe SDM with that cross section within
a 2-σ confidence level, under the assumption of either
moderate or pessimistic foreground scenarios, and taking
the degeneracies with astrophysical parameters into
account. This serves as clear evidence to the very promising
potential of HERA and the 21-cm signal in searching for
signatures of physics beyond ΛCDM, provided that state-
of-the-art, first-class codes are used.
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APPENDIX A: SCALE-INDEPENDENT GROWTH
FACTOR

Because CDM is collisionless and comprises most of
the matter in the Universe, its evolution is nearly scale
invariant (especially at high redshifts before baryons have
clustered), and thus the growth in its density contrast is
given by δcðk; zÞ ¼ DðzÞδcðk; z ¼ 0Þ, where DðzÞ is the
scale-independent growth factor. Using the continuity and
Euler equations, together with the Poisson equation,
one can show that the differential equation that governs
DðzÞ is [169]

D̈þ 2HḊ − 4πGρ̄mD ¼ 0; ðA1Þ

where G is Newton’s gravitational constant and overdots
represent derivatives with respect to the cosmological
time t.
Among its calculations, CLASS solves Eq. (A1) to find

DðzÞ. In contrast, 21cmFAST does not solve Eq. (A1), and
instead it adopts the fit of Refs. [137,138], known in the
code as the Dicke growth factor. In Fig. 15 we show the
two growth factors of the two codes. The agreement
between them becomes excellent at low redshifts, although
percent-level errors can still be found for z≳ 20. At
high redshifts, the error of the Dicke fit is no longer
negligible, and it reaches ∼20% at z ¼ 1000. In order to
simulate early temperature and ionization fluctuations as

precisely as possible (see more on them in Paper II), we
therefore had to incorporate the CLASS growth factor in
21cmFirstCLASS.
It is interesting however that the small errors of the Dicke

fit below z ¼ 35 can lead to a visible difference in the
21-cm global signal, even if early temperature and ioniza-
tion fluctuations are discarded, as we show in Fig. 16.

FIG. 15. Comparison between the CLASS growth factor [which
solves Eq. (A1)] and the Dicke growth factor, as implemented in
the standard 21cmFAST. At z ¼ 35 (z ¼ 20) the relative error is
∼1.4% (∼0.98%).

FIG. 16. Comparison of the 21-cm global signal when different
growth factors are considered. In both curves early temperature
and ionization fluctuations were discarded by starting the
simulation at z ¼ 35.
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Above z ∼ 27, the resulting global signal is the same
because at this epoch the fluctuations are linear and they
cancel each other when the mean of the box is evaluated.
Below that redshift, nonlinearities become important and
the fluctuations (as well as the errors) are no longer
canceled. At z≲ 15 the SFRD dominates the fluctuations
in the signal, and because the growth factors are nearly
the same at that redshift, the Dicke solution to the
global brightness temperature coincides with the CLASS

solution.
The errors induced by the Dicke growth factor are

enhanced when the 21-cm power spectrum is considered,
especially at z≳ 20, as can be seen in Fig. 17. Yet, within
HERA’s range, the errors do not surpass HERA’s noise
level.

APPENDIX B: COMPTON TIGHT COUPLING
APPROXIMATION

As was discussed in Sec. III B, above z ¼ 980 the
temperature cannot be evolved precisely if one attempts
to solve Eq. (3) numerically via the Euler method but
without having a tiny step size. The reason for this comes
from the Compton term in Eq. (3). At high redshifts this
term dominates, leading to dTk=dz ∝ ðΓC=HÞðTγ − TkÞ.
Since the baryons are tightly coupled to the photons at this
epoch, Tk → Tγ . However, because ΓC ≫ H, small initial
errors in Tk could cause the solution to overshoot or
undershoot Tγ, depending on the sign of Tγ − Tk, with

oscillations that grow in time. This numerical behavior is
well known for interacting fluids in the tight coupling
regime. It becomes worse when the temperatures of both
fluids have to be simultaneously evolved in time—see
Appendix C.
To overcome this challenge, many codes use more

advanced numerical schemes such as having an adaptive
varying step size or using values from more past samples
instead of just the last one. In 21cmFAST we cannot use such
schemes because the redshift samples (and their corre-
sponding step sizes) are determined before the evolution of
the box begins, and only the last previous box is accessible
during the calculation of the current one. Therefore, our
numerical scheme is limited to the family of Runge-Kutta
solutions. High order Runge-Kutta solutions could increase
the required step size at the price of calculating intermedi-
ate redshift samples, but we will see that the simplest
lowest-order type of Runge-Kutta solution, namely the
Euler method, can still be used without sacrificing valuable
computational time.
The trick is to track the difference and the average

temperatures of the tightly coupled fluids, instead of
tracking the temperatures of the individual fluids. A similar
method to the one presented below is already implemented
in CLASS. To see why such a method is helpful, let us
rewrite Eq. (17) (that also includes interaction with SDM)
in the following form (note we now denote the kinetic gas
temperature with Tb to match our notation in Sec. VI):

dTb

dz
¼ 1

1þ z

�
2Tb −

Tγ − Tb

ϵγb
−

2Q̇b

3kBH
−

1

H
dTb

dt

����
ext

�
; ðB1Þ

where we defined ϵγb ≡H=ΓC. Because Tγ ∝ ð1þ zÞ, we
also know that

dTγ

dz
¼ Tγ

1þ z
: ðB2Þ

When the two fluids are tightly coupled, we approximate
Tb ≈ Tγ þOðϵγbÞ, which is valid as long as H ≪ ΓC, or
ϵγb ≪ 1. This is the Compton TCA. Within this approxi-
mation, we can compare Eqs. (B1) and (B2),

Tγ ¼ 2Tb −
Tγ − Tb

ϵγb
−

2Q̇b

3kBH
−

1

H
dTb

dt

����
ext

þOðϵγbÞ; ðB3Þ

from which we find

ΔTγb≡Tγ−Tb

¼ ϵγb

�
2Tb−Tγ−

2Q̇b

3kBH
−
1

H
dTb

dt

����
ext

�
þOðϵ2γbÞ: ðB4Þ

Furthermore, by adding Eqs. (B1) and (B2) we can find a
differential equation for T̄γb ≡ ðTγ þ TbÞ=2,

FIG. 17. Comparison of the 21-cm power spectrum when
different growth factors are considered. In both curves early
temperature and ionization fluctuations were discarded by start-
ing the simulation at z ¼ 35. Optimistic foreground scenario is
assumed for the error bars.
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dT̄γb

dz
¼ 1

2ð1þ zÞ
�
Tγ þ 2Tb −

Tγ −Tb

ϵγb
−

2Q̇b

3kBH
−
1

H
dTb

dt

����
ext

�

¼ Tγ

1þ z
þOðϵγbÞ; ðB5Þ

where the second line follows Eq. (B3). Not surprisingly,
we see that the average temperature of the tightly coupled
baryon-photon fluid follows the CMB temperature.
We would need a second differential equation, for the
temperature difference ΔTγb. According to Eq. (B4), this is
equivalent to finding a differential equation for ϵγb. From
Eqs. (4) and (B2), a simple calculation yields

dϵγb
dz

¼ ϵγb

�
1

H
dH
dz

−
1

xeð1 − xeÞ
dxe
dz

− 4

�
: ðB6Þ

Equations (B4)–(B6) are the Compton-TCA equations.
Unlike Eqs. (3) or (17), they do not contain terms that
approach zero or infinity in the strong coupling limit, and
they are thus numerically more stable. The strategy in our
code for solving for Tb is as follows:
(1) At each step, we calculate ϵγb ≡H=ΓC. If ϵγb > ϵthγb,

where ϵthγb is some threshold value, the TCA does not
have to be applied, and we solve Eq. (3).

(2) Otherwise, we compute T̄γb, and evolve T̄γb and ϵγb
via Eqs. (B5) and (B6), respectively.

(3) We then compute the current ΔTγb via Eq. (B4).
(4) Finally, we find the current gas temperature

with Tb ¼ T̄γb − ΔTγb=2.
With this prescription, we can run 21cmFirstCLASS with a
constant Δzn ¼ 0.1 from recombination to z ¼ 35 and thus
reduce the total amount of redshift samples by ∼8000.
In our code we have set ϵthγb ¼ 5 × 10−5 since this choice
corresponds to ϵγbðz ¼ 980Þ ≈ ϵthγb, though we comment
that ϵthγb can be even 3 orders of magnitude greater, and the
desired evolution would be still obtained.

APPENDIX C: DARK MATTER TIGHT
COUPLING APPROXIMATION

A similar problem to the one discussed in Appendix B
happens when baryons interact with SDM. According to
Eqs. (17) and (18), the changes in Tb and Tχ depend on Q̇b

and Q̇χ , but according to Eqs. (24) and (25), these
quantities depend on the difference between Tb and Tχ .
If Γχb ≫ H [or ðnb=nχÞΓχb ≫ H], then Tb − Tχ → 0 and
small numerical deviations from the true solution will cause
the error to diverge, in both fluids. Moreover, it becomes
unclear what happens in a scenario where the fluids are
tightly coupled, but only one of them is strongly affected by
an external source, e.g. x rays that only heat up the baryon
fluid. This is why the DM-TCA algorithm that we derive
below does not serve only as a means to reduce run-time,

but in fact it is indispensable to get the right evolution at
low redshifts.
We begin by rewriting Eqs. (17) and (18) in the following

form:

1

H
dTb

dt
¼ −2Tb þ

Tγ − Tb

ϵγb
þ Tχ − Tb

ϵb
þ 1

H
dTb

dt

����
ext

þ 2

3kB

ρχ
ρtot

Vχb

H

X
t

mχmb

mχ þmt
DtðVχbÞ; ðC1Þ

1

H

dTχ

dt
¼ −2Tχ þ

Tb − Tχ

ϵχ
þ 1

H

dTχ

dt

����
ext

þ 2

3kB

ρb
ρtot

Vχb

H

X
t

mχmt

mχ þmt
DtðVχbÞ; ðC2Þ

where we have defined the DM-TCA small parameters,

ϵb ≡ H
Γχb

; ϵχ ≡ nχ
nb

ϵb: ðC3Þ

It will be convenient to define a symmetrized small
parameter,

ϵχb≡ nχ
nχþnb

ϵb¼
nb

nχþnb
ϵχ

¼ 3Hffiffiffiffiffiffi
2π

p
σ−4c4ðnχþnbÞ

�X
t

nt
nb

mte−r
2
t =2

ðmtþmχÞ2u3χt

�−1
: ðC4Þ

In the DM-TCAwe have ϵχb ≪ 1 and Tb ¼ Tχ þOðϵχbÞ.
This allows us to compare Eqs. (C1) and (C2), and find that
in the strong coupling limit the temperature difference is

ΔTbχ ≡ Tb − Tχ ¼ ϵχb

�
Tγ − Tb

ϵγb
þ 1

H
dTb

dt

����
ext

−
1

H

dTχ

dt

����
ext

−
2

3kB

Vχbmχ

Hρtot

X
t

ρbmt − ρχmb

mχ þmt
DtðVχbÞ

�
þOðϵ2χbÞ:

ðC5Þ

By adding together Eqs. (C1) and (C2), and using Eq. (C5),
we can also find a differential equation for T̄χb ≡
ðTb þ TχÞ=2,

dT̄χb

dz
¼ 1

1þ z

�
2T̄χb −

nb
nb þ nχ

�
Tγ − Tb

ϵγb
þ 1

H
dTb

dt

����
ext

�

−
nχ

nb þ nχ

1

H

dTχ

dt

����
ext

−
1

nb þ nχ

2

3kB

ρbρχ
Hρtot

× VχbDðVχbÞ
�
þOðϵχbÞ: ðC6Þ

To solve for Tb and Tχ we require another equation for
ΔTbχ . According to Eq. (C5), this is equivalent to having an
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equation for ϵχb. Since nb ∝ nχ ∝ ð1þ zÞ3, then from
Eqs. (C3) and (C4) we have

dϵχb
dz

¼ dϵb
dz

¼ ϵb

�
1

H
dH
dz

−
1

Γχb

dΓχb

dz

�
; ðC7Þ

where the derivative of the energy transfer rate Γχb can be
evaluated from its definition, Eq. (26),

dΓχb

dz
¼

ffiffiffi
2

π

r
2σ−4c4ρχ

3nb

X
t

�
ρte−r

2
t =2

ðmt þmχÞ2u3χt

�
3

1þ z
−

rt
uχt

×
dVχb

dz
− ð3 − r2t Þ

mt þmχ

mtmχ

kB
u2χt

dT̄χb

dz

�

: ðC8Þ

Note that dΓχb=dz ∝ Γχb in the special case in which the
SDM interacts with a single type of particles.
Equations (C5)–(C8) are the DM-TCA equations. It is

crucial to understand that if ϵχb ≪ 1, that does not
guarantee that both ϵb and ϵχ are much smaller than unity.
This is because ϵb ∝ ρ−1χ and ϵχ ∝ ρ−1t . So for example, if
fχ ≪ 1 such that ϵb ≫ 1, then the baryons are not tightly
coupled to the SDM. However, if σ−4 is large enough, then
even if fχ ≪ 1, it might be that ϵχ ≪ 1 and the SDM is
coupled to the baryons. This is similar to the early coupling
between baryons and CMB photons; the latter outnumber
the former, and thus the baryons are tightly coupled to the
CMB, while the CMB photons are insensitive to the
baryons. Since ϵχb ≤ ϵχ ; ϵb, if either ϵb ≪ 1 or ϵχ ≪ 1,
that implies that ϵχb ≪ 1, and we can evolve T̄χb and ΔTbχ

with the DM-TCA equations we formulated above.
All of these considerations have been implemented in

21cmFirstCLASS. Below we present the algorithm we use in
our code to solve for Tb and Tχ .
(1) We begin by calculating ϵb and ϵχ via Eq. (C3). If at

least one of them is smaller than the threshold ϵthχb,
we use the DM-TCA equations, Eqs. (C5)–(C8), to
find the updated values of T̄χb and ΔTbχ .
(a) When we use the DM-TCA equations, we check

if ϵγb < ϵthγb. If this condition is satisfied, we are
in the special scenario where the three fluids
(baryons, SDM and CMB photons) are strongly
coupled. In this case we evaluate ðTγ − TbÞ=ϵγb
that appears in Eqs. (C5) and (C6) with the
Compton-TCA [Eq. (B4)].

(2) Next, we solve for the baryon temperature Tb.
(a) We check if ϵγb > ϵthγb and ϵb > ϵthχb. If these

two conditions are satisfied, or alternatively
dTb=dtjext > 2Q̇b=ð3kBÞ, we solve the usual
differential equation for Tb, Eq. (17). The latter
condition reflects the understanding that the
baryons cannot be tightly coupled to the SDM
if an external heating source, such as x rays, is
more dominant.

(b) Otherwise, if ϵγb ≤ ϵthγb, we use the Compton-
TCA equations, Eqs. (B4)–(B6), to solve for Tb.
This reflects our assumption that the coupling of
the baryons with the SDM cannot be stronger
than the coupling of the baryons with the CMB.
Cross sections that break this assumption imply
that Tb ≠ Tγ at recombination and have been
ruled out by CMB observations.

(c) Otherwise, the baryons are not tightly coupled
to the CMB, but they are tightly coupled to the
SDM, and we can use T̄χb and ΔTbχ that
we obtained in item 1 to find Tb via Tb ¼
T̄χb þ ΔTbχ=2.

(3) Finally, we solve for the SDM temperature Tχ .
(a) We check if ϵχ > ϵthχb or if dTχ=dtjext >

2Q̇χ=ð3kBÞ (the latter condition can be satisfied
at low redshifts, when the clustering of SDM
becomes important). If one of these conditions is
satisfied, we solve the usual differential equation
for Tχ [Eq. (18)].

(b) Otherwise, the SDM is tightly coupled to the
baryons, and we can use T̄χb and ΔTbχ that
we obtained in item 1 to find Tχ via Tχ ¼
T̄χb − ΔTbχ=2.

For the threshold of the DM-TCA small parameter we
use ϵthχb ¼ ϵthγb ¼ 5 × 10−5 at high redshifts (z > 100) and
ϵthχb ¼ 10−2 at low redshifts. We have confirmed that the
results of our code are insensitive to these particular values.
Moreover, we have confirmed the correctness of our
solutions to Tb and Tχ by comparing them to the solutions
that can be obtained by solving Eqs. (17)–(20) with
Mathematica [170] (when all the fluctuations in the box
are turned off and we setLX ¼ 35, namely no x-ray heating).
Unlike our code, Mathematica solves differential equations
by adjusting the step size so that the estimated error in the
solution is just within the specified absolute and relative
tolerances. In fact, our DM-TCA algorithm presented above
allows one to correctly solve the differential equations even
for cross sections that are large enough such that the normal
settings in Mathematica fail to solve the equations.

APPENDIX D: SMALL TEMPERATURE
CORRECTION FOR Sα

The Lyα coupling in Eq. (2) is given by [162]

x̃α ¼
Jα
J0

S̃α; ðD1Þ

where Jα is the Lyα flux, and J0 is

J0 ¼
9A10Tγ

8πλ2LyαγαT⋆

¼ 5.54 × 10−12ð1þ zÞ cm−2 sec−1Hz−1 sr−1; ðD2Þ
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where λ2Lyα ¼ 121.567 nm is the Lyα frequency, A10 ¼
2.85 × 10−15 sec−1 is the spontaneous emission coefficient
from the excited hyperfine level to the ground state, and
γα ≈ 50 MHz is the half width at half maximum of the Lyα
resonance line.
The quantity S̃α that appears in Eq. (D1) is a correction to

x̃α due to spectral distortions. In order to find it, one must
solve the steady-state Fokker-Planck equation. This was first
numerically solved by Chen and Miralde-Escudé [131] and
later was refined by Hirata [128], who found a complicated
fit for S̃α that depends on Tk, Ts and the Gunn-Peterson
optical depth τGP. In addition, Hirata found a fit for the color
temperature, T−1

α ¼ T−1
k þ TseT−1

k ðT−1
s − T−1

k Þ, where Tse

accounts for the correction in the color temperature due to
spin exchange and is given by

Tse ¼
�
λLyα
λ21

�
2mHc2

9kB
≈ 0.4 K; ðD3Þ

where λ21 ≈ 21 cm is the wavelength of a 21-cm photon.
The fits discovered by Hirata are implemented in 21cmFAST.
Shortly after Hirata’s work, Chuzhoy and Shapiro [161]

found an analytical solution to the steady-state Fokker-
Planck equation by approximating the spectrum with the
absorption profile appropriate to Lorentzian wings (this
was first done by Grachev [171]). This is known as the
wing approximation. Based on their work, Furlanetto and
Pritchard [172] gave analytical estimates, including for the
color temperature,

Tα ¼ Ts
Tk þ Tse

Ts þ Tse
: ðD4Þ

Note that in the limit Tse ≪ Tk; Ts Eq. (D4) converges to
Hirata’s fit. Recently, Ref. [162] used the results of
Furlanetto and Pritchard to write the analytical estimate
for S̃α in the following way:

S̃αðξÞ ¼ 1 −
Z

∞

0

e−ξðu=3Þ3e−udu ¼
�
1 ξ → ∞
2
9
ξ ξ ≪ 1

; ðD5Þ

where

ξ≡ 3νLyαmHHðkBTkÞ2
πAαγαcℏ3nHð1 − xeÞ

≈ 760

�
Ωmh2

0.143

�
1=2

�
Ωbh2

0.0223

�−1�1 − YHe

0.755

�
−1

×

�
Tk

10 K

�
2
�
1þ z
15

�
−3=2 1

ð1þ δbÞð1 − xeÞ
; ðD6Þ

where νLyα ¼ 2.47 × 1015 Hz is the Lyα frequency and
Aα ¼ 6.25 × 108 Hz is the spontaneous Lyα emission
coefficient. The fiducial values in Eq. (D6) correspond

to typical values of Tk at z ¼ 15 in ΛCDM (cf. Fig. 1).
According to Fig. 18, ξ ∼ 103 corresponds to S̃α ∼ 0.5.
In SDM however, the gas kinetic temperature may

reach very low temperatures (cf. Fig. 9) where Hirata’s
fit to S̃α no longer works. Therefore, for our SDM
calculations in this paper we follow18 [107] and work with
Eqs. (D4)–(D6). In Figs. 19 and 20 we verify that inΛCDM

FIG. 18. The function S̃αðξÞ as given by Eq. (D5).

FIG. 19. Comparison of the 21cm global signal when S̃α is
calculated from Ref. [128] (Hirata) or Ref. [161] (Chuzhoy and
Shapiro). In both curves early temperature and ionization
fluctuations were discarded by starting the simulation at z ¼ 35.

18It is worth mentioning that another fit for S̃α at low
temperature exists in the literature [124,173]. However, imple-
menting this fit in 21cmFirstCLASS did not yield results that agree
with either [128] or [161].
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the output of our code is not sensitive to the chosen method. Indeed, there is an excellent agreement between the two
methods.
Because ξ ∝ T2

k and Tk can be smaller by a factor of ∼102 compared to ΛCDM, the value of ξ may drop below 0.1,
and from Fig. 18 it is implied that S̃α < 0.01. This explains why in Fig. 9, Ts cannot reach very low temperatures even
though Tk does.

[1] S. M. Carroll, The cosmological constant, Living Rev.
Relativity 4, 1 (2001).

[2] P. J. E. Peebles, Tests of cosmological models constrained
by inflation, Astrophys. J. 284, 439 (1984).

[3] P. J. E. Peebles and B. Ratra, The cosmological
constant and dark energy, Rev. Mod. Phys. 75, 559
(2003).

[4] P. Bull et al., Beyond ΛCDM: Problems, solutions, and the
road ahead, Phys. Dark Universe 12, 56 (2016).

[5] Y. Wang and G.-B. Zhao, A brief review on cosmological
analysis of galaxy surveys with multiple tracers, Res.
Astron. Astrophys. 20, 158 (2020).

[6] C. Zhao et al., The completed SDSS-IV extended
Baryon Oscillation Spectroscopic Survey: Cosmological
implications from multitracer BAO analysis with galaxies
and voids, Mon. Not. R. Astron. Soc. 511, 5492 (2022).

[7] A. G. Sanchez et al. (BOSS Collaboration), The clustering
of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological implications of the
configuration-space clustering wedges, Mon. Not. R.
Astron. Soc. 464, 1640 (2017).

[8] J. N. Grieb et al. (BOSS Collaboration), The clustering of
galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological implications of the
Fourier space wedges of the final sample, Mon. Not. R.
Astron. Soc. 467, 2085 (2017).

[9] S. Alam et al. (eBOSS Collaboration), Completed
SDSS-IV extended Baryon Oscillation Spectroscopic
Survey: Cosmological implications from two decades of
spectroscopic surveys at the Apache Point Observatory,
Phys. Rev. D 103, 083533 (2021).

[10] W. J. Percival et al. (2dFGRS Team), Parameter constraints
for flat cosmologies from CMB and 2dFGRS power
spectra, Mon. Not. R. Astron. Soc. 337, 1068 (2002).

[11] C. Blake et al., The WiggleZ dark energy survey: Testing
the cosmological model with baryon acoustic oscillations
at z ¼ 0.6, Mon. Not. R. Astron. Soc. 415, 2892 (2011).

[12] A. Johnson et al., The 6dF galaxy survey: Cosmological
constraints from the velocity power spectrum, Mon. Not.
R. Astron. Soc. 444, 3926 (2014).

[13] E. van Uitert et al., KiDSþ GAMA: Cosmology
constraints from a joint analysis of cosmic shear,

FIG. 20. Comparison of the 21-cm power spectrum when S̃α is calculated from Ref. [128] (Hirata) or Ref. [161] (Chuzhoy and
Shapiro). In both curves early temperature and ionization fluctuations were discarded by starting the simulation at z ¼ 35. Optimistic
foreground scenario is assumed for the error bars.

NEW TOOL FOR 21-CM COSMOLOGY. I. PROBING … PHYS. REV. D 109, 043512 (2024)

043512-23

https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.1086/162425
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1016/j.dark.2016.02.001
https://doi.org/10.1088/1674-4527/20/10/158
https://doi.org/10.1088/1674-4527/20/10/158
https://doi.org/10.1093/mnras/stac390
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stw3384
https://doi.org/10.1093/mnras/stw3384
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1046/j.1365-8711.2002.06001.x
https://doi.org/10.1111/j.1365-2966.2011.19077.x
https://doi.org/10.1093/mnras/stu1615
https://doi.org/10.1093/mnras/stu1615


galaxy–galaxy lensing, and angular clustering, Mon. Not.
R. Astron. Soc. 476, 4662 (2018).

[14] R. Chen et al. (DES Collaboration), Measuring cosmo-
logical parameters with type Ia supernovae in redMaGiC
galaxies, Astrophys. J. 938, 62 (2022).

[15] C. Doux et al. (DES Collaboration), Dark Energy Survey
Year 3 results: Cosmological constraints from the analysis
of cosmic shear in harmonic space, Mon. Not. R. Astron.
Soc. 515, 1942 (2022).

[16] M. Gatti et al. (DES Collaboration), Dark Energy Survey
Year 3 results: Cosmology with moments of weak lensing
mass maps, Phys. Rev. D 106, 083509 (2022).

[17] A. Porredon et al. (DES Collaboration), Dark Energy
Survey Year 3 results: Cosmological constraints from
galaxy clustering and galaxy-galaxy lensing using the
MagLim lens sample, Phys. Rev. D 106, 103530 (2022).

[18] T. M. C. Abbott et al. (DES Collaboration), Dark Energy
Survey Year 3 results: Cosmological constraints from
galaxy clustering and weak lensing, Phys. Rev. D 105,
023520 (2022).

[19] M. Costanzi et al. (DES, SPT Collaborations), Cosmologi-
cal constraints from DES Y1 cluster abundances and SPT
multiwavelength data, Phys. Rev. D 103, 043522 (2021).

[20] C. To et al. (DES Collaboration), Dark Energy Survey
Year 1 results: Cosmological constraints from cluster
abundances, weak lensing, and galaxy correlations, Phys.
Rev. Lett. 126, 141301 (2021).

[21] R. A. C. Croft, D. H. Weinberg, N. Katz, and L. Hernquist,
Recovery of the power spectrum of mass fluctuations from
observations of the Lyα forest, Astrophys. J. 495, 44
(1998).

[22] P. McDonald, J. Miralda-Escude, M. Rauch, W. L. W.
Sargent, T. A. Barlow, R. Cen, and J. P. Ostriker, The
observed probability distribution function, power spec-
trum, and correlation function of the transmitted flux in the
Lyman-alpha forest, Astrophys. J. 543, 1 (2000).

[23] P. McDonald et al. (SDSS Collaboration), The linear
theory power spectrum from the Lyα forest in the Sloan
Digital Sky Survey, Astrophys. J. 635, 761 (2005).

[24] M. Viel, M. G. Haehnelt, and V. Springel, Inferring the
dark matter power spectrum from the Lyman α forest in
high-resolution QSO absorption spectra, Mon. Not. R.
Astron. Soc. 354, 684 (2004).

[25] P. McDonald et al. (SDSS Collaboration), The Lyα forest
power spectrum from the Sloan Digital Sky Survey,
Astrophys. J. Suppl. Ser. 163, 80 (2006).

[26] S. Dodelson, Modern Cosmology (Academic Press,
Amsterdam, 2003).

[27] J. Lesgourgues, Cosmological perturbations, in Theoreti-
cal Advanced Study Institute in Elementary Particle
Physics: Searching for New Physics at Small and Large
Scales (World Scientific, 2013), pp. 29–97, arXiv:1302
.4640.

[28] W. Hu, Concepts in CMB anisotropy formation, Lect.
Notes Phys. 470, 207 (1996).

[29] A. Challinor and H. Peiris, Lecture notes on the physics of
cosmic microwave background anisotropies, AIP Conf.
Proc. 1132, 86 (2009).

[30] W. Hu, Lecture notes on CMB theory: From nucleosyn-
thesis to recombination, arXiv:0802.3688.

[31] W. T. Hu, Wandering in the background: A CMB explorer,
Other thesis, University of California, 1995.

[32] W. Hu and M. J. White, A CMB polarization primer, New
Astron. 2, 323 (1997).

[33] A. Kosowsky, Introduction to microwave background
polarization, New Astron. Rev. 43, 157 (1999).

[34] P. Cabella and M. Kamionkowski, Theory of cosmic
microwave background polarization, in International
School of Gravitation and Cosmology: The Polarization
of the Cosmic Microwave Background (2004), arXiv:astro-
ph/0403392.

[35] Y.-T. Lin and B. D. Wandelt, A beginner’s guide to the
theory of CMB temperature and polarization power spectra
in the line-of-sight formalism, Astropart. Phys. 25, 151
(2006).

[36] A. Lewis and A. Challinor, Weak gravitational lensing of
the CMB, Phys. Rep. 429, 1 (2006).

[37] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. I. Overview and the cosmological legacy of Planck,
Astron. Astrophys. 641, A1 (2020).

[38] L. Balkenhol et al. (SPT-3G Collaboration), Measurement
of the CMB temperature power spectrum and constraints
on cosmology from the SPT-3G 2018 TT, TE, and EE
dataset, Phys. Rev. D 108, 023510 (2023).

[39] G. A. Marques et al. (ACT, DES Collaborations), Cosmo-
logical constraints from the tomography of DES-Y3 galaxies
with CMB lensing from ACT DR4, arXiv:2306.17268.

[40] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); 652, C4(E) (2021).

[41] J. S. Bullock and M. Boylan-Kolchin, Small-scale chal-
lenges to the ΛCDM paradigm, Annu. Rev. Astron. As-
trophys. 55, 343 (2017).

[42] L. Perivolaropoulos and F. Skara, Challenges for ΛCDM:
An update, New Astron. Rev. 95, 101659 (2022).

[43] M. Kamionkowski and A. G. Riess, The Hubble tension
and early dark energy, Annu. Rev. Nucl. Part. Sci. 73, 153
(2023).

[44] E. Abdalla et al., Cosmology intertwined: A review of the
particle physics, astrophysics, and cosmology associated
with the cosmological tensions and anomalies, J. High
Energy Astrophys. 34, 49 (2022).

[45] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Big
bang nucleosynthesis: 2015, Rev. Mod. Phys. 88, 015004
(2016).

[46] C. Pitrou, A. Coc, J.-P. Uzan, and E. Vangioni, Precision
big bang nucleosynthesis with improved Helium-4 pre-
dictions, Phys. Rep. 754, 1 (2018).

[47] P. Madau, A. Meiksin, and M. J. Rees, 21-cm tomography
of the intergalactic medium at high redshift, Astrophys. J.
475, 429 (1997).

[48] R. Barkana and A. Loeb, In the beginning: The first
sources of light and the reionization of the universe, Phys.
Rep. 349, 125 (2001).

[49] A. Loeb and M. Zaldarriaga, Measuring the small—scale
power spectrum of cosmic density fluctuations through
21cm tomography prior to the epoch of structure forma-
tion, Phys. Rev. Lett. 92, 211301 (2004).

[50] S. Bharadwaj and S. S. Ali, On using visibility correlations
to probe the HI distribution from the dark ages to the

JORDAN FLITTER and ELY D. KOVETZ PHYS. REV. D 109, 043512 (2024)

043512-24

https://doi.org/10.1093/mnras/sty551
https://doi.org/10.1093/mnras/sty551
https://doi.org/10.3847/1538-4357/ac8b82
https://doi.org/10.1093/mnras/stac1826
https://doi.org/10.1093/mnras/stac1826
https://doi.org/10.1103/PhysRevD.106.083509
https://doi.org/10.1103/PhysRevD.106.103530
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.103.043522
https://doi.org/10.1103/PhysRevLett.126.141301
https://doi.org/10.1103/PhysRevLett.126.141301
https://doi.org/10.1086/305289
https://doi.org/10.1086/305289
https://doi.org/10.1086/317079
https://doi.org/10.1086/497563
https://doi.org/10.1111/j.1365-2966.2004.08224.x
https://doi.org/10.1111/j.1365-2966.2004.08224.x
https://doi.org/10.1086/444361
https://arXiv.org/abs/1302.4640
https://arXiv.org/abs/1302.4640
https://doi.org/10.1007/BFb0102576
https://doi.org/10.1007/BFb0102576
https://doi.org/10.1063/1.3151849
https://doi.org/10.1063/1.3151849
https://arXiv.org/abs/0802.3688
https://doi.org/10.1016/S1384-1076(97)00022-5
https://doi.org/10.1016/S1384-1076(97)00022-5
https://doi.org/10.1016/S1387-6473(99)00009-3
https://arXiv.org/abs/astro-ph/0403392
https://arXiv.org/abs/astro-ph/0403392
https://doi.org/10.1016/j.astropartphys.2005.12.002
https://doi.org/10.1016/j.astropartphys.2005.12.002
https://doi.org/10.1016/j.physrep.2006.03.002
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1103/PhysRevD.108.023510
https://arXiv.org/abs/2306.17268
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1016/j.newar.2022.101659
https://doi.org/10.1146/annurev-nucl-111422-024107
https://doi.org/10.1146/annurev-nucl-111422-024107
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1103/RevModPhys.88.015004
https://doi.org/10.1103/RevModPhys.88.015004
https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1086/303549
https://doi.org/10.1086/303549
https://doi.org/10.1016/S0370-1573(01)00019-9
https://doi.org/10.1016/S0370-1573(01)00019-9
https://doi.org/10.1103/PhysRevLett.92.211301


present epoch. 1. Formalism and the expected signal, Mon.
Not. R. Astron. Soc. 356, 1519 (2005).

[51] S. Furlanetto, S. P. Oh, and F. Briggs, Cosmology at low
frequencies: The 21cm transition and the high-redshift
universe, Phys. Rep. 433, 181 (2006).

[52] J. R. Pritchard and A. Loeb, 21-cm cosmology, Rep. Prog.
Phys. 75, 086901 (2012).

[53] A. Bera, R. Ghara, A. Chatterjee, K. K. Datta, and S.
Samui, Studying cosmic dawn using redshifted HI 21-cm
signal: A brief review, J. Astrophys. Astron. 44, 10 (2023).

[54] A. K. Shaw et al., Probing early Universe through red-
shifted 21-cm signal: Modeling and observational chal-
lenges, J. Astrophys. Astron. 44, 4 (2023).

[55] R. A. Monsalve, A. Fialkov, J. D. Bowman, A. E. E.
Rogers, T. J. Mozdzen, A. Cohen, R. Barkana, and N.
Mahesh, Results from EDGES high-band: III. New Con-
straints on parameters of the early universe, Astrophys. J.
875, 67 (2019).

[56] J. Nambissan, R. Subrahmanyan, R. Somashekar, N.
Udaya Shankar, S. Singh, A. Raghunathan, B. S. Girish,
K. S. Srivani, and M. Sathyanarayana Rao, SARAS 3
CD/EoR radiometer: Design and performance of the
receiver, Exp. Astron. 51, 193 (2021).

[57] D. C. Price et al., Design and characterization of the large-
aperture experiment to detect the dark age (LEDA)
radiometer systems, Mon. Not. R. Astron. Soc. 478,
4193 (2018).

[58] E. de Lera Acedo et al., The REACH radiometer for
detecting the 21-cm hydrogen signal from redshift
z ≈ 7.5–28, Nat. Astron. 6, 998 (2022).

[59] L. Philip, Z. Abdurashidova, H. C. Chiang, N. Ghazi, A.
Gumba, H. M. Heilgendorff, J. M. Jáuregui-García, K.
Malepe, C. D. Nunhokee, J. Peterson, J. L. Sievers, V.
Simes, and R. Spann, Probing radio intensity at high-Z
from Marion: 2017 instrument, J. Astron. Instrum. 8,
1950004 (2019).

[60] S. Pal, S. Bharadwaj, A. Ghosh, and S. Choudhuri,
Demonstrating the Tapered Gridded Estimator (TGE) for
the cosmological H I 21-cm power spectrum using
150-MHz GMRT observations, Mon. Not. R. Astron.
Soc. 501, 3378 (2021).

[61] S. Yoshiura et al., A new MWA limit on the 21cm power
spectrum at redshifts ∼13–17, Mon. Not. R. Astron. Soc.
505, 4775 (2021).

[62] F. G. Mertens et al., Improved upper limits on the 21-cm
signal power spectrum of neutral hydrogen at z ≈ 9.1 from
LOFAR, Mon. Not. R. Astron. Soc. 493, 1662 (2020).

[63] A. R. Parsons et al., New limits on 21cm EoR from
PAPER-32 consistent with an x-ray heated IGM at
z ¼ 7.7, Astrophys. J. 788, 106 (2014).

[64] D. R. DeBoer et al., Hydrogen Epoch of Reionization
Array (HERA), Publ. Astron. Soc. Pac. 129, 045001
(2017).

[65] R. Braun, T. Bourke, J. A. Green, E. Keane, and J. Wagg,
Advancing astrophysics with the square kilometre array,
Proc. Sci. AASKA14 (2015) 174.

[66] Z. Abdurashidova et al. (HERA Collaboration), HERA
phase I limits on the cosmic 21cm signal: Constraints on
astrophysics and cosmology during the epoch of reioniza-
tion, Astrophys. J. 924, 51 (2022).

[67] Z. Abdurashidova et al. (HERA Collaboration), First
results from HERA phase I: Upper limits on the epoch
of reionization 21cm power spectrum, Astrophys. J. 925,
221 (2022).

[68] Z. Abdurashidova et al. (HERA Collaboration), Improved
constraints on the 21cm EoR power spectrum and the x-ray
heating of the IGM with HERA phase I observations,
Astrophys. J. 945, 124 (2023).

[69] H. Lazare, D. Sarkar, and E. D. Kovetz, HERA bound on
x-ray luminosity weakens when accounting for Population
III stars, arXiv:2307.15577.

[70] P. Ocvirk et al., Cosmic Dawn (CoDA): The first radiation-
hydrodynamics simulation of reionization and galaxy
formation in the local universe, Mon. Not. R. Astron.
Soc. 463, 1462 (2016).

[71] P. Ocvirk et al., Cosmic Dawn II (CoDA II): A new
radiation-hydrodynamics simulation of the self-consistent
coupling of galaxy formation and reionization, Mon. Not.
R. Astron. Soc. 496, 4087 (2020).

[72] J. S. W. Lewis et al., The short ionizing photon mean free
path at z ¼ 6 in Cosmic Dawn III, a new fully coupled
radiation-hydrodynamical simulation of the epoch of
reionization, Mon. Not. R. Astron. Soc. 516, 3389 (2022).

[73] B. Semelin, E. Eames, F. Bolgar, and M. Caillat, 21SSD:
A public data base of simulated 21-cm signals from the
epoch of reionization, Mon. Not. R. Astron. Soc. 472,
4508 (2017).

[74] R. Kannan, E. Garaldi, A. Smith, R. Pakmor, V. Springel,
M. Vogelsberger, and L. Hernquist, Introducing the
THESAN project: Radiation-magnetohydrodynamic simu-
lations of the epoch of reionization, Mon. Not. R. Astron.
Soc. 511, 4005 (2022).

[75] G. Mellema, I. Iliev, M. Alvarez, and P. Shapiro, C2-ray: A
new method for photon-conserving transport of ionizing
radiation, New Astron. 11, 374 (2006).

[76] A. Maselli, A. Ferrara, and B. Ciardi, CRASH: A radiative
transfer scheme, Mon. Not. R. Astron. Soc. 345, 379
(2003).

[77] R. M. Thomas et al., Fast large-scale reionization simu-
lations, Mon. Not. R. Astron. Soc. 393, 32 (2009).

[78] R. Ghara, G. Mellema, S. K. Giri, T. R. Choudhury, K. K.
Datta, and S. Majumdar, Prediction of the 21-cm signal
from reionization: Comparison between 3D and 1D radi-
ative transfer schemes, Mon. Not. R. Astron. Soc. 476,
1741 (2018).

[79] T. Schaeffer, S. K. Giri, and A. Schneider, BEoRN: A fast
and flexible framework to simulate the epoch of reionisa-
tion and cosmic dawn, arXiv:2305.15466.

[80] A. Schneider, S. K. Giri, and J. Mirocha, Halo model
approach for the 21-cm power spectrum at cosmic dawn,
Phys. Rev. D 103, 083025 (2021).

[81] J. B. Muñoz, An effective model for the cosmic-
dawn 21-cm signal, Mon. Not. R. Astron. Soc. 523, 2587
(2023).

[82] S. Furlanetto, M. Zaldarriaga, and L. Hernquist, Statistical
probes of reionization with 21cm tomography, Astrophys.
J. 613, 16 (2004).

[83] I. Reis, A. Fialkov, and R. Barkana, The subtlety of Lyα
photons: Changing the expected range of the 21-cm signal,
Mon. Not. R. Astron. Soc. 506, 5479 (2021).

NEW TOOL FOR 21-CM COSMOLOGY. I. PROBING … PHYS. REV. D 109, 043512 (2024)

043512-25

https://doi.org/10.1111/j.1365-2966.2004.08604.x
https://doi.org/10.1111/j.1365-2966.2004.08604.x
https://doi.org/10.1016/j.physrep.2006.08.002
https://doi.org/10.1088/0034-4885/75/8/086901
https://doi.org/10.1088/0034-4885/75/8/086901
https://doi.org/10.1007/s12036-022-09904-w
https://doi.org/10.1007/s12036-022-09889-6
https://doi.org/10.3847/1538-4357/ab07be
https://doi.org/10.3847/1538-4357/ab07be
https://doi.org/10.1007/s10686-020-09697-2
https://doi.org/10.1093/mnras/sty1244
https://doi.org/10.1093/mnras/sty1244
https://doi.org/10.1038/s41550-022-01817-6
https://doi.org/10.1142/S2251171719500041
https://doi.org/10.1142/S2251171719500041
https://doi.org/10.1093/mnras/staa3831
https://doi.org/10.1093/mnras/staa3831
https://doi.org/10.1093/mnras/stab1560
https://doi.org/10.1093/mnras/stab1560
https://doi.org/10.1093/mnras/staa327
https://doi.org/10.1088/0004-637X/788/2/106
https://doi.org/10.1088/1538-3873/129/974/045001
https://doi.org/10.1088/1538-3873/129/974/045001
https://doi.org/10.22323/1.215.0174
https://doi.org/10.3847/1538-4357/ac2ffc
https://doi.org/10.3847/1538-4357/ac1c78
https://doi.org/10.3847/1538-4357/ac1c78
https://doi.org/10.3847/1538-4357/acaf50
https://arXiv.org/abs/2307.15577
https://doi.org/10.1093/mnras/stw2036
https://doi.org/10.1093/mnras/stw2036
https://doi.org/10.1093/mnras/staa1266
https://doi.org/10.1093/mnras/staa1266
https://doi.org/10.1093/mnras/stac2383
https://doi.org/10.1093/mnras/stx2274
https://doi.org/10.1093/mnras/stx2274
https://doi.org/10.1093/mnras/stab3710
https://doi.org/10.1093/mnras/stab3710
https://doi.org/10.1016/j.newast.2005.09.004
https://doi.org/10.1046/j.1365-8711.2003.06979.x
https://doi.org/10.1046/j.1365-8711.2003.06979.x
https://doi.org/10.1111/j.1365-2966.2008.14206.x
https://doi.org/10.1093/mnras/sty314
https://doi.org/10.1093/mnras/sty314
https://arXiv.org/abs/2305.15466
https://doi.org/10.1103/PhysRevD.103.083025
https://doi.org/10.1093/mnras/stad1512
https://doi.org/10.1093/mnras/stad1512
https://doi.org/10.1086/423028
https://doi.org/10.1086/423028
https://doi.org/10.1093/mnras/stab2089


[84] M. Santos, L. Ferramacho, M. Silva, A. Amblard, and A.
Cooray, SimFast21: Simulation of the cosmological
21cm signal, Astrophysics Source Code Library, record
ascl:1010.025 (2010).

[85] A. Mesinger, S. Furlanetto, and R. Cen, 21cmFAST: A
fast, semi-numerical simulation of the high-redshift 21-cm
signal, Mon. Not. R. Astron. Soc. 411, 955 (2011).

[86] J. B. Muñoz, Y. Qin, A. Mesinger, S. G. Murray, B. Greig,
and C. Mason, The impact of the first galaxies on cosmic
dawn and reionization, Mon. Not. R. Astron. Soc. 511,
3657 (2022).

[87] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear
Anisotropy Solving System (CLASS) II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

[88] Z. Haiman, M. J. Rees, and A. Loeb, Destruction of
molecular hydrogen during cosmological reionization,
Astrophys. J. 476, 458 (1997).

[89] V. Bromm and R. B. Larson, The first stars, Annu. Rev.
Astron. Astrophys. 42, 79 (2004).

[90] A. Fialkov, R. Barkana, E. Visbal, D. Tseliakhovich, and
C. M. Hirata, The 21-cm signature of the first stars during
the Lyman-Werner feedback era, Mon. Not. R. Astron.
Soc. 432, 2909 (2013).

[91] D. Tseliakhovich and C. Hirata, Relative velocity of dark
matter and baryonic fluids and the formation of the first
structures, Phys. Rev. D 82, 083520 (2010).

[92] D. Tseliakhovich, R. Barkana, and C. Hirata, Suppression
and spatial variation of early galaxies and minihalos, Mon.
Not. R. Astron. Soc. 418, 906 (2011).

[93] A. Fialkov, R. Barkana, D. Tseliakhovich, and C. M.
Hirata, Impact of the relative motion between the dark
matter and baryons on the first stars, Mon. Not. R. Astron.
Soc. 424, 1335 (2012).

[94] Y. Ali-Haïmoud, P. D. Meerburg, and S. Yuan, New light
on 21cm intensity fluctuations from the dark ages, Phys.
Rev. D 89, 083506 (2014).

[95] T. Venumadhav, L. Dai, A. Kaurov, and M. Zaldarriaga,
Heating of the intergalactic medium by the cosmic micro-
wave background during cosmic dawn, Phys. Rev. D 98,
103513 (2018).

[96] D. Sarkar, J. Flitter, and E. D. Kovetz, Exploring delaying
and heating effects on the 21-cm signature of fuzzy dark
matter, Phys. Rev. D 105, 103529 (2022).

[97] J. Flitter and E. D. Kovetz, Closing the window on fuzzy
dark matter with the 21-cm signal, Phys. Rev. D 106,
063504 (2022).

[98] H. A. G. Cruz, T. Adi, J. Flitter, M. Kamionkowski, and
E. D. Kovetz, 21-cm fluctuations from primordial mag-
netic fields, arXiv:2308.04483.

[99] C. Dvorkin, K. Blum, and M. Kamionkowski, Con-
straining dark matter-baryon scattering with linear cos-
mology, Phys. Rev. D 89, 023519 (2014).

[100] J. B. Muñoz, E. D. Kovetz, and Y. Ali-Haïmoud, Heating
of baryons due to scattering with dark matter during the
dark ages, Phys. Rev. D 92, 083528 (2015).

[101] K. K. Boddy, V. Gluscevic, V. Poulin, E. D. Kovetz, M.
Kamionkowski, and R. Barkana, Critical assessment of
CMB limits on dark matter-baryon scattering: New treat-
ment of the relative bulk velocity, Phys. Rev. D 98, 123506
(2018).

[102] A. Fialkov, R. Barkana, and A. Cohen, Constraining
baryon–dark matter scattering with the cosmic dawn
21-cm signal, Phys. Rev. Lett. 121, 011101 (2018).

[103] W. L. Xu, C. Dvorkin, and A. Chael, Probing sub-GeV
dark matter-baryon scattering with cosmological observ-
ables, Phys. Rev. D 97, 103530 (2018).

[104] R. Barkana, Possible interaction between baryons and
dark-matter particles revealed by the first stars, Nature
(London) 555, 71 (2018).

[105] K. Short, J. L. Bernal, K. K. Boddy, V. Gluscevic, and L.
Verde, Dark matter-baryon scattering effects on temper-
ature perturbations and implications for cosmic dawn,
arXiv:2203.16524.

[106] A. He, M.M. Ivanov, R. An, and V. Gluscevic, S8 tension
in the context of dark matter-baryon scattering, Astrophys.
J. Lett. 954, L8 (2023).

[107] T. Driskell, E. O. Nadler, J. Mirocha, A. Benson, K. K.
Boddy, T. D. Morton, J. Lashner, R. An, and V. Gluscevic,
Structure formation and the global 21-cm signal in the
presence of Coulomb-like dark matter-baryon interactions,
Phys. Rev. D 106, 103525 (2022).

[108] S. D. McDermott, H.-B. Yu, and K. M. Zurek, Turning off
the lights: How dark is dark matter?, Phys. Rev. D 83,
063509 (2011).

[109] E. D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R.
Barkana, and M. Kamionkowski, Tighter limits on dark
matter explanations of the anomalous EDGES 21cm
signal, Phys. Rev. D 98, 103529 (2018).

[110] J. B. Muñoz and A. Loeb, A small amount of mini-charged
dark matter could cool the baryons in the early universe,
Nature (London) 557, 684 (2018).

[111] A. Berlin, D. Hooper, G. Krnjaic, and S. D. McDermott,
Severely constraining dark matter interpretations of the
21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018).

[112] R. Barkana, N. J. Outmezguine, D. Redigolo, and T.
Volansky, Strong constraints on light dark matter inter-
pretation of the EDGES signal, Phys. Rev. D 98, 103005
(2018).

[113] T. R. Slatyer and C.-L. Wu, Early-universe constraints
on dark matter-baryon scattering and their implications
for a global 21cm signal, Phys. Rev. D 98, 023013
(2018).

[114] H. Liu and T. R. Slatyer, Implications of a 21-cm signal for
dark matter annihilation and decay, Phys. Rev. D 98,
023501 (2018).

[115] J. B. Muñoz, C. Dvorkin, and A. Loeb, 21-cm fluctuations
from charged dark matter, Phys. Rev. Lett. 121, 121301
(2018).

[116] Y. Ali-Haïmoud, J. Chluba, and M. Kamionkowski, Con-
straints on dark matter interactions with standard model
particles from cosmic microwave background spectral
distortions, Phys. Rev. Lett. 115, 071304 (2015).

[117] V. Gluscevic and K. K. Boddy, Constraints on scattering of
keV–TeV dark matter with protons in the early universe,
Phys. Rev. Lett. 121, 081301 (2018).

[118] K. K. Boddy and V. Gluscevic, First cosmological con-
straint on the effective theory of dark matter-proton
interactions, Phys. Rev. D 98, 083510 (2018).

[119] K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler,
and R. H. Wechsler, Bounds on velocity-dependent dark

JORDAN FLITTER and ELY D. KOVETZ PHYS. REV. D 109, 043512 (2024)

043512-26

https://doi.org/10.1111/j.1365-2966.2010.17731.x
https://doi.org/10.1093/mnras/stac185
https://doi.org/10.1093/mnras/stac185
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1086/303647
https://doi.org/10.1146/annurev.astro.42.053102.134034
https://doi.org/10.1146/annurev.astro.42.053102.134034
https://doi.org/10.1093/mnras/stt650
https://doi.org/10.1093/mnras/stt650
https://doi.org/10.1103/PhysRevD.82.083520
https://doi.org/10.1111/j.1365-2966.2011.19541.x
https://doi.org/10.1111/j.1365-2966.2011.19541.x
https://doi.org/10.1111/j.1365-2966.2012.21318.x
https://doi.org/10.1111/j.1365-2966.2012.21318.x
https://doi.org/10.1103/PhysRevD.89.083506
https://doi.org/10.1103/PhysRevD.89.083506
https://doi.org/10.1103/PhysRevD.98.103513
https://doi.org/10.1103/PhysRevD.98.103513
https://doi.org/10.1103/PhysRevD.105.103529
https://doi.org/10.1103/PhysRevD.106.063504
https://doi.org/10.1103/PhysRevD.106.063504
https://arXiv.org/abs/2308.04483
https://doi.org/10.1103/PhysRevD.89.023519
https://doi.org/10.1103/PhysRevD.92.083528
https://doi.org/10.1103/PhysRevD.98.123506
https://doi.org/10.1103/PhysRevD.98.123506
https://doi.org/10.1103/PhysRevLett.121.011101
https://doi.org/10.1103/PhysRevD.97.103530
https://doi.org/10.1038/nature25791
https://doi.org/10.1038/nature25791
https://arXiv.org/abs/2203.16524
https://doi.org/10.3847/2041-8213/acdb63
https://doi.org/10.3847/2041-8213/acdb63
https://doi.org/10.1103/PhysRevD.106.103525
https://doi.org/10.1103/PhysRevD.83.063509
https://doi.org/10.1103/PhysRevD.83.063509
https://doi.org/10.1103/PhysRevD.98.103529
https://doi.org/10.1038/s41586-018-0151-x
https://doi.org/10.1103/PhysRevLett.121.011102
https://doi.org/10.1103/PhysRevD.98.103005
https://doi.org/10.1103/PhysRevD.98.103005
https://doi.org/10.1103/PhysRevD.98.023013
https://doi.org/10.1103/PhysRevD.98.023013
https://doi.org/10.1103/PhysRevD.98.023501
https://doi.org/10.1103/PhysRevD.98.023501
https://doi.org/10.1103/PhysRevLett.121.121301
https://doi.org/10.1103/PhysRevLett.121.121301
https://doi.org/10.1103/PhysRevLett.115.071304
https://doi.org/10.1103/PhysRevLett.121.081301
https://doi.org/10.1103/PhysRevD.98.083510


matter-proton scattering from Milky Way satellite abun-
dance, Astrophys. J. Lett. 907, L46 (2021).

[120] D. V. Nguyen, D. Sarnaaik, K. K. Boddy, E. O. Nadler, and
V. Gluscevic, Observational constraints on dark matter
scattering with electrons, Phys. Rev. D 104, 103521 (2021).

[121] M. A. Buen-Abad, R. Essig, D. McKeen, and Y.-M.
Zhong, Cosmological constraints on dark matter inter-
actions with ordinary matter, Phys. Rep. 961, 1 (2022).

[122] K. K. Rogers, C. Dvorkin, and H. V. Peiris, Limits on the
light dark matter–proton cross section from cosmic large-
scale structure, Phys. Rev. Lett. 128, 171301 (2022).

[123] H. Liu, N. J. Outmezguine, D. Redigolo, and T. Volansky,
Reviving millicharged dark matter for 21-cm cosmology,
Phys. Rev. D 100, 123011 (2019).

[124] R. Barkana, A. Fialkov, H. Liu, and N. J. Outmezguine,
Anticipating a new-physics signal in upcoming 21-cm
power spectrum observations, Phys. Rev. D 108, 063503
(2023).

[125] J. Mirocha, Decoding the x-ray properties of pre-
reionization era sources, Mon. Not. R. Astron. Soc. 443,
1211 (2014).

[126] J. Mirocha, S. R. Furlanetto, and G. Sun, The global 21-cm
signal in the context of the high- z galaxy luminosity
function, Mon. Not. R. Astron. Soc. 464, 1365 (2017).

[127] J. Flitter and E. D. Kovetz, following paper, New tool for
21-cm cosmology. II. Investigating the effect of early linear
fluctuations, Phys. Rev. D 109, 043513 (2024).

[128] C. M. Hirata, Wouthuysen-Field coupling strength and
application to high-redshift 21cm radiation, Mon. Not.
R. Astron. Soc. 367, 259 (2006).

[129] S. A. Wouthuysen, On the excitation mechanism of the
21-cm (radio-frequency) interstellar hydrogen emission
line, Astrophys. J. 57, 31 (1952).

[130] G. B. Field, Excitation of the hydrogen 21-CM line, Proc.
IRE 46, 240 (1958).

[131] X.-L. Chen and J. Miralda-Escude, The spin—kinetic
temperature coupling and the heating rate due to Lyα
scattering before reionization: Predictions for 21cm emis-
sion and absorption, Astrophys. J. 602, 1 (2004).

[132] Y. Ali-Haimoud and C. M. Hirata, HyRec: A fast and
highly accurate primordial hydrogen and helium recombi-
nation code, Phys. Rev. D 83, 043513 (2011).

[133] N. Lee and Y. Ali-Haïmoud, HyRec-2: A highly accurate
sub-millisecond recombination code, Phys. Rev. D 102,
083517 (2020).

[134] P. J. E. Peebles, Recombination of the primeval plasma,
Astrophys. J. 153, 1 (1968).

[135] T. Abel, P. Anninos, Y. Zhang, and M. L. Norman,
Modeling primordial gas in numerical cosmology, New
Astron. 2, 181 (1997).

[136] Y. Mao, J. Koda, P. R. Shapiro, I. T. Iliev, G. Mellema, H.
Park, K. Ahn, and M. Bianco, The impact of inhomo-
geneous subgrid clumping on cosmic reionization, Mon.
Not. R. Astron. Soc. 491, 1600 (2020).

[137] A. R. Liddle, D. H. Lyth, P. T. P. Viana, and M. J. White,
Cold dark matter models with a cosmological constant,
Mon. Not. R. Astron. Soc. 282, 281 (1996).

[138] S. M. Carroll, W. H. Press, and E. L. Turner, The cosmo-
logical constant, Annu. Rev. Astron. Astrophys. 30, 499
(1992).

[139] S. Seager, D. D. Sasselov, and D. Scott, A new calculation of
the recombination epoch, Astrophys. J. Lett. 523, L1 (1999).

[140] S. Seager, D. D. Sasselov, and D. Scott, How exactly did
the universe become neutral?, Astrophys. J. Suppl. Ser.
128, 407 (2000).

[141] S. G. Murray, POWERBOX: A Python package for creating
structured fields with isotropic power spectra, J. Open
Source Software 3, 850 (2018).

[142] G. Jungman, M. Kamionkowski, A. Kosowsky, and
D. N. Spergel, Cosmological parameter determination with
microwave background maps, Phys. Rev. D 54, 1332
(1996).

[143] C. A. Mason, J. B. Muñoz, B. Greig, A. Mesinger, and J.
Park, 21cm fish: Fisher-matrix framework for fast param-
eter forecasts from the cosmic 21-cm signal, Mon. Not. R.
Astron. Soc. 524, 4711 (2022).

[144] N. S. Kern, A. Liu, A. R. Parsons, A. Mesinger, and B.
Greig, Emulating simulations of cosmic dawn for 21cm
power spectrum constraints on cosmology, reionization,
and x-ray heating, Astrophys. J. 848, 23 (2017).

[145] G. Shmueli, D. Sarkar, and E. D. Kovetz, Mitigating the
optical depth degeneracy in the cosmological measurement
of neutrino masses using 21-cm observations, Phys. Rev. D
108, 083531 (2023).

[146] J. C. Pober, A. R. Parsons, D. R. DeBoer, P. McDonald, M.
McQuinn, J. E. Aguirre, Z. Ali, R. F. Bradley, T.-C. Chang,
and M. F. Morales, The Baryon Acoustic Oscillation
broadband and broad-beam array: Design overview and
sensitivity forecasts, Astron. J. 145, 65 (2013).

[147] J. C. Pober et al., What next-generation 21cm power
spectrum measurements can teach us about the epoch of
reionization, Astrophys. J. 782, 66 (2014).

[148] A. Liu and J. R. Shaw, Data analysis for precision 21cm
cosmology, Publ. Astron. Soc. Pac. 132, 062001 (2020).

[149] M. F. Morales, B. Hazelton, I. Sullivan, and A. Beardsley,
Four fundamental foreground power spectrum shapes for
21cm cosmology observations, Astrophys. J. 752, 137
(2012).

[150] K. N. Abazajian et al. (CMB-S4 Collaboration), CMB-S4
science book, first edition, arXiv:1610.02743.

[151] W. L. K. Wu, J. Errard, C. Dvorkin, C. L. Kuo, A. T. Lee, P.
McDonald, A. Slosar, and O. Zahn, A guide to designing
future ground-based cosmic microwave background ex-
periments, Astrophys. J. 788, 138 (2014).

[152] J. B. Muñoz, E. D. Kovetz, A. Raccanelli, M.
Kamionkowski, and J. Silk, Towards a measurement of
the spectral runnings, J. Cosmol. Astropart. Phys. 05
(2017) 032.

[153] T. Adi and E. D. Kovetz, Can conformally coupled
modified gravity solve the Hubble tension?, Phys. Rev.
D 103, 023530 (2021).

[154] J. Park, A. Mesinger, B. Greig, and N. Gillet, Inferring the
astrophysics of reionization and cosmic dawn from galaxy
luminosity functions and the 21-cm signal, Mon. Not. R.
Astron. Soc. 484, 933 (2019).

[155] Y. Qin, A. Mesinger, S. E. I. Bosman, and M. Viel,
Reionization and galaxy inference from the high-redshift
Lyα forest, Mon. Not. R. Astron. Soc. 506, 2390 (2021).

[156] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J.
Mozdzen, and N. Mahesh, An absorption profile centred

NEW TOOL FOR 21-CM COSMOLOGY. I. PROBING … PHYS. REV. D 109, 043512 (2024)

043512-27

https://doi.org/10.3847/2041-8213/abd807
https://doi.org/10.1103/PhysRevD.104.103521
https://doi.org/10.1016/j.physrep.2022.02.006
https://doi.org/10.1103/PhysRevLett.128.171301
https://doi.org/10.1103/PhysRevD.100.123011
https://doi.org/10.1103/PhysRevD.108.063503
https://doi.org/10.1103/PhysRevD.108.063503
https://doi.org/10.1093/mnras/stu1193
https://doi.org/10.1093/mnras/stu1193
https://doi.org/10.1093/mnras/stw2412
https://doi.org/10.1103/PhysRevD.109.043513
https://doi.org/10.1111/j.1365-2966.2005.09949.x
https://doi.org/10.1111/j.1365-2966.2005.09949.x
https://doi.org/10.1086/106661
https://doi.org/10.1109/JRPROC.1958.286741
https://doi.org/10.1109/JRPROC.1958.286741
https://doi.org/10.1086/380829
https://doi.org/10.1103/PhysRevD.83.043513
https://doi.org/10.1103/PhysRevD.102.083517
https://doi.org/10.1103/PhysRevD.102.083517
https://doi.org/10.1086/149628
https://doi.org/10.1016/S1384-1076(97)00010-9
https://doi.org/10.1016/S1384-1076(97)00010-9
https://doi.org/10.1093/mnras/stz2986
https://doi.org/10.1093/mnras/stz2986
https://doi.org/10.1093/mnras/282.1.281
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1086/312250
https://doi.org/10.1086/313388
https://doi.org/10.1086/313388
https://doi.org/10.21105/joss.00850
https://doi.org/10.21105/joss.00850
https://doi.org/10.1103/PhysRevD.54.1332
https://doi.org/10.1103/PhysRevD.54.1332
https://doi.org/10.1093/mnras/stad2145
https://doi.org/10.1093/mnras/stad2145
https://doi.org/10.3847/1538-4357/aa8bb4
https://doi.org/10.1103/PhysRevD.108.083531
https://doi.org/10.1103/PhysRevD.108.083531
https://doi.org/10.1088/0004-6256/145/3/65
https://doi.org/10.1088/0004-637X/782/2/66
https://doi.org/10.1088/1538-3873/ab5bfd
https://doi.org/10.1088/0004-637X/752/2/137
https://doi.org/10.1088/0004-637X/752/2/137
https://arXiv.org/abs/1610.02743
https://doi.org/10.1088/0004-637X/788/2/138
https://doi.org/10.1088/1475-7516/2017/05/032
https://doi.org/10.1088/1475-7516/2017/05/032
https://doi.org/10.1103/PhysRevD.103.023530
https://doi.org/10.1103/PhysRevD.103.023530
https://doi.org/10.1093/mnras/stz032
https://doi.org/10.1093/mnras/stz032
https://doi.org/10.1093/mnras/stab1833


at 78 megahertz in the sky-averaged spectrum, Nature
(London) 555, 67 (2018).

[157] S. Singh, Jishnu Nambissan T., R. Subrahmanyan, N.
Udaya Shankar, B. S. Girish, A. Raghunathan, R.
Somashekar, K. S. Srivani, and M. Sathyanarayana Rao,
On the detection of a cosmic dawn signal in the radio
background, Nat. Astron. 6, 607 (2022).

[158] J. B. Muñoz, Robust velocity-induced acoustic oscillations
at cosmic dawn, Phys. Rev. D 100, 063538 (2019).

[159] Y. Ali-Haïmoud, Boltzmann-Fokker-Planck formalism for
dark-matter–baryon scattering, Phys. Rev. D 99, 023523
(2019).

[160] S. S. Gandhi and Y. Ali-Haïmoud, Numerical solution of the
exact background collisional Boltzmann equation for dark
matter-baryon scattering, Phys. Rev. D 106, 083515 (2022).

[161] L. Chuzhoy and P. R. Shapiro, UV pumping of hyperfine
transitions in the light elements, with application to 21-cm
hydrogen and 92-cm deuterium lines from the early
universe, Astrophys. J. 651, 1 (2006).

[162] S. Mittal and G. Kulkarni, Lyα coupling and heating at
cosmic dawn, Mon. Not. R. Astron. Soc. 503, 4264 (2021).

[163] J. B. Muñoz, Standard ruler at cosmic dawn, Phys. Rev.
Lett. 123, 131301 (2019).

[164] D. Sarkar and E. D. Kovetz, Measuring the cosmic
expansion rate using 21-cm velocity acoustic oscillations,
Phys. Rev. D 107, 023524 (2023).

[165] M. Kulkarni, E. Visbal, and G. L. Bryan, The critical dark
matter halo mass for Population III star formation:
Dependence on Lyman–Werner radiation, baryon-dark
matter streaming velocity, and redshift, Astrophys. J.
917, 40 (2021).

[166] G. L. Bryan et al. (ENZO Collaboration), Enzo: An
adaptive mesh refinement code for astrophysics, Astro-
phys. J. Suppl. Ser. 211, 19 (2014).

[167] R. K. Sheth and G. Tormen, Large scale bias and the peak
background split, Mon. Not. R. Astron. Soc. 308, 119 (1999).

[168] D. Pequignot, P. Petitjean, and C. Boisson, Total and
effective radiative recombination coefficients, Astron. As-
trophys. 251, 680 (1991).

[169] D. Baumann, Cosmology (Cambridge University Press,
Cambridge, England, 2022).

[170] W. R. Inc., Mathematica, Version 13.3, Champaign, IL,
2023.

[171] S. I. Grachev, Diffusion of resonance radiation in an
infinite uniformly expanding medium, Astrofizika 30,
347 (1989).

[172] S. Furlanetto and J. R. Pritchard, The scattering of Lyman-
series photons in the intergalactic medium, Mon. Not. R.
Astron. Soc. 372, 1093 (2006).

[173] R. Barkana, The rise of the first stars: Supersonic stream-
ing, radiative feedback, and 21-cm cosmology, Phys. Rep.
645, 1 (2016).

JORDAN FLITTER and ELY D. KOVETZ PHYS. REV. D 109, 043512 (2024)

043512-28

https://doi.org/10.1038/nature25792
https://doi.org/10.1038/nature25792
https://doi.org/10.1038/s41550-022-01610-5
https://doi.org/10.1103/PhysRevD.100.063538
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1086/507670
https://doi.org/10.1093/mnras/staa3811
https://doi.org/10.1103/PhysRevLett.123.131301
https://doi.org/10.1103/PhysRevLett.123.131301
https://doi.org/10.1103/PhysRevD.107.023524
https://doi.org/10.3847/1538-4357/ac08a3
https://doi.org/10.3847/1538-4357/ac08a3
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/10.1046/j.1365-8711.1999.02692.x
https://doi.org/10.1111/j.1365-2966.2006.10899.x
https://doi.org/10.1111/j.1365-2966.2006.10899.x
https://doi.org/10.1016/j.physrep.2016.06.006
https://doi.org/10.1016/j.physrep.2016.06.006

