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This paper investigates the decoherence effect resulting from the interaction of squeezed gravitational
waves with a system of massive particles in spatial superposition. This paper investigates the decoherence
effect resulting from the interaction of squeezed gravitational waves with a system of massive particles in
spatial superposition. We first employ the open quantum system approach to obtain the established
decoherence in a spatial superposition of massive objects induced by squeezed gravitational waves.
Subsequently, we focus on the spin-1=2 particle system, and our analysis reveals that the decoherence rate
depends on both the squeezing strength and the squeezing angle of the gravitational waves. Our results
demonstrate that squeezed gravitational waves with squeezing strengths of rp ≥ 1.2 and a squeezing angle
of φp ¼ π=2 can induce a 1% decoherence within 1 s free falling of a cloud of spin-1=2 particles. This
investigation sheds light on the relationship between squeezed gravitational waves and the coherence of
spatial superposition states in systems of massive particles and their spin. The dependence of decoherence
on squeezing strength and, in the case of spin-1=2 particles, on the squeezing angle paves the way for
further exploration and understanding of the quantum-gravity connection. We suggest that such an
experimental setup could also be employed to eventually investigate the level of squeezing effect (and
hence quantum-related properties) of gravitational waves produced in the early universe from inflation.
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I. INTRODUCTION

Several theoretical proposals have been made to detect
the quantum aspects of the stochastic gravitational-wave
background (SGWB), which is believed to arise from the
superposition of numerous independent and unresolved
gravitational wave (GW) sources. These sources can have
cosmological origins, such as various inflationary models,
first-order phase transitions, cosmic string models, or
astrophysical origins, resulting from the superposition of
waves generated by astrophysical sources like supernovae
(see [1–3] for a review).
The energy associated with gravitons (which are the

quantum counterparts of the SGWB) is expected to be
minuscule, making them difficult to observe directly using
current technology [4]. That said, indirect detection meth-
ods rather study their effects on other quantum systems. For
example, the noise induced by gravitons in gravitational
wave detectors or the effects of gravitons on quantum states
can be used to indirectly probe the existence and influence
of gravitons. Gravitons can induce decoherence in certain

quantum systems with which they interact. When a quan-
tum system comes into contact with gravitons or experi-
ences a gravitational wave, its quantum coherence can be
disrupted. Recently, there has been significant interest in
detecting the induced decoherence of macroscopic
entangled states as an indirect probe of gravitons [5–15].
One proposal by Kanno et al. [16] involves detecting the
decay of entanglement between massive mirrors in an
interferometric GW detector. They suggest generating
entanglement by sending a single photon through the
interferometer, creating a spatially nonlocal excitation.
The decay of this entangled state, resulting from its
coupling to a noisy environment of gravitons, provides
indirect evidence for the quantum nature of GW.
In a similar study, Parikh et al. proposed a method to

investigate gravitons through the stochastic modification of
the geodesic deviation equation for a pair of freely falling
masses [5–7]. This proposal is based on the concept that
freely falling bodies experience noise due to their inter-
action with gravitons. In their method, the graviton
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environment induces decoherence in the quantum dynam-
ics of the system through a nonunitary evolution master
equation that describes the open quantum system (OQS).
The noise predicted by [5–8] depends on the gravitational
quantum state, and the authors estimated the noise corre-
lators and their effect on the motion of the detector’s
mirrors for quantized gravitational waves in various states,
such as vacuum, coherent, thermal, and squeezed states,
using the Feynman-Vernon influence functionals tech-
nique [17]. The authors demonstrated that coherent states
recover the classical phenomenology of gravitational
waves.
Squeezed states are a well-known quantum mechanical

phenomenon that is even prepared in various quantum
optical experiments [18]. These states have also been
proposed for primordial gravitational waves [19], and their
observation would provide evidence of the quantum nature
of primordial GWs. The power spectral density of strain
resulting from quantum fluctuations originating from the
squeezed quantum state of GWs is computed to have
an exponential enhancement factor proportional to the
squeezing strength. This suggests that significant quan-
tum fluctuation effects could be detected by future GW
detectors [5–7].
The concept of quantum squeezed states is closely

intertwined with the so-called problem of quantum-to-
classical transition of primordial perturbations during
cosmic inflation [2]. The prevailing view, based on the
theory of cosmic inflation and our understanding of
quantum mechanics, is that quantum fluctuations in the
early universe, including those of the tensor field (which we
associate with gravitons), were stretched to macroscopic
scales due to the accelerated expansion of space during
inflation. These tensor fluctuations can be described as
being in a squeezed state. This is a purely quantum
mechanical effect. However, as these fluctuations contin-
ued to stretch and became classical perturbations, they
formed the seeds for the structure in the universe we
observe today. How such a transition from quantum to
classical perturbations took place and whether the squeezed
state of gravitons has entirely classicalized is very subtle
issue and is linked to deeper questions about the inter-
pretation of quantum mechanics.
Some interpretations conclude that the quantum-to-

classical transition was completed by the end of inflation
and that the squeezed state has fully classicalized when the
modes become sub-Hubble again (see, e.g. [4,20–24]).
However such an interpretation has been debated in
recent years and clarified. Indeed other recent interpreta-
tions suggest that quantum correlations might still be
present [25–35] (for a recent review see [36]). They
show the conditions for a complete decoherence of our
universe, and hence how it would be eventually possible to
detect the signature of quantumness in cosmological
observations.

Detecting the quantum properties, such as the squeezed
nature of gravitons, would require new observational
techniques or new physical effects. Various theoretical
proposals have been developed to detect quantum aspects
of gravity, as outlined in Refs. [37–43]. These proposals
explore scenarios in which two quantum systems are
coupled through gravity to detect the presence of quantum
correlations. The central concept is that quantum entangle-
ment between objects that do not directly interact can only
increase through a quantum mediator, believed to be the
gravitational field in these scenarios. While these proposals
suggest that quantum mechanics may play a role in gravity,
they do not provide a comprehensive understanding of the
quantum structure of gravity. Recent proposals, such as
those described in [44–48], have focused on using two
quantum systems coupled through gravity to mediate
quantum correlations as a means of detecting quantum
aspects of gravity.
References [44,45] propose a test to detect quantum

effects in gravity by employing two systems that interact
with each other only via the gravitational field. If two
quantum systems do not directly interact with each other
but become entangled after local interaction through the
gravitational field, it suggests that the gravitational field is
quantum.While the proposal by [44,45] demonstrates some
nonclassicality in gravity, it does not provide a detailed
understanding of the quantum structure of gravity.
Nonetheless, there are practical and fundamental debates

regarding the feasibility of achieving sufficient spatial
superposition for massive objects [49,50] or using them
as a probe for quantum gravity [51–53]. For instance,
Bronstein, challenged the validity of quantum gravity
tests, focusing his argument on the backreaction of the
“quantum” system on the “classical” detector in the
weak field limit, posing a conflict with the equivalence
principle [51,54]. In cases where the mass of the detector is
comparable to that of the test particles, dephasing occurs
due to detector recoil. Conversely, a heavier detector
introduces a more substantial interaction than that between
the two test particles. It may be thought that using
electromagnetic beam splitters and reflectors with devices
that are far from the test particles will lessen the impact
of the detector. However the electromagnetic light also
carries momentum and the further masses are the longer
pulses of light have to be and the more momentum they will
transfer [54].
In this work, we focus on the decoherence arising from

the quantum effects of gravitational waves. Decoherence is
a phenomenon in quantum theory where coherence and,
thus, interference effects are lost [55,56]. By analyzing the
reduced density operator of a mixed state that includes both
system and environmental states, we can observe that the
state of the system loses phase, causing the off-diagonal
terms to decay. Therefore, observing the decay of coher-
ence due to interaction with a noisy bath of gravitons could
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indirectly provide evidence of the quantum nature of the
gravitational field.
The applicability of the quantum Boltzmann equation

(QBE) [57] is limited to situations where the coupling
between the system and environment is weak, and the
memory effects of the environment can be neglected. In this
study, we use QBE to examine interference experiments
with massive object and massive spin-1=2 particles and
explore the loss of coherence resulting from their inter-
action with graviton noise in laboratory-scale setups.
The paper is organized as follows: Section II discusses

Markovian and Non-Markovian QBE and derives the
dissipative term, which will be used in the subsequent
sections. The mesoscopic and microscopic timescales,
which will be used to describe the time evolution of the
density matrix, are also defined. Section III is devoted to
the derivation of the interaction Hamiltonian between the
massive object and squeezed gravitational wave. The
massive object in this section is prepared in spatial super-
position. In Sec. IV the decoherence of the aforementioned
massive object system due to interaction with squeezed
gravitational waves is derived and a descriptive setup for
understanding the amount of decoherence effect in different
squeezing strengths is stated. In Sec. V the decoherence
effect due to the interaction of a massive spin-1=2 object
with squeezed gravitational waves is derived and a mini-
mum squeezing strength for imposing a 1% decoherence in
a descriptive setup is obtained.

II. MARKOVIAN AND NON-MARKOVIAN
QUANTUM BOLTZMANN EQUATION

In this work, we employ the QBE to describe the dyna-
mics of decoherence induced by the interaction between the
quantum system and the gravitational field [57]. The QBE
is a powerful tool for analyzing OQS [56], where the time
evolution of the reduced density matrix of the system is of
interest as it is coupled to an environment.
The QBE assumes that the initial state of the system and

environment is a product state, and in our case we take the
environment in a squeezed state. It provides a convenient
way to calculate the time evolution of the reduced density
matrix of the system under the influence of the environ-
ment. However, in many cases, determining the exact time
evolution of the density matrix analytically is not possible,
and approximation schemes are used to derive master
equations for the approximate evolution of the reduced
density matrix.
The Markovian QBE is based on two core approxima-

tions known as the Born and the Markov approximations.
The Born approximation assumes that the coupling
between the system and environment is weak and can be
treated perturbatively. The Markov approximation assumes
that the memory effects of the environment are negligible,
and any self-correlations within the environment created by
the coupling to the system decay rapidly compared to the

system’s dynamics timescale. In the next section, we will
discuss Markovian and non-Markovian QBEs and derive
the dissipative term to investigate the decoherence dynam-
ics of the quantum system under the influence of gravita-
tional waves.
Although the Born approximation is applicable in many

physical situations, memory effects cannot always be
neglected. When significant memory effects are present
in the environment, the evolution of the reduced density
operator becomes strongly dependent on the history of the
entire system-environment combination. In such cases,
non-Markovian quantum master equations (non-MaQBE)
that rely on retarded-time kernels and integrations over the
system’s history must be solved. In [57], we have extended
the non-MaQBE formalism to describe irreversible proc-
esses. This type of equation is encountered in situations
such as decoherence or damping effects in a quantum
system of gravitons due to interaction with a viscous
medium [57].
For a system described by a density matrix ρSijðtmesÞ, the

evolution of the reduced density matrix of the system is
given by a non-Markovian quantum Boltzmann equation
(non-MaQBE), as expressed in the following equation [57]

d
dtmes

�
ρSijðtmesÞ

� ¼ Dij

�
ρSðtmesÞ

�
; ð2:1Þ

where h� � �i ¼ Tr½ρS � � ��, the dissipator Dij½ρSðtmesÞ� is
given by the following expression

Dij

�
ρSðtmesÞ

� ¼ −
Z

τ

0

dtmic

��
HintðtmesÞ;

�
H0

intð−tmicÞ;

× N̂ S
ijðtmes − tmicÞ

���
c; ð2:2Þ

in which τ is the experiment time, N̂ S
ij is the number

operator associated with the system’s degrees of freedom,
and Hint is the interaction Hamiltonian with superscript 0
denoting that it is a functional of the free field. In this
context, we introduce two timescales: tmic and tmes, which
respectively represent the interaction timescale of individ-
ual particles and the timescale on which the macroscopic
system evolves. The subscript “c” denotes the connected
part of the correlation functions.
In dissipative processes, the microscopic interaction

Hamiltonian is not invariant under time reversal operation,
i.e., HintðtÞ ≠ Hintð−tÞ. However, in practice, the time-
reversed Hamiltonian can be represented as Hintð−tÞ ¼
H0†

intðtÞ. Consequently, the dissipator is expressed as follows

Dij

�
ρSðtmesÞ

� ¼ −
Z

τ

0

dtmic

��
HintðtmesÞ;

�
H0†

intðtmicÞ;

× N̂ S
ijðtmes − tmicÞ

���
c: ð2:3Þ

The dissipator typically consists of two types of terms
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Dij ∝ Γin
ij

�
ρSðkÞ� − Γout

ij

�
ρSðk0Þ�; ð2:4Þ

Where k and k0 are the transport momenta. The first
term, Γin, corresponds to scattering-out processes (aþ b →
cþ d), while the second term, Γout, corresponds conversely
to scattering-in processes (cþ d → aþ b). For scattering-
out processes, the collision term is proportional not only to
the distribution function of the initial states (species a and
b) but also to the Pauli blocking function of the final states
(species c and d). Conversely, for scattering-in processes,
this relationship is reversed. In the case of reactions that
are invariant under time reversal, Γin and Γout satisfy the
detailed balance relation

Γin
ij ¼ e−βΔΓout

ij ; ð2:5Þ

Where β is the Boltzmann factor and Δ ¼ jkj − jk0j. The
detailed balance condition holds true for elastic scattering
under equilibrium conditions. However, it should be noted
that the condition (2.5) is only valid in the presence of
time-reversal symmetry, indicating that the scattering is
reciprocal.
In the subsequent analysis, we will determine the

dissipative term Dij½ρSðtmesÞ� for two quantum systems
composed of massive objects and spin-1=2 particles. By
applying this method, we will calculate the decoherence
rate for these quantum systems.

III. COUPLING WITH MASSIVE OBJECT

In this section, we provide a concise overview of the key
components of our OQS. We consider a massive body in a
spatial superposition and utilize the QBE to illustrate how
the interaction between this system and its environment
of gravitons leads to decoherence. We prepare a spatial
superposition of two distinct states representing the loca-
tion of a massive free-falling particle. By employing this
superposition, we determine the density matrix of the
system. The interaction Hamiltonian between the system
and its environment is expressed in terms of creation and
annihilation operators associated with their respective
degrees of freedom. Any occurrence of decoherence is
manifested by the gradual decay of the off-diagonal
elements of the system’s density matrix over time. In the
following, we employ the QBE to calculate the time
evolution of these off-diagonal terms and derive the precise
form of the decoherence rate.

A. Environment of gravitons

In the linearized approach, the graviton field hμν is
defined as a small perturbation of the space-time metric gμν
around the flat Minkowski background. The metric, which
describes gravitational waves in the transverse traceless
gauge, can be expressed as follows

ds2 ¼ −dt2 þ ðδij þ κ hijÞdxidxj; ð3:1Þ

where δij is the Kronecker delta and κ2 ¼ 16πG, with G
representing Newton’s constant related to the reduced
Planck’s mass MP through G ¼ 8=M2

P. The indices i and
j take values from 1 to 3 and hij is in the transverse
traceless gauge, hii ¼ 0 and ∇ihij ¼ 0. Substituting the
metric given in Eq. (3.1) into the Einstein-Hilbert action
yields the quadratic Hamiltonian density

Hg ¼
1

4

�
ḣijḣij −∇khij∇khij

�
; ð3:2Þ

where a dot denotes the derivative with respect to time.
We can expand the graviton field hijðx; tÞ in terms of the
Fourier modes as

hijðx; tÞ ¼ hþijðx; tÞ þ h−ijðx; tÞ

¼
X
s

Z
d3p

ð2πÞ32p0

�
uspðtÞeip·xeðsÞij ðpÞbðsÞðpÞ

þ us�k ðtÞe−ip·xeðsÞij ðpÞb†ðsÞðpÞ
�
; ð3:3Þ

where the operators hþ and h− are associated with the
absorption and creation of gravitons, respectively, and are
linearly related to the corresponding annihilation and
creation operators. Additionally, we have introduced the
polarization tensor esijðkÞ, which is normalized such that

e�sij ðkÞes0ijðkÞ ¼ δss
0
, where the index s denotes the linear

polarization modes s ¼ þ;×. The creation and annihilation
operators satisfy the standard commutation relations as
follows

�
bsðpÞ; b†s0 ðp0Þ� ¼ 2p0δ3ðp − p0Þδss0 ; ð3:4Þ

and upðtÞ denotes a mode function properly normalized
as [8]

u̇pðtÞu�pðtÞ − upðtÞu̇�pðtÞ ¼ −i: ð3:5Þ

The Minkowski vacuum is defined by j0i with
bsðpÞj0i ¼ 0 and choosing the mode function as

upðtÞ ¼ e−ip
0t: ð3:6Þ

Physically, squeezed vacuum states are conjectured to arise
from inflationary scenarios [58–60]. The definition of the
squeezed vacuum state jζi is given by the action of a
squeezing operator ŜðζÞ on the vacuum state j0i, i.e.,
jζi ¼ ŜðζÞj0i. The squeezing operator is defined as
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ŜðζÞ≡ exp

"
1

V

X
p;s

�
ζ�pbsðpÞbsð−pÞ þ ζpb

†
sðpÞb†sð−pÞ

�#
;

ð3:7Þ

where bs and b†s are respectively the annihilation and
creation operators of the graviton, and ζp ≡ rp exp½iφp� is
a complex squeezing parameter with rp and φp as its
strength and angle, respectively. The squeezing operator is
a unitary operator and satisfies the following transformation
properties

Ŝ†ðζÞbsðpÞŜðζÞ ¼ bsðpÞ cosh rp − b†sð−pÞeiφp sinh rp;

Ŝ†ðζÞb†sð−pÞŜðζÞ ¼ b†sð−pÞ cosh rp − bsðpÞe−iφp sinh rp:

ð3:8Þ

These relations demonstrate that applying the squeezing
operator to the creation and annihilation operators results in
a linear combination of annihilation and creation operators,
where the coefficients are determined by the hyperbolic
functions cosh rp and sinh rp respectively. Therefore, the
vacuum expectation value of the transformed operators is
given by

�
0jŜ†ðζÞbsðpÞŜðζÞj0

� ¼ cosh rp − eiφp sinh rp;�
0jŜ†ðζÞb†sð−pÞŜðζÞj0

� ¼ cosh rp − e−iφp sinh rp: ð3:9Þ

These relations indicate that the squeezing operator trans-
forms the vacuum state of the field into a squeezed state,
which is distinguished by a nonzero expectation value of
the transformed annihilation and creation operators. More-
over, as it is shown in [59] the transformation of the
graviton quantum field under the action of the squeezing
operator is equal to the replacement of the mode functions
by their squeezed state counterpart as in (3.8) and the mode
function in the squeezed state is given in terms of that in the
Minkowski space in Eq. (3.6), such as

usqp ðtÞ≡ upðtÞ cosh rp − e−iφpu�pðtÞ sinh rp: ð3:10Þ

In the following, we use the squeezed mode function of
Eq. (3.10) in the interaction Hamiltonian between the
squeezed gravitational wave and the spatial superposition
system.

B. Spatial superposition system of massive bodies

Here, we consider two masses in free fall, where one of
them initially exists in a coherent spatial superposition.
According to Einstein’s equivalence principle, a single
particle remains unaffected by a gravitational wave. In this
system, the mass M is supermassive, and thus we choose it
as our spatial coordinate origin. While the center of mass
frame could have been selected, we simplify the problem

by adopting M as the origin. To establish a convenient
coordinate system, we introduce a Fermi normal coordinate
system along the geodesic of mass m [7,8]. The deviation
of the geodesic of the second particle, denoted as m, is
described by the vector ξ. Finally, we derive the action for
the geodesic deviation up to second order in ξ as follows

Sm ¼
Z

dt

�
m
2
ξ̇ · ξ̇ þmκ

4
ḧijξiξj

	
; ð3:11Þ

where the first term can be interpreted as the kinetic term of
the mass m, while the second term describes the interaction
between the mass m and the graviton environment, which
will be discussed in more detail. To account for quantum
effects, we now consider the deviation vector ξ as an
operator, denoted as ξ̂. As a result, the free component of
the Hamiltonian is given by [7,8]

H0 ¼
m
2

˙̂ξ · ˙̂ξ: ð3:12Þ

The deviation operators can be expanded as

ξ̂iðtÞ ¼ ξ̂iþðtÞ þ ξ̂i−ðtÞ ¼
X
r

�
ξirðtÞâðrÞ þ ξi�r ðtÞâ†ðrÞ

�
;

ð3:13Þ

where r ¼ 1; 2 and i ¼ x; y; z, and âðrÞ and â†ðrÞ are
dimensionless ladder operators that satisfy the canonical
commutation relation

�
âðrÞ; â†ðr0Þ

� ¼ δrr0 : ð3:14Þ

Here, ξ̂iþ and ξ̂i− are linear functions of the annihilation
and creation operators, respectively. The mass is assumed
to be in a superposition state of two paths. The initial
superposition state can be represented as follows

jψðtiÞi ¼ jξ⃗1ðtiÞi þ jξ⃗2ðtiÞi; ð3:15Þ

where jξ⃗ri represents the quantum states of the massive test
masses, and the polarization-like state space of the system
is spanned by a pair of basis vectors: jξ⃗1i and jξ⃗2i.
Alternatively, the superposition state can be expressed in
terms of the density matrix ρ̂SðtiÞ ¼ jψðtiÞihψðtiÞj, which
can be written as

ρ̂SðtiÞ ¼ jξ⃗1ðtiÞihξ⃗1ðtiÞj þ jξ⃗1ðtiÞihξ⃗2ðtiÞj þ jξ⃗2ðtiÞihξ⃗1ðtiÞj
þ jξ⃗2ðtiÞihξ⃗2ðtiÞj: ð3:16Þ

Additionally, one can define quantum-mechanical opera-
tors in the linear basis that correspond to each Bloch vector
component as
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Ŝ0 ¼ jξ⃗1ihξ⃗1j þ jξ⃗2ihξ⃗2j; ð3:17Þ

Ŝ1 ¼ jξ⃗1ihξ⃗1j − jξ⃗2ihξ⃗2j; ð3:18Þ

Ŝ2 ¼ jξ⃗1ihξ⃗2j þ jξ⃗2ihξ⃗1j; ð3:19Þ

Ŝ3 ¼ ijξ⃗2ihξ⃗1j − ijξ⃗1ihξ⃗2j: ð3:20Þ

The Eqs. (3.17)–(3.20) allow to build the analogues of
standard Stokes parameters. The expectation value of the
Stokes parameter I can be expressed in terms of the
elements of the density matrix, ρS, as follows

hŜ0i ¼ Trðρ̂S ÎÞ ¼ ρS11 þ ρS22; ð3:21Þ

and similarly, the other three parameters QS, US, and VS

can be expressed in the same way. Thus, the polarization
matrix of the system can be described in terms of the
following three parameters

ρS ¼ 1

2



1þ S1 S2 − iS3

S2 þ iS3 1 − S1

�
; ð3:22Þ

where we have normalized S0 ¼ 1 and

S1 ¼ ρS11 − ρS22; S2 ¼ ρS12 þ ρS21; and

−iS3 ¼ ρS12 − ρS21: ð3:23Þ

The diagonal elements of the density matrix represent the
probabilities of the particle taking each path, while the off-
diagonal elements describe the quantum coherence of the
state. The density operator can be expressed in terms of the
Stokes parameters and ladder operators as follows

ρ̂SðtiÞ ¼
X
ij

ρSrr0 ðtÞâ†ðrÞâðr
0Þ: ð3:24Þ

The quantum-mechanical operators in the linear basis
corresponding to each element can be expressed as

ρ̂S ¼ ρS11jξ⃗1ihξ⃗1j þ ρS12jξ⃗1ihξ⃗2j þ ρS21jξ⃗2ihξ⃗1j þ ρS22jξ⃗2ihξ⃗2j:
ð3:25Þ

In our context, we will focus on the decoherence effect
that induces the decay of the off-diagonal elements. This
phenomenon leads to the loss of coherence, transforming a
coherent superposition of the jξ⃗1i and jξ⃗2i states into a
statistical mixture. On the other hand, an incoherent state is
a statistical mixture that cannot exhibit interference effects,
which are characteristic of coherent superpositions.

C. Interaction Hamiltonian

Decoherence arises when a quantum system undergoes
unwanted interactions with its environment. In our analysis,
we will explore two possible interactions between the mass
m and the gravitons. These interactions are represented by
the diagrams depicted in Figs. 1(a) and 1(b). Figure 1(a)
illustrates the absorption of a graviton, which induces
decoherence in the superposition and records with-path
information. Figure 1(b), on the other hand, depicts a
contributing diagram for the emission of bremsstrahlung
gravitons. The interaction Hamiltonians associated with
absorption and emission can be expressed as follows

HabsðtÞ ¼
m
4
κḧþijð0; tÞξ̂i−ξ̂jþ; ð3:26Þ

and

FIG. 1. (a) The absorption of a graviton noise by the system. (b) The emission process.
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HemiðtÞ ¼
m
4
κḧ−ijð0; tÞξ̂i−ξ̂jþ; ð3:27Þ

where the superscripts “abs” and “emi” denote the
absorption and emission bremsstrahlung processes. The
Fourier-space interaction Hamiltonians can be obtained
by substituting Eqs. (3.3) and (3.13) into Eqs. (3.26)
and (3.27). The resulting interaction Hamiltonians are

HabsðtÞ ¼
κm
4

X
s;r;r0

Z
d3p

ð2πÞ32p0
üabðsÞp ðtÞeabðsÞij ðpÞξi�r ðtÞ

× ξjr0 ðtÞbðsÞðpÞâðrÞ†âðr
0Þ; ð3:28Þ

and

HemiðtÞ ¼
κm
4

X
s;r;r0

Z
d3p

ð2πÞ32p0
üemðsÞ�
p ðtÞeemðsÞ

ij ðpÞξi�r ðtÞ

× ξjr0 ðtÞb†ðsÞðpÞâðrÞ†âðr
0Þ: ð3:29Þ

The interaction of a quantum system with a noisy envi-
ronment leads to irreversible decoherence. To accurately
describe this phenomenon, we employ the QBE. Notably,

we will show that these decoherence phenomena demon-
strate non-Markovian behavior.

IV. DECOHERENCE RATE OF THE MASSIVE
OBJECT SUPERPOSITION

Entanglement with the environment is widely recognized
as one of the primary causes of decoherence in a quantum
system. In this section, we derive coupled differential
equations for the time evolution of the system’s density
matrix elements, enabling us to calculate the gravitationally-
induced decoherence rate.
When the system frequently interacts with the environ-

ment, and the state of the environment is not actively
observed, in general the off-diagonal terms in the system’s
density operator rapidly decay in a preferred basis. This
basis is typically spatially localized and depends on the
nature of the system-environment coupling.
We begin by calculating the damping term (2.3), fol-

lowed by the interaction term

HintðtÞ ¼ HemiðtÞ þHabsðtÞ: ð4:1Þ

We substitute the interaction Hamiltonian into Eq. (2.3),
resulting in the following form for the dissipator

Dij½ρSðtmesÞ� ¼ −
Z

τ

0

dtmic

��
HintðtmesÞ;

�
H0†

intðtmicÞ; N̂ S
ijðtmes − tmicÞ

���
c

¼ −
κ2m2

8

X
s1;r1;r01

X
s2;r2;r02

Z
d3p1

ð2πÞ32p0
1

Z
d3p2

ð2πÞ32p0
2

Re
�
üsqp1

ðtmicÞüsq�p2
ðtmesÞ

�

× eðs1Þm1n1ðp1Þeðs2Þ�m2n2ðp2Þξm1�
r1 ðtmicÞξn1r0

1
ðtmicÞξm2�

r2 ðtmesÞξn2r0
2
ðtmesÞ

�
bðs2†Þðp2Þbðs1Þðp1Þ

�
c

×
��
âðr1Þ†âðr01Þâðr02Þ†âðr2ÞâðiÞ†âðjÞ

�
c −

�
âðr1Þ†âðr01ÞâðiÞ†âðjÞâðr02Þ†âðr2Þ

�
c

−
�
âðr02Þ†âðr2ÞâðiÞ†âðjÞâðr1Þ†âðr01Þ

�
c þ

�
âðiÞ†âðjÞâðr02Þ†âðr2Þâðr1Þ†âðr01Þ

�
c

�
: ð4:2Þ

Using the following expectation values [57]

�
âðr1Þ†âðr01Þâðr02Þ†âðr2ÞâðiÞ†âðjÞ

�
c ≃ ρSjr1δ

ir2δr
0
2
r0
1 ;�

âðr1Þ†âðr01ÞâðiÞ†âðjÞâðr02Þ†âðr2Þ
�
c ≃ ρSr2r1δ

ir0
1δr

0
2
j;�

âðr02Þ†âðr2ÞâðiÞ†âðjÞâðr1Þ†âðr01Þ
�
c ≃ ρSr0

1
r0
2
δr1jδir2 ;�

âðiÞ†âðjÞâðr02Þ†âðr2Þâðr1Þ†âðr01Þ
�
c ≃ ρSr0

1
iδ

r1r2δr
0
2
j; ð4:3Þ

and

hbðs2†Þðp2Þbðs1Þðp1Þic ¼ ð2πÞ32p0
1δ

3ðp1 − p2Þρgs1s2ðp1Þ: ð4:4Þ

we find the damping dissipator term as
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Dij½ρSðtmesÞ� ¼ −
Z

τ

0

dtmic

��
HintðtmesÞ;

�
H0†

intðtmicÞ; N̂ S
ijðtmes − tmicÞ

���
c

¼ −
κ2m2

8

X
s1;r1;r01

X
s2;r2;r02

Z
d3p1

ð2πÞ32p0
1

Z
d3p2

ð2πÞ32p0
2

Z
τ

0

dtmicRe
�
üsqp1

ðtmicÞüsq�p2
ðtmesÞ

�

× eðs1Þm1n1ðp1Þeðs2Þ�m2n2ðp2Þξm1�
r1 ðtmicÞξn1r0

1
ðtmicÞξm2�

r2 ðtmesÞξn2r0
2
ðtmesÞð2πÞ32p0

1δ
3ðp1 − p2Þρgs1s2ðp1Þ

×
�
ρSjr1δ

ir2δr
0
2
r0
1 − ρSr2r1δ

ir0
1δr

0
2
j − ρSr0

1
r0
2
δr1jδir2 þ ρSr0

1
iδ

r1r2δr
0
2
j
�
; ð4:5Þ

where in the second line we have neglected the nonlocal time dependence tmes − tmic in N̂ S
ij. We now substitute (4.5)

into (2.1) and integrate over p1 to find

d
dtmes

ρSijðtmesÞ ¼ −
κ2m2

8

X
s1;r1;r01

X
s2;r2;r02

Z
d3p2

ð2πÞ32p0
2

Z
τ

0

dtmicRe
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�

× eðs1Þm1n1ðp2Þeðs2Þ�m2n2ðp2Þξm1�
r1 ðtmicÞξn1r0

1
ðtmicÞξm2�

r2 ðtmesÞξn2r0
2
ðtmesÞρgs1s2ðp2Þ

×
�
ρSjr1δ

ir2δr
0
2
r0
1 − ρSr2r1δ

ir0
1δr

0
2
j − ρSr0

1
r0
2
δr1jδir2 þ ρSr0

1
iδ

r1r2δr
0
2
j
�
: ð4:6Þ

As mentioned previously, a two-level system can be
effectively described using Bloch vector components to
represent its state. In this section, our focus is on the
dephasing channel, also known as the phase-damping
channel. This particular scenario illustrates the decoherence
that arises in the system as a result of its interaction
with graviton noise. We examine a scenario where S3 is
initially zero so remains zero for all forward times. There-
fore, the time evolution of the diagonal and off-diagonal
elements of the system’s density matrix can be described in
terms of the components S1 and S2. Assuming ξr ¼
ðξr; 0; 0Þ and utilizing (3.23), we can derive the following
expressions

d
dtmes

S1ðtmesÞ ¼ Γ11S1ðtmesÞ þ Γ12S2ðtmesÞ; ð4:7Þ

d
dtmes

S2ðtmesÞ ¼ Γ22S2ðtmesÞ þ Γ21S1ðtmesÞ; ð4:8Þ

where the coupling coefficients of two coupled differential
equations are given as the following

Γ11 ¼ −
κ2m2

16

Z
d3p2

ð2πÞ3p0
2

Z
τ

0

dtmicRe
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�
× Igðp2Þ4ξ1ðtmesÞξ2ðtmesÞξ1ðtmicÞξ2ðtmicÞ; ð4:9Þ

Γ12 ¼ −
κ2m2

16

Z
d3p2

ð2πÞ3p0
2

Z
τ

0

dtmicRe
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�
× Igðp2Þ2

��
ξ2ðtmesÞ

�
2 −

�
ξ1ðtmesÞ

�
2
�
ξ1ðtmicÞξ2ðtmicÞ;

ð4:10Þ

Γ21 ¼ −
κ2m2

16

Z
d3p2

ð2πÞ3p0
2

Z
τ

0

dtmicRe
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�
× Igðp2Þ2

��
ξ2ðtmicÞ2 − ðξ1ðtmicÞ

�
2
�
ξ1ðtmesÞξ2ðtmesÞ;

ð4:11Þ

and

Γ22 ¼ −
κ2m2

16

Z
d3p2

ð2πÞ3p0
2

Z
τ

0

dtmicRe
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�
× Igðp2Þ

��
ξ1ðtmesÞ

�
2 −

�
ξ2ðtmesÞ

�
2
�

×
��
ξ1ðtmicÞ

�
2 −

�
ξ2ðtmicÞ

�
2
�
; ð4:12Þ

in which Γ22 characterizes the rate of decoherence, and
IgðpÞ denotes the intensity Stokes parameter of the grav-
iton, as defined in Eq. (A14). The decoherence damping
parameter Γ22, obtained through our non-Markovian
approach, aligns with the findings of Kanno et al. using
the influence functional method [8]. Utilizing Eq. (3.10),
we can express the following relation

Re
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

�
¼ jp2j4 cos½jp2jðtmic − tmesÞ� coshð2rpÞ

− jp2j4 cos½jp2jðtmic þ tmesÞ − φp� sinhð2rpÞÞ; ð4:13Þ

where in the Minkowski vacuum (rp → 0) we get

Re
�
üsqp2

ðtmicÞüsq�p2
ðtmesÞ

� ¼ jp2j4 cos½jp2jðtmic − tmesÞ�:
ð4:14Þ
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Regarding the terms Γij, it is conceivable to consider a
nonlocal-in-time kernel Mðtmic; tmesÞ. The presence of this
kernel implies that Eqs. (4.7) and (4.8) describe non-
Markovian dynamics.

A. A closed loop example

As mentioned earlier, the experimental setup involves
preparing a massive particle in a quantum superposition at
different spatial locations and subsequently recombining
the particle to assess its quantum coherence.
In this scenario, we will focus on a specific interference

device depicted schematically in Fig. 1. A mass in free
fall can traverse two distinct world lines, ξ1 and ξ2, until
it reaches a detector at the end, where its coherence is
measured. These paths give rise to a quantum superposition
consisting of four straight world line segments with the
following configuration [8,56]

ξ1ðtÞ ¼
�
vtþ ξ for 0 < t ≤ τ=2;

vðτ − tÞ þ ξ for τ=2 < t < τ;
ð4:15Þ

and

ξ2ðtÞ ¼
�−vtþ ξ for 0 < t ≤ τ=2;

−vðτ − tÞ þ ξ for τ=2 < t < τ;
ð4:16Þ

where in this setup, we define ξ ¼ ðξ1ðtÞ þ ξ2ðtÞÞ=2, in
which ξ1ðtÞ and ξ2ðtÞ represent the positions of the particle
along the respective world lines. The particle’s velocity is
constant and denoted by v, with 0 < v < 1. The velocity
only changes at t ¼ τ=2 in this particular configuration and
at t ¼ τ the loop can be closed, and correlations can be
measured. In Appendix B, we calculate the values of Γij for
the trajectory described above.

B. Behavior of decaying solution

To find a decaying solution for S2ðtmesÞ, the system is
prepared such that ρS11 ¼ ρS22, resulting in S1 ¼ 0, and
ρS12 ¼ ρS21, which enforces S3 ¼ 0 on the system. Under
certain conditions, Γ22 dominates over Γ21, leading to the
primary influence of Γ22 on the evolution of S2 (see
Appendix C for further details). Consequently, the con-
tribution from S1ðtmesÞ becomes negligible, allowing us to
determine the dynamics of the density matrix by solving the
differential equation

d
dtmes

S2ðtmesÞ ¼ Γ22ðtmesÞS2ðtmesÞ: ð4:17Þ

Using Eq. (B4) one finds the system’s dimensionless
decoherence rate as

Γ≡
Z

τ

0

Γ22ðtmesÞdtmes

¼ −πκ2m2f2refA
2
−1ξ

2v2τ2
�
0.09 sinh½2rp� cos½φp�

þ 0.69 coshð2rpÞ
�
: ð4:18Þ

The off-diagonal element S2ðtmesÞ undergoes decay over
time due to its interaction with the environment, a phe-
nomenon known as decoherence. While the squeezing
strength rp can influence the decoherence rate given by
Eq. (4.18), the squeezing angle φp has a negligible effect
on it.
However, to elucidate the decoherence rate Γ, we begin

by considering a specific scenario where the squeezing
angle is set to φp ¼ π=2. In addition, we consider a test
mass with a mass of 1.4 × 10−17 grams, equivalent to the
mass of 108 rubidium atoms (87Rb) within a Bose-Einstein
condensate (BEC) [61].
The experiment is carried out over a 10-second duration

with a velocity of v ¼ 10−9 m=s, as well as with a velocity
of v ¼ 10−3 m=s, as outlined in the reference [61] for atom
interferometers. In accordance with the work of Thrane
et al. [62], we adopt a reference frequency of fref ¼ 100 Hz
for ground-based gravitational wave detectors.
We investigate two distinct values for the spatial dis-

tance, which are linked to the velocity and experiment
duration via the condition described by Eq. (C2): ξ assumes
values of ξ ¼ 2.05 nm and ξ ¼ 2.05 mm. The value
A−1=MP ¼ 10−10 corresponds to the characteristic strain of
stochastic gravitational waves. In the realm of conventional
interferometers, the preference is to employ objects char-
acterized by low mass and low velocity. This choice is
aimed at extending the duration of the superposition state,
thereby enhancing the efficacy of the interferometer [61].
In Fig. 2, we depict the 1% decoherence rate over an

experimental duration τ ≤ 10 s. The dashed lines within the
diagram correspond to two different squeezing strengths,
namely rp ¼ 16 and rp ¼ 17, at a velocity of v¼ 10−9 m=s.
Similarly, another set of dotted lines represents the squeezing
strengths rp ¼ 2 and rp ¼ 3 at a velocity of v ¼ 10−3 m=s.
In order to achieve a 1% decoherence within a maximum
experimental period of τ ¼ 10 s, the minimum squeezing
strengths required are rp ≥ 15.86 for v ¼ 10−9 m=s and
rp ≥ 2.1 for v ¼ 10−3 m=s.
By establishing a connection between the squeezing

strength and the frequency of primordial gravitational
waves, we have the relation

erp ∼


fc
f

�
2

; ð4:19Þ

where in the context of grand unified theory inflation, it is
noted that fc ∼ 108 Hz [8,58,59]. To detect squeezing
strengths rp ≥ 15.86, it is anticipated that the system would
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be influenced by gravitational waves with the frequency
range of f ≤ 36 Hz. Moreover, the Appendix E identifies
the frequency range that exerts the most significant impact
on this system. We have shown that gravitational waves
(GWs) within the interval of 0 ≤ f ≤ 6=τ have the pre-
dominant influence on this collection of massive objects. For
instance, GWs falling within the range of 0 ≤ f ≤ 0.6 Hz
exhibit the most pronounced effect on experiments lasting
10 seconds. As the experimental duration is extended, this
frequency range becomes even more refined, rendering
lower frequency GWs more discernible.
In the following section, we demonstrate that a spin-1=2

system can experience the decoherence effect induced
by squeezed gravitational waves, and importantly, the
decoherence rate remains independent of the choice of
origin.

V. COUPLING WITH A SPIN-1=2 SYSTEM

Now, we turn to investigate the effect of gravitationally
induced decoherence on a fermion system due to brems-
strahlung effect. In a study, the decoherence impact of
electromagnetic bremsstrahlung on a fermion system has
been discussed [55,56]. The framework used in that study
has an electron in spatial superposition, and using the
decoherence functional it has been demonstrated that the
electromagnetic bremsstrahlung causes a fundamental
decoherence which briefly predominates. The effect of
gravitational bremsstrahlung on a spin-1=2 system is
something we also want to look into. We can conceptualize
the fermion as an atom with spin-1=2 that interacts with a

graviton environment. As illustrated in Fig. 3, our system
has two levels and can exist in any quantum superposition
of two independent spin states. Despite being macroscopic,
we effectively describe it using a microscopic Dirac spinor.
The interaction Hamiltonian between gravitons and the
spin-1=2 particle is expressed as [57]

Hfg ¼
κ

2

Z
d3 x hijðxÞ∂iψ̄ðxÞγjψðxÞ; ð5:1Þ

in which the spinor field ψ represents the spin-1=2
particles, and γi are the Dirac matrices. In order to analyze
the effects on the spin-1=2 system, we utilize the path of the
superposition given by Eqs. (4.15) and (4.16). To facilitate
this analysis, we decompose the spinor field into its
annihilation and creation components, denoted by ψþðxÞ
and ψ−ðxÞ, respectively. We can then expand these com-
ponents as follows

ψþðxÞ ¼
Z

d3q
ð2πÞ3

X
r

χrðtÞârðqÞeiðq0t−q·xÞ; ð5:2Þ

ψ−ðxÞ ¼
Z

d3q0

ð2πÞ3
X
r

χ̄rðtÞâ†rðq0Þe−iðq00t−q0·xÞ; ð5:3Þ

where the spin is labeled by r ¼ 1; 2, and χr represents the
nonrelativistic free particle spinor. The creation and anni-
hilation operators, denoted by a†rðqÞ and arðqÞ respectively,
satisfy the following anticommutation relation


ârðqÞ; â†r0 ðq0Þ� ¼ ð2πÞ3δ3ðq − q0Þδrr0 : ð5:4Þ

The spinor χr is presented as

χ1ðtÞ ¼

0
BBBB@

1

0
qz
2m
qx
2m

1
CCCCA; χ2ðtÞ ¼

0
BBBB@

0

1
qx
2m

− qz
2m

1
CCCCA; ð5:5Þ

FIG. 3. Schematic of the interaction between a fermionic atom
and a graviton inside an interferometer.

FIG. 2. Decoherence rate of the closed loop system of a massive
object, specifically a BEC consisting of 108 rubidium (87Rb)
atoms with a mass of 1.4 × 10−17 g, within a maximum experi-
ment time of 10 s. The dashed blue curves correspond to an initial
spatial distance of ξ ¼ 2 nm and indicate probing with squeezing
strengths greater than or equal to rp ≥ 16. The dotted orange
lines represent probing with squeezing strengths greater than or
equal to rp ≥ 2 and an initial spatial distance of ξ ¼ 2 mm. The
squeezing angle, denoted as φp, has a negligible effect in this
scenario but is assumed to be φp ¼ π=2.
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where we assume that a particle is following the trajectory
given by Eqs. (4.15) and (4.16), where qy ¼ 0 and qx is
defined as follows

qx ¼ ð−1Þrð−1þ 2Θðt − τ=2ÞÞmv; ð5:6Þ

where ΘðtÞ denotes the step function. The effective
interaction Hamiltonian that describes the absorption of
bremsstrahlung gravitons by fermions can be expressed in
terms of the S-matrix element as follows

HabsðtÞ ¼
κ

2

Z
d3 x hþijðx; tÞψ̄−ðxÞγj∂iψþðxÞ; ð5:7Þ

and the emission one as

HemiðtÞ ¼
κ

2

Z
d3 x h−ijðx; tÞψ̄−ðxÞγj∂iψþðxÞ; ð5:8Þ

which in total make the interaction Hamiltonian using
Eq. (4.1). In Appendix D there is a detailed calculation of
the density matrix elements. Using Eq. (D5) as the density
matrix components and the relations of (3.23), the resulting
coupling coefficients of the coupled differential equa-
tions (4.7) and (4.8) are as follows

Γ11 ¼ Γ12 ¼ Γ21 ¼ 0; ð5:9Þ

Γ22 ¼ −κ2m2 v4
Z

d3p2

ð2πÞ32p0
2

×
Z

τ

0

dtmicRe
�
usqp2

ðtmesÞusq�p2
ðtmicÞ

�
Igðp2Þ: ð5:10Þ

Employing the mode functions of squeezed states in
Eq. (3.10) leads to

Re
�
usqp2

ðtmesÞusq�p2
ðtmicÞ

� ¼ cos½jp2jðtmic − tmesÞ� coshð2rpÞ
− cos½jp2jðtmic þ tmesÞ − φp�
× sinhð2rpÞ: ð5:11Þ

Taking jp2j ¼ 2πf and integrating over tmic the
decoherence rate is

Γ22 ¼
κ2f2refA

2
−1v

4m2

8π2

Z
∞

ΩIR

df
f4


cosh½2rp�ðsin½2πfðtmes − τÞ�

− sin½2πftmes�Þ þ sinh½2rp�ðsin½2πfðtmes þ τÞ−φp�
− sin½2πftmes −φp�Þ

�
; ð5:12Þ

where ΩIR is the IR cutoff frequency. In this context, we
focus on processes that occur over a finite timescale, rather
than transitions between asymptotic states. This implies
that the decoherence rate does not contain infrared diver-
gences. The reason for this is that the rate pertains to a
process that transpires within a finite time interval between
the splitting of the wave packet at t ¼ 0 and its recombi-
nation at t ¼ τ. As a result, there is a natural frequency
resolution inherent in the process, given by [55,56]

ΩIR ¼ 1

τ
: ð5:13Þ

Then the dimensionless decoherence rate based on
Eq. (4.8) is

Γ≡
Z

τ

0

Γ22ðtmesÞdtmes ¼
κ2f2refA

2
−1v

4m2τ2

48πΩ2
IR


sinh½2rp�

�
cos½φp�ð3 − 4π2τ2Ω2

IRð−7 − Ci½2πτΩIR� þ 8Ci½4πτΩIR�Þ
�

þ sin½φp�
�
πτΩIRð18 − 14π2τΩIRÞ

��
− cosh½2rp�

�
3 − 4π2τ2Ω2

IRð−1þ Ci½2πτΩIR�Þ
��

; ð5:14Þ

where Ci denotes the cosine integral function. The above
expression reveals that the spin-1=2 system is influenced by
squeezed gravitational waves. Unlike the previous section,
the decoherence rate of the fermion depends on the
squeezing strength and also in a non-negligible way from
the squeezing angle. In the following, we choose specific
parameter values to provide an illustrative understanding
of this phenomenon and examine the behavior of the
decoherence rate.

A. Behavior of decaying solution

A practical example to observe this phenomenon is a
Stern-Gerlach interferometer, which establishes a correla-
tion between the spin and trajectory of particles [61]. In this
setup, a beam of atoms is split into two branches that

exhibit correlation with the spin component of the atoms.
These branches are subsequently recombined before the
atoms exit the device. The induced decoherence in the
relative phase between the two paths can then be measured.
Another approach to create a spatial superposition for a

spin-1=2 particle involves utilizing free-falling nanodia-
monds containing nitrogen-vacancy (NV−) centers. In this
method, a nanodiamond is placed in an electron spin
superposition state, and an inhomogeneous magnetic field
is employed to generate a spatial superposition. The
behavior of free-falling nanodiamonds in the presence of
an external magnetic field gradient has been extensively
studied in various investigations [63–67]. However, it is
important to note that in both of these systems, the particles
are subjected to a magnetic field, leading to deviations in
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their wave functions compared to those of free particles.
Using an atom interferometer with fermionic atoms [68,69]
is another way that does not have the mentioned weakness
of other approaches.
We consider an atom interferometer that utilizes 104

fermionic atoms of 40K (m ¼ 6.6 × 10−19 g) traveling at a
velocity of v ¼ 10−4 m=s [68]. As discussed in Sec. IVA,
we assume fref ¼ 100 Hz and A−1 ¼ 10−10 MP. The result-
ing decoherence rate is depicted in Fig. 4 for φp ¼ π=2.
Within a measurement time of 1 s, a gravitational wave
with a squeezing strength of rp ≥ 1.2 can induce a 1%
decoherence in the spin-1=2 system. Higher squeezing
strengths lead to faster decoherence, resulting in shorter
experiment times. It is worth noting that the squeezing angle
of the gravitational wave affects the decoherence rate, as
shown in Fig. 5. Positive decoherence rate is observed for
certain squeezing angles, which warrants deeper investiga-
tion in future studies.

Based on its constraint from the squeezing parameter, the
frequency range of gravitational waves (GWs) that can be
probed using this fermion-based scheme, as per Eq. (4.19),
is limited to f ≤ 54 MHz. However, we have further
refined this range in Appendix E and demonstrated that
the influence of GWs on this fermion-massive object
system is primarily concentrated within 1=τ ≤ f ≤ 2=τ.
This translates to a frequency span of 1 Hz ≤ f ≤ 2 Hz for
a 1-second experiment.

VI. CONCLUSIONS

Direct detection of gravitons is extremely difficult due to
their weak interactions. This is why the idea of indirect
detection has been suggested. One proposed method of
indirect detection is through the process of decoherence.
The theory of decoherence presents an experimental context
where quantum mechanics and gravity may intertwine.
Through our study utilizing QBE, we have demonstrated that
a squeezed gravitational wave can induce decoherence in a
system consisting of two spatial states. The existence of
squeezing as a purely quantum mechanical trait in gravita-
tional waves would provide compelling evidence of a funda-
mental connection between gravity and quantum mechanics.
In our first investigation, we applied open quantum

system approach to obtain the decoherence rate in a system
of two free-falling massive objects, with one of them
initially placed in a coherent spatial superposition. Our
findings using a simple interaction Hamiltonian are com-
patible with previous efforts and indicate that the coherence
of the system is solely influenced by the squeezing
strength, while the squeezing angle has no effect. To
provide a detailed description, we considered a BEC
composed of 108 atoms of 87Rb. For an initial distance
of ξ ¼ 1 mm between the two masses, our analysis
revealed a 1% decoherence within a time span of 10 sec-
onds, resulting from the interaction with a gravitational
wave possessing squeezing strengths of rp ≥ 2.1.
Then, we extended our investigation to explore the

decoherence effect caused by squeezed gravitational waves
on a spin-1=2 particle system existing in a spatial super-
position. Notably, in this fermion spatial superposition
system, the decoherence effect is dependent on both the
squeezing strength and the squeezing angle. Once again, we
employed a fermionic atom interferometry containing a cloud
of 104 atoms of 40K, which is placed in a spatial super-
position. Our results demonstrated a 1% decoherence within
an experimental time frame of 1 seconds, resulting from the
interaction with gravitational waves characterized by squeez-
ing strengths of rp ≥ 1.2 and a squeezing angle of φp ¼ π=2.
The efficiency of gravitational decoherence poses chal-

lenges in observing quantum coherence in measurements of
primordial (inflationary) fluctuations. The quantum nature
of the primordial GWs depends on various details of the
system and the environment during inflation. It is possible

FIG. 5. The decoherence rate of the spin-1=2 system as a
function of squeezing angle in an experiment time of τ ¼ 1 s and
by four squeezing strengths, rp ¼ 1; 1.5; 1.8, and 2. The mass of
the fermion object is assumed to be m ¼ 6.6 × 10−19 g.

FIG. 4. Decoherence rate of the massive spin-1=2 particle
system (104 atoms of 40K in an atom interferometer) as a function
of experiment time. The squeezing strengths considered are
rp ¼ 1; 2; 3, and 4, with a fixed squeezing angle of φp ¼ π=2.
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that the inflation scale may be smaller than anticipated.
Additionally, the modes under consideration might not
spend as much time outside the Hubble scale during
inflation, which can alter the degree of decoherence. It
is worth noting that the level of decoherence required to
erase a particular quantum feature can vary. Some studies
suggest that decohered states in a de Sitter universe can
retain significant quantum discord if decoherence is slow
enough. Although gravitational decoherence is highly
effective, the complete erasure of quantum discord may
not occur, potentially leaving room for detecting quantum
signatures. Exploring quantum effects at smaller scales,
where fewer e-folds occur outside the Hubble radius during
inflation, could also be a promising avenue of investigation.
These smaller-scale structures might provide insights into
quantum coherence that efficiently evade decoherence.
The current status regarding the quest for quantum

features in the primordial gravitational wave background
is not entirely settled. Therefore, the detection of observa-
tional evidence of quantum coherence among primordial
GWs holds significant promise and could offer profound
insights into our understanding of the physics of the early
universe. Such measurement would be essential in clarify-
ing the nonclassicality criterion and the threshold for the
emergence of classicality given by different criteria. This is
exemplified by the possibility to put constraints on or to
measure the level of squeezing of the GWs, which could
bring precious information about the level of decoherence
that might have taken place during inflation on certain
scales. If indirect evidence of the quantum nature of
gravitational waves is uncovered, it will be essential to
reassess the calculations regarding the classical-to-quantum
transition during inflation and the dependence of

decoherence on the parameters of the underlying models
used for the calculations.
Our proposed setup holds interesting potential for inves-

tigating the strong equivalence principle (SEP). To conduct
this exploration, it is necessary to devise two distinct
setups—one involving spin 1=2 particles and the other
spinless scalar particles. In addition to examining the
interaction of spin-1=2 system, careful consideration must
be given to the interaction between spinless scalar particles
and squeezed GWs. Subsequently, the induced decoherence
in both systems will be compared, allowing us to assess the
validity of the SEP in quantum systems. The detailed
comparison of the differences in induced decoherence will
serve as a means to confirm the validity of SEP. We leave the
investigation of this possibility to future work.
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APPENDIX A: THE INTENSITY OF GWS
IN TERMS OF SPECTRAL DENSITY

In this appendix, we will calculate the expectation value
of tensor modes in terms of gravitational Stokes parameter
IðgÞ. Starting from (3.3), we can find

hhμνhμνi ¼
�Z

d3q
ð2πÞ32q0

Z
d3q0

ð2πÞ32q00
X
r;r0

h
bðrÞq hðrÞμν eiqx þ bðrÞ†q hðrÞ�μν e−iqx

ih
bðr

0Þ
q0 hμνðr

0Þeiq0x þ bðr
0Þ†

q0 hμνðr0Þ�e−iq0x
i�

; ðA1Þ

which can be further simplified as

hhμνhμνi ¼
Z

d3q
ð2πÞ32q0

Z
d3q0

ð2πÞ32q00
X
r;r0

n
hðrÞμν hμνðr

0Þeiðqþq0ÞðxÞ
D
bðrÞq bðr

0Þ
q0

E
þ hðrÞμν hμνðr

0Þ�eiðq−q0ÞðxÞ
D
bðrÞq bðr

0Þ†
q0

E

þ hðrÞ�μν hμνðr0Þeiðq0−qÞðxÞ
D
bðrÞ†q bðr

0Þ
q0

E
þ hðrÞ�μν hμνðr0Þ�e−iðq0þqÞðxÞ

D
bðrÞ†q bðr

0Þ†
q0

Eo
¼

Z
d3q

ð2πÞ32q0
Z

d3q0

ð2πÞ32q00
X
r;r0

hðrÞ�μν hμνðr0Þeiðq0−qÞðxÞ
D
bðrÞ†q bðr

0Þ
q0

E

¼
Z

d3q
ð2πÞ32q0

Z
d3q0

ð2πÞ32q00
X
r;r0

hðrÞ�μν hμνðr0Þeiðq0−qÞðxÞ
�
2q00ð2πÞ3δð3Þðq0 − qÞρSrr0 ðq0Þ�: ðA2Þ

Now, using Eq. (3.21), we get

hhμνhμνi ¼
Z

d3q
ð2πÞ32q0

X
r;r0

ρSrr0 ðqÞδr;r0 ¼
Z

d3q
ð2πÞ32q0 I

ðgÞðqÞ: ðA3Þ
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We can expand IðgÞðqÞ in terms of spherical harmonics
as [70]

IðgÞðqÞ ¼ IðgÞðq0Þ
X
l;m

cIlmY
m
l ðθ0;ϕ0Þ: ðA4Þ

Therefore, one can write

hhμνhμνi¼
1

4π

Z
dffIðgÞðfÞ

X
l;m

Z
d2q̂cIlmY

m
l ðθ0;ϕ0Þ; ðA5Þ

where q0 ¼ 2πf. The isotropic monopole part is given by

hhμνhμνi ¼
Z

df fIðgÞðfÞ; ðA6Þ

where we have normalized the monopole moment as
cI00 ¼

ffiffiffiffiffiffi
4π

p
. Comparing with [71,72]

hhμνhμνi ¼ 4

Z
dfShðfÞ; ðA7Þ

and assuming ShðfÞ as the GW strain power spectral
density, we can derive the following relationship

IðgÞðfÞ ¼ 1

4f
ShðfÞ: ðA8Þ

The GW strain power spectral density ShðfÞ is related to the
fractional energy density spectrum in GWs ΩgwðfÞ by a
simple relation

ShðfÞ ¼
3H2

0

2π2
ΩgwðfÞ

f3
; ðA9Þ

where H0 is the Hubble constant. Therefore we have,

IðgÞðfÞ ¼ 3H2
0

8π2
ΩgwðfÞ

f4
: ðA10Þ

One can also express ΩgwðfÞ in the form of a power law, as
given by [71,72]

ΩgwðfÞ ¼ Ωβ



f
fref

�
β

; ðA11Þ

where

Ωβ ¼
2π2

3H2
0

f2refA
2
α; β ¼ 2ðαþ 1Þ: ðA12Þ

Therefore, we find

IðgÞðfÞ ¼ f2refA
2
α

1

4f4



f
fref

�
β

: ðA13Þ

For inflationary backgrounds, it is often assumed that β ¼ 0
and α ¼ −1, thus

IðgÞðfÞ ¼ f2refA
2
−1

4f4
: ðA14Þ

APPENDIX B: MASSIVE OBJECT
SYSTEM COUPLINGS

In this appendix, we aim to calculate Γij for the closed
loop example discussed in Sec. IVA. To do so, we
substitute trajectories (4.15) and (4.16) into (4.9)–(4.12)
and integrate over p2. We can express jp2j as 2πf, where f
represents the frequency of the gravitational wave (GW).
By utilizing (A14), we can relate the intensity of the GW to
its frequency. Therefore, we obtain the coefficients Γij as
follows

Γ11ðtmesÞ ¼ π3κ2m2f2refA
2
−1

Z
ΩUV

0

fdf
Z

τ

0

dtmicξ1ðtmesÞξ2ðtmesÞξ1ðtmicÞξ2ðtmicÞ

× ðcos½2πfðtmic þ tmesÞ − φp� sinh½2rp� − cos½2πfðtmic − tmesÞ� cosh½2rp�Þ

¼ 1

4
πκ2m2f2refA

2
−1

�
sinh½2rp�



ξ2

tmesðtmes þ τÞ ð−τ cos½φp� þ ðtmes þ τÞ cos½φp − 2πtmesΩUV�

− tmes cos½φp − 2πðtmes þ τÞΩUV�Þ þ 2v2 cos½φp�


tmes ln

�
tmes

tmes þ τ

	
þ τ ln

�
2tmes þ τ

2ðtmes þ τÞ
	��

þ cosh½2rp�



1

tmesðtmes − τÞ
�


τðξ2 þ 2tmesv2ðτ − tmesÞÞ − tmesξ
2 cos ½2πðtmes − τÞΩUV�

þ ðtmes − τÞ


2tmesv2



tmes ln

�
tmes

tmes − τ

	
þ τ ln

�
tmes − τ

tmes − τ=2

	�
þ ξ2 cos½2πtmesΩUV�

���
ξ1ðtmesÞξ2ðtmesÞ; ðB1Þ
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Γ12ðtmesÞ ¼ −
1

2
π3κ2m2f2refA

2
−1

Z
ΩUV

0

fdf
Z

τ

0

dtmic½ξ21ðtmesÞ − ξ22ðtmesÞ�ξ1ðtmicÞξ2ðtmicÞ

× ðcos½2πfðtmic þ tmesÞ − φp� sinh½2rp� − cos½2πfðtmic − tmesÞ� cosh½2rp�Þ

¼ −
1

2
πκ2m2f2refA

2
−1

�
sinh½2rp�



ξ2

tmesðtmes þ τÞ ð−τ cos½φp�

þ ðtmes þ τÞ cos½φp − 2πtmesΩUV� − tmes cos½φp − 2πðtmes þ τÞΩUV�Þ

þ 2v2 cos½φp�


tmes ln

�
tmes

tmes þ τ

	
þ τ ln

�
2tmes þ τ

2ðtmes þ τÞ
	��

þ cosh½2rp�



1

tmesðtmes − τÞ
�


τðξ2 þ 2tmesv2ðτ − tmesÞÞ

− tmesξ
2 cos ½2πðtmes − τÞΩUV� þ ðtmes − τÞ



2tmesv2



tmes ln

�
tmes

tmes − τ

	

þ τ ln

�
tmes − τ

tmes − τ=2

	�
þ ξ2 cos½2πtmesΩUV�

���
½ðξ1ðtmesÞÞ2 − ðξ2ðtmesÞÞ2�; ðB2Þ

Γ21ðtmesÞ ¼ −
1

2
π3κ2m2f2refA

2
−1

Z
∞

0

fdf
Z

τ

0

dtmic½ðξ1ðtmicÞÞ2 − ðξ2ðtmicÞÞ2�ξ1ðtmesÞξ2ðtmesÞ

× ðcos½2πfðtmic þ tmesÞ − φp� sinh½2rp� − cos½2πfðtmic − tmesÞ� cosh½2rp�Þ

¼ 1

2
πκ2m2f2refA

2
−1ξv

�
sinh½2rp� cos½φp� ln

�
4tmesðtmes þ τÞ
ð2tmes þ τÞ2

	

− cosh½2rp� ln
�
4tmesðtmes − τÞ
ð2tmes − τÞ2

	�
ξ1ðtmesÞξ2ðtmesÞ; ðB3Þ

and

Γ22ðtmesÞ ¼
1

4
π3κ2m2f2refA

2
−1

Z
τ

0

dtmic½ðξ1ðtmicÞÞ2 − ðξ2ðtmicÞÞ2�½ðξ1ðtmesÞÞ2 − ðξ2ðtmesÞÞ2�

×
Z

ΩUV

0

fdfðcos½2πfðtmic þ tmesÞ − φp� sinh½2rp� − cos½2πfðtmic − tmesÞ� cosh½2rp�Þ

¼ 1

4
πκ2m2f2refA

2
−1ξv

�
sinh½2rp� cos½φp� ln

�
4tmesðtmes þ τÞ
ð2tmes þ τÞ2

	

− cosh½2rp� ln
�
4tmesðtmes − τÞ
ð2tmes − τÞ2

	�
½ðξ1ðtmesÞÞ2 − ðξ2ðtmesÞÞ2�; ðB4Þ

where the coefficient expressions for Γ11 and Γ12 involve a
UV cutoff ΩUV for the frequency of graviton modes. In the
calculation of Γ21 and Γ22, we have used the following
approximation for cosine integrals

CiðfÞ ≃ lnðfÞ; ðB5Þ

In experimental scenarios, a characteristic acceleration time
usually aligns with the peak frequency within the power
spectrum of the force exerted on the massive object. This
inherent upper limit, known as the natural UV cutoff, is
defined by the acceleration time, which is proportional to
the minimal wavelength of radiation and corresponds to the

Compton wavelength of the object [56,73]. However, it is
noteworthy that no such UV cutoff exists in Γ22 as utilized
within the context of the text.

APPENDIX C: EXPLORING THE PREDOMINANT
DOMAIN OF Γ22

This section elucidates the circumstances under which
Γ22 takes precedence over Γ21 and when Eq. (4.8) can be
streamlined to Eq. (4.17). By employing the trajectory of
the massive object as given in Eqs. (4.15) and (4.16), and
juxtaposing Eq. (4.11) with Eq. (4.12), the outcome is
obtained as follows
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Γ22

Γ21

¼ 2ξ1ðtmesÞξ2ðtmesÞ
ðξ2ðtmesÞÞ2− ðξ1ðtmesÞÞ2

¼
8<
:

vtmes
2ξ − ξ

2vtmes
for 0< tmes ≤ τ=2;

ðvtmesþξ−vτÞð−vtmesþξþvτÞ
2vξðtmes−τÞ for τ=2< tmes < τ:

ðC1Þ

To ensure that Γ22=Γ21 is greater than 1, the subsequent
condition for ξ must be satisfied

ξ <
vτ

2ð1þ ffiffiffi
2

p Þ for ð1þ
ffiffiffi
2

p
Þ ξ
v
< tmes < τ − ð1þ

ffiffiffi
2

p
Þ ξ
v
:

ðC2Þ

This condition demonstrates that ξ should be bounded. To
provide a numerical perspective, we opt for rp ¼ 15–16,
v ¼ 10−9 m=s, and τ ¼ 10 s. The remaining parameters
are akin to those employed in Sec. IV B. Using Eq. (C2),
we find ξ ¼ 0.99vτ

2ð1þ ffiffi
2

p Þ ¼ 2.05 nm. Subsequently, we

numerically solve Eqs. (4.7) and (4.8) by employing
Mathematica’s NDSolve function and compare S2ðtmesÞ
with the numeric result of (4.17). Additionally, we have
employed the Compton frequency of the massive object as
the ultraviolet cutoff in Γ11 and Γ12, as referenced in [56].
The outcome of S2ðtmesÞ is illustrated in Fig. 6, showcasing
a seamless solution of the two differential equations. The
parameters utilized in the main text are deliberately selected
to fulfill the requirement of Eq. (C2). Therefore, in the
condition of (C2) we can shorten the coupled differential
equations of S1ðtmesÞ and S2ðtmesÞ into one independent
differential equation in the form of Eq. (4.17).

APPENDIX D: DENSITY MATRIX
CALCULATIONS FOR THE SPIN-1=2 SYSTEM

Here we want to calculate the density matrix elements for
the fermionic system of section V. Begining with the spinor
fields given by Eqs. (5.2) and (5.3), and the graviton field
expressed in Eq. (3.3) and put them into (5.7), we obtain

HabsðtÞ ¼ −
i
2
κ

Z
d3x

d3q
ð2πÞ3

d3q0

ð2πÞ3
d3p

ð2πÞ32p0

×
X
s;r;r0

esijðpÞuspðtÞχ̄r0 ðtÞqiγjχrðtÞbsðpÞ

× â†r0 âre
iðq0−q00Þte−iðq−q0−pÞ·x; ðD1Þ

where we have approximated ∂jψþ ∼ −iqjψþ, assuming qj

represents the momentum of the particle. Next, we express
the density matrix ρS of the spin-1=2 system in terms of the
Bloch vectors (3.22). The evolution of the density matrix
elements is given by [57]

ð2πÞ3δ3ð0Þ d
dtmes

ρSijðtmesÞ ¼ Dij½ρSðtmesÞ�: ðD2Þ

The dissipator is obtained by substituting the spin-1=2
interaction Hamiltonian [sum of Eqs. (5.7) and (5.8)] into
Eq. (2.3) and can be expressed in the following form

Dij½ρSðtmesÞ� ¼ −
Z

τ

0

dtmich½HintðtmesÞ; ½H0†
intðtmicÞ; N̂ S

ijðtmes − tmicÞ��ic

¼ −
κ2

2

X
s1;r1;r01

X
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Z
τ

0

dtmic

Z
d3x1d3x2

d3q1
ð2πÞ3

d3q01
ð2πÞ3

d3q2
ð2πÞ3

d3q02
ð2πÞ3

d3p1

ð2πÞ32p0
1

d3p2

ð2πÞ32p0
2

× Re½usqp1
ðtmesÞusq�p2

ðtmicÞ�e−iðq1−q01−p1Þ·x1e−iðq2−q02−p2Þ·x2eiðq
0
1
−q00

1
−p0

1
Þ·tmeseiðq

0
2
−q00

2
−p0

2
Þ·tmic

× eðs1Þm1n1ðp1Þeðs2Þ�m2n2ðp2Þχ̄r1ðtmesÞγm1qn1mesχr0
1
ðtmesÞχ̄r2ðtmicÞγm2qn2micχr02ðtmicÞ

× hbðs2†Þðp2Þbðs1Þðp1Þic½hâðr1Þ†âðr01Þâðr02Þ†âðr2ÞâðiÞ†âðjÞic − hâðr1Þ†âðr01ÞâðiÞ†âðjÞâðr02Þ†âðr2Þic
−hâðr02Þ†âðr2ÞâðiÞ†âðjÞâðr1Þ†âðr01Þic þ hâðiÞ†âðjÞâðr02Þ†âðr2Þâðr1Þ†âðr01Þic�: ðD3Þ

FIG. 6. Numerical comparison of S2ðtmesÞ under the condition
of Eq. (C2) in two scenarios: with and without Γ21 depicted by
solid lines and markers, respectively. The red, green, orange, and
blue plots represent rp ¼ 15; 15.5; 15.8, and 16, respectively. The
presented results are obtained using the following parameters:
v ¼ 10−9 m=s, τ ¼ 10 s, and ξ ¼ 2.05 nm. The remaining
parameters match those used in Fig. 2.
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By utilizing expectation values of Eqs. (4.3) and (4.4), integrating over x, and substituting the obtained dissipator into (2.1),
we arrive at

ð2πÞ3δ3ð0Þ d
dtmes

ρSijðtmesÞ ¼ −
κ2

2

X
s1;r1;r01

X
s2;r2;r02

Z
τ

0
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1
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1
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1
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2
Þ·tmic
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1
r0
2
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2Þ�: ðD4Þ

Integrating over q1; q2; q01; q
0
2, and p1, we obtain

d
dtmes
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2
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�
: ðD5Þ

The time evolution of the off-diagonal components of the
density matrix, described by S1 and S2 can be evaluated
using differential equations. (4.7) and (4.8), similar to the
case of decoherence in a massive object discussed in
Sec. IV.

APPENDIX E: CHARACTERIZING THE GW
FREQUENCIES DETECTABLE

BY THE NEW SCHEME

In this appendix, our aim is to identify the frequency
band of the SGWB in which the schemes operate with the
highest efficiency.

1. Massive object

Commencing with Eq. (4.12) and performing integra-
tions over tmes and tmic, the resultant integrand, γ22ðfÞ,
within the f integration, Γ ¼ R

γ22ðfÞdf, is obtained as
follows

γ22ðfÞ ¼ −4κ2f2refA2
−1v

2m2ξ2
sin4½πfτ=2�

πf3

× ðcosh½2rp� − cos½2πfτ − φp� sinh½2rp�Þ: ðE1Þ

This function has zeros at f ¼ 2n=τ where n ¼ 1; 2; 3;…,
as illustrated in Fig. 7. Integrating γ22ðfÞ over two regions
in frequency

FIG. 7. The integrand of decoherence rate in massive object
system in terms of the frequency. This figure was generated using
identical parameters as those in Fig. 2, with the following values:
rp ¼ 24 and ξ ¼ 10 nm.
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Z
6=τ

0

dfγ22ðfÞ ¼ πκ2m2f2refA
2
−1ξ

2v2τ2e2rp
�
−0.691

− 0.0921 cos½φp� þ 7 × 10−5 sin½φp�
�
;Z

∞

0

dfγ22ðfÞ ¼ πκ2m2f2refA
2
−1ξ

2v2τ2e2rp
�
−0.693

− 0.0920 cos½φp�
�
; ðE2Þ

shows that the dominant contribution to the integral arises
from the range where 0 ≤ f ≤ 6=τ. As a result, the effect
on the massive object system is notably pronounced within
the frequency spectrum up to f ¼ 6=τ. For instance, an
experimental duration of 10 seconds is most significantly
influenced by frequencies in the range of 0 ≤ f ≤ 0.6 Hz.

2. Massive spin-1=2 object

The integrand γ22ðfÞ for the spin-1=2 system is acquired
through a method akin to that described in Eq. (E1).

γ22ðfÞ ¼ −κ2f2refA2
−1v

4m2
sin2½πfτ�
4π3f3

�
cosh½2rp�

− cos½2πfτ − φp� sinh½2rp�
�
; ðE3Þ

which is illustrated over the interval of 1=τ ≤ f ≤ 5.5=τ in
Fig. 8, exhibiting zeros at f ¼ n=τ where n ¼ 1; 2; 3;…. In
the following, we demonstrate that the principal effective
range of the integral is situated between the first and
second zeros,

Z
2
τ

1
τ

dfγ22ðfÞ ≃
−1
π

κ2m2f2refA
2
−1v

4τ4e2rp
�
0.0021þ 7.7 × 10−4 cos½φp� − 8 × 10−4 sin½φp�

�
;

Z
∞

1
τ

dfγ22ðfÞ ≃
−1
π

κ2m2f2refA
2
−1v

4τ4e2rp
�
0.0022þ 8.5 × 10−4 cos½φp� − 8.4 × 10−4 sin½φp�

�
: ðE4Þ

The system is most profoundly influenced by the primary frequency band of 1τ ≤ f ≤ 2
τ. For instance, GWs within the range

of 1 Hz ≤ f ≤ 2 Hz exert the strongest impact on a fermion experiment with a duration of τ ¼ 1 s.
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