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The era of precision cosmology allows us to test the composition of the dark matter. Mixed ultralight or
fuzzy dark matter (FDM) is a cosmological model with dark matter composed of a combination of particles of
massm ≤ 10−20 eV, with an astrophysical de Broglie wavelength, and particles with a negligible wavelength
sharing the properties of cold dark matter (CDM). In this work, we simulate cosmological volumes with a
dark matter wave function for the ultralight component coupled gravitationally to CDM particles. We
investigate the impact of a mixture of CDM and FDM in various proportions (0%, 1%, 10%, 50%, 100%) and
for ultralight particle masses ranging over five orders of magnitude (2.5×10−25 eV–2.5×10−21 eV). To track
the evolution of density perturbations in the nonlinear regime, we adapt the simulation code AxioNyx to solve
the CDM dynamics coupled to a FDMwave function obeying the Schrödinger-Poisson equations. We obtain
the nonlinear power spectrum and study the impact of the wave effects on the growth of structure on different
scales. We confirm that the steady-state solution of the Schrödinger-Poisson system holds at the center of
halos in the presence of a CDM component when it composes 50% or less of the dark matter but find no
stable density core when the FDM accounts for 10% or less of the dark matter. We implement a modified
friends-of-friends halo finder and find good agreement between the observed halo abundance and the
predictions from the adapted halo model AxionHMCode.

DOI: 10.1103/PhysRevD.109.043507

I. INTRODUCTION

The cold dark matter (CDM) model explains the for-
mation of cosmic structures exceptionally well on large

scales. Observations suggest that dark matter may consist of
multiple components, with varying properties affecting the
growth of structure on different scales [1]. Among the dark
matter candidates which cluster distinctly from CDM are
very light scalar bosons with negligible nongravitational
interactions known as fuzzy dark matter (FDM) [2,3].*alague@sas.upenn.edu
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Due to their low particle mass, FDM condensates are
subject to coherence effects which impede clustering on
scales below their de Broglie wavelength ℏ=mv (for a
particle of mass m and velocity v), but behave as CDM on
large scales. Ideal candidates for FDM from particle
physics are ultralight axions which arise naturally in
quantum chromodynamics [4–9] and in high energy
physics extensions to the Standard Model such as string
theory [10–13]. In this scenario, it is postulated that they
form in a plenitude ofOð100Þ axion fields with logarithmi-
cally distributed masses [10]. Other extensions of the
Standard Model not based on string theory, such as the
π-axiverse [14], can also lead to a set of ultralight bosons. In
both cases, the lightest of these axions could have a mass
lower than 10−19 eV, implying the existence of particles
with de Broglie wavelengths on galactic scales. In the high
energy physics models where they arise, the ultralight
particles’ relic density, which we will denote ΩFDM, is not
necessarily equal to the total dark matter density of the
Universe. For instance, Ref. [15] finds an axionwith amass
of 2.5 × 10−22 eV and a cosmological density about one-
tenth of the predicted total dark matter density from the
ΛCDM model. Throughout this work, we make the
simplifying assumption that only one of the particles
produced in this scenario is ultralight while the others
have negligible de Broglie wavelengths. In this case, we
group their combined relic density into ΩCDM since they
can be modeled as CDM by virtue of the Schrödinger-
Vlasov correspondence [16].
With the total relic density of the nonultralight particles

captured by ΩCDM, we define the FDM fraction as

f ≡ ΩFDM

ΩCDM þ ΩFDM
: ð1Þ

The mixed cold and fuzzy dark matter model has been
studied in numerical simulations for single halos [17,18],
but cosmological N-body and hydrodynamical simulations
(accounting for FDM dynamics) up to date have assumed
f ¼ 1 [19–22]. In this work, we investigate the full non-
linear behavior of FDM particles with cosmological initial
conditions while foregoing this assumption. Previews of the
simulation with multiple dark matter components are shown
in Figs. 1 and 2.
Constraints on the FDM particle mass and fraction have

been reached with CMB [3,23,24], galaxy clustering
[3,25], galaxy weak lensing [26], and Lyman-α forest
data [27–30]. With the Lyman-α forest, accounting for the
full evolution of the FDM wave function is crucial to
arrive at unbiased constraints in the presence of baryons
[31]. While constraints using the Lyman-α forest were
obtained for mixed and pure FDM scenarios [29], only
the case where f ¼ 1 has been verified with N-body

simulations which included a nonlinear treatment of the
wave effects of FDM [32]. Studies of the density profiles
of ultrafaint dwarf galaxies indicate a preference for a
FDM mass m ∼ 3.7–5.6 × 10−22 eV [33] while dwarf
spheroidal galaxies suggest m ≤ 1.1 × 10−22 eV [34],
and Lyman-α forest results give m ≥ 3.8 × 10−21 eV
[27] and m > 2 × 10−20 eV [30], respectively. Further-
more, the suppression of smaller halos conflicts with the
subhalo mass function for ultralight dark matter masses
below m ∼ 2.1 × 10−21 eV [35]. It is also in tension with
measurements of stellar streams in the Milky Way [36].
However, these arguments are based on simulations of a
single dark matter component. Investigating the behavior
and scaling relations of cored density profiles (which
are the ground state of the wave function and often
referred to as solitons) in more general scenarios is crucial
to establish if an internal tension with FDM exists
when considering the full phenomenology of the axiverse.
At the higher-mass end, the lack of detection of black
hole superradiance constrains ultralight masses between
10−19 eV≲m≲ 10−16 eV and 10−13 eV ≲m≲ 10−11 eV
[37,38]. The latter constraints still hold in the presence of
multiple axion fields.
Axions are described by a scalar field ϕ with mass m

obeying the Klein-Gordon equation [39,40]

FIG. 1. Side-by-side slice plot of CDM and FDM in the same
1 Mpc=h box (comoving) at redshift z ¼ 4. The dark matter is
composed of 10% FDM, with the rest being CDM. The inner
region illustrates the difference in clustering between the two dark
matter species inside the central halo.
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□ϕ −
∂Vϕ

∂ϕ
¼ 0; ð2Þ

where the box denotes the d’Alembertian operator and Vϕ

is the field potential. The general form of this potential is
the periodic

Vϕ ¼ m2f2a

�
1 − cos

�
ϕ

fa

��
; ð3Þ

where fa is the field decay constant. In the limit of small
displacements, ϕ ≪ fa, the potential can be expressed as a
quadratic; Vϕ ¼ m2ϕ2=2. In the nonrelativistic limit, the
field has the ansatz [41]

ϕ ¼ ℏ

m
ffiffiffi
2

p ðψe−imt=ℏ þ ψ�eimt=ℏÞ; ð4Þ

where jψ j2 is proportional to the FDM density in that limit.

II. MIXED DARK MATTER SIMULATIONS

A. Wave function evolution

Following the nonrelativistic approximation of Eq. (4),
the dynamics of FDM are governed by the Schrödinger
equation

iℏ
∂ψ

∂t
¼

�
−

ℏ2

2ma2
∇2 þmΦN

�
ψ ; ð5Þ

wherem is the FDM particle mass andΦN is the Newtonian
gravitational potential. In a mixed dark matter cosmology,

the evolution of the FDM component is coupled to CDM
via the Poisson equation

∇2ΦN ¼ 4πG
a

ðρCDM þ ρFDM − ρ̄totÞ; ð6Þ

where ρFDM ¼ jψ j2 and ρ̄tot is the mean of the total dark
matter density.
To solve the above system of equations, we use AxioNyx

[17] which is an extension of the cosmological simulation
code Nyx [42]. While the N-body solver of the Nyx code is
used to evolve the CDM component, the pseudospectral
solver described in Ref. [17] is used for the FDM compo-
nent. This method has been shown to solve the Schrödinger-
Poisson system accurately and to resolve the small-scale
features of the wave function [17]. However, the latter is
only possible if the simulation grid spacing is sufficiently
small to resolve the de Broglie wavelength throughout the
simulation. This means that the Schrödinger-Poisson solver
is subject to the time-step criterion [43,44]

Δt ≤ 4 min

�
m
ℏ
ðΔxÞ2
2π

;
πℏ

4mjΦNjmax

�
; ð7Þ

because the time step needs to capture the coherence time
scale tc ∼ ðΔxÞ2m=ℏ ∼ ℏ=ðmv2Þ of the field. The con-
straints in both spatial and temporal resolution are the
reason why FDM simulations cannot reach the spatial extent
of pure CDM N-body simulations and most FDM simu-
lations are stopped around redshift z≲ 3.

FIG. 2. Density slices of 1 Mpc=h simulation boxes (comoving) at redshift z ¼ 4. The three panels (starting from the left) illustrate the
total (CDM plus FDM) density around the central halo for a simulation of pure CDM, an even mixture of CDM and FDM, and of pure
FDM for a FDM mass of 2.5 × 10−22 eV.
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Multiple algorithms have been adapted or modified to
solve the Schrödinger-Poisson system of equations. Gamer

[45] was notably one of the first followed by AREPO [43,46],
ENZO [47], Nyx [48], GIZMO [22], GADGET [19,49–51] and
RAMSES [52,53]. A Python-based pseudospectral solver
named PyUltraLight [44] has also been recently developed.
Some codes have been extended to simulate multiple axion
fields [18,54–57]. There are also algorithms which take
advantage of the fact that the Schrödinger-Poisson system
admits a steady-state solution at the center of virialized
structures. These express the wave function as a sum of
eigenfunctions which can be evolved forward in time at a
reduced computational cost [58].
We exploit the efficiency of the pseudospectral solver to

numerically evolve the FDM component and, given the
size of the boxes and resolution used in this work, we stop
the evolution of the wave function at redshift z ¼ 4 before
all the modes become nonlinear. Since the pseudospectral
solver relies on periodic boundary conditions, it cannot be
used on higher levels of refinement where instead, a finite-
difference solver is generally used. Finite-difference is
used to approximate the Laplacian appearing in the
Schrödinger-Poisson equations while, in the pseudospec-
tral method, the Laplacian is computed without numerical
approximations. This difference in the interplay of the two
solvers can result in the lagging of the finite-difference
solver with respect to the pseudospectral solver. For this
reason, we postpone the implementation and testing of
adaptive mesh refinement (AMR) in mixed dark matter
simulations to future work.

B. Initial conditions

Given the FDM wave effects, the CDM and FDM
components will not have the same initial distributions
of densities and velocities. One also has to use higher-order
perturbation theory to avoid the formation of transient
features in the simulations [59]. A second-order Lagrangian
perturbation theory (LPT) scheme for mixed ultralight
axions was developed in Ref. [60]. The scale-dependent
suppression in the FDM growth factor reproduces the
effects of the wave diffusion at high redshifts since wave
effects are captured at the linear level by the effective sound
speed [61,62]

c2s;eff ¼
ℏ2k2

4m2a2
; ð8Þ

where k is the comoving Fourier mode and a is the
cosmological scale factor. The modified LPT approach
is, therefore, well suited for generating initial conditions for
FDM cosmological simulations at high redshift (here we
choose zini ¼ 100 to be well into the linear regime). The
main difference for the FDM component is that the velocity
field at first order obeys

vðkÞ ¼ −H
d lnDðk; aÞ

d ln a
k
k2

δðkÞ; ð9Þ

where H ¼ aH, δðkÞ is the Fourier transform of the
overdensity field δ≡ ρ=ρ̄ − 1, and D is the linear growth
factor of the density perturbations (for the CDM compo-
nent, the growth factor is scale independent). The density
field used is to compute the velocities is the total density,
including both components. Therefore, the presence of
FDM also affects the initial velocity of CDM particles by
partially suppressing the initial power spectrum on small
scales. In Ref. [60], it was shown that one can approximate

Dðk; aÞ ≈ LðkÞDCDMðaÞ; ð10Þ

where the prefactor L is a monotonically decreasing
function which asymptotically tends to zero on small sales.
We use the public code MUSIC [63] along with the modified
Boltzmann code AxionCAMB [23]. We create a transfer
function input file for each of the components and then
generate initial positions and velocities for each, given the
same total gravitational potential. The suppressed FDM
transfer function ensures that the FDM particles are not
given inconsistent velocities. The resulting initial density
and velocity fields for both the CDM and FDM compo-
nents of the simulations are shown for f ¼ 0.1 and m ¼
2.5 × 10−22 eV in Fig. 3. The difference in the number and
placements of the velocity field arrows is due to the fact that
the velocity field of the FDM is evaluated on a grid rather
than with particles. To initialize the wave function, we use
the Madelung change of variables ψ ¼ Reiθ where the
magnitude and phase can be obtained with

RðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρFDMðxÞ

m

r
; ð11Þ

∇θðxÞ≡m
ℏ
vFDMðxÞ: ð12Þ

To obtain the phase of the wave function, Eq. (12) can be
solved in Fourier space given the Fourier transform of the
velocity field which was calculated with Eq. (9). In Fig. 3,
we can observe the difference in clustering between the two
species at high redshift. Many simulations have used the
modified initial conditions of FDM combined with CDM-
like evolution to approximate the behavior of FDM at a
lower computational cost (by not solving the Schrödinger
equation). This has been known as the warm dark matter
(WDM) or classical FDM approach [20,64]. We will test
the validity of this approximation for low FDM concen-
trations in Sec. III.
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III. RESULTS

We simulate the evolution of the CDM and FDM
components from the initial redshift zini ¼ 100. We generate
a set of 12 simulation boxes listed in Table I. First, we fix the
mass atm ¼ 2.5 × 10−22 eV and select five FDM fractions;
f∈ f0; 0.01; 0.1; 0.5; 1g. We then consider four other

masses m∈ 2.5 × f10−25; 10−24; 10−23; 10−21g eV, but
keep the fraction at f ¼ 0.1 for these runs. We also create
two simulations where the initial conditions account for 1%
and 10% FDM, but the system is evolved using only CDM
particles and a simulation with twice the resolution using a
grid of 10243 points for a convergence analysis (and
Appendix B). Snapshots of the total matter density in boxes
1, 4, and 5 at redshift z ¼ 4 are displayed in Fig. 2.
The visualizations are generated using the analysis code
YT [65].

A. Nonlinear matter power spectrum

We extract the total power spectra from our simulations
using the public code NBODYKIT [66]. The spectra and
relative difference of the FDM and CDM power spectra for
a series of FDM fractions is shown as a function of redshift
in Figs. 4 and 5. We have factored out the homogeneous
(large-scale) growth factor DðzÞ ∝ 1=ð1þ zÞ in the matter-
dominated Universe to highlight the growth of structure on
small scales. For high FDM fractions (redder curves), the
FDM and CDM spectra are relatively close together at high
redshift. In this case, the CDM follows the distribution of
the FDM and will be similarly suppressed on small scales.
However, the converse does not hold. If the CDM is the
main component of the dark matter, the FDM still does not
cluster on scales below its Jeans scale (where the FDM
sound speed equates to the gravitational potential) [39,67],
which in the pure FDM case is given by

kJ ¼ 66.5a1=4
�

m
10−22 eV

�
1=2

�
ΩFDMh2

0.12

�
1=4

Mpc−1: ð13Þ

FIG. 3. Initial density field for the CDM (top) and FDM
(bottom) components of our simulation box 3 (see Table I) at
z ¼ 100. The initial velocity fields are plotted and rescaled to the
maximal velocity for each component. The ratio of the FDM to
CDM velocity magnitudes goes to one on large scales.

TABLE I. List of completed simulations with FDM masses and
fractions. The box size is given in comoving coordinates. The
number of particles for the CDM component is the same as the
number of grid points for the FDM in all cases. FDM ICs under
particle mass indicates that the particles were evolved as CDM
with modified initial conditions.

Box
number

FDM
mass (eV)

FDM
fraction

Box length
(Mpc=h)

N grid/
particles

1 2.5 × 10−22 0.00 1.0 5123

2 2.5 × 10−22 0.01 1.0 5123

3 2.5 × 10−22 0.10 1.0 5123

4 2.5 × 10−22 0.50 1.0 5123

5 2.5 × 10−22 1.00 1.0 5123

6 2.5 × 10−21 0.10 0.3 5123

7 2.5 × 10−23 0.10 1.0 5123

8 2.5 × 10−24 0.10 10.0 5123

9 2.5 × 10−25 0.10 30.0 5123

10 2.5 × 10−22 0.10 1.0 10243

11 FDM ICs 0.01 1.0 5123

12 FDM ICs 0.10 1.0 5123
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This is visible in the pale blue and gray curves in the z ¼ 15
panel of Fig. 4.
In the bottom row of Fig. 4, we also plot the ratio of the

total matter power spectrum to the nonlinear matter power
spectrum of the pure CDM case (f ¼ 0). As observed in
Ref. [25], even a FDM fraction of a few percent leads to a
strong suppression of clustering. This explains why the
10% FDM fraction (pink line) is damped by over 50% at
redshift z ¼ 15. We note however, that the FDM rapidly
falls into the CDM potential well, and the total nonlinear
power spectrum approaches that of the pure CDM case as
structure forms at lower redshifts. Comparing the results
shown in Fig. 5 with the simulations of Ref. [68], we can
see that nonlinearities form sooner in the f ¼ 0.1 case than

in the f ¼ 1 case as a power spectrum excess (compared to
the linear prediction) is visible at redshift z ∼ 7. This is
mostly attributable to the lower level of suppression in the
linear spectrum for f < 1, but also to the scale-dependent
structure growth of FDM which delays the in-fall of FDM
in halos [60].
To measure the impact of the wave effects and differ-

entiate them from the structure suppression caused by
the modified initial conditions, we run two additional
simulations using the WDM approximation as used in
Refs. [20,64]. The WDM approach consists in modifying
the initial conditions to account for the presence of FDM
but to evolve the system for z < zini using only the CDM
dynamics. For this, we use the initial conditions of boxes 2

FIG. 5. Combined (CDMþ FDM) power spectra normalized by the time-dependent growth factor in the simulation boxes as a
function of redshift and FDM mass for a fraction of f ¼ 0.1. We note the formation of nonlinear structures at redshift z ¼ 7 for all
masses which is not found in simulations where f ¼ 1.

FIG. 4. Power spectra in the simulation boxes as a function of redshift and FDM fraction. (Top) Combined (CDMþ FDM) power
spectra normalized by the time-dependent growth factor. The dashed line represents the prediction from linear theory for pure CDM.
(Bottom) Ratio of the combined power spectra with respect to the nonlinear pure CDM power spectrum at the same redshift.
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and 3 with f ¼ 0.01–0.10, we label the power spectra of
such simulations Pw

f . Taking the ratio of this power
spectrum to the power spectrum of the simulation boxes
which account for both the modified initial conditions and
the FDM dynamics, we have

QðkÞ≡ PfðkÞ
Pw
f ðkÞ

− 1: ð14Þ

The role of the function QðkÞ is to isolate the impact of the
late-time effect of the wave behavior of FDM. If this
function is exactly zero, this tells us the wave effects play
no role in clustering and that the all the suppression
observed in Figs. 4 and 5 is due solely to the initial
conditions. We observe increased suppression of the non-
linear matter power spectrum when accounting for the wave
effects, as shown in Fig. 6. We note that the shape of the
function Q remains the same as we increase the FDM
fraction, and only its amplitude changes. Our results agree
with the finding of Ref. [19] with the added property that
difference between the WDM and FDM treatments becom-
ing negligible at low fractions. In other words, we find
QðkÞ → 0 as f → 0 roughly linearly.

B. Density profiles

A well-known prediction of FDM models is the
formation of solitonic cores at the center of halos [45].
We can obtain the shape of this core by noting that
the Schrödinger-Poisson system has an equilibrium sol-
ution with a complex phase. The wave function takes the
form ψðx; tÞ ¼ e−iγt=ℏϕðxÞ, where γ is a constant.

Assuming spherical symmetry (with r ¼ jxj), the system
of equations (5)–(6) becomes [69,70]

∂
2ðrϕÞ
∂r2

¼ 2r

�
m2

ℏ2
V −

m
ℏ2

γ

�
ϕ; ð15Þ

∂
2ðrVÞ
∂r2

¼ 4πGrðϕ2 þ ρCDMÞ: ð16Þ

We fit the density profile of the FDM by solving for the
equilibrium solution given the shape of the CDM density
profile and the ratio of their central densities. We develop a
more stable alternative to the shooting method used in
previous studies to find the eigenvalue γ [69] which we
describe in Appendix A. We confirm that the equilibrium
state of the scalar function ϕ does satisfy the Schrödinger-
Poisson system but with a different eigenvalue than the one
found for the zero-node solution in the pure FDM case.
As with a baryon-FDM mixture, we observe that a

secondary contributor to the potential of the FDM causes
the core radius to shrink [70]. In Figs. 7 and 8, we display
the CDM and FDM density alongside the canonical soliton
fit of Ref. [45]. The fit can be obtained with two free
parameters giving

ρsolðrÞ ¼
ρ0

½1þ 0.091ðr=rcÞ2�8
; ð17Þ

where ρ0 is the central density and where rc is the radius at
which the density reaches half of its central value. The
FDM mass and the two parameters of the fit obey the
scaling relation

FIG. 6. Impact of wave effects on the power spectrum at
redshift z ¼ 4. We increase the amplitude of Q by an order of
magnitude for f ¼ 0.01 to compare the shape of the curves
across FDM fractions. The late-time FDM wave effects not
captured by the modified initial conditions are more apparent
when f ¼ 0.1. The dotted black line denotes the Jeans scale for a
mass of 2.5 × 10−22 eV.

FIG. 7. CDM and FDM density profiles in simulation box 4
with 50% FDM (see Table I). The dark dashed line represents a
traditional soliton profile fit to the FDM density and the green line
denotes the fit found by solving Eq. (16) in the presence of CDM.
The arrows denote the half-density radius of the curves of the
corresponding color.
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rc ¼ 1.0

�
ρ0

3.1 × 1015M⊙=Mpc3

�
1=4

×

�
m

2.5 × 10−22 eV

�
1=2

kpc: ð18Þ

We find in the mixed CDM-FDM case that the relation for
the core radius no longer holds. In the case where f ¼ 0.5,
the FDM dominates the inner region of the halo and the
soliton fit still provides a good description of the inner FDM
density with a slightly different slope at high r. However,
when CDM composes 90% of the dark matter, we do not
detect a proper soliton core. We test to see if the core radius
falls below the resolution of the simulation by solving
the time-independent ground state of the Schrödinger-
Poisson system in the presence of CDM. The CDM creates
a steeper gravitational potential gradient on the FDM wave
function causing it to be radially compressed. In our
simulations, we find that the FDM density profile’s inner
slope is too steep to be well modeled by a proper soliton
core for the range of radii we can resolve. Our results agree
with previous studies on mixed dark matter using spherical
collapse, which found no core formation for fractions below
f ≲ 0.3 [17].
On the outskirts of the halos, we find that the total

density profile approaches the Navarro-Frenk-White
(NFW) fit [71]:

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð19Þ

where rs is the NFW scale radius and ρs is its characteristic
density. The NFW profile has a diverging mass as r → ∞,
which is unphysical. It is customary to denote the limit of

the halo with its virial radius, which is defined as a
function of the virial overdensity Δvir given by [72]

Δvir ¼ 18π2 þ 82½ΩmðzÞ − 1� − 39½ΩmðzÞ − 1�2 ð20Þ

and which we can relate to the halo mass through

MðrvirÞ ¼
4π

3
r3virΔvirρ̄tot: ð21Þ

We will use this definition in the following section.
A key assumption in the halo model of Ref. [73] is that

CDM could form bound structures which contain little to
no FDM. This can happen when a halo has a radius smaller
than the halo Jeans radius (rhJ) which is defined as the
radius where

ρðrhJÞ ≈
ρ̄totΔvirc2rvir
3fðcÞrhJ

; ð22Þ

where c is the concentration of the halo which is defined as
the ratio of the virial radius to the scale radius (from the
NFW fit) c≡ rvir=rs and fðxÞ ¼ lnðxþ 1Þ − x

xþ1
. However,

Eq. (22) is only valid in the limit where rvir ≥ rhJ. For a
FDM particle mass of 2.5 × 10−22 eV at f ¼ 0.1, this
translates to a halo mass of about 106M⊙=h. Halos for
which this does not hold are taken to be devoid of FDM in
the halo model of Ref. [73].
In Fig. 9, we show a halo of simulation box 3 and its

surrounding region. By plotting the density isocontours, we
notice that the FDM component is very diffuse while the
CDM has a steep density gradient. This is shown quanti-
tatively in the lower left panel of Fig. 9 where the CDM is
more than 100 times denser in the center of the region than
the FDM. When calculating the Jeans radius for this halo,
we find no value of rhJ satisfying Eq. (22) and conclude that
rvir < rhJ. The findings shown in Fig. 9 supports the
approximations of the halo model as the halo is composed
at ≈97.5% of CDM.
In the limit of the high halo mass with low FDM fraction,

we find that the total (combined) density is largely
unaffected by the presence of FDM. This is shown for
fractions f ≤ 0.1 in Fig. 10. We fit the radial density of the
most massive halo in each of the boxes 1–3 using a NFW
profile and found the concentration parameter to be
unchanged by small amounts of FDM even if the halo
central density is slightly reduced. Moreover, the FDM
fraction calculated within the three halos of Fig. 10 are
(0.000, 0.107, 0.011) for cosmological FDM fractions
f ¼ ð0.00; 0.10; 0.01Þ, respectively. Thus, we find that
massive halos with a radius larger than the Jeans radius
accumulate a concentration of FDM equal to the cosmo-
logical FDM fraction. This matches the prediction of the
biased tracer model of Ref. [73].

FIG. 8. CDM and FDM density profiles in simulation box 3
with 10% FDM (see Table I). The dark dashed line represents a
traditional soliton profile fit to the FDM density and the green line
denotes the fit found by solving Eq. (16) in the presence of CDM.
The arrows denote the half-density radius of the curves of the
corresponding color.
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C. Halo mass function

In this section, we measure the halo abundance and
compare our results with the theoretical predictions of a halo
model for mixed dark matter. In a mixture of CDM and
FDM, the CDM is free to coalesce in small halos while the
FDM substructure is still washed out by wave effects.
Therefore, unlike cosmologies with a FDM fraction of
f ¼ 1, halos with a radius below the FDM Jeans scale will
still form in mixed dark matter. To investigate this quanti-
tatively, we measure the halo mass function (HMF) in
simulation boxes 1 and 3 (see Table I).
We use the CDM particles as a tracer of the halos and use

the friends-of-friends (FOF) algorithm [74] to identify the
halo centers. To correct for the presence of FDM, we create
a spherical profile around the halo center and vary its radius
until the total mean density of the halo reaches the virial

overdensity given in Eq. (20). We only use this approach in
simulations where CDM composes at least 90% of the dark
matter and where FDM acts as a tracer of the CDM. The
CDM particles have a smaller separation between them in
high-density regions, and not all halos that are resolved with
particles have a high enough number of grid cells to apply
the FDM mass correction. About 80 halos had a radius
sufficiently large to accurately account for the presence of
FDM. The final halo masses used are found by summing
over the mass of the particles in the halos and applying the
FDM halo mass correction obtained from the spherical
profile. The other halos identified by the FOF algorithm had
a radius smaller or comparable to the FDM de Broglie
wavelength. One such halo which had a sufficiently large
radius to encompass many FDM grid cells is shown in
Fig. 9. Most of the halos, however, did not have a sufficient

FIG. 9. Tri-dimensional density isocontours around a CDM-dominated subhalo with an FDM mass of m ¼ 2.5 × 10−22 eV. Despite
being in a simulation with f ¼ 0.1, f ≪ 0.1 within the halo, indicating it is close to the cutoff where no FDM is clustered. The three
isocontour panels show the separate components and the total density. The lower left panel shows the measured density of CDM and
FDM as a function of the distance from the subhalo center up to 40 kpc which corresponds to the white dashed circle in the other three
panels. The colored text indicates the density of the isocontours in units of M⊙=Mpc3.
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number of grid points to resolve the FDM density profile
and the FDM mass correction assumed a flat density profile
equal to the mean FDM density.
We compare our results with the halo model predictions

of AxionHMCode [73], which is a an adaptation of HMCode

[75] accounting for ultralight particles composing part of the
dark matter. It is based on the halo model first implemented
in Ref. [26] to compute weak lensing shear statistics with
FDM. We show our results along with the model prediction
in Fig. 11. We split the simulation volume in four boxes and
compute the error bars using a jackknife method. To
improve the accuracy of the comparison, we also rescale
the HMF prediction. This rescaling is necessary due to the
fact that the HMFmodel assumes a different mass definition
than the output of the FOF halo finder. We use the Python

package HMF [76,77] to compute the ratio of HMFs using
the FOF and virial mass definitions (for a more in-depth
discussion of halo mass definitions see [78]). The rescaling
is roughly mass independent and has a value of ∼0.83. This
difference is negligible compared to the error margin on the
HMF measurement and does not affect our results. We find
a reasonable agreement between the model and the simu-
lations. We expect the halo mass functions for different
FDM fractions to converge at halo masses larger than what
can be captured by our box size as shown by the model
prediction. Given our box size, the results for the HMF are
somewhat inconclusive, although in the largest mass bins,
the measured HMF shows a similar decrement to the
theoretical HMF (see the inset of Fig. 11).

D. Halo shapes

Halo triaxiality has been suggested as a way to detect
dark matter properties beyond CDM, such as dark matter
self-interactions [79–81]. In this section, we investigate
the impact of FDM on the shape of dark matter halos.

Given the presence of a spherical solitonic core, we expect
that the FDM will lead to more spherical halo centers than
pure CDM. Further away from the halo center, a suppres-
sion of the initial power spectrum can also give more
spherical halos in the absence of wave effects as shown in
Ref. [64]. To test this prediction, we compare the shape of
halos for FDM fractions f ¼ f0.00; 0.01; 0.10; 0.50g and
use the central halo in simulation boxes 1, 2, 3, and 4.
Halo shapes are parameterized by looking at the length of

the halo’s principal axes which are labeled in increasing size
a ≥ b ≥ c. To compute the direction and relative length of
the principal axes, we diagonalize the reduced inertia tensor
I of the halo. The inertia tensor can be computed using
different methods [82], but we follow the approach of
Refs. [79,83,84] giving

I ij ¼
X

n in halo

½1þ δtotðxnÞ�
xn;ixn;j
r2n

; ð23Þ

where i, j ¼ 1, 2, 3 are the indexes of the axes, xn is the
distance from the center of the halo to the nth grid point

in the ellipsoid axis frame, rn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n;1þx2n;2=q

2þx2n;3=s
2

q
is

the ellipsoidal radius. The ellipsoidal radius is obtained from
the axes ratios q ¼ b=a and s ¼ c=a. Normally, the inertia
tensor is computed as a sum over particles of the same mass.
In the case at hand, we take a weighted sum over grid points
located within the central halo. We interpolate the particle
mass density of the CDMusing a cloud-in-cell scheme on the
same grid as the FDM and we weigh the grid points by their
total matter overdensity δtot¼fδFDM þð1−fÞδCDM.We then
compute this tensor iteratively following the procedure of

FIG. 10. Top: radial density profile of the most massive halos in
low FDM fraction simulation boxes for a FDM mass of m ¼
2.5 × 10−22 eV and a redshift z ¼ 4. The dotted lines represent
the NFW profile fits to the total density. Bottom: relative
difference in density with respect to the CDM-only (f ¼ 0) case.

FIG. 11. Halo mass function (number density of halos above a
certain mass threshold) for two FDM fractions at redshift z ¼ 4.
The colored regions are measurements from simulations with
the 68% confidence intervals and the solid lines correspond to the
predictions from AxionHMCode. Inset: relative difference in the
number density of halos in the mass range 107–108M⊙=h
compared to the model prediction (red dashed).
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Ref. [84].Webegin by calculating the principal axes for a halo
centered at the point of highest density. The radius of the
sphere is taken to be the virial radius. Then, we create an
ellipsoid of the same volume as the initial sphere, with the
principal axes aligned with the eigenvectors of the inertia
tensor andwith the proper axes ratios. The lengths of the axes
simply correspond to the square root of the eigenvalues of the
tensor. This ellipsoid defines a new halo for which we repeat
the same procedure until we have reached ten iterations (after
which the inferred shape of the halo converges). For a
numerical implementation of this procedure, we make use
of the public repositories INERTIA-TENSORS [85] and
ROTATIONS [86].
To quantify the ellipticity of halos, we calculate the

triaxiality parameter [84,87,88]

T ≡ a2 − b2

a2 − c2
: ð24Þ

Using this parameter, we can categorize halos as
oblate (T ≤ 0.33), prolate (T ≥ 0.66), or triaxial (0.33 ≤
T ≤ 0.66). In Fig. 12, we show the impact of having a high
fraction at various radii. We note that the effects on the halo
shape only manifest at around f ¼ 0.5, where the central
region within 0.5rvir is more spherical. Contrary to past
studies on halo triaxiality, we are not comparing halo
populations but identical halos in simulations with different
dark matter contents. We also only study halos at high
redshift z ¼ 4. Since the formation of a soliton core is
universal in halos containing ultralight particles, we expect
our observations to hold for halo populations at lower
redshifts. We note that our algorithm did not converge for
the FDM-only f ¼ 1 case as the structure was too diffuse
and contained a significant number of interference fringes.

IV. DISCUSSION

In this study, we have explored the nonlinear behavior of
dark matter composed of a mixture of cold and ultralight
(fuzzy) dark matter. We adapted a simulation algorithm for
dark matter models with gravitationally coupled CDM and
FDM components evolved simultaneously.
We first examined the nonlinear power spectrum of each

component up to redshift z ¼ 4. While the resulting spectra
proved too noisy for a comparison with halo model
predictions, we confirmed that the presence of wave effects
in the nonlinear regime leads to enhanced suppression of the
power spectrum when compared to simulations where only
the initial conditions had been modified. This agrees with
the findings of AXIREPO and AX-GADGET codes [19,46]. In
simulations with f ¼ 1 andm ∼ 10−22 eV, it was found that
the wave effects can cause an increase in power on scales
approaching k ∼ 1000h=Mpc [46] which we do not resolve
sufficiently well with a 5123 grid (see Appendix B). In the
low fraction limit, we found that the suppression of
the power spectrum was mostly attributable to the change
in the initial conditions rather than the wave effects. We also
observed that the excess suppression due to the wave effects
scales roughly linearly with f if f ≲ 0.1.
Next, we investigated the density profiles of halos with

mixed dark matter. We found that, for high fractions
f ≥ 0.50, the halo exhibited a cored density profile
matching closely the fitting formula of Ref. [45] even in
the presence of CDM. For a fraction of f ¼ 0.5, the CDM
created a steep potential well exerting a pressure on the
FDM soliton and caused its core radius to shrink. For lower
fractions, we found that no stable core could form due to
the enhanced gravitational potential in the presence of
CDM. We compared the predicted size of the core
(accounting for the CDM density) with the measured
density profile of the FDM and concluded that the
ground-state solution would have a radius large enough
to be detected given our numerical resolution. Our findings
that the soliton core does not form at a fraction of f ¼ 0.1
are in agreement with the results of spherical collapse
simulations [17].
We ran a customized halo finder and measured the halo

mass function for pure CDM and 10% FDM with a mass of
2.5 × 10−22 eV. Our implementation of the halo finder is a
combination of the friends-of-friends algorithm to identify
the halo centers with CDM particles and the spherical
overdensity finder to correct for the FDM density on a grid.
The final halo finder gave us a halo catalog with mass
measurements accounting for both dark matter compo-
nents. We could not be conclusive in our AxionHMCode

comparison, but found a qualitative agreement given the
limited statistics. We also identified a low mass halo below
the predicted cutoff introduced in the biased tracer halo
model of Ref. [73] and found that it had a very small FDM
fraction, as expected.

FIG. 12. Triaxial parameter of the central halo for various FDM
fractions. We note a more spherical inner-halo region with high
fraction due to the presence of the spherical soliton core. The
f ¼ 1 halo was too diffuse and the ellipsoid algorithm did not
converge.
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As is the case for the power spectra, testing nonlinear halo
models further will benefit from cosmological simulations
with a larger halo population and a lower final redshift. The
time-step requirements for the Schrödinger-Poisson system
make this task challenging and such simulations may
require other computational approaches to evolve the
FDM dynamics. This is exacerbated in the presence of a
steep external gravitational potential created by the CDM
which shrinks the de Broglie wavelength of the FDM thus
increasing the resolution needed to study the halo cores. We
leave more involved analyses of halo statistics in mixed dark
matter for future work.
Finally, we investigated the possibility that FDM could

reduce the halo ellipticity around the soliton cores since a
similar effect has been shown to occur for models of self-
interacting dark matter. We expected the wave effects and
modified initial conditions to isotropize the halo density on
scales comparable to the FDM de Broglie wavelength and
found this to be the case for the high FDM fraction
(f ¼ 0.50). However, we found no trace of this phenome-
non in halos with f ≤ 0.10. It is possible that the impact of
the wave effects manifested on scales which escaped the
simulation resolution. In a mixed dark matter cosmology,
we found that the FDM is not distributed equally across
halos of different masses as displayed in Fig. 1.
In this study,wehave run the first cosmological simulations

of amixture of cold and fuzzy darkmatter.Wehave found that
the resulting dark matter model combined features from both
its constituents but exhibited a unique behavior amongst
known dark matter models. These findings will have a
profound impact in the study of ultralight particles and the
modeling of their behavior on nonlinear scales.
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APPENDIX A: PADÉ APPROACH TO SP SYSTEM

We propose an alternative method for solving the system
of equations (16). The system is a boundary value problem
with conditions at r → ∞ and is therefore potentially
unstable numerically. Moreover, it allows an infinite
number of solutions, only one of which (the zero node
solution) is stable [91]. The usual method is to first
transform the system in dimensionless variables

r →
m
ℏ
r; ðA1Þ

ϕ →
ℏ

ffiffiffiffiffiffiffiffiffi
4πG

p

m2
ϕ; ðA2Þ

ρCDM →
4πGℏ2

m2
ρCDM; ðA3Þ

γ →
ℏ
m
γ: ðA4Þ

Then, we can use the scaling of the system using a scalar λ
[69,91] fr;ϕ; ρCDM; γg → fλ−1r̃; λ2ϕ̃; λ4ρ̃CDM; λ2γ̃g where
we choose λ ¼ ϕðr ¼ 0Þ1=2 so that ϕ̃ðr ¼ 0Þ ¼ 1. Our new
rescaled system of equations is then

∂
2ðr̃ ϕ̃Þ
∂r̃2

¼ 2r̃ðṼ − γ̃Þϕ̃; ðA5Þ

∂
2ðr̃ ṼÞ
∂r̃2

¼ r̃ðϕ̃2 þ ρ̃CDMÞ; ðA6Þ

with boundary conditions

ϕ̃ð0Þ ¼ 1; ðA7Þ

ϕ̃ðr̃ → ∞Þ ¼ 0; ðA8Þ

ϕ̃0ð0Þ ¼ 0; ðA9Þ

Ṽ 0ð0Þ ¼ 0; ðA10Þ

Ṽðr → ∞Þ ¼ 0; ðA11Þ

where the prime denotes differentiation with respect to r.
Some tricks have been suggested to approximate the

problematic boundary conditions at infinity [91], but here
we consider a complementary approach to this problem
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which satisfies the exact boundary conditions and closely
approximates ϕ. Namely, we define the inverse polynomial
estimator

ϕ̂ðxÞ ¼
�
1þ

Xn
k¼1

akxk
�−1

: ðA12Þ

This resembles the Padé approximant with the condition
that the polynomial in the numerator is set to unity. This
ensures that the condition at r ¼ 0 is met. We note that the
boundary conditions at infinity are trivially satisfied given
that the inverse polynomial is monotonically decreasing.
Given the success of the soliton fit with ϕ ∝ r−8 at large r,
we pick n ¼ 8.
From Ref. [69], we can solve for the potential through

VðrÞ ¼ V0 þ
Z

r

0

yðϕ2 þ ρCDMÞdy −
MðrÞ
r

; ðA13Þ

where M is the number density

MðrÞ≡
Z

r

0

y2ðϕ2 þ ρCDMÞdy: ðA14Þ

For simplicity, let us consider only the case where the CDM
is absent. Then the potential Ṽ 0 ∝ r1−N for large r and is
equal to zero at r ¼ 0. The same goes for ϕ̃. Finally, the
boundary condition Ṽðr → ∞Þ ¼ 0 can be satisfied by an
appropriate choice of V0. The problem is now to find the
coefficients ak so that ϕ̂ ≈ ϕ̃ without having an analytic
representation for ϕ̃. For this, we borrow the definition of
the loss function implemented in physics-informed neural
networks [92]. We define

L≡ 1

N

X
ri ∈R

½∂2r̃ðr̃iϕ̂Þjr¼ri − 2r̃iðṼi − γ̃Þϕ̂i�2; ðA15Þ

where ϕ̂i ¼ ϕ̂ðriÞ, Ṽi ¼ ṼðriÞ, and where R is a set of N
sample points between 0 and rmax. We note here that we can
be quite flexible in our choice of rmax given that our sample
solution satisfies all the boundary conditions. To approx-
imately solve this system, we then minimize the loss
function over our coefficients ak. We also have two other
unknowns in Ṽ0 and γ̃. However, given the form of
Eq. (A5), it is immediate that there is a degeneracy between
the two parameters and that we can simply combine them in
one γ̃0 ≡ Ṽ0 − γ̃. This gives a total N þ 1 free parameters
over which to minimize. We employ the BASINHOPPING

method implemented with the SciPy Python package [93] for
this procedure. Having found the ak coefficient, we
compare our approximated solution to the numerical result
when using the shooting method. The two solutions are
plotted in Fig. 13 where we note the remarkable agreement
between the two. The advantage of the method we develop

here is that it allows us to solve the system for a variety of
gravitational potential shapes without having to venture a
guess about the value of γ. In other instances, this could be
problematic as the wrong guess would lead to unstable
solutions with a nonzero number of nodes.

APPENDIX B: IMPACT OF BOX LENGTH
AND RESOLUTION

In Fig. 5, we observe a change in the wave number at
which the matter power spectrum deviates form the linear
theory prediction as a function of FDM mass. This is
particularly visible for high masses m ∼ 10−21 eV.
However, we expect to recover the CDM nonlinear power
spectrum in the limit of m → ∞. The main difference in
configuration between the simulations of different FDM
masses is the choice of box length as listed in Table I. We
investigate if this change in box size is responsible for the
varying nonlinear scales.
First, we define what we mean by the nonlinear scale

which we label kNL. For this we use he approach of
Ref. [94] and define

σ2dðk; kminÞ≡ 4π

3

Z
k

kmin

dqPðqÞ; ðB1Þ

where P is the linear matter power spectrum. From the
above definition, we consider that nonlinearities arise when
kσd ≫ 1. In analytic calculations, we omit the lower bound
on the integral since we can generate the linear matter
power spectrum to very small wave numbers. In our case,
since some of our simulation volumes are very small, the
coupling between large and small-scale modes is limited to
the scales below the fundamental scale of the box. To
account for this, we solve for the nonlinear scale using

kNLσdðkNL; 2π=LboxÞ ¼ 5; ðB2Þ

FIG. 13. Comparison between the numerical solution using the
shooting method and the Padé approximant approach in the pure
FDM case. We note an agreement to about 0.5%.
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where Lbox is the size of the box. Note that the factor of five
on the right-hand side of Eq. (B2) is arbitrary, but our
conclusion are largely unchanged for any number greater
than unity but less than order 10. We display the calculated
kNL as a function of FDM mass and box size in Fig. 14. All
the calculations involved in this appendix are done assum-
ing a redshift z ¼ 4.
We also compare the density fields of boxes 3 and 10

which have the same cosmology, but different resolutions.
We take the Fourier transform of the (total) density fields in

both boxes at redshifts z ¼ 15, 7, 4 and compute the
correlation coefficient

rðkÞ≡ hδLRðkÞδHRðkÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ2LRðkÞihδ2HRðkÞi

p ; ðB3Þ

where δLR;HRðkÞ are the density fields of the low and high-
resolution boxes (respectively boxes 3 and 10). We plot the
results of this calculation in Fig. 15. At early times, the
system is still very linear and the difference in resolution
does not impact the density field. However, we note a
degradation of the correlation coefficient at scales above
∼100 h=Mpc which we attribute to small-scale wave
fluctuations around the mean density.
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