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We study the cosmological implications of gravity models which break diffeomorphisms (Diff)
invariance down to transverse diffeomorphisms (TDiff). We start from the most general gravitational
action involving up to quadratic terms in derivatives of the metric tensor and identify TDiff models as the
only stable theories consistent with local gravity tests. These models propagate an additional scalar graviton
and although they are indistinguishable from GR at the post-Newtonian level, their cosmological dynamics
exhibits a rich phenomenology. Thus we show that the model includes standard ΛCDM as a solution when
the extra scalar mode is not excited, but different cosmological evolutions driven by the new term are
possible. In particular, we show that for a soft Diff breaking, the new contribution always behaves as a
cosmological constant at late times. When the extra contribution is not negligible, generically its evolution
either behaves as dark energy or tracks the dominant background component. Depending on the initial
conditions, solutions in which the universe evolves from an expanding to a contracting phase, eventually
recollapsing, are also possible.

DOI: 10.1103/PhysRevD.109.043506

I. INTRODUCTION

The principle of general covariance [1,2], i.e., “the laws
of physics retain the same form under arbitrary coordinate
transformations” is one of the cornerstones of the theory of
general relativity (GR). This principle, on one hand,
governs the interactions with the gravitational field, select-
ing the allowed couplings to matter and, on the other, sets
the dynamics of the gravitational field itself. Thus, very
much as for local gauge symmetries, invariance under
diffeomorphisms (Diff) allows to eliminate from the physi-
cal spectrum of the (linearized) theory all the degrees of
freedom contained in the metric tensor except for the
massless spin-2 graviton.
Despite the fundamental nature of this principle, in

recent years a lot of activity has been taking place on
the possibility of building consistent theories of gravity
which break Diff invariance. This has been motivated in
part by the success of unimodular gravity [3–6] as a
possible solution to the vacuum energy problem [7,8].
Unimodular gravity restricts the determinant of the metric
tensor to be a nondynamical field thus breaking Diff
invariance down to transverse diffeomorphisms (TDiff)
[9,10]. As a matter of fact, it has been shown that it is
TDiff invariance, rather than full Diffs, the minimal
symmetry required by unitarity in theories with a massless
spin-2 field [11]. Unimodular gravity is thus seen to

propagate the same degrees of freedom as general relativity
and its field equations of motion are just Einstein equations
supplemented with a cosmological constant term which
appears as an integration constant [12,13].
Given the fundamental role of TDiff symmetry for the

consistency of gravity theories, TDiff models beyond unim-
odular gravity have also been explored in which the metric
determinant is a dynamical field [9,14–18]. The spectrum of
these theories includes a scalar graviton in addition to the
standard massless spin-2 graviton and some phenomeno-
logical implications have been explored in [16,17].
Apart from these particular examples, a more general

effective field theory approach has been considered in [19].
There, the most general Lorentz invariant action up to
quadratic terms in metric derivatives is obtained and the
corresponding post-Newtonian (PPN) parameters [20] are
explicitly worked out in some particular cases. The general
conclusion suggests that violations of Diff invariance are
severely constrained by local gravity experiments. However,
certain combinations of terms could still be viable. As a
matter of fact, models different from general relativity are
identified which nevertheless provide the same equations of
motion in the weak field approximation.
The breaking of Diff invariance in the couplings to

matter have also been analyzed in [21–24]. Thus in [21]
TDiff invariant models for spin-0 fields were studied and
potential violations of the weak equivalence principle
(WEP) were identified. However, in [23], it was shown
that in the geometric optics approximation it is possible to
find models in which the three types of masses (inertial,
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active and passive) agree with those of standard Diff
invariant theories thus evading the mentioned conflicts.
In this work we will focus on Diff breaking in cosmo-

logical contexts. Wewill start by identifying TDiff invariant
models which are compatible with Newtonian gravity in the
weak field approximation and in addition have the same
PPN parameters as GR. Even though the models under
consideration are indistinguishable from GR in local
gravity experiments, their nonlinear dynamics can be very
different. In particular, wewill show that the presence of the
extra gravitational degree of freedom generates a wide
range of new cosmological solutions.
The paper is organized as follows: in Sec. II we consider

the most general gravitational action up to terms with two
metric derivatives and identify the consistent models. In
Sec. III, we obtain the modified Einstein equations. In
Sec. IV we apply these results to Robertson-Walker back-
grounds and show that the modified Friedmann equations
can be rewritten as ordinary Friedmann equations with an
additional effective perfect fluid contribution. Section V is
devoted to the derivation of explicit solutions and in Sec. VI
we obtain a useful set of equations involving the effective
equation of state of the new contribution. In Sec. VII,
solutions are obtained in the subdominant regime in which
the new effective energy contribution is negligible compared
to that of standard matter and radiation. Section VIII is
devoted to the opposite regimen in which the extra contri-
bution is dominant. In Sec. IX, we consider the general
solution in which all the energy contributions are taken into
account. In Sec. X, we study the stability of solutions and in
Sec. XI we present the main conclusions of the work.

II. GRAVITY WITH BROKEN
DIFFEOMORPHISMS

Following [19], let us consider the most general expres-
sion for a global Lorentz invariant action for gravity in the
metric formalism involving terms up to quadratic order in
metric derivatives.

SG ¼ −
1

16πG

Z
d4x

 X5
i¼1

fiðgÞLi þ fΛðgÞ
!

ð1Þ

where

L1 ¼ −gμνΓα
μλΓλ

να; L3 ¼ −gμνgρσgλωΓλ
μρΓω

νσ

L2 ¼ −gμνΓα
μνΓλ

λα; L4 ¼ −gμνgρσgλωΓλ
μνΓω

ρσ

L5 ¼ −gαβΓλ
λαΓ

μ
μβ ð2Þ

with Γα
μν the Christoffel symbols and fiðgÞ arbitrary

functions1 of the metric determinant g ¼ j det gμνj.

Notice that the Einstein-Hilbert action2

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p
R ð3Þ

is a particular case of the above general action, since it can
be written up to total derivative terms as

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p ðL2 − L1Þ ð4Þ

In the weak field approximation around the Minkowski
background

gμν ¼ ημν þ hμν; jhμνj ≪ 1 ð5Þ

the linearized Einstein equations obtained from (1)
read [19]

ða1 − 3a3Þ□hαβ þ ð−a1 þ a3 − 2a4Þð∂α∂γhβγ þ ∂
β
∂γhαγÞ

þ ð−a2 þ 2a4Þηαβ∂μ∂νhμν þ ð−a2 þ 2a4Þ∂α∂βh
þ ða2 − a4 − a5Þηαβ□h ¼ 16πGTαβ ð6Þ

where h ¼ hαα, we have defined ai ¼ fiðg ¼ 1Þ and taken
aΛ ¼ 0. Assuming that diffeomorphisms invariance is only
broken in the gravitational sector we can impose the
energy-momentum tensor conservation ∂αTαβ ¼ 0 so that
we end up with

2ða3 þ a4Þ□∂βhαβ þ ða1 þ a2 − a3Þ∂α∂μ∂νhμν
þ ða5 − a4Þ∂α□h ¼ 0 ð7Þ

Thus, as expected, in the particular case with a1 ¼−a2¼−1
and a3 ¼ a4 ¼ a5 ¼ 0 we recover the standard linearized
Einstein equations. However as shown in [19], there are two
additional special cases in which we can recover the
linearized Einstein equation in a particular gauge, i.e.,
□h̄αβ ¼ 16πGTαβ.

(i) a1 ¼ −a2 ¼ −1 and a3 ¼ a5 ¼ 0 but a4 ≠ 0, by
using the trace reversed tensor hαβ ¼ h̄αβ − ηαβh̄=2.

(ii) a1 ¼ −a2 ¼ −1 and a3 ¼ a4 ¼ 0 but a5 ≠ 0 by
using the tensor hαβ ¼ h̄αβ − ηαβh̄=4.

Given the fact that these two models do not lead to physical
consequencesbeyondGRat the linear level, theyare,apriori,
good candidates for a viable theory and we will concentrate
on them in the following.
At the quadratic order, the five terms in (2) are not

independent and can be written in terms of only four
terms [9]

1Notice that for fiðgÞ ∝ ffiffiffi
g

p
; ∀ i, the action is invariant not

only under global Lorentz transformations but also under global
GLð4;RÞ transformations.

2We are using ðþ;−;−;−Þ for the metric signature and the
following definition for the Riemann tensor Rρ

σμν ¼
∂μΓ

ρ
νσ − ∂νΓ

ρ
μσ þ Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ .
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S ¼
Z

d4xL ð8Þ

wherewehave absorbed a ð16πGÞ−1=2 factor in a redefinition
of the hμν field that now becomes dimensionful, so that

L ¼ LI þ βLII þ aLIII þ bLIV ð9Þ

with

LI ¼ 1

4
∂μhνρ∂μhνρ LII ¼ −

1

2
∂μhμρ∂νhνρ

LIII ¼ 1

2
∂
μh∂ρhμρ LIV ¼ −

1

4
∂μh∂μh ð10Þ

The standard Diff invariant Einstein-Hilbert action cor-
responds to a ¼ b ¼ β ¼ 1. Terms LIII and LIV as well as
the combination LI þ LII i.e. models with β ¼ 1 are
invariant under transverse diffeomorphisms (TDiff) given
infinitesimally by transformations

ĥαβðxÞ ¼ hαβðxÞ − ξα;βðxÞ − ξβ;αðxÞ ð11Þ

such that ∂αξαðxÞ ¼ 0.
It has been found that breaking TDiff symmetry by taking

β ≠ 1 introduces vector instabilities [9] in the solutions.
Thus, limiting ourselves to the two special cases men-

tioned above which reproduce GR in the weak field limit,
the quadratic Lagrangian can be written as

L¼LI þð1− 2a4ÞðLII þLIIIÞþ ð1−a4−a5ÞLIV ð12Þ

where we identify β ¼ a ¼ 1–2a4, b ¼ 1 − a4 − a5. Thus,
we see that in the a4 ≠ 0 case TDiff invariance is broken
and we have instabilities as mentioned above. However the
a4 ¼ 0, a5 ≠ 0 case is TDiff invariant. This theory prop-
agates a scalar mode in addition to the two standard tensor
modes of GR.3 The corresponding Lagrangian for the scalar
mode reads [9]

LS ¼ −
Δb
4

ð∂μhÞ2 ¼
a5
4
ð∂μhÞ2 ð13Þ

with

Δb ¼ b −
1 − 2aþ 3a2

2
¼ −a5 ð14Þ

Thus we must take a5 > 0 in order to avoid ghost
instabilities.
Regarding the coupling to matter, it has been shown that

the most general TDiff invariant coupling to matter for the
linearized theory takes the form [9]

LðintÞ ¼ 1

2
ðκ1Tμν þ κ2TημνÞhμν ð15Þ

when ∂μTμν ¼ 0. In particular, the coupling is Diff invariant
for κ2 ¼ 0. This implies that the additional scalar mode
mediates a new gravitational interaction with effective
coupling

κ2eff ¼ −
1

Δb

�
κ2 þ

1 − a
2

κ1

�
2

ð16Þ

with κeff ¼ 8πGeff . However, in the a4 ¼ 0, a5 ≠ 0 case we
have a ¼ 1 and provided the coupling to matter is Diff
invariant, i.e., κ2 ¼ 0, we get κeff ¼ 0, and the scalar mode
is decoupled.
Notice that the fΛðgÞ term in (1) plays the role of a

potential term for the scalar mode h which could provide a
mass term. A priori, this term could be generated by
radiative corrections even if it is not present at tree level.
However, the shift symmetry of (12) will protect against the
generation of such terms so that we will restrict our analysis
to the fΛðgÞ ¼ 0 case.
According to the above discussion, in this work we will

concentrate on the Diff invariant breaking induced by the
L5 term. Notice that this term can be written as

L5 ¼ −
1

4
gμνð∂μ ln gÞð∂ν ln gÞ ð17Þ

so that we can write the (nonlinear) model under consid-
eration as

SG ¼ −
1

16πG

Z
d4xðfðgÞRþ f5ðgÞL5Þ ð18Þ

Notice that this model does not deviate from GR at the
linear level, and although it propagates an additional scalar
graviton it is decoupled from matter if the matter coupling
is Diff invariant. In addition for a5 > 0 the scalar graviton is
not a ghost. Beyond the Newtonian approximation, the
breaking of Diff invariance induces deviations in the post-
Newtonian parameters [21]. However, it can be seen that if
the integration measure of the Einstein-Hilbert term takes
the Diff invariant expression i.e. fðgÞ ¼ ffiffiffi

g
p

. then we
recover the standard PPN parameters of GR, i.e.,

γPPN ¼ βPPN ¼ 1 ð19Þ

for arbitrary f5ðgÞ [21,25].
Regarding the form of f5ðgÞ, for simplicity in the

following, we will work with

f5ðgÞ ¼ a5
ffiffiffi
g

p ð20Þ
3For TDiff models it can be seen [9] that vector modes are not

dynamical.
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with constant a5 > 0 corresponding to the global GLð4;RÞ
symmetry mentioned before. Notice that this symmetry
protects the form of this term against radiative corrections.
Thus, putting all the above results together, a viable

TDiff invariant gravitational model, which propagates an
extra scalar graviton mode, decoupled from the conserved
sources, is described by the total action

S ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p �
R −

a5
4
gμνð∂μ ln gÞð∂ν ln gÞ

�

þ
Z

d4x
ffiffiffi
g

p
Lm ð21Þ

where Lm is the Diff invariant matter Lagrangian.4 This
model agrees with the unimodular bimode gravity discussed
in [17].
Thus, interestingly, the model in (21) provides a descrip-

tion of the gravitational interaction that would be stable and
indistinguishable from GR at the PPN level. Even though
the theory behaves as GR in local gravity experiments, its
nonlinear dynamics can be very different. In particular, its
cosmological evolution can differ from standard ΛCDM
cosmology. It is precisely the aim of this work to analyze
the cosmological implications of this model.

III. MODIFIED EINSTEIN EQUATIONS

Varying the total action in (21) with respect to the metric
tensor we obtain the corresponding Einstein equations

Gμν þ a5Mμν ¼ 8πGTμν ð22Þ

where

Mμν ¼ −
1

8
ð∂α ln gÞð∂β ln gÞðgμνgαβ þ 2δαμδ

β
νÞ

−
1

2
gμν∂αðgαβ∂β ln gÞ ð23Þ

Notice that because of the Diff invariance breaking,
a priori, ∇μMμν ≠ 0. However, since the matter sector is
still Diff invariant and the energy-momentum tensor is
conserved ∇μTμν ¼ 0, we will have

∇μMμν ¼ 0 ð24Þ

on solutions of the Einstein equations.

IV. MODIFIED FRIEDMANN EQUATIONS

Let us now apply the above equations to cosmological
backgrounds. Since it is not possible in general to fix
coordinates in which g00 ¼ 1 with a TDiff transformation,
we have to consider a general form of the spatially
homogeneous and isotropic Robertson-Walker metric [26].
We will work with flat spatial sections for simplicity

ds2 ¼ b2ðτÞdτ2 − a2ðτÞdx⃗2 ð25Þ

where now both aðτÞ and bðτÞ have to be obtained from the
Einstein equations.
The energy-momentum tensor for a perfect fluid reads

Tμν ¼ ðρþ pÞuμuν − pgμν ð26Þ

and the energy conservation reads

ρ0 þ 3
a0

a
ðρþ pÞ ¼ 0 ð27Þ

where prime denotes derivation with respect to the coor-
dinate time d=dτ. On the other hand, the Friedmann
equation reads

�
a0

ab

�
2

þ a5
3
M0

0 ¼
8πG
3

ρ ð28Þ

where ρ ¼ ρM þ ρR þ ρΛ correspond to the total energy
density. On the other hand, the acceleration equation reads

a00

ab2
−
a0b0

ab3
−
a5
6
ðM0

0 −Mi
iÞ ¼ −

4πG
3

ðρþ 3pÞ ð29Þ

where summation in i is implicit.
Changing to cosmological time dt ¼ bðτÞdτ, the con-

servation equation (27) takes the usual form

ρ̇þ 3
ȧ
a
ðρþ pÞ ¼ 0 ð30Þ

and the Friedmann equation reads

�
ȧ
a

�
2

þ a5
3
M0

0 ¼
8πG
3

ρ ð31Þ

whereas the acceleration equation takes the form

ä
a
−
a5
6
ðM0

0 þ 3MÞ ¼ −
4πG
3

ðρþ 3pÞ ð32Þ

with

M0
0 ¼ −3

�
ä
a
þ 7

2

�
ȧ
a

�
2

þ 1

3

b̈
b
−
1

6

�
ḃ
b

�
2

þ 2
ȧ ḃ
ab

�
ð33Þ

4Notice that for a Diff invariant matter sector, we do not expect
radiative corrections from matter loops to the κ2 coefficient of the
interaction Lagrangian (15).
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Mi
j ¼ −Mδij ð34Þ

where

M ¼ 3

�
ä
a
þ 1

2

�
ȧ
a

�
2

þ 1

3

b̈
b
−
1

2

�
ḃ
b

�
2
�
: ð35Þ

Thus, we can define an effective energy density associated
to the extra term as

ρS ¼ −
a5
8πG

M0
0 ð36Þ

and the corresponding effective pressure as

pS ¼ −
a5
8πG

M ð37Þ

which according to the conservation equation (24) satisfy

ρ̇S þ 3HðρS þ pSÞ ¼ 0 ð38Þ

The Hubble parameter takes the usual expression

H ¼ ȧ
a

ð39Þ

whereas now we can define an additional Hubble parameter
for the time component

Hb ¼
ḃ
b

ð40Þ

In terms of the new variables, the Friedmann and pressure
equations read

Ḣ ¼ −
a5
2
ðHb þ 3HÞ2 − 4πGðρþ pÞ ð41Þ

Ḣb ¼
3a5
2

ðHb þ 3HÞ2 − 1

2
ðHb þ 3HÞðHb þ 9HÞ

þ 3

a5
H2 þ 4πG

�
3ðρþ pÞ − 2

a5
ρ

�
ð42Þ

Given the fact that L5 only depends on g, these equations
can be written in an even simpler way by introducing the
new variable

Hg ≡ ġ
g
¼ 2Hb þ 6H ð43Þ

so that we find

Ḣ ¼ −
a5
8
H2

g − 4πGðρþ pÞ ð44Þ

Ḣg ¼ −
1

4
HgðHg þ 12HÞ þ 6

a5

�
H2 −

8πG
3

ρ

�
: ð45Þ

In terms of the new variables, the effective equation of state
of the scalar mode can be written as

ωS ¼
pS

ρS
¼ −1þ a5

12

H2
g

8πG
3
ρS

¼ −1þ a5
12

H2
g

H2 − 8πG
3
ρ

ð46Þ

where in the last step we have used (45) written in the
Friedmann form

H2 ¼ 8πG
3

ðρþ ρSÞ ð47Þ

with

8πG
3

ρS ¼
a5
6

�
Ḣg þ

1

4
HgðHg þ 12HÞ

�
: ð48Þ

Thus we see that if HgðtÞ ¼ 0 then ρSðtÞ ¼ 0 and the extra
scalar mode is not excited. On the other hand, from (46) we
see that for ρS > 0, the condition a5 > 0 implies ωS ≥ −1,
whereas a5 < 0, which corresponds to a scalar ghosts,
implies a phantom effective equation of state ωS ≤ −1.
Notice also that the effective fluid cannot behave as an
exact cosmological constant, since that would imply
HgðtÞ ¼ 0 i.e. ρSðtÞ ¼ 0.
Notice that in GR the usual Friedmann equation allows

to solve for the scale factor with a first order equation and
the free parameters of the model are ðH0;ΩM;ΩRÞ, where
using the cosmic sum rule for flat spatial sections
ΩΛ ¼ 1 − ΩM −ΩR. However, now we have a system of
two second order equations and we need an additional
parameter

H0
g ¼ Hgðt0Þ ð49Þ

in order to specify the cosmological model.5 Unlike the H0

parameter which can be measured independently from the
rest of cosmological parameters from low-redshift Hubble
diagrams, this is not the case of H0

g. However, it is always
possible to measure it from the joint fit analysis with the
rest of cosmological parameters with distance indicators
from SNIa, BAO or CMB data. Moreover, no sum rule
applies to the ordinary density parameters in this case since
now there is an additional contribution ρS in (47), so that
the set of independent cosmological parameters would
be ðH0; H0

g;ΩM;ΩR;ΩΛÞ.
Finally, note that if initially the extra gravitational mode

is not excited, i.e., ρS ¼ 0, the cosmological evolution will
be the same as in standard GR, i.e., very much as in the

5Note that we can set gðt0Þ ¼ 1 without loss of generality.
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linearized regime, ordinary matter is not a source of the
extra gravitational mode which remain decoupled from
matter.

V. SOLUTIONS WITH CONSTANT ωS

In order to obtain explicit solutions, let us rewrite our
system of equations (44) and (45) as

H2 ¼ 8πG
3

ðρþ ρSÞ ð50Þ

H2
g ¼

32πG
a5

ð1þ ωSÞρS ð51Þ

where in the last equation we have used conservation
equations (30) and (38). It is then straightforward to look
for solutions with constant equation of state for the scalar
fluid ωS. Thus taking the derivative of the second equation
and using (45) we find

ρSð1 − ωSÞðHg − 6Hð1þ ωSÞÞ ¼ 0 ð52Þ

From these equations we can readily find explicit solutions
(i) ΛCDM solution. For any value of a5, this solution

corresponds to

Hg ¼ 0 ð53Þ

H2 ¼ 8πG
3

ρ ð54Þ

so that ρS vanishes and the scalar mode has no effect
at all thus recovering the standard ΛCDM cosmol-
ogy. In this case, the metric determinant is just a
constant g ¼ const. Notice that the existence of this
solution guarantees that, at the background level, the
model can fit current observations of CMB, SNIa,
and BAO for any value of a5 with at least the same
accuracy as ΛCDM.

(ii) Stiff fluid solution (ωS ¼ 1). For all a5 > 0, this
solution corresponds to

Hg ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24

a5

8πG
3

ρS

s
ð55Þ

H2 ¼ 8πG
3

ðρþ ρSÞ ð56Þ

with ρS ∝ a−6, i.e., the behavior of the scalar mode
is that of a stiff fluid.

(iii) Tracker solution. If the matter sector only contains a
single fluid with constant equation of state ω ≠ −1, a
solution is present in which the scalar fluid tracks the
matter behavior with the same equation of state, i.e.,

ωS ¼ ω ð57Þ

so that from (52)

Hg ¼ 6Hð1þ ωÞ: ð58Þ

Substituting back in (51) and using (50) we obtain the
constant ratio between the two fluids

ρ ¼
�
−1þ 1

3a5ð1þ ωÞ
�
ρS: ð59Þ

Note that j ρSρ j∈ ½0;∞Þ, so that the effective fluid can
be dominant over the tracked fluid. Note also that as
mentioned before, the ω ¼ −1 would imply ρS ¼ 0.
In order to have ρS > 0 for ρ > 0 in (59), we should
have (for a5 > 0)

a5 <
1

3ð1þ ωÞ : ð60Þ

(iv) Vacuum solution. This is a limiting case of the
tracker solution when considering ρ ¼ 0, and the
only solution with constant ωS in vacuum, apart
from the general stiff solution (55). Thus from (59)
we get

ω∞
S ¼ −1þ 1

3a5
ð61Þ

and

Hg ¼
2

a5
H ð62Þ

H2 ¼ H2
0

�
a
a0

�
− 1
a5 : ð63Þ

Notice that for a5 ¼ 1
6
, this solution coincides with

the positive branch of the stiff solution (55). On the
other hand, for large a5, the equation of state
corresponds to a dark energy fluid. We will show
that this solution corresponds to the asymptotic
future limit of a quite general set of solutions, thus
an asymptotic dark energy behavior generically
requires large values of a5.

VI. EFFECTIVE EQUATION OF STATE

In order to understand the phenomenology of the new
term, it is useful to write down a differential equation
system for ωS and the Hubble parameter with the scale
factor a as independent variable. Thus, using (46) in (44)
and (45) we find for a5 > 0
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dH
da

¼ −
3

2a
HðωS þ 1Þ þ 4πG

Ha
ðρωS − pÞ ð64Þ

dωS

da
¼ ωS − 1

a

�
3ðωS þ 1Þ − Keff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p �
ð65Þ

where

KeffðaÞ ¼ KΩ1=2
S ðaÞ; K ¼ sgnðHgÞ

ffiffiffiffiffi
3

a5

s
ð66Þ

with

ΩSðaÞ ¼ 1 −ΩtotðaÞ; ΩtotðaÞ ¼
8πGρðaÞ
3H2ðaÞ : ð67Þ

Here ΩSðaÞ is the relative abundance of ρS at a given time.
K has two possible signs because for a given ωS we have
two possible signs for Hg, since ωS þ 1 ∝ H2

g in (46). Thus
the sign of Hg divides the solutions in two branches: the
branch with K > 0 which has growing g, i.e., Hg > 0 and
that with K < 0 and contracting determinant Hg < 0. The
point Hg ¼ 0 which corresponds to ωS ¼ −1 connects the
two branches. Thus a complete solution is obtained by
matching the two branches at the critical point.
From (65) it is straightforward to find the stiff matter

solution with constant ωSðaÞ ¼ 1 mentioned before. Also,
the previously mentioned vacuum solution would corre-
spond to ΩSðaÞ ¼ 1, so that

3ðωS þ 1Þ − K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
¼ 0 ð68Þ

whose real solution corresponds to a constant solution
with ωSðaÞ ¼ ω∞

S ¼ −1þ 1
3a5

.
Equation (65) suggests that an additional solution with

constant equation of state ωSðaÞ ¼ −1 would exist.
However, as mentioned before, that solution would corre-
spond to HgðaÞ ¼ 0 and accordingly vanishing effective
energy density.
In terms of the density parameter for the extra contri-

bution todayΩS, it is possible to write the effective equation
of state parameter today ω0

S ¼ ωSða ¼ 1Þ from (46) as

ω0
S ¼ −1þ a5

12

ðH0
gÞ2

H2
0ΩS

: ð69Þ

Thus, a dark energy behavior today with ω0
S < −1=3 would

require a5ðH0
gÞ2 < 8H2

0ΩS.

VII. SUBDOMINANT REGIME jρSj ≪ ρ

If the extra contribution is subdominant with respect to
the ordinary energy components, we have jΩSðaÞj ≪ 1 and
the equation for ωS (65) reduces to

dωS

da
¼ 3ðω2

S − 1Þ
a

ð70Þ

whose solution reads

ωSðaÞ ¼
C − a6

Cþ a6
ð71Þ

with C ≠ 0 a real integration constant. From the conserva-
tion equation (38) we can write

ρS ¼ ρ0Se
−3
R

a

1

dâ
â ð1þωSðâÞÞ ð72Þ

so that

ρS ¼
ρ0S

ð1þ CÞ
�
1þ C

a6

�
ð73Þ

i.e., the effective energy density is just the sum of a
cosmological constant and a stiff fluid contribution. In
addition, from (46) we find

Hg ¼
H0

g

a3
: ð74Þ

Thus depending on C, we have two different behaviors.
As we can see in Fig. 1, for C > 0 and ρ0S > 0, ωS ∈ ð−1; 1Þ
and the equation of state interpolates regularly from an
early stiff fluid behavior ωS ¼ 1 and a late cosmological
constant solution ωS ¼ −1with ρS > 0. For C < 0, we also
have that the equation of state interpolates from an early
stiff fluid behavior ωS ¼ 1 and a late cosmological constant
solution ωS ¼ −1 but with ωS > 1 or ωS < −1 with ρS
changing sign at a6 ¼ −C. Thus we see that the generic
late time behavior of the extra contribution is that of

FIG. 1. Evolution of the equation of state in the subdominant
regime. The blue line corresponds to solutions with jωSj < 1
whereas the orange one corresponds to jωSj > 1. The vertical
asymptote corresponds to the change of sign of the effective
energy density ρS for the orange solution.
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cosmological constant at least while the contribution is
subdominant. Thus even a tiny Diff breaking generated by
the extra term will freeze as a cosmological constant at
late times.

VIII. DOMINANT REGIME ρS ≫ ρ

In the dominant regime we can write the system as

Ḣ ¼ −
a5
8
H2

g ð75Þ

Ḣg ¼ −
1

4
HgðHg þ 12HÞ þ 6H2

a5
ð76Þ

which has a critical point at H ¼ Hg ¼ 0 corresponding to
Minkowski space-time and three separatrixes.

Hg ¼ �
ffiffiffiffiffi
24

a5

s
H; ðωS ¼ 1Þ ð77Þ

Hg ¼
2

a5
H; ðωS ¼ ω∞

S Þ ð78Þ

with ω∞
S given in (61). For a5 ¼ 1=6 the separatrix with

ωS ¼ ω∞
S coincides with one of the ωS ¼ 1 lines. Thus we

have two possibilities a5 ≤ 1=6 and a5 > 1=6.
In Fig. 2 we plot the streamlines for a5 < 1=6. We find

six different regions delimited by the separatrixes:

(i) In Region I, we have expanding solutions which
interpolate between ωS ¼ 1 in the remote past and
ωS ¼ 1 in the asymptotic future, crossing the
ωS ¼ −1 line where Hg changes from negative to
positive sign. The Minkowskian critical point is
reached in the asymptotic future.

(ii) In Region II, we have expanding solutions with
Hg > 0, which interpolate between ωS ¼ ω∞

S in the
remote past and ωS ¼ 1 in the asymptotic future.
The Minkowskian critical point is again reached in
the asymptotic future.

(iii) In Region III, we have solutions withHg > 0, which
interpolate between an expanding ωS ¼ ω∞

S phase in
the remote past and a contracting ωS ¼ 1 epoch in
the asymptotic future which eventually recollapse.

(iv) Region IV is the time reverse of Region I, in which
we have contracting solutions which interpolate
between ωS ¼ 1 in the remote past and ωS ¼ 1 in
the asymptotic future, crossing the ωS ¼ −1 line
where Hg changes from negative to positive sign
and eventually recollapse. Solutions start out from the
Minkowskian critical point asymptotically in the past.

(v) Region V is the time reverse of Region II. We have
contracting solutions with Hg < 0, which interpolate
between ωS ¼ 1 in the remote past and ωS ¼ ω∞

S in
the asymptotic future. Solutions start out from the
Minkowskian critical point and eventually recollapse.

(vi) Region VI is the time reverse of Region III. We have
solutions withHg < 0, which interpolate between an
expanding ωS ¼ 1 in the remote past and a con-
tracting ωS ¼ ω∞

S phase in the asymptotic future
which eventually recollapse.

In Fig. 3 we plot the streamlines for a5 > 1=6. We again
find six different regions delimited by separatrixes:

(i) In Region I, we have expanding solutions which
interpolate between ωS ¼ 1 in the remote past and
ωS ¼ ω∞

S in the asymptotic future, crossing the
ωS ¼ −1 line where Hg changes from negative to
positive sign. The Minkowskian critical point is
reached in the asymptotic future.

(ii) In Region II, we have expanding solutions with
Hg > 0, which interpolate between ωS ¼ 1 in the
remote past and ωS ¼ ω∞

S in the asymptotic future.
The Minkowskian critical point is again reached in
the asymptotic future.

(iii) In Region III, we have solutions withHg > 0, which
interpolate between an expanding ωS ¼ 1 phase in
the remote past and a contracting ωS ¼ 1 epoch in
the asymptotic future which eventually recollapse.

(iv) Region IV is the time reverse of Region I, in which
we have contracting solutions which interpolate
between ωS ¼ ω∞

S in the remote past and ωS ¼ 1
in the asymptotic future, crossing the ωS ¼ −1 line
whereHg changes from negative to positive sign and
eventually recollapse. Solutions start out from the

FIG. 2. Streamline plot in the dominant regime for a5 < 1=6
(a5 ¼ 1=30) in H0 units. The black lines correspond to the
separatrixes ωS ¼ 1 and ωS ¼ ω∞

S which delimit the six Regions
I-VI. The dashed vertical and horizontal lines correspond to ωS ¼
∞ and ωS ¼ −1 respectively. Curves with constant ωS corre-
spond to straight lines passing through the origin, Hg ¼ mH

with m ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ωSÞ12=a5
p

.
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Minkowskian critical point asymptotically in the
past.

(v) Region V is the time reverse of Region II. We have
contracting solutions withHg < 0, which interpolate
between ωS ¼ ω∞

S in the remote past and ωS ¼ 1 in
the asymptotic future. Solutions start out from
the Minkowskian critical point and eventually
recollapse.

(vi) Region VI is the time reverse of Region III. We have
solutions withHg < 0, which interpolate between an
expanding ωS ¼ 1 in the remote past and a con-
tractingωS ¼ 1 phase in the asymptotic future which
eventually recollapse.

For a5 ¼ 1=6 regions II and V disappear and ω∞
S ¼ 1.

Thus we see that unlike general relativity in which the
only solution in vacuum is Minkowski space-time (for flat
spatial sections) in the broken Diff case, we have a wide
range of cosmological solutions.

A. Evolution of the equation of state

In the dominant case with ΩtotðaÞ ≪ 1, we can take
Keff ¼ K so that the equation for ωS (65) reads

dωS

da
¼ ωS − 1

a

�
3ðωS þ 1Þ − K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p �
ð79Þ

which can be explicitly integrated. Taking the variable u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
gave us the following equation

du
1
2
ðu2 − 2Þð3u − KÞ ¼

da
a

ð80Þ

The integrated expression has hyperbolic tangent functions
as solutions, which explains the abrupt transitions in the
evolution of the ωS parameter.
Depending on the parameters values and initial con-

ditions we can have different solutions which always
evolve in two disconnected regions of ωS.

1. Solutions with jωSj < 1

In this case the implicit solution reads for a5 ≠ 1=6 i.e.
K2 ≠ 18

ln aþ C ¼ 1

K2 − 18

 ffiffiffi
2

p
Ktanh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

2

r �

þ 6 ln jK − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
j − 3 ln jωS − 1j

!
ð81Þ

with C an integration constant and K ¼ �
ffiffiffiffi
3
a5

q
correspond

to the two branches of the solution.
For a5 ¼ 1=6, corresponding to K2 ¼ 18, the solution

reads

ln aþ C ¼ � 1

6

 
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

2

r
þ

ffiffiffi
2

pffiffiffi
2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
!

ð82Þ
which shows a similar behavior as the a5 < 1=6 case.
These solutions corresponds to Regions I and IV for a5 <
1=6 and Regions I, II, IV, and V for a5 > 1=6.
In Fig. 4 we show the equation of state for a5 ¼ 1=30

corresponding to Region I in Fig. 2, whereas in Fig. 5 we
show the equations of state for a5 ¼ 2=3 corresponding to

FIG. 3. Streamline plot in the dominant regime for a5 > 1=6
(a5 ¼ 2=3) in H0 units. The black lines correspond to the
separatrices ωS ¼ 1 and ωS ¼ ω∞

S . The dashed vertical and
horizontal lines correspond to ωS ¼ ∞ and ωS ¼ −1 respectively.
Curves with constant ωS correspond to straight lines passing
through the origin, Hg ¼ mH with m ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ωSÞ12=a5

p
.

FIG. 4. Evolution of the equation of state in the dominant regime
for a5 ≤ 1=6 in Region I. The blue line corresponds to the branch
with Hg < 0 whereas the orange one corresponds to Hg > 0

branch.
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Regions I, II and the separatrix with ωS ¼ ω∞
S ¼ −1=2

of Fig. 3.

2. Solutions with jωSj > 1

The solution is extended to jωSj > 1 by taking
ffiffiffiffiffiffiffiffiffi
2

ωSþ1

q
in

the argument of the inverse hyperbolic tangent function in
(81). Thus for a5 ≠ 1=6 i.e. K2 ≠ 18 we get

ln aþ C ¼ 1

K2 − 18

 ffiffiffi
2

p
Ktanh−1

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ωS þ 1

s #

þ 6 ln jK − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
j − 3 ln jωS − 1j

!
ð83Þ

and for K2 ¼ 18

ln aþ C ¼ � 1

6

 
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ωS þ 1

s
þ

ffiffiffi
2

pffiffiffi
2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωS þ 1

p
!

ð84Þ

In Fig. 6 we show the equation of state for a5 ¼ 1=30
corresponding to Regions II, III, and VI of Fig. 2, whereas
in Fig. 7 we show the equations of state for a5 ¼ 2=3
corresponding to Regions III and VI of Fig. 3.

IX. GENERAL COSMOLOGICAL EVOLUTION

After exploring the limiting cases corresponding to
dominant and subdominant scalar contribution with respect
to the matter content, in this section we will consider the
general case in which we cannot neglect any of the two
contributions.
For a set of n perfect fluids with constant equations of

state pi ¼ ωiρi, i ¼ 1…n, the equations for H, Hg can be
rewritten using conservation equation for the different
matter components as an autonomous system of 2þ n
dimensions

Ḣ ¼ −
a5
8
H2

g −
3

2

Xn
i¼1

H2
i ðωi þ 1Þ ð85Þ

Ḣg ¼ −
1

4
HgðHg þ 12HÞ þ 6

a5

�
H2 −

Xn
i¼1

H2
i

�
ð86Þ

Ḣi ¼ −
3

2
Hðωi þ 1ÞHi; i ¼ 1…n ð87Þ

where we have defined

FIG. 5. Evolution of the equation of state in the dominant
regime for a5 > 1=6. In this particular case a5 ¼ 2=3
with ω∞

S ¼ −1=2.

FIG. 6. Evolution of ωS for a5 < 1=6 (a5 ¼ 1=30) in con-
tracting solutions (Regions II, III and VI). The full lines
corresponds to the phase of the solution in which the universe
is expanding (the evolution in time moves to growing a) whereas
the dashed lines corresponds to the contracting phase and the
evolution in time is thus toward decreasing a.

FIG. 7. Evolution of ωS for a5 > 1=6 (a5 ¼ 2=3) in contracting
solutions (Regions III and VI). Full(dashed) lines as in Fig. 6.
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H2
i ¼

8πG
3

ρi; i ¼ 1…n ð88Þ

As in the dominant case, the system has one critical point
H ¼ Hg ¼ Hi ¼ 0, i ¼ 1…n, which corresponds to the
Minkowski solution. In addition, surfaces of constant ωS
are given by

H2 −
X
i

H2
i −

a5
12ð1þ ωSÞ

H2
g ¼ 0 ð89Þ

so that it can be seen that the only separatrix surface
corresponds to ωS ¼ 1 and splits the space of solutions in
two disconnected regions with jωSj > 1 and jωSj < 1
respectively.
Let us consider for simplicity the case with a single

matter fluid, i.e., n ¼ 1, with constant equation of state
ω1 < 1. In this case, we will consider the two solutions
regions:

(i) jωSj < 1. In this case if

ω∞
S ¼ −1þ 1

3a5
> ω1 ð90Þ

then we find that the extra component will approach
asymptotically the tracker solution (58). If ω1 ≥ 1,
then the extra component will tend to the stiff fluid
separatrix in the asymptotic future.
In the opposite case in which

ω∞
S ¼ −1þ 1

3a5
< ω1 ð91Þ

then the solution tends to the dominant case with
Hi ¼ 0 discussed in Sec. VIII. As a matter of fact,
the solutions in Figs. 2 and 3 correspond to theHi ¼
0 plane of Fig. 8.

(ii) jωSj > 1. In this case, generically the solution
interpolates between an asymptotic stiff or ω∞

S fluid
both in the past and in the future eventually
recollapsing. In the a5 > 1=6 the interpolation is
only between stiff fluid in the past and stiff fluid in
the future.

In Fig. 8 we show as an example, the evolution of a
solution in a simple case with a5 ¼ 1=7 in which we have
only one matter component with equation of state ω1 ¼ 0
corresponding to nonrelativistic matter. The red/blue cone
represents the separatrix, i.e., the surface with constant
ωS ¼ 1. The two sheets of the cone correspond to expand-
ing H > 0 or contracting H < 0 solutions. In the red
region, the separatrix acts as a repulsor, whereas it is an
attractor in the blue region. The green cone corresponds to
ωS ¼ 0. The pink straight line corresponds to the standard
solution in GR for a matter dominated universe (53) and
(54) which separates the Hg > 0 from the Hg < 0 regions,

and the white line is the tracker solution (58). As we can
see, the solution evolves from ωS ¼ 1 in the past, crosses
the ωS ¼ 0 surface and approaches the tracker solution in
the future. In Fig. 9, we see the evolution of the effective
equation of state for this particular solution.

FIG. 8. Configuration space for the case with one fluid with
equation of state ω1 ¼ 0 and Ω1 ¼ 0.36. The red/blue cone
represents the separatrix, i.e., the surface with constant ωS ¼ 1.
The two sheets of the cone correspond to expanding H > 0 or
contracting H < 0 solutions. In the red zone the separatrix acts as
a repulsor, whereas it is an attractor in the blue zone. The green
cone corresponds to ωS ¼ 0. The pink straight line corresponds to
the standard solution in GR for a matter dominated universe (53)
and (54) which separates the Hg > 0 from the Hg < 0 regions,
and the white line is the tracker solution (58). The curve
corresponds to a particular example solution which approaches
the tracker asymptotically.

FIG. 9. Evolution of the effective equation of state ωS in the
case with one fluid with ω1 ¼ 0 and Ω1 ¼ 0.36 corresponding to
the orange curve in Fig. 8. We see how the solution tends to the
tracker solution with ωS ¼ 0.
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X. STABILITY OF SOLUTIONS

In previous sections we have identified the existence of
certain tracker solutions and other asymptotic behaviors. In
this section we will prove that indeed they are stable
attractors. With that purpose, let us consider small pertur-
bations in the general system of equations (85)–(87). After
linearizing the system we introduce the new variable
N ¼ ln a, so that Ḣ ¼ HH0 where 0 ¼ d=dN, and use

the notation δĤ ¼ δH
H , δĤg ¼ δHg

H , and δĤi ¼ δHi
H , so that

we can write:

δĤ0 ¼ −
H0

H
δĤ −

a5Hg

4H
δĤg − 3

X
i

ð1þ ωiÞ
Hi

H
δĤi ð92Þ

δĤ0
g ¼

�
−3

Hg

H
þ 12

a5

�
δĤ −

�
Hg

2H
þH0

H
þ 3

�
δĤg

−
12

a5

X
i

Hi

H
δĤi ð93Þ

δĤ0
i ¼ −

�
3

2
ð1þ ωiÞ þ

H0

H

�
δĤi −

3

2
ð1þ ωiÞ

Hi

H
δĤ;

i ¼ 1…n ð94Þ

Let us then study the stability of some particular
solutions.

(i) Vacuum solution. This corresponds to

Hi ¼ 0; i ¼ 1…n ð95Þ
Hg

H
¼ 2

a5
ð96Þ

H0

H
¼ −

1

2a5
ð97Þ

as shown in (62).
In this case, the system for the V⃗ ¼ ðδĤ; δĤgÞ

variables decouple and can be written as V⃗ 0 ¼ MV⃗
with

M ¼
 

1
2a5

− 1
2

6
a5

− 1
2a5

− 3

!
ð98Þ

The corresponding eigenvalues are

λ1 ¼ −
1

2a5
ð99Þ

λ2 ¼ −3þ 1

2a5
ð100Þ

Thus we see that the vacuum solution i.e. the
solution with dominant ρS and ωS ¼ ω∞

S , is stable
provided a5 >

1
6
so that λ1;2 < 0, in agreement with

the streamline plots in Fig. 2.
The eigenvalues corresponding to the δĤi varia-

bles are

λi ¼
3

2
ðω∞

S − ωiÞ; i ¼ 1…n ð101Þ

which indicate that stable solutions with λi < 0
correspond to fluids with ωi > ω∞

S which ensure
the background fluids to remain subdominant with
respect to ρS.

(ii) Tracker solution. This corresponds to solutions in
which there is one fluid with constant equation of
state ωj which is tracked by the scalar fluid
ðωS ¼ ωjÞ, so that from (58) and (59) we have

Hi ¼ 0; i ≠ j ð102Þ

Hj

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3a5ð1þ ωjÞ

q
ð103Þ

Hg

H
¼ 6ð1þ ωjÞ ð104Þ

H0

H
¼ −

3

2
ð1þ ωjÞ: ð105Þ

The system of equation corresponding to the vari-
ables V⃗ ¼ ðδĤ; δĤg; δĤjÞ decouple from the rest so
that the matrix can be written as

Mtracker ¼
 
M3×3

tracker 0

0 Mðn−1Þ×ðn−1Þ
tracker

!
ð106Þ

with

M3×3
tracker ¼

0
BBB@

3
2
ðωj þ 1Þ − 3

2
a5ðωj þ 1Þ −3ðωj þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3a5ðωj þ 1Þp
−18ðωj þ 1Þ þ 12

a5
− 3

2
ðωj þ 3Þ − 12

a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3a5ðωj þ 1Þp

− 3
2
ðωj þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3a5ðωj þ 1Þp
0 0

1
CCCA ð107Þ
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whereas the lower box is a diagonal matrix given by

Mðn−1Þ×ðn−1Þ
tracker ¼ 3

2

0
BBBBBBBBBBBBB@

ðωj − ω1Þ 0 0 0 … 0

..

. ..
. ..

. ..
.

… ..
.

0 … ðωj − ωj−1Þ 0 … 0

0 … 0 ðωj − ωjþ1Þ … 0

..

. ..
. ..

. ..
.

… ..
.

0 0 0 0 … ðωj − ωnÞ

1
CCCCCCCCCCCCCA

ð108Þ

The eigenvalues of this second matrix are trivial and
stability λi≠j < 0 imposes that the rest of background
fluids are subdominant with respect to the tracked one.
The three eigenvalues corresponding to the M3×3

tracker
matrix are

λ1;2 ¼−
3

4

�
1−ωj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ωjÞð24a5ðωjþ 1Þ2 − 9ωj − 7Þ

q �
ð109Þ

λ3 ¼ −
3

2
ð1þ ωjÞ ð110Þ

Thus it can be seen that for a5 ≤ 1=6 and −1 < ωj < 1 the
three eigenvalues are negative so that the tracker solution is
stable. On the other hand, for a5 > 1=6, the stability
condition is satisfied for −1 < ωj < ω∞

S ¼ −1þ 1
3a5

< 1.

XI. DISCUSSION AND CONCLUSIONS

In this work we have considered the possibility of
finding gravity models quadratic in metric derivatives
which could break Diff invariance but are consistent with
local gravity tests at the PPN level. We have identified such
models as TDiff models which propagate an additional
(nonghost) massless scalar graviton mode, in addition to
the standard, massless spin-2 mode and in which the matter
sector is Diff invariant. The Diff invariant coupling to
matter ensures that the scalar graviton mode is not sourced
by matter fields and remains decoupled. The symmetries of
the model protect the structure of the couplings from
radiative corrections. Notice that unlike other modifications
of general relativity, the breaking of Diff invariance allows
to build local gravity actions quadratic in metric derivatives
without the introduction of additional gravitational fields.
Even though the model is indistinguishable from GR in

the weak field approximation, its nonlinear behavior can be
different. This suggests that cosmology is the perfect arena
to test possible smoking guns of the model. However, the
detailed analysis of the full modified Friedmann equations

shows that the extra terms associated to the new gravita-
tional degree of freedom are not excited by the matter
energy-momentum tensor. In other words, the new con-
tributions could only have a primordial origin, for instance,
from quantum fluctuations in the early universe. Thus, if
the extra degree of freedom is initially not excited, the
model recovers standard ΛCDM cosmology. However,
once it is produced it can affect the cosmological evolution.
Thus we have considered two main regimes: when the new
contribution is negligible with respect to the ordinary
background energy densities, we have shown that the
effective energy density of the scalar mode behaves as a
cosmological constant. In other words, it freezes in the
early universe and could have survived until present even
for tiny primordial amplitudes, thus providing a natural
mechanism for dark energy generation. On the other hand,
when the new scalar contribution starts to dominate, we
find two different behaviors depending on the relative size
of the gravitational coupling constants of the new term
compared to the Newton constant. This ratio is in fact
controlled by the a5 parameter. Thus for small a5, the
effective energy density of the new contribution ρSðaÞ
tracks that of the dominant background fluid ρðaÞ. This
tracking behavior could even be such that ρSðaÞ=ρðaÞ > 1.
On the opposite limit, for a5 ≫ 1, the effective equation of
state would be close to ωS ≃ −1 thus providing a natural
dark energy candidate. Notice that it is precisely this case
with a5 ≫ 1 the most interesting one from a phenomeno-
logical point of view, since the extra mode would behave as
dark energy from the early universe. Indeed, assuming it
was subdominant in the early universe, it would have
evolved as a cosmological constant ωS ≃ −1 during radi-
ation and matter eras, and when it started to dominate it
would have made a transition to ωS ¼ −1þ 1=ð3a5Þ. As
shown before this evolution would be stable throughout the
whole cosmic evolution.
Apart from these limits, we have shown that depending

on the initial conditions and the value of a5, other solutions
are possible in which the universe evolves from an
expanding to a contracting phase, eventually recollapsing.
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XII. PROSPECTS

In this work we have limited ourselves to the analysis of
the homogeneous cosmological background. Primordial
cosmological perturbations of the new scalar degree of
freedom could have some impact on structure formation
and CMB anisotropies, thus providing alternative means to
test the model. However, the breaking of Diff symmetry
implies that the usual cosmological perturbation analysis in
general relativity cannot be straightforwardly applied. In
particular, the usual gauge choices cannot be directly
imposed (see [23] for an introduction to perturbation theory
in TDiff models) so that a direct implementation in
Boltzmann codes such as CLASS or CAMB is not possible.
The perturbations analysis will be presented in a forth-
coming work. In addition, the perturbed action would allow
us to develop the quantization program for the extra scalar
mode, which will allow to compute its primordial power
spectrum generated during inflation. On the other hand, a

confrontation of the model with current observations of
SNIa, CMB, and BAO will require to extend the usual
6 parameters likelihood analysis of ΛCDM by including
the three additional parameters ða5; H0

g;ΩSÞ characterizing
the TDiff model and will also be presented elsewhere.
Apart from cosmology, the full nonlinear behavior of the

model could be tested in different contexts, for example in
astrophysical scenarios with strong gravitational fields such
as those associated to compact objects or black holes.
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