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Inflationary and bouncing scenarios are two frameworks that provide the mechanism to overcome
the horizon problem as well as generate the primordial perturbations. In this work, we investigate the
conservation of perturbations in single-field models of both inflationary and bouncing scenarios, where the
quantity, z ¼ adϕ=d log a, with a representing the scale factor and ϕ denoting the scalar field, decreases
with time. We observe that this behavior occurs during the ultraslow-roll phase in the context of inflation
and the contracting phase in the context of bounce. We show that the conjugate momentum associated with
the comoving curvature perturbation during both the ultraslow-roll phase and the contracting phase of
bouncing scenarios is conserved in the super-Hubble limit. We illustrate that, within the framework of
inflation, this conservation of momentum allows for the evolution of perturbations across the ultraslow-roll
phase, enabling the calculation of the power spectrum for modes that exit the Hubble radius before the
ultraslow-roll phase begins. Similarly, in the context of a bounce, we can determine the power spectrum
after the bounce using this method. We support our approach with both numerical and analytical arguments.
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I. INTRODUCTION

The primordial curvature power spectrum, which leads
to the anisotropies in the cosmic microwave background
(CMB) and later to the distribution of galaxies, is con-
strained by precise cosmological observations on large
scales [1,2]. The spectrum of perturbations on large scales
is a key test of various models of the early universe. Among
various scenarios considered, the inflationary paradigm
stands out as the most popular model for explaining the
origin of perturbations in the early universe. According to
the theory of inflation, the quantum fluctuations of the
scalar fields during the early universe are responsible for
the primordial perturbations. In the standard scenario, the
inflationary phase is driven by one or more scalar fields
which slowly roll along a nearly flat potential. It is
important to emphasize that the simplest models of
slow-roll inflation, where all the slow-roll parameters are
small, predict a nearly scale-invariant spectrum that aligns
with observations of the CMB [3–5].
However, it has been known that, the nearly scale-

invariant power spectrum can also arise in another class
of models known as ultraslow-roll inflation. In these
models, the first slow-roll parameter is exceptionally small,
but the second one exceeds one. However, it is crucial to
highlight that ultraslow-roll inflation encounters numerous
challenges, as the system proves to be unstable and requires
fine-tuned initial conditions [6–9].

In recent times, there has been a growing interest in
exploring ultraslow-roll inflation. This interest arises from
the realization that an ultraslow-roll phase toward the end
of inflation can result in the production of a substantial
number of primordial black holes. It has been known that
during inflation, a considerable boost in the primordial
scalar power on small scales, compared to the COBE
normalized amplitude over large scales, can lead to the
generation of primordial black holes. In the case of single
field models of inflation, it has been found that, a point of
inflection in the potential leads to an epoch of ultraslow-
roll, which can give rise to the required boost in the scalar
amplitude over small scales [10–16].
Despite the remarkable success of inflation, alternative

scenarios have been explored to explain the origin of
primordial perturbations. The most extensively investigated
alternative to the inflationary paradigm is the classical
nonsingular bouncing scenario. In a nonsingular bouncing
scenario, the universe experiences a period of contraction
until the scale factor reaches a minimum value, after which
it transitions to a phase of expansion. The Hubble param-
eter is negative during the contraction phase and positive
during the expansion phase. These two phases are con-
nected by a bouncing phase in which the rate of change of
the Hubble parameter is positive [17–22].
In single field models of inflationary and bouncing

scenarios, the evolution of perturbations can be obtained
by understanding the evolution of the scale factor and scalar
field.More precisely, the quantity z ¼ adϕ=d loga, where a
represents the scale factor and ϕ denotes the scalar field,*rathulnath.r@gmail.com
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serves as the background quantity governing the evolution of
perturbations. The quantity z is sometimes described as the
pump field for scalar perturbations. Interestingly, in slow-roll
inflation, it is known that the quantity z increases, and the
comoving curvature perturbationR is often conserved in the
super Hubble limit. However, in ultraslow-roll inflation and
the contracting phases of bouncing scenarios, z decreases,
resulting in the growing nature of R in these scenarios.
In this work, we investigate the conserved quantity

during the ultraslow-roll and contracting phases of bounc-
ing scenarios on super-Hubble scales, exploring its appli-
cations. We demonstrate that the conserved quantity is the
conjugate momentum associated with the comoving cur-
vature perturbation. Furthermore, after establishing the
conservation of momentum in these phases both analyti-
cally and numerically, we discuss its applications in
realistic models that incorporate these phases.
This article is organized as follows: In Sec. II, we provide

a concise overview of perturbations and the corresponding
equations derived from the action. Proceeding to Sec. III,
we examine the conservation perturbations in the super-
Hubble limit. Section IV is dedicated to investigating the
conservation of perturbations in the context of power-law
inflation and the contracting phase of bouncing scenarios.
In Secs. V and VI, we extend our analysis to more realistic
models of ultraslow-roll inflation and bouncing scenarios.
Finally, a succinct conclusion is presented in Sec. VII.
Conventions and notations: we will utilize natural units,

setting ℏ and c to 1, while defining the Planck mass as
MPl ¼ ð8πGÞ−1=2. Consistent with standard practice, differ-
entiation with respect to the cosmic time t will be indicated
by a dot, while differentiation with respect to the conformal
time η will be indicated by a prime.

II. EVOLUTION OF PERTURBATIONS

In the case of early universe models driven by a single,
canonical scalar field, the scalar perturbations are governed
by a single quantity, comoving curvature perturbation, that
is often denoted as R. At the linear order in perturbation
theory, the comoving curvature perturbation is governed by
the following action [4]:

A ¼ 1

2

Z
dηdx3z2ðR02 − ðΔRÞ2Þ; ð1Þ

where z ¼ aϕ̇=H, with ϕ being the scalar field which
drives the background evolution. The conjugate momentum
associated with R can be obtained as

Π ¼ z2R0: ð2Þ
Then the Hamiltonian can be constructed as

H ¼ 1

2

Z
dx3ðz−2Π2 þ z2ðΔRÞ2Þ; ð3Þ

and the corresponding Hamilton’s equations of motion are
given by

R0 ¼ Π
z2
; Π0 ¼ z2ðΔRÞ2: ð4Þ

It is useful to note that, these equations lead to two
decoupled second-order equations as

R00 þ 2
z0

z
R0 − Δ2R ¼ 0; ð5aÞ

Π00 − 2
z0

z
Π0 − Δ2Π ¼ 0: ð5bÞ

In Fourier space, we find that the Hamilton’s Eq. (5) can
be written as

R0
k ¼

Πk

z2
; Π0

k ¼ −z2k2Rk; ð6Þ

whereRk and Πk are the Fourier modes associated with the
comoving curvature perturbation and the corresponding
momentum. These equations lead to two decoupled sec-
ond-order equations

R00 þ 2
z0

z
R0 þ k2R ¼ 0; ð7aÞ

Π00 − 2
z0

z
Π0 þ k2Π ¼ 0; ð7bÞ

where we have dropped the subscript k for convenience.
It is interesting to note that the transformations

Π→ Π̃¼ kR; R→ R̃¼−k−1Π; z2 → z̃2¼ z−2; ð8Þ

leaves the Hamiltonian [Eq. (3)] and equations of motion
[Eq. (6)] unchanged [23,24]. In terms of Mukhanov-Sasaki
variables the above equations can be rewritten as

v00 þ
�
k2 −

z00

z

�
v ¼ 0; ð9aÞ

p00 þ
�
k2 −

θ00

θ

�
p ¼ 0; ð9bÞ

where v ¼ zR, p ¼ Π=z and θ ¼ 1=z. It is useful to write
z00=z and θ00=θ in terms of slow-roll parameters as

1

ðaHÞ2
z00

z
¼ 2 − ϵ1 þ

3

2
ϵ2 −

1

2
ϵ1ϵ2 þ

1

4
ϵ22 þ

1

2
ϵ2ϵ3; ð10aÞ

1

ðaHÞ2
θ00

θ
¼ ϵ1 þ

1

2
ϵ2 þ

1

2
ϵ1ϵ2 þ

1

4
ϵ22 −

1

2
ϵ2ϵ3; ð10bÞ
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where the slow-roll parameters are defined as

ϵ1 ¼ −
d logH
dN

; ϵnþ1 ¼
d log ϵn
dN

: ð11Þ

The quantity of observational significance is the power
spectrum of comoving curvature perturbation, denoted as
PR. Which is conventionally defined as

PR ¼ k3

2π2
jRj2; ð12Þ

where R is obtained using Eq. (7) by imposing Bunch-
Davies initial conditions [4].

III. CONSERVED QUANTITIES

It has been established that in the context of inflation,
when the scales of cosmological interest are significantly
outside the horizon, certain perturbations can be conserved
under appropriate conditions. This property often elimi-
nates the need for more detailed information about the
background. One such perturbation is the comoving cur-
vature perturbation, denoted as R. On the super-Hubble
limit, where k2R → 0, this conservation can be seen from
Eq. (7). Under this limit, Eq. (7) leads to

R0ðηÞ ∝ 1

z2ðηÞ : ð13Þ

The expression above clearly indicates that R0 decreases
with an increase in z2. Consequently, it implies that R
remains conserved when z2 increases, as observed in the
context of slow-roll inflation.
However, in the case of USR inflation, one can observe

that the quantity

z0

z
¼ aH

�
1þ ϵ2

2

�
; ð14Þ

can be negative since ϵ < −2. This implies that z2

decreases during the USR phase. Consequently, the con-
servation of the superhorizon curvature perturbation, is no
longer valid as z2 decreases in this case. Nevertheless, when
examining the evolution ofΠ on the super-Hubble limit, we
obtain

Π0ðηÞ ∝ z2ðηÞ: ð15Þ

This implies that Π0 diminishes as z2 decreases, suggesting
that Π is conserved when z2 decreases, as observed in USR
inflation. It is important to note that, in the evolution of
momentum, the super-Hubble limit is defined by k2 ≪ θ00=θ,
whereas in the case of curvature perturbation, the limit is
characterized by k2 ≪ z00=z, as indicated by the Eq. (9).

Additionally, it is interesting to note that in the case of a
contracting phase, the Hubble parameter is negative, and ϵ2
is either positive or negligible. Consequently, z2 decreases.
This suggests that the quantity Π is conserved during the
contracting phase as well.

IV. POWER LAW SCALE FACTOR

Let us now investigate the conservation of the mentioned
quantities in the last section under different background
evolutions of our interest. First, we consider a power-law
form for the scale factor

aðηÞ ¼ ā

�
η

η̄

� 1
ϵ−1
; ð16Þ

where ā; η̄ and ϵ are constants. In this case, it is known that
the equations governing the perturbations [Eq. (7)] can be
solved analytically when Bunch-Davies initial conditions
are assumed. These solutions can be written in terms of
Hankel functions as

RðηÞ ¼ 1

a
ffiffiffiffiffi
2ϵ

p
MPl

ffiffiffiffiffiffiffiffiffi
−ηπ
4

r
eiðνþ1=2Þπ=2Hð1Þ

ν ð−kηÞ; ð17aÞ

ΠðηÞ ¼ −a
ffiffiffiffiffi
2ϵ

p
MPl

ffiffiffiffiffiffiffiffiffi
−ηπ
4

r
keiðνþ1=2Þπ=2Hð1Þ

ν−1ð−kηÞ; ð17bÞ

where ν≡ 1
2
þ 1

1−ϵ. We find that, on super-Hubble limit
(when −kη ≪ 1), the limiting form of the Hankel function
can be written as

Hð1Þ
ν ð−kηÞ ≃ −

i
π
ΓðνÞ

�
−kη
2

�
−ν

for ν > 0; ð18aÞ

Hð1Þ
ν ð−kηÞ ≃ −i

e−iνπ

π
Γð−νÞ

�
−kη
2

�
ν

for ν < 0: ð18bÞ

A. Expanding phase

During inflationary expansion, where ϵ < 1 on super-
Hubble limit, the Eqs. (17) and (18b) lead to

k3=2jRðηÞj≈ k
2a

ffiffiffi
π

p ffiffiffi
ϵ

p
MPl

ΓðνÞ
�
−kη
2

�
1=2−ν

∝ η0; ð19aÞ

ΠðηÞ
k3=2

≈
a

ffiffiffi
ϵ

p
MPl

k
ffiffiffi
π

p Γðν− 1Þ
�
−kη
2

�
3=2−ν

∝ η2ð1−νÞ: ð19bÞ

The above equations clearly illustrate that the comoving
curvature perturbation is conserved on the super-Hubble
limit in power-law inflation, while its associated conjugate
momentum increases.

CONSERVED COSMOLOGICAL PERTURBATIONS IN … PHYS. REV. D 109, 043505 (2024)

043505-3



B. Contracting phase

Now, let us examine the evolutions of R and Π during
the power-law contracting phase. Consider the scenario
where 1 < ϵ < 3. This encompasses cases where the
contracting phase is dominated by matter (i.e., when
ϵ ¼ 3=2) [25]. In this context, one can obtain

k3=2jRðηÞj≈ k
2a

ffiffiffi
π

p ffiffiffi
ϵ

p
MPl

ΓðνÞ
�
−kη
2

�
1=2þν

∝ η2ν; ð20aÞ

ΠðηÞ
k3=2

≈
a

ffiffiffi
ϵ

p
MPl

k
ffiffiffi
π

p Γð1−νÞ
�
−kη
2

�
ν−1=2

∝ η0: ð20bÞ

It is evident from the above expressions that the conjugate
momentumΠ is conserved, as expected from the expression
in Eq. (15). Moreover, in the scenario of a matter-dominated
contracting phase, where ϵ ¼ 3=2, the expressions above
yield a scale-invariant spectrum for R [25].
Another interesting scenario occurs when ϵ > 3, com-

monly referred to as the ekpyrotic contracting phase [17].
In this case

k3=2jRðηÞj≈ k
2a

ffiffiffi
π

p ffiffiffi
ϵ

p
MPl

ΓðνÞ
�
−kη
2

�
1=2−ν

∝η0; ð21aÞ

ΠðηÞ
k3=2

≈
a

ffiffiffi
ϵ

p
MPl

k
ffiffiffi
π

p Γð1−νÞ
�
−kη
2

�
ν−1=2

∝η0: ð21bÞ

indicate that not only is the conjugate momentum con-
served, but the comoving curvature perturbation is also
conserved.
The above discussions highlight two significant out-

comes. First, it reaffirms the well-known result from
existing literature that the quantity R is conserved on
super-Hubble scales in an expanding universe. Second, and
more importantly in the context of our analysis, it show-
cases that the quantity Π remains conserved on super-
Hubble scales during the contracting phase, as realized in
the Sec. III.

V. ULTRASLOW-ROLL INFLATION

Let us now explore scenarios where both decreases and
increases in z2 occur during the evolutions. First, we
consider inflation, characterized by three periods of evo-
lution: slow-roll, followed by ultraslow-roll, and then again
slow-roll. In the first slow-roll phase, z2 increases, then
decreases during the ultraslow-roll phase, and increases
once more during the subsequent slow-roll phase. Another
context is bouncing scenarios, where z2 decreases during
contraction and increases during expansion.
First, we examine inflation, specifically a model with a

brief ultraslow-roll phase. To achieve this, we consider a
model described by the potential [13,26]

VðϕÞ ¼ V0

�
tanh

�
ϕffiffiffi
6

p
MPl

�

þ A sin

�
1

fϕ
tanh

�
ϕffiffiffi
6

p
MPl

���
2

: ð22Þ

The potential features a point of inflection, and we
opt to work with the following parameter values: V0 ¼
2 × 10−10M4

Pl, A ¼ 0.130383, and fϕ ¼ 0.129576. With
these parameter values, the point of inflection in the potential
is situated at ϕ0 ¼ 1.05MPl [13]. If we set the initial field
value to ϕi ¼ 6.1MPl, with ϵ1i ¼ 10−4, we achieve approx-
imately 66e-folds of inflation in the model. Additionally, we
assume that the pivot scale exits the Hubble radius about
56.2e-folds prior to the termination of inflation.

A. Analytical expressions

In the case of ultraslow-roll inflation, it has been known
that an accurate analytical expression can be derived
from Eq. (7a) by performing an expansion in k2 (see
Refs. [15,27] in this context). Our next task is to investigate
whether the conservation of R and Π can be utilized to
rederive this analytical expression for the power spectrum
at the end of inflation. To achieve this, we focus on the
modes that exit the Hubble radius well before the ultraslow-
roll phase. For these modes, we know that R is conserved
on the super-Hubble limit during the slow-roll phase.
Utilizing this information and solving the Eq. (6), we obtain

Πðη�Þ ¼ ΠðηiÞ − k2RðηiÞ
Z

η�

ηi

z2dη: ð23Þ

Here, ηi is selected such that the mode is in the super-
Hubble limit, and η� represents a time slightly after the
mode enters the phase where z2 decreases. Subsequently,
given the conservation of Π during this phase, we derive

RðηfÞ ¼ RðηiÞ þ Πðη�Þ
Z

ηf

η�

1

z2
dη; ð24Þ

where ηf represents the time slightly after the phase where
z2 decreases. It is important to emphasize that, in deriving
the expressions in Eqs. (24) and (23), we make the
assumption that the conservation of R extends until η�,
despite this being the time within the phase of decreasing
z2. Similarly, we also assume the conservation ofΠ until ηf ,
even though ηf is outside this phase. For numerical
calculations, it is useful to express the expressions
Eqs. (23) and (24) in terms of the number of e-folds, as

ΠðN�Þ ¼ ΠðNiÞ − k2RðNiÞ
Z

N�

Ni

z2

aH
dN; ð25Þ

RðNfÞ ¼ RðNiÞ þ ΠðN�Þ
Z

Nf

N�

1

z2aH
dN: ð26Þ
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As previously mentioned, an analytical expression for R
can be derived from the integral solution of Eq. (7a) for
small but finite wave numbers, up to order Oðk2Þ [15,27].
Interestingly, one can see that the expressions Eqs. (23) and
(24) derived by using the conservation of R and Π are
consistent with these existing results.
Figure 1 depicts the evolutions of z0=z, z00=z, and θ00=θ as

function of number of e-folds N. Note that vertical dashed
lines mark the interval during which z2 decreases. Figure 2
illustrates the evolution of jRj and jΠj as a function of N.
The figures clearly demonstrate the conservation of Π
during the phase where z2 decreases on super-Hubble limit.
Also, note the amplification in the evolution of jRj for the
modes that exit the Hubble radius closer to the ultraslow-
roll phase. We find that, this amplification occurs when
the second term becomes dominant in Eq. (24) due to the
decreasing nature of z2. Furthermore, we observe that the

evolution of the conjugate momentum is smooth during the
ultraslow-roll phase without any dip, unlike the evolutions
of R for certain wave numbers.
Figure 3 illustrates the power spectrum of comoving

curvature perturbations for the relevant scales. The blue line
represents the numerically calculated power spectrum
obtained by solving Eq. (6). The orange data points depict
the spectrum computed using Eq. (26) with specific values:
Ni ¼ 42,N� ¼ 45, andNf ¼ 49. The initial values ofR and
Π at ηi are determined by the solutions of Eq. (7). The figure
clearly demonstrates that the conservation of conjugate
momentum, and consequently, the use of Eq. (26), allows
us to derive the power spectrum for models exiting the
Hubble radius before the onset of the phase where z2

decreases. For comparison, we have included the power
spectrum generated using our analytical methods, which
assumes input values from the solutions given in Eq. (17).
These results are represented by the green data points. For
this plot, we selected the slow-roll parameters for eachmode
at themoment they exit theHubble radius. It is crucial to note
that this method yields results slightly deviating from the
exact values. This discrepancy is anticipated, given that the
solutions [Eq. (17)] are applicable under the assumption of a
constant slow-roll parameter.
Additionally, we recognize that, for the fastest growth in

the curvature perturbation for some wave number is attrib-
uted to the dominant contribution from the power associated
with the momentum. This also implies that the correspond-
ing power spectrum is proportional to k4 × k3jRðηiÞj2. If we
assume the solutions Eq. (17) during the first slow-roll
phase, the corresponding power spectrum has a slope
of k4k2ϵ=ðϵ−1Þ. This slope is close to the steepest slope
discussed in the literature (see, for example, Refs. [28,29] in
this context).

FIG. 1. Evolutions of z0=z, z00=z, and θ00=θ. Vertical lines are
positioned at the values of N corresponding to 43.789 and
47.456, marking the interval where z2 decreases.

FIG. 2. Evolutions of k3=2jRj and jΠj=k3=2 as functions of N for k values of 1010, 1011, 1012, 1013 and 1014 Mpc−1. Dotted vertical
lines and dashed-dotted lines mark the instances where z00=z ¼ k2 and θ00=θ ¼ k2, respectively, for k ¼ 1010 (blue), k ¼ 1011 (orange),
k ¼ 1012 (green), k ¼ 1013 (purple), and k ¼ 1014 Mpc−1 (cyan). Dashed vertical lines are positioned at N values corresponding to
43.789 and 47.456, marking the interval during which z2 decreases. These figures demonstrate the conservation of R during the slow-
roll phase, as well as the conservation of Π during the phase where z2 decreases.
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VI. BOUNCING MODELS

In this section, we demonstrate that the conservation ofΠ
can be utilized to compute the power spectrum after the
bounce for the modes that exit the Hubble radius before the
bounce. It has been known that to track scalar modes across
the bounce, one must model the bouncing phase. This is
typically achieved by either invoking noncanonical scalar
field [20,30] or employing two fields, one of which
possesses negative kinetic energy [22,31,32], or by incor-
porating positive spatial curvature [33]. Consequently,
the evolution of scalar perturbations is highly model-
dependent; for instance, in the case of a two-field model,
curvature perturbation can be influenced by isocurvature
perturbation. In this study, we focus on the evolution of
tensor perturbations, which solely depends on the evolution
of the scale factor.
We shall assume that the scale factor describing the bounce

is given in terms of the conformal time as follows [22,34]:

aðηÞ ¼ a0

�
1þ

�
η

η0

�
2
� 1

2ðϵ−1Þ
; ð27Þ

where a0 is the value of the scale factor at the bounce (i.e., at
η ¼ 0), η0 and ϵ are constant. Note that ϵ ¼ 3=2 corresponds

to the specific case of matter bounce [25,35], while ϵ > 3
corresponds to an ekpyrotic bounce [17–19].
In the context of tensor modes, the evolution equation

can be written as

h0 ¼ Πh

a2
; Π0

h ¼ −a2k2h; ð28Þ

where h represents the amplitude of tensor perturbations,
andΠh is the corresponding conjugate momentum. In terms
of h, the power spectrum is usually defined as [36],

PT ≡ 8
k3

2π2
jhj2: ð29Þ

As discussed earlier, we know that Πh is conserved
during the contracting phase. To calculate the value of h
after the bounce, we assume that Π is conserved even
slightly after the bounce, denoted by the time ηf . We can
then derive

hðηfÞ ¼ hðηiÞ þ ΠhðηiÞ
Z

ηf

ηi

1

a2
dη; ð30Þ

where ηi is chosen such that the modes are in the super-
Hubble regime, i.e., kη → 0. Additionally, we have the
limit ηi=η0 ≫ 0. In this limit, solving Eq. (28) on can obtain

hðηiÞ ¼
1

aðηiÞMPl

ffiffiffiffiffiffiffiffiffiffi
−ηiπ
4

r
eiðνþ1=2Þπ=2Hð1Þ

ν ð−kηiÞ; ð31aÞ

ΠhðηiÞ¼−aðηiÞMPl

ffiffiffiffiffiffiffiffiffiffi
−ηiπ
4

r
keiðνþ1=2Þπ=2Hð1Þ

ν−1ð−kηiÞ; ð31bÞ

where ν≡ 1
2
þ 1

1−ϵ. The subsequent step involves solving
the integral in Eq. (30) to determine the value of h at a later
time ηf . The solution to the integral in Eq. (30) can be
expressed in terms of the hypergeometric function as

Z
1

a2
dη ¼ η

a20
2F1

�
1

2
;
1

2
− ν;

3

2
;−

η2

η20

�
: ð32Þ

Given that we are dealing with a symmetric bounce, we can
choose ηf ¼ −ηi. Additionally, we calculate the value of h
when the mode reaches a time after the bounce, where
jηi=η0j ≫ 1. In this limit, one can obtain that

2F1

�
1

2
;
1

2
− ν;

3

2
;−

η2i
η20

�

≈
1

2ν

�
ηi
η0

�
2ν−1

þ
ffiffiffi
π

p
2

Γð−νÞ
Γð1=2 − νÞ

η0
ηi
: ð33Þ

To demonstrate the application of our method, we examine
the scenario where 1 < ϵ < 3. It is important to note that in
this case, the second term on the right-hand side of the

FIG. 3. Power spectrum of comoving curvature perturbations.
The blue line represents the numerically calculated power
spectrum by solving the Eq. (6). The orange data points illustrate
the spectrum calculated using Eq. (26) with the values Ni ¼ 42,
N� ¼ 45, and Nf ¼ 49. Additionally, the initial value ofR and Π
atNi are supplied by the solutions of Eq. (7). The figure distinctly
illustrates that the conservation of conjugate momentum, and
consequently, the Eq. (26), can be employed to obtain the power
spectrum for the models exiting the Hubble radius before the
phase where z2 decreases begins. As a point of comparison, we
have included the power spectrum generated using our analytical
methods, assuming input values provided by the solutions
[Eq. (17)]. These solutions are denoted by green data points in
the plot. It is important to note that this method yields results that
slightly differ from the exact values. This discrepancy is
expected, given that the solutions [Eq. (17)] are applicable under
the assumption of a constant slow-roll parameter. To generate this
plot, we selected the slow-roll parameters for each mode at the
moment when the modes exit the Hubble radius.
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expression Eq. (33) is dominant. Moreover, on the super-
Hubble limit (i.e., when kηi ≪ 0), Eq. (31) result in

k3=2jhðηiÞj ≈
k

2aðηiÞ
ffiffiffi
π

p ffiffiffi
ϵ

p
MPl

ΓðνÞ
�
kηi
2

�
1=2þν

; ð34aÞ

ΠðηiÞ
k3=2

≈
aðηiÞ

ffiffiffi
ϵ

p
MPl

k
ffiffiffi
π

p Γð1 − νÞ
�
kηi
2

�
ν−1=2

: ð34bÞ

Then in the limit jηf=η0j ≫ 1, using Eqs. (33) and (34) the
complete solution of the Eq. (30) can be obtained as

k3=2jhðηfÞj ≈
23=2MPl

a0η0

�
kη0
2

�
3=2þν

				Γð1 − νÞΓð−νÞ
Γð1=2 − νÞ

				: ð35Þ

It is interesting to note that, as implied by the above
expression, the amplitude of tensor perturbation, h is
conserved after the bounce, as anticipated. Then the power
spectrum, which is defined in Eq. (29) can be obtained as

PT ¼ 25M2
Pl

ða0η0πÞ2
�
kη0
2

�
3þ2ν

				Γð1 − νÞΓð−νÞ
Γð1=2 − νÞ

				
2

: ð36Þ

In the matter bounce scenario, where ϵ ¼ 3=2, we obtain
PT ≈ 9M2

Pl=ð2a20η20Þ, which is scale-invariant as expected.
This result is also consistent with the findings in [34].
Additionally, Fig. 4 illustrates the evolution of h and Π
as functions of η in the matter bounce scenario. The
figure clearly depicts that while Π is conserved during

the super-Hubble limit in the contracting and bouncing
phases, h is conserved in the expanding phase.

VII. CONCLUSIONS

It is well established that the comoving curvature
perturbation is conserved in slow-roll inflation on super-
Hubble scales. However, it has been observed that this
quantity increases during ultraslow-roll inflation and the
contracting phase of bouncing scenarios. In this work, we
have demonstrated the existence of a conserved quantity,
namely the conjugate momentum of comoving curvature
perturbations, on super-Hubble scales in these scenarios.
More specifically, we show that the conjugate momentum
is conserved on super-Hubble scales during the phase when
the quantity z ¼ adϕ=d loga decreases.
Furthermore, we illustrate that the conservation of

momentum can be utilized to evaluate the evolution of the
curvature perturbation during the ultraslow-roll phase in the
context of inflation, as well as during the contracting and
bouncing phases in the context of bouncing scenarios. This
ultimately enables obtaining an analytical estimate of the
power spectrum at the end of inflation in the context of
ultraslow-roll inflation and after the bounce in the context of
bouncing scenarios [see, Eq. (26)]. We acknowledge that the
analytical expression for the power spectrum in the context of
ultraslow-roll inflation, as presented in [27], is already
established. Nevertheless, our study successfully replicated
an approximated version of this expression, utilizing our
method based on the conservation of conjugate momentum
associated with the comoving curvature perturbation.
Additionally, we have examined specific models for

inflation and bouncing scenarios, numerically evolved the
perturbations, and showcased the conservation of conjugate
momentum in these models. Additionally, we calculated
the relevant power spectrum numerically and compared it
with our analytical estimates.
It is interesting to identify the conserved quantities in

single-field models of inflation and bouncing scenarios.
The next challenge is to expand our investigation to
scenarios that involve nonscalar fields or more than one
scalar field, which is typically the case when modeling the
bouncing phase with scalar fields [22,32].
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FIG. 4. Evolution of jhj and jΠhj across the bouncing phase is
presented as a function of η for kη0 ¼ 10−3 in the matter bounce
scenario, where ϵ ¼ 3=2. Note that η ¼ 0 corresponds to the time
of the bounce. The figure clearly shows that while Π is conserved
during the super-Hubble limit in the contracting and bouncing
phases, h is conserved in the expanding phase.
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