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The equation of state for dense matter is studied with color molecular dynamics, in which hadron matter
and quark matter are automatically distinguished only from quark color state. The quark-quark interactions
are optimized to be consistent with saturation properties: symmetric energy, L-parameter, and incom-
pressibility around nuclear density. In the calculations, the degrees of freedom of colors are solved at each
numerical step, although the flavors are fixed as up or down quarks. The resultant mass-radius relations also
satisfy the observational constraints such as the gravitational wave observations, NICER, and “the
two-solar mass observations” of neutron stars. In this model with the allowed parameter range, deconfined
quark matter appears in the core of neutron stars via crossover. Although the current constraints from the
observations are not enough to conclude whether quark matter appears at high-density region and also our
study is still in a qualitative level, our method would help to understand high-density material properties
inside neutron stars in the future.
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I. INTRODUCTION

The equation of state (EOS) is a key to understand
neutron star (NS) physics. In particular, it is an interesting
and big question how hadron matter composed of baryons
deconfine to quark matter at high density. However, since
the lattice QCD simulations are not yet feasible for finite
density and low-temperature T ≃ 0, there remains signifi-
cant theoretical uncertainty regarding the behavior of
matter inside NSs. It is a fundamental issue to clarify
deconfinement behaviors.
Instead of solely relying on theoretical and direct under-

standing of the confinement-decontainment phase changes,
the investigation of astronomical observations and nuclear
experiments has emerged as a promising approach. In this
context, it is the first step to reproduce the mass-radius
(MR) relations of NSs. One of the well-known constraints
on the MR relations is “two solar mass constraints”, which
was derived from the observation of PSR J0348þ 432 [1].
Gravitational wave observations also provide strong con-
straints on EOS. The observation GW170817 has yielded
an upper limit of the radius of neutron stars assuming a
binary system with canonical masses [2]. The electromag-
netic counterpart observations of the gravitational wave
event have further constrained the MR relations of NSs [3].
On the other hand, Neutron star Interior Composition
Explorer (NICER) has gradually narrowed the MR regions

of NSs, e.g. PSR J0030þ 045 [4,5] and PSR J0740þ 6620
[6,7]. Consequently, it is expected that astrophysical
observations will significantly constrain the EOSs for
high-density regions of NSs.
Thanks to these developments in astronomical observa-

tion techniques, it would be nice to consider the possibility
of the quark-hadron phase change in NSs. This possibility
has been pointed out by past studies, and many of them
have assumed a first-order phase transition [8–13]. The
phase transitions, in this case, apply to that of multi-
component systems, where two phases are in equilibrium
with different chemical compositions. In such phase
transitions nonuniform structures, namely “pasta struc-
tures” may appear, after the balance between the charge
interactions and surface tensions. Not only the first-order
phase transitions but also the possibility of the crossover are
discussed [14–18].
One of the points that we should keep in mind is that the

model should describe nuclear matter at lower densities as a
hadron phase and at higher densities as a quark phase, on
the latter phase we do not have enough information.
Furthermore, big uncertainties lie in the mechanisms of
confinement and deconfinement, and the EOS in between.
At lower densities the property of hadronic matter is rather
well known: the binding energy per baryon of symmetric
nuclear matter, S0, has the minimum value of −16 MeV at
the saturation density n0, around 0.16 fm−3. The range of
symmetric energy J, which is the energy difference per
baryon between the symmetric nuclear matter and the pure
neutron matter, is relatively narrowly restricted: a plausible
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range for J of 29–33 MeV [19,20]. However, the values of
the L-parameter (the slope of energy for neutron matter),
and the incompressibility K (second derivative of sym-
metric matter energy by the density) are strongly model
dependent.
The fiducial range of the L-parameter is reported as

L ¼ 60� 20 MeV, which is constrained by analyses of
terrestrial experiments, as summarized well in Refs. [21,22].
Comparedwith them, there are also thepossibilities for larger
L-values: Danielewicz et al. have derived the range as 70 <
L < 101 MeV from the isobaric analog states and isovector
skin results [23]. Radioactive Isotope Beam Factory (RIBF)
atRIKEN in Japan has reported as 42 < L < 117 MeV [24].
The Pb radius experiment (PREX)-II projects have suggested
the range of L as L ¼ 106� 37 MeV [25], while the
analyses after the Ca radius experiment (CREX) result have
suggested the ordinal L-values recently. Hence, the current
terrestrial experiments did not solely conclude thevalue ofL.
It is well known that the L-parameter described above is

strongly correlated with neutron skin thickness. It was
theoretically predicted that the neutron skin thickness would
change by considering alpha-clustering at the surface of
neutron-rich heavy nuclei. This point is mentioned in the
paper onEOSbyTypel et al.which is often used in numerical
simulations in theoretical astronomy and widely known as
“DD2” [26]. Recently, this prediction was confirmed exper-
imentally by Tanaka et al. [27]. In this study, DD2 EOS is
compared to our EOS as one benchmark.
As for the incompressibility K, Danielewicz et al. [28]

pointed out 167 MeV < K < 300 MeV, where they ana-
lyzed the flow of matter to extract pressures in nuclear
collisions. Piekarewicz has given the range of K ¼ 248�
8 MeV from the iso-scalar giant monopole resonance
(ISGMR) in 208Pb adopted the relativistic mean-field model
with a random-phase-approximation [29]. G. Colò et al.
have also analyzed the measurements of the ISGMR in
medium-heavy nuclei introducing some types of Skyrme
forces, then predicted the K around 230 MeV [30]. As for
the prediction of a small value of K, Sturm et al. and
Hartnack et al. have concluded K is around 200 MeV from
a comparison of the results of transport theories with the
experimental data of heavy-ion collisions with the produc-
tion of Kþ mesons [31,32].
The EOS of the deconfinement quark phase should be

consistent with all constraints as described above. For this
purpose, Kojo et al. constructed EOSs describing quark
deconfinement with crossover [18]. These EOSs are based
on hadron EOSs derived from the chiral effective field
theory nuclear EOS [33–35] at low densities. By inter-
polating this EOS with the quark EOS at high density, they
construct a crossover EOS. Such an interpolative method is
practical as a first step to obtain EOS, but one should be
careful to obtain thermodynamic quantities such as thermal
conductivity since one cannot clearly distinguish hadron
matter and quark matter in the crossover case. One possible

approach to obtaining such physical quantities is to discuss
the deconfinement-confinement mechanism only within the
framework of the quark model.
Keeping this in mind, we employ a color molecular

dynamics (CMD) simulation which deals with constituent
quarks with color degrees of freedom [36]. In this method,
we solve the time evolutions of positions, momenta, and
color coordinates of quarks, which are governed by the
Hamiltonian with the potential term consisting of the color
confining potential, the perturbative gluon-exchange poten-
tial, and the meson-exchange potentials.
At low density, quarks are clusterized into baryons, in

which the color-singlet state is favored. As density
increases, the baryons start to overlap with each other,
and then they start deconfined into quark matter. Our CMD
simulations show such percolative behavior during the
deconfinement. Compared with our previous studies [37],
we improved the scheme to include relativistic kinetic
energy and solve the time-dependence of the color [36]. We
also include color-independent nonlinear quark-quark
repulsions to keep the consistency with mass-radius rela-
tions of compact stars constrained by the astrophysical
observations. The nonlinear interaction can be understood
as the quark many-body effects.
This paper is organized as follows. In Sec. II, we outline

our framework for CMD. Section III contains numerical
results consistent with the constraints of mass-radius
relations from astronomical observations, and with satu-
ration properties around nuclear density. Section IV is
devoted to the conclusion and the discussion of our results.

II. COLOR MOLECULAR DYNAMICS

Our formulation is based on our previous papers [36,37].
Throughout this paper, strangeness is not considered, and it
is assumed that both u- and d-quarks have the constituent
quark mass, m.
We start with the total wave function defined by a direct

product of single-particle wave packets of quarks, the
position and the momentum of which are centered at
time-dependent parameters Ri and Pi, respectively, and
χi is the internal degree of freedom given by a direct
production of the fixed flavor χif, the time-dependent color
χi

c, and the fixed spin orientation χi
s,

Ψðr1; r2;…rNÞ

¼
YN
i¼1

1

ðπLq
2Þ3=4 exp

�
−
ðri −RiÞ2

2Lq
2

þ i
ℏ
Piri

�
χi; ð1Þ

where N and Lq denote the total number of quarks and the
fixed width of wave packets, respectively. We employ
the width Lq ¼ 0.37 fm in this work. Here, ri represents
the coordinates of ith particle somewhere in the Gaussian
wave packet centered at Ri. It is crucial not to confuse ri
with Ri. In practice, ri does not explicitly appear during the
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calculations due to the double-folding integrals. In this
paper, we fix the flavors and spins, hence χi

f and χi
s

are treated as constants. The explicit form of the time-
dependent degree of freedom for color is shown as

χi
c ¼

0B@ cos αie−iβi cos θi
sin αieþiβi cos θi

sin θieiφi

1CA; ð2Þ

hence αi, βi, θi, φi are the variables for the color of each
particle.
The system follows the Hamiltonian,

H ¼ H0 þ VPauli − Tspur; ð3Þ

where H0 is the conventional Hamiltonian expressed as

H0 ¼
*
Ψ

�����XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ p̂2

i

q
þV̂C þ V̂M

�����Ψ
+
: ð4Þ

The first term is the kinetic term with relativistic kinemat-
ics. The second term is the interaction term expressed as

V̂C ¼ −
1

2

XN
i:j≠i

X8
a¼1

λai λ
a
j

4

�
κr̂ij −

αs
r̂ij

�
; ð5Þ

V̂M¼ 1

2

XN
i

�
g2ωCω

4π

�XN
j≠i

e−μω r̂ij

r̂ij

�1þϵω

−
g2σCσ

4π

�XN
j≠i

e−μσ r̂ij

r̂ij

�1þϵσ

þ
XN
j≠i

σ3i σ
3
j

4

g2ρ
4π

e−μρ r̂ij

r̂ij

�
ð6Þ

where r̂ij ≡ jr̂i − r̂jj is the distance between ith and jth
quarks, and λai is the Gell-Mann matrix. The summation of a
in Eq. (5) might be somewhat obscure, but considering the
energy expectation value between two particles makes its
significance more apparent: The potential between i, and jth
particles is proportional to

P
8
a¼1hχci jλajχci ihχcj jλajχcji. The

color-dependent interaction cVC consists of the linear con-
fining potential (the first term) and the one-gluon exchange
potential (the second term) as shown in Eq. (5). The string
tension of confinement κ and theQCD fine structure constant
αs are set as κ ¼ 0.75 GeV fm−1, and αs ¼ 1.25, as shown in
Ref. [36]. Note that these two interactions are the main
components to determine the nucleon mass M, and these
parameter sets are typical values [38]. In this method, we do
not conduct the anti-symmetrization of the total wave
function, in which the numerical cost is N4 [39,40].
Hence, the interaction is underestimated by a factor of 4
when we take the matrix element of λai λ

a
j , and then we

introduce the effective coupling constants as κeff ¼ 4κ
and αeffs ¼ 4αs to get consistency with color SU(3) algebra.

The constituent quark mass is then obtained as
m ¼ 361.8 MeV, which is determined to reproduce the
nucleon mass, M ¼ 938 MeV, with the above parameter
sets for the confinement and the one-gluon exchange.
As for the nuclear force, the nonperturbative gluon

exchanges in the color singlet channelswouldbe the essential
part. Hence, we introduce the σ þ ωþ ρ quark-meson
couplings acting between quarks [41]. These coupling
constants are set as gω ¼ 5.46, gσ ¼ 3.23, and gρ ¼ 8.19.
The meson-quark coupling constants gω, gσ, and gρ, are
estimated from the meson-nucleon couplings as gω ¼ gωN=
3 ¼ 4.98, gσ ¼ gσN=3¼ 3.09, and gρ¼gρN=3¼9, in pre-
vious works [37]. These values of gω, gσ , and gρ in this paper
are different by ∼10% from our previous works. We also
introduce the small nonlinearity parameters ϵω, and ϵσ for the
ω-, and σ-exchange potentials. The physical significance of
this nonlinearity is the effects of many-body correlations
beyond two-body interactions. When ϵω and ϵσ are zero, it
exactly coincides with two-body correlations for i- and
j-particles. However, when they are not zero, we have to
take into account the contribution from all particles to the
correlation between i- and j-particles. This expression might
raise concerns about an exceptionally increased computa-
tional cost. However, that is not the case. The summation part
of this equation can be precalculated outside the loop
operation that calculates the two-particle correlation energy.
By doing so, calling this sum again within the loop for two-
particle correlation results in a computational cost of N2. In
this manner, it is possible to incorporate many-body effects
while keeping the numerical cost low.We also introduceCω,
Cσto make the coupling constant gω, gσ dimensionless, set as
Cω ¼ 1=ð1þ ϵωÞ, Cσ ¼ 1=ð1þ ϵσÞ, which are same as
Ref. [37]. We have chosen ϵω ¼ 0.20, ϵσ ¼ −0.13 to make
our EOS consistent with the constraints from astrophysical
observations and experimental nuclear physics described
later.We have introduced the effectivewidthsLω,Lσ, andLρ

asLω ¼ 0.75 fm,Lσ ¼ 1.35 fm, andLρ ¼ 1.30 fm for each
meson exchange term.Also, thesevalues are almost the same
as the previous work: Lω ¼ 0.70 fm, and Lσ ¼ Lρ ¼
1.30 fm [37]. The values Lω, Lσ, and Lρ are set to larger
values thanLq so that the quark-meson interactions replicate
the nucleon-meson interactions.
Here, we discuss the effective ranges of each interaction.

As indicated in Eq. (1), we assume a Gaussian wave packet
for each particle. The convolutions of the potential energies
are then calculated through the double-folding integrations.
Thus, the total energy is determined by these interactions,
except for the confinement potential, within an effective
range dependent on Lω, Lσ , Lρ, and Lq. Therefore, by
choosing a sufficiently large periodic-boundary, the corre-
lation energies with long distances become negligibly
small, though we compute the potentials for all correlations
without approximation. In this study, we ensure that all
particles form a color singlet. Consequently, the potentials
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related to color, namely cVC, including the confinement
potential, are kept finite in total. However, a box-size
dependency may still exist. Therefore, it would be neces-
sary to investigate the box size dependence systematically.
But due to computational costs, we will not go into detail
and describe them in the appendix.
Instead of the anti-symmetrization of the wave function,

we introduce an effective Pauli-potential, VPauli. It acts as a
repulsive force between quarks with the same intrinsic
degree of freedom such as flavor, color, and spin, collec-
tively denoted as χi. According to our previous studies, we
employ the following form of Pauli potential,

VPauli ¼
1

2

XN
i;j≠i

Cp

ðq0p0Þ3
exp

�
−
ðRi −RjÞ2

2q20

�

× exp

�
−
ðPi − PjÞ2

2p2
0

�
δχi;χj ð7Þ

The parameters are set as q0 ¼ 2.46 fm, p0 ¼ 240 MeV,
and Cp ¼ 131 MeV, to reproduce relativistic kinetic
energy for free fermions at zero temperature. Pauli potential
is highly phenomenological, so that we did not write it in
terms of ri but by the central values of position and
momentum, Ri and Pi.
In this paper, we do not take into account the spurious

zero-point energy, Tspur, which comes from the center-of-
mass motion of clusters as shown in Ref. [37]. These effects
remain future problems.
The time evolution of the system is given by the Euler-

Lagrange equation for fRi;Pi;αi; βi; θi;φig with the
classical Lagrangian [36]. Accordingly, the explicit form
of the equations of motion reads:

Ṙi ¼
∂H
∂Pi

; Ṗi ¼ −
∂H
∂Ri

; ð8Þ

β̇i ¼ −
1

2ℏ sin 2αicos2θi

∂H
∂αi

; ð9Þ

θ̇i ¼
1

ℏ sin 2θi

∂H
∂φi

; ð10Þ

α̇i ¼
1

2ℏ sin 2αicos2θi

∂H
∂βi

−
cos 2αi

2ℏ sin 2αicos2θi

∂H
∂φi

; ð11Þ

φ̇i ¼ −
1

ℏ sin 2θi

∂H
∂θi

þ cos 2αi
2ℏ sin 2αicos2θi

∂H
∂αi

: ð12Þ

In the calculations, all quarks are, initially, distributed
randomly without momenta in a box with the periodic
boundary condition. The ground state (matter at zero
temperature) is obtained by the frictional cooling
[36,37]. For this purpose, we solve a damping equation
of motion instead of Eq. (8),

Ṙi ¼
∂H
∂Pi

þ μR
∂H
∂Ri

; ð13Þ

Ṗi ¼ −
∂H
∂Ri

þ μP
∂H
∂Pi

; ð14Þ

where μR and μP are damping coefficients set as μR ¼
−0.00002 and μP ¼ −0.02. The values of μR and μP can, in
principle, be arbitrary; however, reducing them comes at
the cost of increased numerical complexity. On the other
hand, smaller values make it easier to avoid falling into a
local energy minimum state. The values adopted in this
study are the optimal settings that show numerical con-
vergence efficiently. In other words, for smaller values of
μR and μP, the results would still converge to the similar
energy values in the end.
Based on the above formulation, we search for parameter

sets consistent with the constraints from astronomical
observations and nuclear experiments. For this purpose,
we performed iterative calculations under fixed periodic
boundary conditions with a size of 6 fm. Although it would
be possible to investigate size dependence by changing the
size or preparing a larger cell size, we refrained from doing
so in this study due to the significant increase in computa-
tional cost. For instance, doubling the computational
domain size requires an 8 times increase in the number
of particles for the same density, resulting in an 82 times
increase of correlations. Even if such calculations were
repeated to obtain one data point for the EOS at a certain
density, it would be inefficient ignoring some physics to be
considered, such as the color-magnetic interactions.
Once the parameters are given, the energy per nucleon for

symmetric nuclear matter and neutron matter are obtained.
Then, we have made fits of the ground-state energies by
regressions. Using the regressions, we calculate the EOS of
matter in the charge neutral and beta-equilibrium including
the contribution of electrons. Thanks to GPU parallel
computing, it takes just one day to check one parameter
set. In molecular dynamics, the heaviest numerical cost is in
the particle correlation part. There are some well-known
techniques to speed up calculations in molecular dynamics,
such as the tree method and fast multipole method (FMM)
[42], but, to our knowledge, there does not exist such
methods involving confining potential, which does not
decrease at a long distance, hence we do not use such
coarse-graining techniques.

III. RESULTS

A. Equation of state by color molecular dynamics

Let us first show the energy components per nucleon for
ud and udd matter, and the difference between them in
Fig. 1. In symmetric nuclear matter, u and d quarks are
equally present, hence we call it udmatter. In the sameway,
neutron matter is called udd matter in this paper. The total
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energy consists of the potential energies of quark-meson
coupling such as q−ω, q−σ, and q−ρ, the confining
potential, the one-gluon exchange potential, the Pauli
potential, and the kinetic energy, expressed as Eω, Eσ,
Eρ, Econf , EOGE, EPauli, and Ekin, respectively.
At the low density known as the inner crusts of NSs,

pasta structures appear in the approximate scale from 10 fm
to 30 fm, due to the balance of the Coulomb repulsion and
the surface tension. Hence, one should incorporate
Coulomb interactions and search for the optimal size by
varying the periodic-box size, or perform calculations in a
sufficiently large domain [43]. As mentioned in the dis-
cussion on the confinement potential, such computations
have not been conducted in the present study.
As the density increases, the main component of the

energy changes to q−ω and q−σ couplings which are
nonlinearly dependent on the density, while color-dependent
potentials are rather moderate since they have roughly linear

dependence on the density. Furthermore, the primary com-
ponent distinguishing the energy between udmatter andudd
matter is attributed to the ρ meson, Eρ.
The total energies of matter are shown in Fig. 2. Note

that these quantities are obtained based on the quark
models, namely CMD only. In this figure, the regression
curves are obtained assuming a sigmoid function with
regularization terms as

ðE=AÞudðxÞ

¼ 3

�
a1xþ a2x2 þ

a3
1þ expð−a4xþ a5Þ

−
a3

1þ expða5Þ
�
;

ð15Þ

ðE=AÞuddðxÞ

¼ 3

�
b1x2þb2x4þ

b3
1þ expð−b4xþb5Þ

−
b3

1þ expðb5Þ
�
;

ð16Þ

where x is normalized baryon density as x ¼ n=n. Note that
n̄ is not necessarily the saturation density, but just a
normalization factor set as n̄ ¼ 0.16 fm−3. Factor 3 at
the beginning represents “three quarks”, i.e., per nucleon.
In other words, by removing this factor, we can obtain the
energy per quark, E=Q. The first two terms in both
equations are introduced for the regularization of the
regression. The last terms are introduced to make the
regression curves on the origin. The obtained parameters
are shown in Table I. The resultant fitting curves of energy
per baron for ud matter and udd matter are also shown in
Fig. 2. From these curves, we can obtain the characteristic
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FIG. 1. Energy components per nucleon for ud matter (upper
panel) and uddmatter (middle panel), and the difference between
them (lower panel). Each dot represents the numerical results by
CMD. The energies, which come from quark-meson couplings of
ω, σ, ρ, are shown as Eω, Eσ , Eρ. The captions, Ekin and EPauli, are
the quark kinetic energy and the quark Pauli energy. The energies
originated from the confinement and the one-gluon exchange are
expressed as Econf and EOGE.
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FIG. 2. Density dependence of energy per baryon E=A for each
matter ud matter and udd matter. Each dot represents the
numerical results by CMD. Thin dot lines are the regression
curves of them. The thick line, which is labeled by “β-eq:þ e”, is
obtained E=A under the charge-neutral and beta-equilibrium
conditions including contribution of electrons. The dashed curve
represents E=A for ud matter with electrons under the charge-
neutral condition.
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values for EOS around saturation density n0: the saturation
energy S0, the symmetry energy J, the density gradient of
neutron-matter energy L, and the curvature of symmetric-
matter energy K. They are summarized in Table II.
On the other hand, when we focus on high-density matter

inside NSs, the charge-neutral condition and the beta-
equilibrium are considered to be realized. However, even
for hadron matter, it is described by quark dynamics in
this model.
Hence, the charge-neutral condition is evaluated as,

0 ¼
X

i¼u;d;e

Qini; ð17Þ

where Qi, ni are the particle charge and density. We do not
take into account muons for simplicity. In this study, we
also neglect antiparticles, since we obtain ground state at
zero temperature conducting the frictional coolings shown
in Eqs. (13) and (14). In Fig. 2, we show both cases of ud
matter with/without the contribution of Coulomb energy.
The former one is obtained under the charge-neutral
condition, and shown as the dashed curve in Fig. 2. As
for the latter one, the role of electrons is necessarily
important, hence it does not include electrons.
In addition, the beta-equilibrium must be also fulfilled

between u, d quarks and electrons in any phases:

μu þ μe ¼ μd; ð18Þ

where μu, μd, and μe are the chemical potentials for u, d
quarks, and electrons, respectively.
Once we obtain ðE=AÞud and ðE=AÞudd curves, the

energy per nucleon E=A under the charge-neutral condition
and beta-equilibrium is calculated as the mixture of ud
matter and udd matter.

E=A ¼ ð1 − β2ÞðE=AÞud þ β2ðE=AÞudd; ð19Þ

where β is defined to denote the asymmetry of u, d quark
density as

β ¼ 3
nd − nu
nd þ nu

: ð20Þ

In our calculation, we have to find the optimal value of β
consistent with both conditions at each density. This result
is also shown as the thick line in Fig. 2, including the
energy contribution from electrons.
In the upper panel of Fig. 3, we show the relationship

between pressure and baryon density corresponding E=A
under charge-neutral and beta-equilibrium conditions shown
in Eq. (19). However, below the subnuclear density
nB < 0.06 fm−3, we use the EOS by Baym et al. (BPS)
[44]. There is no density jumpwhich is a characteristic of the
first-order phase transition. This suggests that the deconfine-
ment of quarks appears as the crossover. TheEOSs byAkmal
et al. (APR) [45], Kojo et al. (QHC21A-D) [18] and S. Typel
et al. (DD2) [26], available on the CompOSE archive [46],
are included in the figure for comparison. The EOSs by

TABLE I. The optimized parameters for Eqs. (15) and (16).

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
[MeV] [MeV] [MeV]

−92.13 4.52325 1636.17 0.202968 0.263397
2.70704 −0.00203469 38.0054 0.728765 2.83639

TABLE II. The characteristic physical values around the
saturation density obtained by CMD calculations.

n0 [fm−3] J [MeV] L [MeV] K [MeV] S0 [MeV]

0.167 31.0 74.2 260 −15.8
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FIG. 3. The upper panel shows the pressure as a function of
baryon density under charge-neutral and beta-equilibrium con-
ditions, along with the results from Akmal et al. (APR) [45], Kojo
et al. (QHC21A-D) [18], and S. Typel et al. (DD2) [26] for
comparison. The lower panel shows the corresponding sound
speeds normalized by light speed. The band (painted region)
shows the constraint from “PSRþ GW þJ0030þ J0740”. See
the text for the details.
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Akmal et al. (APR) and S. Typel et al. (DD2) have often been
adopted as benchmarks, but the EOSs by Kojo et al. are also
chosen for comparison in this paper since they are the state-
of-the-art crossover EOSs.
The corresponding sound speeds normalized by light

speed are shown in the lower panel of Fig. 3. The band
(painted region) shows the constraint from “PSRþ GW
þJ0030þ J0740” traced Ref. [18], which has been origi-
nally deduced by Legred et al. [47]. Since the EOSs except
for APR are designed to be within this range, it is obvious
that they satisfy the constraint. It can be seen that the sound
velocity of our result is monotonically increasing with
density, but not for QHC A-D models. This difference is
due to the quark deconfinement occurring over a wide
density range in our crossover EOS, compared with QHC
A-D models. Our results suggest that the pure quark matter
does not appear even in the core of neutron stars with the
maximum mass. However, we confirm that the peak of
sound velocity appears in our CMD calculations at high-
density region, which is over the maximum density inside
of stable NSs: nB ¼ 1.08 fm−3. Additionally, our model
does not violate the causality law in the stable interior of
neutron stars with respect to the speed of sound, but it does
at higher density, nB ¼ 1.42 fm−3. When we extend our
code to be fully relativistic in the future, it might be
possible that it may no longer violate the causality law at
such high densities.

The conditions for confinement/deconfinement are set as
follows: If three quarks are within a certain distance dcluster
and the total color of three quarks is white with an accuracy
ε, these quarks are considered confined. It is formulated as

8<: jRi −Rjj < dcluster ði; j ¼ 1; 2; 3Þ;P
8
a¼1

hP
3
i¼1hχijλajχii

i
2

< ε:
ð21Þ

The values of the criteria are set as dcluster ¼ 0.33 fm and
ε ¼ 0.01 in this study. The perspectives of ud matter and
udd matter depended on the density are shown in Figs. 4
and 5. In these figures, the colors of the quarks are
represented using the discontinuous colors red, blue, and
green (RGB) for visibility, however in the actual calcu-
lations, the quarks are in a mixed state of RGB reflecting
the internal degrees of freedom in Eq. (2). Namely, the
color is selected and depicted among RGB, which is closest
to the color mixed state for each particle. Particles with
white colors indicate quarks in the confined state, while
red, blue, and green ones show in the deconfined quark
matter. In these figures, it can be seen that the fraction of
deconfined quarks gradually increases with density. This
behavior is similar to the percolative depiction [48].
The fractions of confined quarks to total quarks in ud

and udd matter are shown in Fig. 6. For both matters,

FIG. 4. The perspectives for ud matter depended on density. Each color corresponds to the color’s internal degree of freedom for each
quark: the white color balls represent the quarks in the baryon state, while red, blue, and green ones do in the deconfined quark matter.

FIG. 5. Same as Fig. 4, but for udd matter.
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deconfined quarks appear around 0.6 fm−3. As we will
show later, the maximum density in stable neutron stars is
1.08 fm−3, hence our calculations suggest that the interior
of neutron stars is mostly filled with confined quark matter,
i.e., baryons. The fraction of deconfined quark matter is
roughly estimated to be less than 0.3 in neutron stars.

B. MASS-RADIUS RELATION

Finally, the mass-radius (MR) relation for neutron stars
obtained by CMD calculation is shown Fig. 7. The results
by Akmal et al. (APR) [45], Kojo et al. (QHC21A-D) [18],
and S. Typel et al. (DD2) [26] are also included for
comparison. The radii obtained from CMD calculations
are larger than those from the two models, but still
consistent with the constraints imposed by astronomical
observations, as shown below.
The constraints obtained from the astronomical obser-

vations with NICER, PSR J0030þ 0451 [5], and MSP
J0740þ 6620 [6,7], are also shown in the figure. The area
bounded by two jagged circles represents 1σ and 2σ ranges
of the observational result based on the analysis assuming
three uniform-temperature oval spots [5]. Note that these
ranges agree with the other result assuming two uniform-
temperature oval spots. As for PSR J0030þ 0451, see also
Ref. [4]. The meshed area on the constraint of MSP
J0740þ 6620, R ¼ 11.5þ1.8

−1.2 km (68%), has been obtained
from the NICER-only analysis, and the painted area, R ¼
13.7þ2.6

−1.5 km (68%), were given based on NICERþ
XMM − Newton datasets [7]. The mass of MSP J0740þ
6620 has been suggested as 2.08� 0.07M⊙. Our CMD
calculations give the maximum mass 2.19M⊙, which is
over the lower limit of the mass suggested from MSP
J0740þ 6620. The maximum density in stable neutron
stars is nB ¼ 1.08 fm−3 in our CMD calculations, which

indicates that the interior of neutron stars is occupied by
mostly hadrons, as shown in Fig. 6. Note that our result lies
outside the NICER+XMM-Newton range (painted area).
We believe that it would be satisfied after taking into
account the other physics, which should be improved in the
future, such as color-magnetic interactions.
Besides the above two constraints from NICER, we also

take into account the observations related to event
GW170817, and show them in Fig. 7.
First, the gravitational wave observation, GW170817,

itself gave us valuable information on the tidal deform-
ability of the neutron stars, which could be a constraint for
the radii [2]. The observation suggests that the radii should
be less than 13.6 km for neutron stars with a canonical
mass, 1.4M⊙. The dimensionless tidal deformability from
our CMD calculation is Λ1.4M⊙ ¼ 458, and the correspond-
ing radius is less than the constraint by GW170817.
The electromagnetic (EM) observation accompanied by

GW170817 has also provided complementary information:
the merger was suggested not to be in a prompt collapse to a

stable NSs
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FIG. 6. Fractions of quark number within baryon state against
total quark number for ud matter and udd matter, shown in
Figs. 4 and 5. The painted area indicates the region below the
maximum density 1.08 fm−3, i.e., at the density allowed in the
interior of stable NSs.
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FIG. 7. The mass-radius relation obtained from the numerical
results of CMD, where the maximum mass and the central baryon
number density of NSs areMmax ¼ 2.19M⊙ and nB ¼ 1.08 fm−3,
represented by the filled color circle. For comparison, the results by
Akmal et al. (APR) [45], Kojo et al. (QHC21A-D) [18], and
S. Typel et al. (DD2) [26] are also included. The constraints
obtained from the astronomical observations with NICER, PSR
J0030þ 0451 [4,5], andMSP J0740þ 6620 [6,7], are also shown.
The meshed area on the constraint of MSP J0740þ 6620 has been
obtained from the NICER-only analysis, and the painted area was
given based on NICER+XMM-Newton datasets.We also show the
constraints inferred from event GW170817, labeled by
GW170817, Bauswein et al., and Shibata et al. As for Bauswein
et al., they give a lower limit of NS radius as R1.6M⊙

¼
10.3–10.7 km with the mass of M ¼ 1.6M⊙ [3]. As for Shibata
et al., they give an upper limit on the NS mass ofM < 2.3M⊙ by
comparing their numerical relativistic simulations with the electro-
magnetic (EM) observation accompanied by GW170817 [49]. See
the text and the reference for the details.
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black hole (BH) because of the large quantity of ejecta and
its high electron fraction. Given that the threshold for
prompt collapse depended on the NS compactness,
Bauswein et al. had placed a lower limit of NS radius as
R1.6M⊙

¼ 10.3–10.7 km with the mass of M ¼ 1.6M⊙ [3].
Moreover, comparing numerical relativistic simulations as
for a supermassive neutron star remnant with the measured
binary massMtot ¼ 2.74þ 0.04M⊙ [2], Shibata et al. have
given an upper limit on the NS mass of M < 2.3M⊙ [49].
For more details on EM counterparts, see also the review by
Metzger [50] and the reference therein.
Although not included in Fig. 7 to avoid complications,

it should be mentioned that Margalit and Metzger gave a
more strict constraint, M < 2.17M⊙ [51]. On the other
hand, Keck-telescope spectrophotometry and imaging of
the companion of the “black widow” pulsar PSR
J09520607, suggests 2.35� 0.17M⊙ [52]. Therefore, care-
ful consideration is still needed regarding the maximum
mass of neutron stars. With this background in mind, this
paper adopts the more conservative constraint by Shibata
et al. [49] rather than the one by Margalit and Metzger [51].

IV. DISCUSSION

In this study, CMD calculations were performed to
obtain the EOS, which is consistent with the constraints
from the astrophysical observations. At low densities, our
results deviate slightly from the values suggested by
various nuclear experiments: our model satisfies just barely
the range of K by Danielewicz et al. [28] but not for the
others [29–32], while it does the fiducial values of n0, J,
and L [19,20].
In our current framework, the result suggests that the

deconfinement of quarks is crossover in stable neutron
stars. Moreover, the insides of NSs are occupied mainly by
confined hadron matter. This is because the EOS inevitably
needs to become stiff to support neutron stars with masses
exceeding two solar mass to be consistent with the
astronomical observations. As a consequence, the core
of the neutron star does not achieve a sufficiently high
density. In any case, until the sign problem is resolved,
there is no means to obtain information about high-density
matter other than by assuming some frameworks and
obtaining insights from astronomical observations.
Within the limited framework of our current model, it
implies that the inclusion of quark many-body effects is
necessary at least: it is inevitable to introduce ϵω, ϵσ for
reproducing observational results in this work. The similar
discussions are also found in the other EOS models, where
the nonlinear many-body effects are required to be con-
sistent with the observations [26,53,54].
Note that this result is subject to further refinement in our

ongoing research, since we still miss a lot of physics: we
adopt simple Newtonian interactions without strangeness,

quarks spin-spin interactions (color-magnetic interactions),
etc. Therefore, changing our theoretical framework would
certainly alter the value of maximum density, 1.08 fm−3.
For instance, one can easily anticipate that the EOS would
be softened when we further take into account strangeness,
but it is unclear how relativistic interactions and color
magnetic interactions would change the EOS on the other
side. Particularly, the relativistic effects are expected to
have a significant impact on the speed of sound. In this
study, the speed of sound has not violated the causality for
densities up to 1.08 fm−3, but for near the density,
1.42 fm−3. Hence, our current conclusion is not crucial.
In the future, we anticipate that properly considering
relativistic effects will lead to more realistic results on
the speed of sound.
Note that our model is based on the constituent quark

models, and then we do not take into account the chiral
condensations. It is a future challenge to incorporate such
physics into our CMD code. Furthermore, in this study,
instead of considering antisymmetrization, we simply
introduced effective coupling constants κeff and αeffS
[36,37]. However, it should be carried out to compare
our method with AMD for the evaluation of our approach
[55,56]. Nevertheless, antisymmetrization itself incurs a
computational cost of N4, so it would be more practical to
perform calculations in finite systems for such comparison.
It means that we also need to consider the antiparticles,
neglected in the present study since we focus on EOSs at
zero temperature. Moreover, since gluons themselves also
play important roles at quark-gluon-plasma in heavy-ion
collisions, they should be taken into account.
Thus, our model is in the early stages of development,

and we aim to address the aforementioned issues by
comparing it with various other models, not only with
AMD. Indeed, various approaches have been pursued in
theoretical simulations of heavy-ion collisions, as men-
tioned above. In the state of the art, the initial non-
equilibrium dynamics of the collision are treated by
particle-based models such as UrQMD and JAM, and
then it is switched to hydrodynamics under thermalized
conditions [57–59]. It would be intriguing to compare our
model with successful models such as those mentioned
above, and we strongly look forward to conducting such
comparisons in the future.
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APPENDIX: BOX SIZE DEPENDENCE

In this appendix, we discuss the size dependence of
periodic boundary conditions for CMD calculations. In
Fig. 8, the energy components for the box size rbox ¼ 6 fm,
employed in this study, are presented, along with the results
for a box size twice as large for comparison.
To explain the box size dependence, let us first focus on

the vicinity of zero density. Considering the case of a single
baryon (N ¼ 3) with rbox ¼ 6 fm, due to periodic boun-
dary conditions, the inter-baryon distance is limited to 6 fm.
In contrast, for the case of rbox ¼ 12 fm with the same
density, there are eight baryons in the box. Through
variational calculations, the inter-particle distances are
optimized, and as a result, they can be different from
6 fm though the average is 6 fm. Therefore, when we
compare these results, there are the differences in the
energy components due to the variations in inter-baryon
distances. This box size dependence arises for the other
densities as well, based on the mean inter-baryon distance
differences.
Due to this dependence, low-density data in this study is

considered less reliable and has been omitted. On the
other hand, as the density increases, the average inter-
baryon distances become similar regardless of the box
size. Consequently, each energy contribution tends to
show similar values. Additionally, as mentioned earlier,
for the case of rbox ¼ 6 fm with N ¼ 3, the interbaryon
distance is equal to rbox. However, this value is large
enough that the E=A for N ¼ 3 in the box shows the same
value with the calculation result for the finite case (with-
out the boundary), namely 938 MeV. Therefore, in
accordance with convention, the values of E=A in
Fig. 2 are referenced to a new baseline, deducting the
value 938 MeV.
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