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In this work, we perform a comparative analysis between the density-dependent quark model and the
vector MIT bag model using Bayesian analysis. We use the equations of state generated by these two
models to describe quark stars. We impose four recent observational astrophysical constraints on both
models to determine their model-dependent parameters in an optimized manner assuming that the
compact objects observed are composed entirely of self-bound quarks. The restrictions are aimed at
producing stars with maximum masses 2 − 2.35M⊙ and a mass-radii diagram compatible with the
observed pulsars PSR J0740þ 6620, PSR J0952-0607, and PSR J0030þ 0451 and the compact object
XMMU J173203.3-344518. With this analysis, the parameter dependence of the nuclear equation of
state of both models is restricted.
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I. INTRODUCTION

The study of the dense deconfined quark matter phase in
nuclear astrophysics is an open problem. There are several
theoretical models developed to explore this matter and
related phenomena [1–3]. One of the phenomena that is
widely being considered these days is the probing of the
inner core of the neutron star (NS). The recently operating
Neutron Star Interior Composition Explorer (NICER) [4–6]
and the gravitational wave laser interferometer (Advanced
LIGO, Virgo, and KAGRA) [7–11] have started providing
results that constrain some known properties of NSs
including their deformability, maximum masses and radii.
The NSs are remnants of gravitationally collapsed super-
novae that lead to the formation of the densest and smallest
observed compact objects in the Universe. Their densities
are several times higher than the density of ordinary nuclear
matter [12,13]. The hadronic matter forming the star can
undergo a phase transition to quark matter in the core of the
star where matter is expected to be highly dense creating a
hybrid star [14–17]. Hypothetically, NSs could also be
formed through self-bound deconfined quarks making up

the entire star, which is effectively a quark star, also known
as a strange star [18–21]. Indeed, the physical conse-
quences of deconfined quark matter in NS or protoneutron
stars and core-collapse supernovas have a long-standing
history in observational astrophysics [22–26].
The equation of state (EOS) mainly consists of the

pressure as a function of the energy density and carries
information on the inner dynamics and composition of the
NS. Through the EOS we can determine the macroscopic
nature of the star via the Tolman-Oppenheimer-Volkoff
(TOV) equations [27]. The EOS also serves as the basis
for several astrophysical simulations of compact objects,
so several investigations are done to improve its accuracy
[28,29]. Additionally, experimental nuclear physics pro-
vides valuable data required to benchmark theories of dense
matter EOS in NS [30]. The asymptotic freedom behavior
of the quantum chromodynamics (QCD) theory that char-
acterizes the phase transition of strongly interacting matter
from hadron phase to deconfined quark matter phase is
an important subject in the study of the QCD phase
diagram. The deconfined quark matter phenomena are
expected to also occur at the higher baryon density region
of NS matter [31,32].
Proper understanding of the EOSs for high-density, cold

quark matter plays a significant role in constraining the
characteristics of strongly interacting matter believed to
exist in the core of NSs. The EOS at high density for
cold quark matter is considered a robust constraint [33,34]
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when constructing the NS EOS at low densities [35–38]
as well. Aside from its phenomenological applications,
the high-density cold quark matter EOS has enormous
theoretical applications due to its associated rich physics,
including dynamical screening of long-wavelength chro-
moelectric and chromomagnetic fields. Such screening
behaviors are also expected to occur in a high-temperature
quark-gluon plasma regime [39,40].
Ever since Bodmer and Witten hypothesized that stable

quark matter should necessarily contain strange quark
matter (SQM) [19,20], it has been assumed that quark
stars consist of SQM [18]. The Bodmer-Witten conjecture
states that the energy per baryon of SQM at zero
pressure must be less than the one observed in the infinite
baryonic matter:

εðp ¼ 0ÞSQM ¼ E=A ≤ 930 MeV: ð1Þ

At the same time, the nonstrange quark matter (NSQM)
still needs to have an energy per baryon higher than the
nonstrange infinite baryonic matter; otherwise, protons and
neutrons would decay into u and d quarks:

εðp ¼ 0ÞNSQM ¼ E=A > 930 MeV: ð2Þ

Therefore, Eqs. (1) and (2) must be simultaneously satisfied
if a model is used to describe quark stars. The same is not
true in the construction of hybrid stars, in which just their
cores are constituted of deconfined quarks.
In this work, we perform a comparative analysis of the

density-dependent quark model (DDQM) [41–45] and the
vector MIT bag model [3,46–48] using Bayesian analysis.
The Bayesian approach is a very useful tool for inferring
the probability distribution of a set of model parameters
based on a set of measured data. In the context of nuclear
physics and astrophysics, the Bayesian analysis can be
used to optimize a set of EOS parameters given astro-
physical observations [49–51], as well as nuclear matter
properties [52–55]. We rely on recent observational astro-
physical data that lead to robust constraints on the NS EOS
and its internal composition assuming that the NSs are
formed entirely by self-bound quarks in a deconfined state.
The constraints include measurable global properties of the
NS such as the mass and radii of PSR J0740þ 6620 [56],
PSR J0952-0607 [57], PSR J0030þ 0451 [58] and
XMMU J173203.3-344518 [59]. Notice that in the present
work, we restrict ourselves to quark (strange) stars only.
With regards to the DDQM, we determine optimal values

of the low-density parameter D, which is related to the
linear confining properties of the quarks, and the higher-
density parameter C, which in turn is associated with the
leading-order perturbative interaction term in the QCD
theory. These are model-dependent parameters that are
usually determined in the model framework. We determine
these parameters using Bayesian analysis that conforms

with each observed star listed above. On the other hand,
with the vector MIT bag model, we determine the model-
dependent parameters such as the bag constant B, related
to the vacuum pressure, the strength of the vector coupling
GV , responsible for the quark-quark repulsion, and the
self-coupling channel b4, which mimics the Dirac sea
contribution and it is important to soften the EOS at very
high densities.
We determine each of these constants that satisfy a

particular observed star for each of the models and compare
their properties. The NS properties that we consider for
comparison and analysis are the EOS, sound velocity cs,
tidal deformability Λ, mass M, radius R and the adiabatic
index Γ.
This work is organized as follows: In Sec. II we

introduce the DDQM and discuss the fundamental relations
that govern it. In Sec. III we introduce the vector MIT bag
model and discuss its fundamental properties. A brief
discussion of the mass-radius constraints and their asso-
ciated expressions is presented in Sec. IV. In Sec. V we
present the general overview of the Bayesian analysis and
the corner diagrams for the four different cases (Figs. 1–4)
considered in this work for both models. The analysis of the
stability window of the DDQM is also discussed briefly in
Sec. VA. The results and analysis of the study are presented
in Sec. VI and the final findings in Sec. VII.

II. DENSITY-DEPENDENT QUARK MODEL

The DDQM is a model that describes the SQM and
incorporates the interaction between the quarks through a
dependency of the mass on the density. In this work, we are
using the model given in Ref. [60]:

mi ¼ mi0 þ
D

n1=3
þ Cn1=3; ð3Þ

where mi0 (i ¼ u, d, s) is the current quark mass, n is the
baryon number density, and C and D are the parameters of
this model. A possible problem with the introduction of a
density dependency is that it can lead to thermodynamic
inconsistencies. Away to avoid these inconsistencies is the
inclusion of an effective chemical potential μ�i , and in this
way, we can describe the system by a free-energy density f
of a free particle system with masses miðnÞ and effective
chemical potentials μ�i :

f ¼ Ω0ðfμ�i g; fmigÞ þ
X
i

μ�i ni; ð4Þ

whereΩ0 is the thermodynamic potential of the free quarks,
given by the following expression:

Ω0¼−
X
i

γi
24π2

�
μ�i νi

�
ν2i −

3

2
m2

i

�
þ3

2
m4

i ln
μ�i þνi
mi

�
; ð5Þ
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with γi ¼ 6ð3 colors × 2 spinsÞ is the degeneracy factor.
The Fermi momenta is given in terms of the effective
chemical potentials μ�i :

νi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2i −m2

i

q
; ð6Þ

so that the particle number density ni can be written as

ni ¼
γi
6π2

ðμ�2i −m2
i Þ3=2 ¼

γiν
3
i

6π2
ð7Þ

and the chemical potential μi and the effective chemical
potential are related through the relation

μi ¼ μ�i − μI: ð8Þ

The β-equilibrium condition can be rewritten in terms
of μ�i as

μ�u þ μe ¼ μ�d ¼ μ�s : ð9Þ

To construct the EOS we also take into consideration the
usual charge neutrality condition

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0 ð10Þ

and the baryon number conservation

n ¼ 1

3
ðnu þ nd þ nsÞ: ð11Þ

This way, the energy density ε of the system is given by

ε ¼ Ω0 −
X
i

μ�i
∂Ω0

∂μ�i
; ð12Þ

and the pressure p by

p ¼ −Ω0 þ
X
i;j

∂Ω0

∂mj
ni
∂mj

∂ni
: ð13Þ

III. VECTOR MIT BAG MODEL

The vector MIT bag model is an extension of the original
MIT bag model [3] that incorporates some features of the
quantum hadrodynamics (QHD) [61]. In its original form,
the MIT bag model considers that each baryon is composed
of three noninteracting quarks inside a bag. The bag, in
turn, corresponds to an infinite potential that confines the
quarks. As a consequence, the quarks are free inside the bag
and are forbidden to reach its exterior. All the information
about the strong force relies on the bag pressure value,
which mimics the vacuum pressure.

In the vector MIT bag model, the quarks are still
confined inside the bag, but now they interact with each
other through a vector meson exchange. This vector meson
plays a role analog to the ω meson of the QHD [61].
Moreover, the contribution of the Dirac sea can be
taken into account through a self-interaction of the vector
meson [62]. The Lagrangian of the vector MIT bag model,
therefore, consists of the Lagrangian of the original MIT,
plus the Yukawa-type Lagrangian of the vector field
exchange, plus the Dirac sea contribution. We must also
add the mesonic mass term to maintain the thermodynamic
consistency. It then reads [47,48]

L ¼ LMIT þ LV þ LDIRAC; ð14Þ

where

LMIT ¼
X
i

fψ̄ i½iγμ∂μ −mi�ψ i − BgΘðψ iψ iÞ; ð15Þ

LV ¼
X
i

�
ψ igiVðγμVμÞψ i −

1

2
m2

VV
μVμ

�
Θðψ̄ iψ iÞ; ð16Þ

LDIRAC ¼ b4
ðg2VμVμÞ2

4
; ð17Þ

where ψ i is the Dirac quark field, B is the constant vacuum
pressure, mV is the mass of the V0 mesonic field, giV is the
coupling constant of the quark i with the meson V0, and
g ¼ guV . The Θðψ̄ iψ iÞ is the Heaviside step function
included to assure that the quarks exist only confined to
the bag.
Applying mean-field approximation (MFA) [61] and

the Euler-Lagrange equations, we can obtain the energy
eigenvalue for the quark fields and the equation of motion
for the mesonic V0 field:

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ν2i

q
þ giVV0;

gV0 þ
�

g
mv

�
2

ðb4ðgV0Þ3Þ ¼
�

g
mv

�X
i

�
giV
mv

�
ni: ð18Þ

To construct an EOS in MFA, we now consider the
Fermi-Dirac distribution of the quarks, the Hamiltonian
of the vector field, and the bag pressure value, H ¼ −hLi.
We obtain

εi ¼
γi
2π2

Z
νf

0

Eiν
2dν; ð19Þ

ε ¼
X
i

εi þ B −
1

2
m2

VV
2
0 − b4

ðg2V2
0Þ2

4
: ð20Þ

Now we define GV ≡ ðg=mVÞ2 and XV ≡ ðgsV=guVÞ. The
XV is then taken as XV ¼ 0.4, once its value was calculated
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based on symmetry group arguments (see Ref. [47] for
additional details). Finally, the pressure is easily obtained
by thermodynamic relations: p ¼ P

i μini − ε.

IV. CONSTRAINTS ON MASS-RADIUS
RELATIONS

In this section, we discuss the recent astrophysical
observations and their connections with equilibrium prop-
erties associated to a specific EOS. By considering a
spherically symmetric body, we are interested in determin-
ing the mass and the radius associated. Due to the high-
density matter of compact objects such as quark stars, it is
assumed that the correct equilibrium properties can be
obtained by solving the TOV equations [27]:

dpðrÞ
dr

¼ −½εðrÞ þ pðrÞ�MðrÞ þ 4πr3pðrÞ
r2 − 2MðrÞr ; ð21Þ

dMðrÞ
dr

¼ 4πr2εðrÞ; ð22Þ

where MðrÞ is the gravitational mass associated with a
spherically symmetric compact object with radius R, pðrÞ
and εðrÞ are the pressure and the energy density, respec-
tively, and we have used natural units such that G ¼ c ¼ 1.
For realistic models of compact objects, Eqs. (21) and (22)
are usually solved by using numerical techniques. In this
regard, we consider a compact star with central energy
density εðr ¼ 0Þ ¼ εc and total massM obtained using the
boundary condition pðRÞ ¼ 0, where R is radius of the star.
The next step in solving the hydrostatic equilibrium
equations consists of determining the connection between
energy density and pressure. This relation depends on the
model we are using to construct the EOS associated with
the astrophysical object. In this study, we utilize the models
introduced in Secs. II and III in order to obtain mass-radius
relations and use recent observational constraints to restrict
the model-dependent parameters.
Recent measurements by the NICER mission are

advancing our knowledge of the constraints that should
be considered for a given EOS of dense matter performing
strict limits on the radius. With information only about
the mass and radius of a neutron star, its exact internal
structure remains uncertain. It is expected that multimes-
senger astronomy, such as gravitational waves, can be used
in order to provide signatures of the composition of the
star. An example of an effect that can be detected is the
signature of some quasinormal modes associated with tidal
forces between neutron stars merging into gravitational
waves [63].
Regarding the analysis carried out in this paper, the

millisecond pulsar PSR J0740þ 6620 is an interesting
system that orbits with a binary companion. Due to a
favorable inclination, the Shapiro time delay was used to
measure the mass of this source with remarkable precision,

making this one of the most well-constrained massive
neutron stars known [56,64,65]. The timing of PSR J0740þ
6620 made with data from the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) in com-
bination with observations from the Green Bank Telescope
led to a mass estimate of 2.14þ0.10

−0.09M⊙ (68.3% credibility
interval) [64]. Continued timing observations of this
massive millisecond pulsar allowed the improvement of
this estimate, leading to a mass of 2.08þ0.07

−0.07M⊙ (68.3%
credibility interval) [65].

V. BAYESIAN ANALYSIS

In this work, we have optimized the EOS parameters
for the constraints investigated by means of a Bayesian
analysis. In this approach given an EOS modelM and a set
of EOS parameters θ, we have an estimate of the region in
which the values of the parameters lie. This information is
given probabilistically by the prior distribution Pðθ;MÞ.
We can increase our information about θ if we observe what
is the chance of measuring a specific data D when we
consider a specific value of θ; this increase of information is
accounted by the likelihood function LðDjθ;MÞ. So, with
Bayes’ theorem, we can obtain a posterior probability
PðθjD;MÞ for θ given a dataset D:

PðθjD;MÞ ∝ LðDjθ;MÞPðθ;MÞ: ð23Þ

As already explained, we test two models M: DDQM
and vector MIT bag. For the DDQM model θ ¼ fC; ffiffiffiffi

D
p g,

and for the vector MIT bag model, θ ¼ fB1=4; GV; b4g, and
the dataset D are the masses and radii of four compact
stars present in Table I. The posteriors PðθjD;MÞ were
obtained using the EMCEE package [66], which uses the
Goodman and Weare affine invariant Markov chain
Monte Carlo [67] method for sampling the posterior
probability density.
In all the cases analyzed we have used a uniform prior

and the domain of our priors was based on the previous
works on the EOS we are testing. For the DDQM model,
the prior domain was taken from Refs. [44,45], and the
range in which the parameters C and D were tested was
C ¼ f−2; 2g and

ffiffiffiffi
D

p ¼ f0 MeV; 300 MeVg. As for the
vector MIT bag model, we based our choices on [47,68],

TABLE I. Mass and radius of the compact stars used as
constraints in this work.

Star Mass Radius

PSR J0952-0607 [57] 2.35� 0.17M⊙ � � �
PSR J0740þ 6620 [56] 2.072þ0.067

−0.066M⊙ 12.39þ1.30
−0.98 km

PSR J0030þ 0451 [58] 1.34þ0.15
−0.16M⊙ 12.71þ1.14

−1.19 km

XMMU J173203.3-344518 [59] 0.77þ0.20
−0.17M⊙ 10.4þ0.86

−0.78 km
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and the range in which parameters B1=4, GV and b4
were tested was B1=4 ¼ f130 MeV; 170 MeVg, GV ¼
f0 fm2; 2 fm2g and b4 ¼ f−2; 2g.
In Table I we show the compact stars that we choose as

constraints in this work and their respective masses and
radii. The first star on the list is the “black widow” PSR
J0952-0607, which is the fastest known spinning pulsar in
the Milky Way, with a frequency of 707 Hz, and also has
the largest mass measured with good accuracy found so
far [57]. The second star on our table is the massive
millisecond pulsar PSR J0740þ 6620, which had its
mass and radius estimated from data of the NICER
Collaboration [56]. Our third star is the millisecond pulsar
PSR J0030þ 0451 which also had its mass and radius
estimated from NICER [58] and can be used to constrain
the radius of the canonical neutron star (1.4M⊙). The last
star in our table is the very low-mass compact star XMMU
J173203.3-344518 which is inside the supernova remnant
HESS J1731-347 and, due to its low mass, was suggested
to be a quark star [69,70]. However, we would like to point
out that the mass-radius measurement of this object has
been contested by some groups; see for example [71].
For all the data present in Table I we have assumed a

Gaussian likelihood function

LðDjθ;MÞ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2i

p e−
1
2
ðdi−miðθÞ

σi
Þ2 ð24Þ

where di and mi are the data and corresponding model
values, respectively, and the uncertainty σi for each case is
given by the highest data uncertainty; for example, for
ri ¼ 10.4þ0.86

−0.78 km we take σi ¼ 0.86 km. In all cases
analyzed we assumed causal limits for the mass and radius
of the compact stars; in the case of the mass we considered
the limit Mmax < 3.2M⊙ [72], and for the radius we
used the limit R > 3M. In this way, if an EOS produces
stars outside these limits, we attribute LðDjθ;MÞ ¼ 0 for
the parameters θ that lead to this result. We performed the
stability window calculations for both models using
the conditions from Eqs. (1) and (2) and considering the
following quark masses: mu ¼ 2.16 MeV, md¼4.67MeV
and ms ¼ 93.4 MeV [73]. For the analysis of the vector
MIT bag model, we were able to take the stability window
into account in the inference; this way, all the points shown
in Figs. 1–4 for this model are inside the stability window.
Values previously obtained can be found in Table 4 of
Ref. [47]. As for the DDQM model, we show its stability
window analysis in the next subsection.

(i) Case I. In case I we have tested if the quark matter
EOS studied here can describe two compact stars
with high masses. One of them is the pulsar PSR
J0952-0607 [57] and the other one is the pulsar PSR
J0740þ 6620 [56]. We want to find EOSs that lead
to mass-radius curves that have the masses and the

radii of PSR J0952-0607 and PSR J0740þ 6620 in
some point of the curve. We do not demand a
specific value for Mmax, only that EOSs that lead to
Mmax ≤ 2.18M⊙, which corresponds to the mass
of PSR J0952-0607 less its error margin, are for-
bidden. This way, if the maximum mass is outside
the region 2.18M⊙ ≤ Mmax ≤ 3.2M⊙, we associate
LðDjθ;MÞ ¼ 0 to the parameters that lead to this
result. In Fig. 1, we show the corner plots [74]
that resulted from the Bayesian analysis for the
DDQM model on the left panel and for the vector
MIT bag model on the right panel. Based on
the result for the MIT case we selected the point
fB1=4 ¼ 139.79 MeV, GV ¼0.159 fm2;b4¼1.69g
to be analyzed. As for the DDQMmodel, we discuss
the points chosen to be analyzed in Sec. VA.

(ii) Case II. In case II we have checked if the
EOS studied here can describe data from NICER.
In this case, we consider a canonical star (PSR
J0030þ 0451) and another star with a mass around
2M⊙ (PSR J0740þ 6620) which according to data
from NICER have approximately the same radius.
Hence, we want EOSs that lead to mass-radius
diagrams with the masses and radii of PSR J0030þ
0451 and PSR J0740þ 6620 at some point of their
curves, and we disregard EOSs that lead to maxi-
mum mass outside the region 2.005M⊙ ≤ Mmax ≤
3.2M⊙. In Fig. 2, we can see the plots for this case,
and based on these results we selected the point
fB1=4 ¼ 140.90 MeV; GV ¼ 0.116 fm2; b4 ¼ 0.72g
for the MIT bag model to be analyzed.

(iii) Case III. In case III we have investigated if the EOS
we are studying can describe two compact stars
with small masses. One of these stars is XMMU
J173203.3-344518 [69] and the other one is the
canonical star from the previous case. In this case,
we assume that 2M⊙ ≤ Mmax ≤ 3.2M⊙. From Fig. 3,
which was obtained from the Bayesian analysis
for this case, we selected the point fB1=4 ¼
135.28 MeV; GV ¼ 0.366 fm2; b4 ¼ 1.90g of the
MIT bag case to be analyzed.

(iv) Case IV. Lastly, we want to verify if the EOSs we are
studying can describe all of the stars of previous
cases at the same time. For case IV, we assume the
same limit for Mmax as for case I, and based on the
right panel of Fig. 4, we chose the point fB1=4 ¼
137.96 MeV; GV ¼ 0.235 fm2; b4 ¼ 1.63g to be
analyzed.

A. DDQM stability window

In Fig. 5, we show the stability window for the DDQM
EOS. We have the values of the parameter C in the x axis
and the values of

ffiffiffiffi
D

p
in MeV in the y axis. The lower

region with green dots is a forbidden region because it
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represents the region where the quark matter, composed of
quarks u and d, would be stable. The upper region with
blue dots is the region where the SQM is unstable, and
hence the matter with EOS obtained from values of C andffiffiffiffi
D

p
in this region cannot form quark stars. Lastly, the

region where we have at the same time purple dots, which
represent unstable u − d quark matter, and red squares,
which represent stable SQM, is the region we are interested
in since the EOSs obtained from values of C and

ffiffiffiffi
D

p
in this

region fulfill the requirements to form strange stars.

FIG. 2. Corner plot showing the posterior distributions of the parameters of DDQM model on the left and the parameters of the vector
MIT bag model on the right for case II. The dark to light contours represent the 1σ, 2σ and 3σ, respectively. The dashed vertical lines in
the histograms represent the 0.16, 0.5, and 0.84 quantiles.

FIG. 1. Corner plot showing the posterior distributions of the parameters of DDQM model on the left and the parameters of the vector
MIT bag model on the right for case I. The dark to light contours represent the 1σ, 2σ and 3σ, respectively. The dashed vertical lines in
the histograms represent the 0.16, 0.5, and 0.84 quantiles.
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To follow the discussion below, please, refer to Figs. 1–4
explained in Sec. V. The shaded areas in Fig. 5 represent
each of the probability distributions we can observe in
Figs. 1–4 for the DDQM EOS. We can observe that most
parts of the distributions lie in the regions where quark stars

are not possible. This way for the DDQM model, although
we have chosen points to study based on Bayesian analysis,
it is not possible to associate each of the points with cases
I–IV, as we did with the vector MIT bag model. Based on
Fig. 5 we have chosen four points to analyze; one of them

FIG. 3. Corner plot showing the posterior distributions of the parameters of DDQM model on the left and the parameters of the vector
MIT bag model on the right for case III. The dark to light contours represent the 1σ, 2σ and 3σ, respectively. The dashed vertical lines in
the histograms represent the 0.16, 0.5, and 0.84 quantiles.

FIG. 4. Corner plot showing the posterior distributions of the parameters of DDQM model on the left and the parameters of the vector
MIT bag model on the right for case IV. The dark to light contours represent the 1σ, 2σ and 3σ, respectively. The dashed vertical lines in
the histograms represent the 0.16, 0.5, and 0.84 quantiles.
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f0.5; 137.5 MeVg is outside the shaded regions and as
can be seen in Fig. 7 does not satisfy the requirement
Mmax ≥ 2M⊙. Some of the main properties of each point
can be seen in Table II.

VI. RESULTS AND ANALYSIS

Since the models currently under consideration are
associated with various constants (see Tables II and III),
we resort to Bayesian analysis, shown in Figs. 1–4, to
determine the values of these constants that are most
consistent with the constraints of some selected stars
presented on Table I. For instance, the vector MIT bag
model is associated with three free parameters, although
they are not fully independent from each other due to the
stability window [47], while the DDQM is associated with
two free parameters. In Table II we display the results for C
and

ffiffiffiffi
D

p
related to the DDQM and in Table III we display

the results for B1=4; GV and b4 determined from the MIT
bag model. Even though we impose the same constraints

on the two models, we observe that the results obtained
for the vector MIT bag model lead to stiffer EOSs than for
the DDQM model. This, in turn, leads to higher maxi-
mum masses and smaller radii in the vector MIT bag case,
as well as lower tidal deformability values when com-
pared to the DDQM case, as will be evident in the
discussions that follow.
In Fig. 6, we present the EOSs for both the DDQM

model and the vector MIT bag model composed of three
flavor quarks (u, d, s) and electrons calculated in β
equilibrium. The stiffness of the EOS enables us to
determine the maximum mass of the star. From Fig. 6,
right panel, we observe that an increase in the B1=4 and/or a
decreasing GV softens the EOS. In the same sense, an
increase of b4 leads to the softening of the EOS at high
densities. Looking at Table III and Fig. 6 one might be led
to believe that increasing b4 leads to a stiffer EOS but, if we
keep the other parameters fixed and vary only b4, we find
that its effect is softening the EOS, as can be seen in [47].
What happens in the present case is that B1=4 andGV have a
greater influence on the EOS than b4.
On the other hand, on the left panel, we observe that an

increasing C and associated decreasing
ffiffiffiffi
D

p
leads to the

stiffening of the EOS, resulting in increasing maximum
masses in that order, as can be seen in Table II. These
properties have a direct impact on the velocity of sound cs,
the adiabatic index Γ, and the tidal deformability Λ that
enables us to study the inner composition of the star.
As is well known, to satisfy the 2M⊙ constraint of NSs,

stiffer EOSs are the ones preferred. The results also show
that the EOS for the vector MIT bag model is significantly
stiffer when compared to the DDQM. Since stiffer EOS
means higher maximum masses, this is reflected in the
maximum masses calculated in the framework of the
models. While all the curves for the vector MIT bag model
satisfy the constraint of having a maximum mass compat-
ible with the estimated mass of PSR J0952-0607, only
one of the curves—dash-double-dotted curve—satisfies
this constraint for the DDQM model. The two other
curves—dashed curve and dash-dotted curve—still present
a maximum mass compatible with the estimated mass for
PSR J0740þ 6620.
In Fig. 7, we show the mass-radius diagram for the

DDQM model on the left panel and for the vector MIT bag
model on the right panel. Starting with the left panel for the
DDQM model, we can observe that the softer EOS (solid
curve) only satisfies the constraints for the XMMU
J173203.3-344518 object and the PSR J0030þ 0451
pulsar and does not achieve Mmax ¼ 2M⊙. The two curves
that came from the EOSs with intermediate stiffness for this
model satisfy the constraints from NICER and the one from
XMMU J173203.3-344518. As for the curve with stiffer
EOS, it is the only one for the DDQM case that satisfies the
mass of the “black widow” star with a radius of 13.86 km.
For this model, we are not able to find a set of values for the

FIG. 5. The stability window for the DDQM model.

TABLE II. Neutron star properties for the different DDQM
models analyzed.

C
ffiffiffiffi
D

p
[MeV] Mmax ½M⊙� R [km] n ½fm−3� R1.4 [km] Λ1.4

0.50 137.5 1.91 11.78 0.88 12.46 534
0.65 132.2 2.04 12.82 0.73 13.40 1398
0.70 130.6 2.10 13.25 0.70 13.86 1717
0.80 127.4 2.18 13.86 0.64 14.41 2163

TABLE III. Neutron star properties for the different vector MIT
bag model analyzed.

B1=4

[MeV]
GV

½fm2� b4
Mmax
½M⊙�

R
[km]

n
½fm−3�

R1.4
[km] Λ1.4

135.28 0.366 1.90 2.54 13.15 0.74 12.38 1078
137.96 0.235 1.63 2.40 12.46 0.82 11.94 850
139.79 0.159 1.69 2.28 11.96 0.89 11.63 712
140.90 0.116 0.72 2.21 11.66 0.94 11.43 633
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parameters C and
ffiffiffiffi
D

p
that would satisfy all the constraints

at the same time. Now, analyzing the second panel of Fig. 7
for the vector MIT bag model, we can see that all the curves
can satisfy all the mass-radius constraints at the same time.
Despite that, the dash-double-dotted curve which is asso-
ciated with the softest EOS of this model, only satisfies the
constraints for the canonical and the black widow stars
slightly. We can also see that the curve with stiffer EOS for
the MIT bag case, the solid curve, has a maximum mass
above the estimated range of mass for PSR J0952-0607,
Mmax ¼ 2.54M⊙. In general, comparing the two models we
can infer that, for the cases we chose to study, i.e., after the
parameters are restricted to the ones suggested by the
Bayesian calculation, the DDQM model leads to smaller
maximum masses and higher radii than the vector MIT
bag model.
The QCD theory shows different properties in the

perturbative and nonperturbative regions. Quark matter is
expected to be in a deconfined state and approximately
symmetric under conformal transformation. On the other
hand, the hadronic matter is not symmetric under con-
formal transformation due to the manifestation of chiral
symmetry breaking. These two extreme characteristics can
be quantitatively differentiated through the determination

of the speed of sound, c2s ¼ dp=dε in the stellar matter.
It has been established that c2s is constant, attains a value
of 1=3 in exactly conformal matter, and approaches this
value from below at high-density quark matter region,
n > 40n0 [75]. Hence, we can determine the interior
dynamics and composition of the star by analyzing the
cs, which depends on the EOS of the corresponding star.
The cs is determined to be c2s ≪ 1=3 below the saturation
density in chiral effective theory and can grow up to
c2s ≳ 0.5 in hadronic matter at high densities [76,77].
Causality requires that c2s ≤ 1 and thermodynamic stability
also requires that c2s > 0. However, if the interaction
between the particles is perturbative, c2s ≤ 1=3. This is
applicable to the case of QCD at asymptotically high
density or temperature where perturbative treatment of
the theory is valid.
Comparing the graphs in Fig. 8, in the left panel for the

DDQM model, all the curves lie below the conformal limit
c2s < 1=3. This implies that, for the possible values of C
and

ffiffiffiffi
D

p
obtained for the constraints considered in this

work, the stars can possibly be formed through self-bound
free quarks in a deconfined state. On the other hand, the
vector MIT bag model on the right panel shows character-
istics similar to the chiral effective theory; that is, the curves

FIG. 6. In the figures above we compare the EOSs from the DDQM (left panel) with the EOSs for the vector MIT bag model (right
panel).

FIG. 7. Comparing the mass-radius diagram of the DDQM (left) and the vector MIT bag model (right).
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show c2s > 1=3 even at very low densities. Aside from that,
the curves with higher values of b4, the solid curve and
dashed one, show different characteristics from the other
two; they rise steadily at low density and start falling at
intermediate to high densities. Similar characteristics are
observed among hybrid neutron stars, where deconfined
quark matter is assumed to be in the core of the stars
[15,78–80]. In general, in the framework of the vector MIT
bag model, the c2s behaves analogous to the hadronic matter
at the lower to intermediate densities and then drops close
to the conformal limit in the core of the star where the quark
core is assumed to have formed. The other two curves, the
dash-dotted curve and the dash-double-dotted one, follow
the usual characteristics of the c2s in the hadronic matter,
where c2s rises steadily with n but exceeds the conformal
limit c2s ¼ 1=3 [37]. The decrease of c2s with the density
shows the importance of the self-coupling that mimics the
Dirac sea contribution, as the conformal limit must be
satisfied at very high densities.
In Fig. 9, we analyze the stability of the stars using the

adiabatic index as a benchmark. Following the seminal
works of Chandrasekhar [81,82], the dynamic stability of a
star can be analyzed based on variational methods. An
expression for the adiabatic index is given by

Γ ¼ pþ ε

p

�
dp
dε

�
S
; ð25Þ

where dp=dε is precisely the speed of sound and S is the
specific entropy at which Γ is evaluated. Generally, the Γ is
dimensionless and its behavior depends on the stiffness of
the EOS for spherical relativistic fluid. For a stable star, the
adiabatic index is required to be Γ > Γcr ¼ 4=3 in the core
of the star. Meanwhile, collapse of the star is expected
to begin when Γ falls below 4=3, and Γcr is the critical
adiabatic index [83–86]. The case of Γ ¼ 4=3 is the starting
point of instability of the star. In Fig. 9, we demarcate the
instability threshold Γcr with a dotted horizontal gray line.
We observe that the Γ decreases with increasing n but does
not cross the instability threshold for both models under
consideration. Additionally, we observe that more massive
stars with stiffer EOSs approach the Γcr line faster than
relatively lighter stars with softer EOSs.
The NS macroscopic properties such as the masses and

radii have long been used as constraints to understanding
the microscopic properties of these stars. Despite the
extensive probe of the NSs, some of its key properties
and interior compositions at extreme conditions of density
and isospin asymmetry still remain uncertain. Here, we

FIG. 8. Here we compare the square velocity of sound c2s resulting from the two models as a function of baryon density n.

FIG. 9. We compare the adiabatic indices Γ of DDQM (left panel) and the vector MIT bag model (right panel) as a function of baryon
density n.
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analyze another astrophysical observable property, the
tidal deformability presented in Fig. 10, that can also be
used to probe the interior composition of the NS. The NSs
like any other external objects with a defined structure
can tidally deform when subject to the influence of an
external tidal field. During the event of coalescences of
NSs that led to gravitational wave emission, the defor-
mation was quantified through a dimensionless param-
eter, called the tidal deformability Λ. The Λ is given by
the expression [68,87–89]

Λ ¼ 2

3
k2

R5

M5
; ð26Þ

where k2 is the gravitational Love number, M is the mass
of the star and R is its radius. As expected, a relatively
larger value of Λ implies the star is large and less compact
and can easily be deformed. On the contrary, a smaller Λ
means a smaller-sized star, highly compact, and hard
to deform. Moreover, as pointed out in Refs. [68,89],
the value of yR must be corrected, since strange stars are
self-bound and present a discontinuity at the surface.
Therefore we must have

yR → yR −
4πR3ΔεS

M
; ð27Þ

where R and M are the star radius and mass, respectively,
and ΔεS is the difference between the energy density at
the surface (p ¼ 0) and the exterior of the star (which
implies ε ¼ 0).
We considered two events that satisfy some of our results

in Fig. 10 for both the DDQM and the vector MIT bag
model. We first analyze event GW170817, which is
arguably the most authoritative confirmed observed binary
neutron star merger with an emitted gravitational wave as
of now [7,10]. The value of Λ1.4 estimated for this event is
Λ1.4 ¼ 190þ390

−120 at 90% confidence level [7]. If the DDQM
model is used, this constraint is not satisfied by any of the

EOSs analyzed. As for the MIT bag model, none of its
curves satisfy this constraint either. We also demarcated
the binary coalescence event GW190814, believed to
consist of a black hole of mass within 22.2 − 24.3M⊙ and
a compact object with a mass within 2.50 − 2.67M⊙ [90].
Analysis of the data associated with GW190814 shows
that the possible nature of the compact object can be
classified as a neutron star only if its EOS is very stiff [91]
or it is a rapidly rotating compact object below the mass
shedding frequency [92–94]. Its value has been estimated
to be Λ1.4 ¼ 616þ273

−158 [90]. This constraint is satisfied only
by the solid curve in the DDQM model. In the MIT bag
model case, the three curves associated with the three
softest EOSs satisfy this constraint. Hierarchically, curves
with lower masses are the first to satisfy the constraints on
tidal deformability before the massive ones in both model
frameworks. The absolute values of Λ1.4 determined in
the two separate models analyzed here are presented on
Tables II and III, where we can see that the value of Λ1.4
decreases with the increasing of the parameter C and
decreasing of

ffiffiffiffi
D

p
for the DDQM model. As for the MIT

bag model, the absolute value of Λ1.4 decreases with
increasing B1=4 and decreasing GV as can be seen in
Table III. From Table III, it seems that increasing b4 leads
to increasing Λ1.4 as well but, since we know that
increasing b4 softens the EOS [47], then increasing b4
will decrease Λ1.4. In general, the values of the tidal
deformability for the MIT bag case are smaller than the
values found for the DDQM case.

VII. CONCLUSIONS

In this paper, we perform a comparative analysis
between the DDQM and the vector MIT bag model and
their applications to the study of quark stars that satisfy the
constraints of some observed pulsars and compact objects
listed in Table I using Bayesian analysis. We show the
corner plot for the distribution of the various parameters
determined at various confidence levels in Figs. 1–4 for

FIG. 10. Tidal deformability Λ as a function of the mass M½M⊙� for the DDQM model (left panel) and vector MIT bag model (right
panel).
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cases I–IV, respectively. We imposed four different mass
and radius constraints (corresponding to four different
compact objects) on the EOSs for each model and deter-
mined the model parameters that satisfy these constraints.
The parameters determined through this analysis for the
vector MIT bag and the DDQM models are presented in
Tables III and II, respectively. In the case of the vector MIT
bag model, we were able to include the stability window
analysis in the Bayesian inference, so that all points in the
corner plots for this model are inside the stability window.
In the case of the DDQM, we performed a stability window
analysis separately, as can be seen in Fig. 5, to clearly
show the regions of C (associated with the leading-order
perturbative term in QCD) and

ffiffiffiffi
D

p
(associated with linear

confinement) within which the corresponding EOS will
lead to the determination of a stable quark star, according to
the Bodmer-Witten conjecture.
After obtaining the model parameters from the analysis,

we applied them to study the properties of quark stars
assuming they have the same constraints as NSs.
Consequently, we calculated the EOSs for the two models
under investigation for each set of values of the parameters
that were chosen to be analyzed and determined their speed
of sound (c2s), adiabatic index (Γ), tidal deformability (Λ)
and mass-radius diagram (M-R) and compared their simi-
larities and differences.

(i) We find that the EOSs determined from the vector
MIT bag model are stiffer than the ones deter-
mined from the DDQM even though we imposed
similar constraints on both models; see the result
in Fig. 6. In this case, we can infer that different
models can show different dynamics of EOS even
if the same constraints are used in calculating
them. Therefore, we expect stars with similar
constraints to show different characteristics in
each model framework.

(ii) In Fig. 7, we present the mass-radius diagram
obtained from both models. In the framework of
the vector MIT model, all the stars satisfied the 2M⊙
mass constraint imposed on NSs. As mentioned
above, the EOSs determined in this model are stiffer
compared to DDQM; hence, the higher masses are
expected. On the other hand, the maximum masses
of the stars within the DDQM also satisfy the 2M⊙
constraint except one, the solid line curve with
Mmax ¼ 1.91M⊙.

(iii) In Fig. 8, we present the c2s as a function of n for both
models to help determine the inner composition of
the star. Here, the DDQM showed a characteristic
similar to deconfined quark matter with c2 < 1=3.
On the other hand, the vector MIT bag model
crossed the conformal limit at c2 ¼ 1=3 even at
the low-density regions showing a behavior similar

to hadron matter. Also, the curves that have higher
maximum masses for this model (solid and dashed
curves in the right panel) showed a steady rise in cs
with n at low-density regions and started falling at
intermediate to higher-density regions.

(iv) In Fig. 9, we analyze the stability of the stars in both
models through their adiabatic indices. Generally,
all the stars analyzed are well within the stability
threshold Γ > Γcr. However, we observed that
curves associated with more massive stars approach
the Γcr line (the gray line) faster than the curves
related to smaller Mmax in both models.

(v) Additionally, we studied the tidal deformability that
complements the study of the interior dynamics of
the NSs. Generally, we observed that curves with
higher maximum mass, which at the same time
have canonical stars with higher radius, have higher
values of Λ1.4 than the curves with lower Mmax and
more compact canonical stars, for the same model.
The stars determined in the framework of the vector
MIT bag model have larger maximum masses,
smaller radii, and smaller values of Λ1.4 compared
to the ones determined from the DDQM with
relatively low masses and higher radii. As expected,
less compact stars are more likely to be deformed
than the more compact ones in the same model
framework. Only one of the curves (solid line) in the
DDQM falls in the upper limit of the constraints
imposed by GW 190814 and three of the curves
(dash-double-dotted, dash-dotted, and dashed lines)
in the MIT bag model satisfy the GW190814
constraint as well, as can be seen in Fig. 10.

Consequently, the optimized model parameters for the MIT
bag and the DDQM models determined through the
analysis qualitatively reproduce some known NS properties
such as the one listed above. Most of the results obtained
conform with the 2M⊙ maximum constraint imposed on
NSs [56]. Some of the results obtained for the Λ1.4 satisfy
the GW170817 [7,10] (DDQM) and GW190814 [90,91]
(MIT bag model) signal ranges.
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