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We consider collective Thomson scattering of an incident X-mode wave (with the electric vector
perpendicular to the background magnetic field) in magnetized electron and positron pair plasma. The
collective effects do not exactly cancel out in contrast to the nonmagnetized case. Still, the cross section is
comparable to the noncollective one, with the same suppression by the square of the cyclotron frequency in
a strong magnetic field. The comparable cross section holds even though the net current is nearly zero from
the drift motion of electrons and positrons. The plasma response does not also affect the cross section so
much. The spectrum of the scattered wave in finite temperature plasma peaks at cyclotron overtones.
Assuming that these results are applicable, we also estimate induced Compton scattering in strongly
magnetized pair plasma. Implications for pulsars and fast radio bursts are discussed.
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I. INTRODUCTION

Fast radio bursts (FRBs) are the brightest radio tran-
sients, first discovered in 2007 [1–3]; most FRBs originate
outside our Galaxy, and their origin is not fully under-
stood. Notably, the observation of FRB 20200428 in 2020,
coinciding with an x-ray burst from the Galactic magnetar
SGR 1935þ 2154 [4–9], marked a step towards under-
standing these phenomena. FRBs are also used as a tool to
extract information from the traces of interactions of FRBs
with distant intergalactic material during their propagation
and to apply this information to cosmology [10–12]
(see the review by Bhandari and Flynn [13] for various
studies).
Despite advancements in observational and applicational

studies, the emission mechanism of FRBs remains unre-
solved. The emission region of FRBs has sparked a debate
[14–17] regarding whether they arise within a magneto-
sphere of the magnetar [18–28] or through interactions
between circumstellar matter located at a distance from the
magnetosphere and relativistic outflows from the magnetar
[17,29–34]. It has been argued that coherent waves such as
FRBs and radio emission from pulsars may cause induced
Compton scattering with electron and positron plasma
(e� plasma) in the magnetosphere and may not escape

the magnetosphere if the Lorentz factor of the scattered
particles is small [35–38].
Induced Compton scattering is a process in which the

reaction rate increases due to the induced effect, primarily
when there is a high occupation number of incident photons
(coherent light) [35–38]. In particular, even with low
photon occupancy in background radiation, the scattering
can exponentially amplify the background radiation and
significantly attenuate the incident light if the incident wave
is highly collimated [39]. Theoretically, it is described by
incorporating the Compton scattering collision term into
the Boltzmann equation for scattered photons. As the first-
order quantum correction cancels out, this process is
understood classically [37,40–43].1 The classical interpre-
tation is that plasma density fluctuations are produced by
the beat between incident and scattered electromagnetic
waves.
This paper focuses on three effects that can influence

the scattering processes to understand the observed FRBs.
The first effect is the suppression of Thomson scattering
due to a strong magnetic field. In the presence of a strong
magnetic field, the motion of scattering particles is con-
strained by the magnetic field, leading to a reduced

*nishiura@tap.scphys.kyoto-u.ac.jp
†kunihito.ioka@yukawa.kyoto-u.ac.jp

1The classical interpretation of induced Compton scattering is
often called “induced Thomson scattering” [44–47]. In astro-
physics, it is common for both classical and quantum mechanical
interpretations to be encompassed under the term “induced
Compton scattering”[37,40–43].
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Thomson scattering cross section for X-mode electromag-
netic waves [48–52].2 Consequently, the rate for induced
Compton scattering may also be suppressed [53]. The
second effect is the plasma response to radiation. Gil et al.
[54] estimated the curvature radiation from charged par-
ticles moving along an infinitely strong curved magnetic
field, considering the plasma response. They found that the
radiation is significantly suppressed compared to vacuum
curvature radiation. This fact implies the need to consider
plasma response also in Thomson scattering. Regarding the
third effect, there is an intuitive argument that the electric
field of the incident electromagnetic wave causes electrons
and positrons to drift in the same direction, leading to a
mutual cancellation of currents and significant suppression
of scattering in a strong magnetic field [55].
It is crucial to consider these effects consistently to treat

the scattering processes in the magnetar magnetosphere.
These effects alter the reaction rate of induced Compton
scattering in the scattering cross section. Therefore, we aim
to cohesively integrate these effects into the Thomson cross
section for magnetized e� plasma.
We believe that collective Thomson scattering (CTS) can

provide a unified explanation for both magnetic field
effects and plasma effects (see the book Froula et al.
[56] for CTS). CTS describes the generation of scattered
waves through the interaction of electromagnetic waves
propagating in plasma with plasma waves or density
fluctuations of ions and electrons. This theory considers
interactions among numerous charged particles (the analog
of Debye screening in a thermal plasma) and is used for
exploring physical properties of plasma through scattering
induced by the screening field around ions [57–59]. CTS
has been widely studied in the field of plasma physics
[56,60] and applied to precise measurements of ion temper-
ature in laboratory plasma experiments [61–64]. However,
most of the existing research in this theory deals with
scattering in ion-electron plasma. Thomson scattering in e�
plasma has been studied without a background magnetic
field [65]. Sincell and Krolik [65] showed that electrons
and positrons completely cancel the collective effect.
However, the collective scattering behavior in the presence
of a background magnetic field has yet to be studied as far
as we know.
CTS is a distinct theoretical concept from induced

Compton scattering. In CTS theory, scattered electromag-
netic waves are generated by the beat between the incident
electromagnetic wave and preexisting density fluctuations.
In contrast, for induced Compton scattering, density
fluctuations arise from the beat between incident and
scattered electromagnetic waves. In this paper, we employ

CTS to calculate the Compton scattering cross section per
particle in the low-frequency limit and apply it to induced
Compton scattering by assuming that the CTS picuture is
also valid for the induced process.
This study is the first to investigate CTS in magnetized

e� plasma, focusing specifically on the scattering of
X-mode waves. Magnetar magnetospheres are believed
to contain e� plasma and strong magnetic fields. Even in a
strong magnetic field, electromagnetic waves with electric
field components parallel to the magnetic field scatter
electrons with the ordinal Thomson cross section. The
parallel electric field also accelerates e�, leading to Landau
damping of the wave’s energy. However, waves with
electric field components perpendicular to the magnetic
field have significantly suppressed cross-section for scat-
tering, allowing more efficient propagation (see Sec. II).
In addition, transverse propagation across the magnetic
field is necessary for electromagnetic waves to escape the
magnetosphere. Radio frequencies are usually lower in the
magnetosphere than plasma and cyclotron frequencies.
O-mode waves with low frequencies correspond to
Alfvén waves, which carry energy along a magnetic field
and are confined within closed magnetic fields. On the
other hand, X-mode waves can propagate across the
magnetic field while maintaining a perpendicular electric
field component, which is often considered in the context of
FRB and pulsar emissions [21,53,66–68].
In Sec. II, we review single-particle scattering, i.e.,

scattering of a free particle, in the presence of a background
magnetic field. In Sec. III, we consider the Thomson
scattering in magnetized e� plasma and the properties of
the obtained scattering cross section. Section IV discusses
whether electrons and positrons cancel the Thomson scatter-
ing in a strong magnetic field. We also discuss a possible
implication for observations of pulsars, taking the obtained
spectra of the scattering cross section into account.
Furthermore, based on the analysis of the CTS, we estimate
the effective optical depth of inducedCompton scattering in a
strong magnetic field. The discussion of Thomson scattering
considering the plasma response is included in Appendix A
because it does not affect the main conclusions of this study.
Throughout this paper, the notation A ¼ 10nAn and the

centimeter-gram-second (CGS) system of units are con-
sistently employed.

II. THOMSON SCATTERING BY A FREE
PARTICLE IN A STRONG MAGNETIC FIELD

We calculate Thomson cross section for X-mode waves
(linearly polarized perpendicular to the plane of the
magnetic field and wave vector) in the presence of a strong
magnetic field. We impose the following assumptions in
deriving the details:

(i) Consider a free electron or a free positron as a
scattering particle and assume that it is static at the
origin before scattering.

2In e� plasma, an X-mode wave is a linearly polarized
electromagnetic wave whose electric field component is
perpendicular to the plane formed by the background magnetic
field and the wave’s propagation direction. The other O-mode
wave has its electric field component within this plane.
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(ii) A uniform magnetic field B0 ¼ ðB0; 0; 0Þ exists in
the x-axis direction.

(iii) The X-mode wave is incident on the magnetic field
with a wave number vector k0 and an angular
frequency ω0.

(iv) The magnetic field of the incident electromagnetic
wave is assumed to be sufficiently small compared to
the backgroundmagnetic field, that is jBwavej ≪ jB0j.

(v) The motion of a particle in the wave field is
approximated as nonrelativistic.

We neglect relativistic effects as an initial step because
even a nonrelativistic CTS framework has yet to be discussed
for e� plasma. Observations also suggest non-relativistic
plasma environments in magnetar magnetospheres, exem-
plified by the observation of FRB 20200428 concurrent
with a magnetar x-ray burst with non-relativistic energy of
∼80 keV [7]. Theoretical studies further indicate that an e�
fireball generated by the x-ray burst has a subrelativistic
plasma temperature in the comoving frame, despite the bulk
of the fireball being accelerated to relativistic speeds [69,70].
The plasma within the fireball is also thermalized in the
comoving frame. Therefore, our theory can be applied at least
in the comoving frame of the fireball plasma.
The electric field of the X-mode plane wave in pair

plasma can be written as

Ein
XðtÞ ¼ E0e−iω0t

0B@ 0

1

0

1CA: ð1Þ

Then the equation of motion for particles in the wave field
can be denoted by

mev̇� ¼ �eEin
X � e

c
v� × B0; ð2Þ

where e is the absolute value of elementary charge (i.e.,
the positron charge) and c is the speed of light. From
this equation of motion, the motion of the particle is
represented by

v� ¼ eE0

meω0

ω2
0

ω2
0 − ω2

c

0B@ 0

�i
ωc
ω0

1CAe−iω0t; ð3Þ

where

ωc ≡ eB0

mec
ð4Þ

is the electron cyclotron frequency. A strong magnetic field
means that the cyclotron frequency is sufficiently large
compared to the angular frequency of the incident electro-
magnetic wave (ωc ≫ ω0).

When the background magnetic field is strong, the
particle motion is characterized by a dominant drift motion.
The particles in the wave field have a figure-eight motion in
the plane perpendicular to the background magnetic field.
When the background field is strong, the drift velocity is
ðωc=ω0Þ times larger than that in the direction of the
incident electric field. The physical reason for this is that
the particles, supposed initially to oscillate in the direction
of the incident electric field, are immediately bent to the
drift direction by the strong background magnetic field.
The electromagnetic field produced by the oscillating

particles is described by Liénard-Wiechert potentials

Erad ≡ q
cR

½n × ðn × β̇Þ�ret;

Brad ≡ q
cR

½n × fn × ðn × β̇Þg�ret; ð5Þ

where β≡ v=c and the retarded time is defined as follows:

t0 ¼ t −
jR − rðt0Þj

c
: ð6Þ

Let R be the observer’s position and n be the unit vector
from the charged particle to the observer at the retarded
time. If the observer is sufficiently far away from the
radiation source, the retarded time can be approximated as

t0 ≃ t −
R
c
þ n · r

c
: ð7Þ

The energy radiated by the oscillating particles per unit
time can be calculated by the radiative Poynting flux
through a sphere of sufficiently large radius. In the non-
relativistic limit, this is expressed as

PNR ¼ e2

4πc

Z
dΩjn × ðn × β̇Þj2: ð8Þ

If the angle between n and β̇ is θ, it can be written as
jn × ðn × β̇Þj2 ¼ β̇2 sin2 θ.
Note that when the plasma density is enormous (i.e.,

ωp ≫ ω0), the response of the plasma must be taken into
account, and the Liener-Wiechert potentials, which assumes
electromagnetic wave propagation in a vacuum, cannot be
used. In Appendix A, we estimated the energy of scattered
X-mode electromagnetic waves by particles in the limit of
large plasma density and background magnetic field (i.e.,
the limit of ωc;ωp ≫ ω0). However, even considering the
plasma response, the scattering cross section of the X-mode
wave is found to be within 50% of that in vacuum for

ωc > ωp ≫ ω0: ð9Þ

Therefore, we adopt Liener-Wiechert potentials to evaluate
the order of the scattering cross section in this study.
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Computing radiation using plasma wave modes is a
future work.
Substituting the motion of the oscillating particle into

Eq. (8), we obtain the energy per unit time emitted from an
electron or a positron in the X-mode waves�
dPX

dΩ

�
¼ e4E2

0

8πm2
ec3

�
ω2
0

ω2
0−ω2

c

�
2
�
1þ

�
ωc

ω0

�
2
�
sin2θ: ð10Þ

The scattering cross section of the X-mode waves is
obtained by dividing the scattered energy per unit time
by the energy flux of the incident electromagnetic wave,

σX ¼ 8π

cE2
0

hPXi

¼ 1

2
σT

��
ω0

ω0 þ ωc

�
2

þ
�

ω0

ω0 − ωc

�
2
�
; ð11Þ

where

σT ≡ 8π

3
r2e ≡ 8π

3

�
e2

mec2

�
2

ð12Þ

is Thomson cross section.
If the background magnetic field is sufficiently large, the

scattering of an X-mode wave is suppressed by a factor of
ðω0=ωcÞ2. The physical interpretation is that although the
electric field of the X-mode wave tries to swing the charged
particle, the charged particle firmly sticks to the back-
ground magnetic field and is hardly shaken by the waves.
As a result, the radiation from the particle is suppressed.

III. THOMSON SCATTERING IN ELECTRON-
POSITRON MAGNETIZED PLASMA

This section considers Thomson scattering of electro-
magnetic waves by e� plasma. The following are the
differences in the setup from the previous section:

(i) Assume e� plasma as a scattering medium.
(ii) For simplicity, we assume that only longitudinal

wave components are produced by density fluctua-
tions in the e� plasma (electrostatic approximation).
It has been argued that without accounting for the
full electromagnetic fluctuations, resonance peaks
due to electromagnetic waves would not be visible in
the scattering spectra [56,71].

A. Basic equations

This section formally derives the energy radiated per unit
time by e� plasma when it scatters electromagnetic waves.
First, the equation of motion of an electron or a positron
perturbed by an X-mode electromagnetic wave is given by

mev̇� ¼ �eEi0eiðk0·rðt
0Þ−ω0t0Þ � e

c
v� × B0: ð13Þ

Solving this equation yields the velocity of the oscillating
particles as follows:

v� ¼ eE0

meω0

ω2
0

ω2
0 − ω2

c

0B@ 0

�i
ωc
ω0

1CAeiðk0·r−ω0tÞ: ð14Þ

In considering plasma scattering, it has been argued that
scattering from the uniform density component can be
neglected [72]. As a simple physical interpretation, for a
scattered wave emitted in a specific direction and wave-
length, imagine a pair of thin uniform plasma plates,
separated by half the wavelength, aligned perpendicular
to the direction of wave travel. Since the phases of the
scattered waves from the thin plates are out of phase
by π, the scattered waves cancel each other perfectly.
Considering similar pairs over the entire scattering region,
all scattered waves from the uniform density component
can be neglected. In other words, all the scattering of
electromagnetic waves in the plasma is caused by statistical
density fluctuations.
The scattered electric field by the electron or positron

population can be evaluated by Liénard-Wiechert potentials
produced by the density fluctuations

E�ðR; tÞ ¼ � e
cR

Z
V
d3r

Z
d3vδF�ðr; v; t0Þ

× ½n × ðn × β̇�Þ�ret: ð15Þ

The relationship between the first-order perturbation of the
distribution function in the scattering region, δF�, and the
density fluctuations δn�ðr; tÞ is

δn�ðr; tÞ ¼
Z

d3vδF�ðr; v; tÞ: ð16Þ

The total electric field scattered by the plasma is the
sum of the contributions from the electron and positron
populations

EtotðR; tÞ ¼
e
cR

Z
V
d3r

Z
d3v

× fδFþðr; v; t0Þ½n × ðn × β̇þÞ�ret
− δF−ðr; v; t0Þ½n × ðn × β̇−Þ�retg: ð17Þ

The energy radiated per unit time and unit solid angle
can be time averaged over a large enough sphere

dPs

dΩ
ðRÞ ¼ cR2

4π
lim
T→∞

1

T

Z T
2

−T
2

dtjEtotðR; tÞj2: ð18Þ

Here the time component of the scattered electric field is
Fourier-transformed into its frequency component
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gEtotðR;ω1Þ ¼
Z þ∞

−∞
dtEtotðR; tÞe−iω1t: ð19Þ

Using Parseval’s identity for the absolute square of the
radiative electric field, the radiation power per solid angle
can be expressed as

dPs

dΩ
ðRÞ ¼ cR2

4π
lim
T→∞

1

πT

Z
∞

0

dω1jgEtotðω1Þj2: ð20Þ

In the subsequent section, we will calculate the scattered
electric field from e� plasma in anX-modewave specifically.

B. Radiative electric field

In this section, we calculate the electric field radiated
from e� plasma in an X-mode wave and show that it can be
written as a combination of density fluctuations. The
density fluctuation is evaluated in the next section. From
Eqs. (16), (17), and (19), the Fourier-transformed scattered
electric field is obtained by adding up the electric fields
created by the electron and positron density fluctuations at
the retarded time over the scattering region as follows:

gEtotðω1Þ ¼
e
cR

Z
∞

−∞
dt
Z
V
d3re−iω1ðt0þR

c−
n·r
c Þ

× fδnþðr; tÞ½n × ðn × β̇þÞ�ret
− δn−ðr; tÞ½n × ðn × β̇−Þ�retg; ð21Þ

where V is the scattering region. The scattered wave’s
travel direction is expressed in spherical coordinates as
n ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. The polar angle θ is
defined as the angle between the z-axis direction and the
direction of the scattered wave. Substituting Eq. (14) into
Eq. (21), we find

gEtotðω1Þ¼
e2E0

c2Rme

ω2
0

ω2
0−ω2

c

Z
∞

−∞
dt
Z
V
d3re−iω1ðt0þR

c−
n·r
c Þ

×

264
0B@sin2θ sinφcosφ

−ð1− sin2θsin2φÞ
sinθcosθ sinφ

1CAcosðk0 · r−ω0tÞ

×fδnþðr; tÞþδn−ðr; tÞg−
ωc

ω0

0B@sinθcosθcosφ

sinθcosθ sinφ

−sin2θ

1CA
×sinðk0 · r−ω0tÞfδnþðr; tÞ−δn−ðr; tÞg

375: ð22Þ

The density fluctuations of electrons and positrons are
Fourier-transformed with respect to space and time as

δn�ðr; tÞ ¼
1

ð2πÞ4
Z

d3kdωeiðk·r−ωtÞfδn�ðk;ωÞ: ð23Þ

Then the Fourier-transformed scattered electric field is
expressed by

jgEtotðω1Þj2 ¼
�

e2E0

2c2Rme

ω2
0

ω2
0 − ω2

c

�
2

×

�
jgδnþ þ gδn−j2ð1 − sin2θsin2φÞ

þ
�
ωc

ω0

�
2

jgδnþ − gδn−j2sin2θ�: ð24Þ

Here, the argument for the wave vector and frequency of the
density fluctuations is described by the difference between
the scattered waves ðk1 ¼ ω1

n
c ;ω1Þ and incident waves as

follows:

gδn� ¼ gδn�ðk1 − k0;ω1 − ω0Þ: ð25Þ

In the next section, we evaluate the combinations of
density fluctuations that characterize the magnitude of the
scattered electric field.

C. Spectral density functions

Spectral density functions for density fluctuations are
defined as a physical quantity that characterizes the
intensity of plasma scattering. The following four types
of spectral density functions characterize the scattering of
e� plasma:

S��ðk;ωÞ≡ lim
V;T→∞

hjgδn�ðk;ωÞj2iensemble

VTne
;

S�∓ðk;ωÞ≡ lim
V;T→∞

hgδn�ðk;ωÞgδn∓�ðk;ωÞiensemble

VTne
: ð26Þ

Here h� � �iensemble denotes taking the statistical mean
according to the plasma distribution function, and

ne ≡ n0þ ¼ n0− ð27Þ

represents the electron or positron uniform density.
Using Eqs. (20), (24), and (26), the energy radiated

by the plasma per unit time, unit solid angle, and unit
frequency can be expressed by
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�
dPs

dΩdω1

�
ensemble

¼Vne
π

cR2

4π

�
e2E0

2c2Rme

ω2
0

ω2
0−ω2

c

�
2

×

�
ðSþþþSþ−þS−þþS−−Þð1− sin2θsin2φÞ

þ
�
ωc

ω0

�
2

ðSþþþS−− −Sþ− −S−þÞsin2θ
	
: ð28Þ

The total scattering cross section for 2Vne particles in the
scattering region V is determined by dividing the scattering
energy by the energy flux of the incident electromagnetic
wave:

dσð2VneÞ

dΩdω1

¼
�

dPs

dΩdω1

�
ensemble

·
8π

cE2
0

: ð29Þ

The differential cross section for scattering into dΩ and dω1

by the 2Vne particles is then

dσð2VneÞ

dΩdω1

¼Vne
e4

2πm2
ec4

�
ω2
0

ω2
0−ω2

c

�
2

×

�
ðSþþþSþ−þS−þþS−−Þð1− sin2θsin2φÞ

þ
�
ωc

ω0

�
2

ðSþþþS−− −Sþ− −S−þÞsin2θ
	
: ð30Þ

The argument of the spectral density function is

S ¼ Sðk1 − k0;ω1 − ω0Þ: ð31Þ

Equation (30) is a general expression describing
Thomson scattering in e� plasma. The spectral density
function is evaluated by taking the statistical mean of the
plasma distribution function that gives the initial conditions
of the position and velocity of each particle before
scattering, as shown below. Given the appropriate initial
plasma conditions, the scattering cross section can be
obtained, considering the correlation between particles.
We derive the density fluctuations of e� plasma in the

presence of a background magnetic field. The density
fluctuations for ion-electron plasma in a magnetic field
were derived by Fejer [57], Dougherty and Farley [58],
Salpeter [73]. The density fluctuations for the case where
the constituent particles of the plasma are electrons and
positrons can be obtained by replacing ion mass with
electron mass. In the following, the derivation of the plasma
density fluctuation is briefly described, and the detailed
derivation is given in the Appendix C.
First, the Fourier transform of the density fluctuations

for time must be replaced by the Laplace transform to
incorporate the initial conditions of the particles before

scattering into the equations. Assuming that t ¼ 0 is the
time when the incident electromagnetic wave first enters
the scattering region, the Fourier-Laplace transform of the
density fluctuation can be described by

gδn�ðk;ωÞ ¼ Z
∞

0

dte−iðω−iεÞt
Z

d3rδn�ðr; tÞeik·r

¼
Z

d3vfδF�ðk; v;ωÞ: ð32Þ

Here ε is a positive infinitesimal quantity, a regularization
factor that represents the elimination of effects due to
scattering in the infinite future. From Eq. (32), the density
fluctuations of electrons and positrons are represented by
the first-order perturbation of the plasma’s distribution
function. This first-order perturbation can be obtained by
using the Vlasov equation for the distribution function and
Gauss’s laws, with the nonperturbed components taken as
the zeroth-order distribution functions F0�, particle veloc-
ities v�, and the background magnetic field B0. The
perturbed components are expressed by the first-order
distribution functions δF� and the fluctuating electric field
E generated by the plasma as follows:

∂F0�
∂t

þv� ·
∂F0�
∂r�

� e
mec

ðv�×B0Þ ·
∂F0�
∂v�

¼0;

∂δF�
∂t

þv� ·
∂δF�
∂r�

� e
mec

ðv�×B0Þ ·
∂δF�
∂v�

� e
me

E ·
∂F0�
∂v�

¼0;

∇ ·E¼4πρ¼
X
q¼�e

4πq
Z

d3vδF�: ð33Þ

Let f�ðvÞ be an one-particle distribution function, we can
write F0� ≡ nef�ðvÞ.
Before scattering, each plasma particle is in cyclotron

motion in the background magnetic field. The initial
velocity, position and phase of a particle are given by

v�ðtÞ ¼

0B@ vk
v⊥ cosφ�ðtÞ
v⊥ sinφ�ðtÞ

1CA;

r�ðtÞ ¼ r�ð0Þ þ

0B@ vkt

�rL sinφ�ðtÞ
∓ rL cosφ�ðtÞ

1CA;

φ�ðtÞ≡�ωctþ ϕ0; ð34Þ

where vk and v⊥ are the velocities in the direction parallel
and perpendicular to the background magnetic field, ϕ0 is
the angle between the particle position just before scatter-
ing and the z-axis, and

rL ≡ v⊥
ωc

ð35Þ
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is the so-called Lamor radius. r�ð0Þ represents the particle
position just before scattering, and each particle follows a
canonical distribution in the electrostatic potential created
by the plasma.
From Eq. (33), we can evaluate the density fluctuations

for e� plasma satisfying the initial condition (34). The

density fluctuation for e� plasma in a background magnetic
field can be written as follows, referring to the calculations
of Salpeter [73] who derived the density fluctuation for
ion-electron plasma. The detailed derivation is given in
Appendix C,

gδn�ðk;ωÞ ¼ −i
��

1 −
H�
εL

�XN�

j¼1

eik·r�jð0Þ
Xþ∞

l;m¼−∞

Jlð�k⊥rLÞJmð�k⊥rLÞ
ω − iε − kxvk ∓ lωc

eiðl−mÞϕ0j þH�
εL

×
XN∓

h¼1

eik·r∓hð0Þ
Xþ∞

l;m¼−∞

Jlð∓k⊥rLÞJmð∓k⊥rLÞ
ω − iε − kxvk � lωc

eiðl−mÞϕ0h

	
; ð36Þ

where JlðzÞ is a Bessel function, and

k⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
: ð37Þ

Here, εL andH� are the longitudinal dielectric function and
the positron/electron electric susceptibility, respectively,
and can be described by

εLðk;ωÞ≡ k · εðk;ωÞ · k
k2

;

H�ðk;ωÞ≡ 4πi
ω

k · σ�ðk;ωÞ · k
k2

; ð38Þ

where ε is the dielectric tensor of a magnetized plasma and
σ� is the positron/electron electrical conductivity tensor,
which are related to each other by ε ¼ I þ 4πi

ω ðσþ þ σ−Þ.
The density fluctuation Eq. (36) is divided into three

terms, each with a physical interpretation. Specifically, we
focus on the electron density fluctuations gδn−ðk;ωÞ: the
first term without H�=εL and summed over the electron
indices is called the noncollective term, which means that
each electron is in cyclotron motion in the background
magnetic field; the second term with H�=εL and summed
over the electron indices is the effect of each electron on the

rest of the electron population; the third term with H�=εL
and summed over the positron indices is the effect of each
positron on the electron population. The second and third
terms are called the collective term, which is the effect of
the particles that make up the plasma being distributed and
correlated.
Depending on whether the time variable of the density

fluctuation is Fourier-transformed or Laplace-transformed,
the expression of the spectral density function differs as

Sðk;ωÞ≡ lim
ε→0
V→∞

2ε

V
hjfδnðk;ωÞj2iLaplaceensemble

ne

¼ lim
T→∞
V→∞

1

TV
hjfδnðk;ωÞj2iFourierensemble

ne
: ð39Þ

Equations (39) are equivalent to each other according to the
ergodic hypothesis that taking a long-time average is
equivalent to taking a multi-particle statistical average.
Using the expression for density fluctuations, four

spectral density functions can be evaluated. The equation
below is one example of substituting density fluctuations
(36) into the definition of S−−ðk;ωÞ expressed as

S−−ðk;ωÞ ¼ lim
ε→0
V→∞

2ε

Vne

���
1 −

H−

εL

�XN−

j¼1

eik·r−jð0Þ
X
l;m

Jlð−k⊥rLÞJmð−k⊥rLÞ
ω − kxvk þ lωc − iε

eiðl−mÞϕ0j

þH−

εL

XNþ

h¼1

eik·rþhð0Þ
X
l;m

Jlðk⊥rLÞJmðk⊥rLÞ
ω − kxvk − lωc − iε

eiðl−mÞϕ0h

�

×

��
1 −

H�
−

ε�L

�XN−

s¼1

e−ik·r−sð0Þ
X
l0;m0

Jl0 ð−k⊥rLÞJm0 ð−k⊥rLÞ
ω − kxvk þ l0ωc þ iε

e−iðl0−m0Þϕ0s þH�
−

ε�L

XNþ

g¼1

e−ik·rþgð0Þ

×
X
l0;m0

Jl0 ðk⊥rLÞJm0 ðk⊥rLÞ
ω − kxvk − l0ωc þ iε

e−iðl0−m0Þϕ0g

��
: ð40Þ
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The spectral density function is a multiplication of terms
describing the motion of each of the N− electrons and Nþ
positrons in the scattering region. If we take a statistical
average over a population of particles, only the product of
the identical particles remains. That is, only terms with
indices j ¼ s and h ¼ g remain. The physical interpretation
is that the phase factor of Eq. (40), eik·r−jð0Þ, completely
cancels out only the terms of the identical particles, while
the terms of different particles do not cancel out entirely
and converge to zero when the statistical average is taken

(see, e.g., [56,59]). This is because the position of each
particle before scattering is randomly distributed according
to the canonical distribution. Furthermore, regarding the
infinite sums of Bessel functions for l, l0, m, and m0, only
the terms with l ¼ l0 and m ¼ m0 remain, and all other
terms become zero when taking the statistical average.
The four spectral density functions are expressed in the

following using the infinite sum formula for Bessel
functions

Pþ∞
m¼−∞ J2mðzÞ ¼ 1,

S��ðk;ωÞ ¼ lim
ε→0
V→∞

2ε

�����1 −H�
εL

����2 X∞
l¼−∞

Z
d3v

J2l ð�k⊥rLÞf�ðvÞ
ðω − kxvk ∓ lωcÞ2 þ ε2

þ
����H�
εL

����2 Xþ∞

l¼−∞

Z
d3v

J2l ð∓k⊥rLÞf∓ðvÞ
ðω − kxvk � lωcÞ2 þ ε2

	
; ð41Þ

S�∓ðk;ωÞ ¼ lim
ε→0
V→∞

2ε

��
1 −

H�
εL

�
H�∓
ε�L

X∞
l¼−∞

Z
d3v

J2l ð�k⊥rLÞf�ðvÞ
ðω − kxvk ∓ lωcÞ2 þ ε2

þ
�
1 −

H�∓
ε�L

�
H�
εL

Xþ∞

l¼−∞

Z
d3v

J2l ð∓k⊥rLÞf∓ðvÞ
ðω − kxvk ∓ lωcÞ2 þ ε2

	
: ð42Þ

The spectral density function and Thomson cross section
for e� plasma in a background magnetic field can be
obtained from these expressions. In the next section,
we assume the Maxwellian distribution for the plasma
distribution function and discuss the behavior of plasma
scattering.

D. Maxwellian distributions

In this section, we investigate the behavior of Thomson
scattering in the case of a Maxwellian distribution of e�
plasma. First, we evaluate the electric susceptibility and
longitudinal dielectric function in magnetized e� plasma
that appear in the spectral density functions. According to
the plasma kinetic theory (e.g., [56]), the expression for the
electric susceptibility H�, (38), is given by

H�ðk;ωÞ ¼
Z

d3v
4πe2ne
mek2

Xþ∞

l¼−∞

�
kx

∂f0�
∂vx

� lωc

v⊥
∂f0�
∂v⊥

�

×
J2l ð� k⊥v⊥

ωc
Þ

ω − iε − kxvx ∓ lωc
: ð43Þ

Assume the following Maxwellian distribution as the e�
plasma distribution function:

f�ðvÞ ¼
�

me

2πkBTe

�3
2

exp

�
−

mev2

2kBTe

�
¼ 1

ðπv2thÞ
3
2

exp

�
−
v2x þ v2⊥

v2th

�
; ð44Þ

where the thermal velocity is denoted by

vth ≡
�
2kBTe

me

�1
2 ð45Þ

and the thermal velocity in the direction parallel and
perpendicular to the magnetic field is assumed to be equal.
Substituting the Maxwellian distribution into Eq. (43) and
performing velocity integration, the electric susceptibility
can be represented by the modified Bessel function IlðxÞ
and plasma dispersion function ZðxÞ. Using the following
special function formulas,Z

∞

0

J2l ðatÞ exp ð−b2t2Þtdt

¼ 1

2b2
exp

�
−
�
a2

2b2

�	
Il

�
a2

2b2

�
; ð46Þ

ZðξÞ≡ 1ffiffiffi
π

p
Z

∞

−∞

1

z − ξ
e−z

2

dz; ð47Þ
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in performing the velocity integral of the electric suscep-
tibility, it can be written as

H�ðk;ωÞ¼
ω2
p

k2v2th

�
1þ ω

kxvth

X
l

Il

�
1

2

�
k⊥vth
ωc

�
2
	

×exp

�
−
1

2

�
k⊥vth
ωc

�
2
	
Z

�
ω∓lωc

kxvth
− iε

��
; ð48Þ

where

ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π · 2nee2

me

s
ð49Þ

is defined as the e� plasma frequency. From the symmetry
IlðxÞ ¼ I−lðxÞ of the modified Bessel function, we see that
the electric susceptibility of electrons and positrons in the
Maxwellian distribution is equal

Hþðk;ωÞ ¼ H−ðk;ωÞ≡Hðk;ωÞ: ð50Þ

Next, we evaluate four types of spectral density functions
(41) and (42) under the assumption of the Maxwellian
distribution. Using the formula (46), the integral appearing
in the spectral density functions is calculated as

lim
ε→0

2ε
Xþ∞

l¼−∞

Z
d3v

J2l ð�k⊥rLÞf�ðvÞ
ðω−kxvx ∓ lωcÞ2þ ε2

¼ lim
ε→0

2ε
X
l

Z
2π

0

dφ

ðπv2thÞ
3
2

Z
∞

0

v⊥dv⊥J2l ðk⊥rLÞexp
�
−
v2⊥
v2th

�
×
Z þ∞

−∞
dvx

expð−v2x=v2thÞ
ðω−kxvx ∓ lωcÞ2þ ε2

¼ 2
ffiffiffi
π

p Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω∓lωc

kxvth
Þ2�

kxvth
: ð51Þ

From the symmetry of the modified Bessel function
IlðxÞ ¼ I−lðxÞ and the Eq. (50), we obtain the spectral
density function as

Sþþ ¼ S−−

¼ 2
ffiffiffi
π

p �����1 − H
εL

����2 þ ����HεL
����2�

×
Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω−lωc

kxvth
Þ2�

kxvth
; ð52Þ

Sþ− ¼ S−þ

¼ 2
ffiffiffi
π

p ��
1 −

H
εL

�
H�

ε�L
þ
�
1 −

H�

ε�L

�
H
εL

�
×

Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω−lωc

kxvth
Þ2�

kxvth
: ð53Þ

Hence, the linear combinations of the spectral density
functions appearing in the differential scattering cross
section (30) can be obtained as follows:

Sþþ þ S−− þ S−þ þ Sþ−

¼ 4
ffiffiffi
π

p Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω−lωc

kxvth
Þ2�

kxvth
; ð54Þ

Sþþ þ S−− − S−þ − Sþ−

¼ 4
ffiffiffi
π

p �
1 − 4Re

�
H
εL

�
þ 4

����HεL
����2�

×
Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω−lωc

kxvth
Þ2�

kxvth
: ð55Þ

ConcerningEq. (54), the linear combinationof the spectral
density functions due to themotion of the oscillatingparticles
in the incident electromagneticwave direction is independent
of the electric susceptibility H and the scattering is strictly
noncollective. On the other hand, in Eq. (55), the term due to
drift motion is dependent on the electric susceptibilityH, and
scattering has a collective effect.
In Fig. 1, we plot the spectra of the differential scattering

cross section (30) at two different temperature Te ¼
153 keV and Te ¼ 5 keV. The other parameters we use
are shown in Table I. The differential cross section is non-
dimensionalized by the Thomson cross section σT and the
angular frequency of the incident electromagneticwaveω0 as

4πω0

σT

dσð1Þ

dΩdω1

¼ 3ω0

8π

�
ω2
0

ω2
0 − ω2

c

�
2

×

�
ðSþþ þ Sþ− þ S−þ þ S−−Þð1 − sin2θsin2φÞ

þ
�
ωc

ω0

�
2

ðSþþ þ S−− − Sþ− − S−þÞsin2θ
	

≡ σ̂Electric þ σ̂Drift; ð56Þ
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where the contribution due to oscillation of particles in the
direction of electric field of the incident electromagneticwave
is defined as σ̂Electric and the contribution due to drift motion
is defined as σ̂Drift. We specifically selected the incident
direction of the electromagnetic wave to be perpendicular
to the background magnetic field. Additionally, we define
the angle between the magnetic field and the propagation

direction of the scattered wave as θB ≡ π=2 − θ.
Furthermore, we consider the case where the wave number
vector of the scattered wave lies within the plane formed by
the incident electromagnetic wave and the magnetic field
(φ ¼ 0). We consider the case where the scattering wave
vector lies in the plane of the incident electromagnetic wave
and themagnetic field (φ ¼ 0). That is, the angle between the
background magnetic field and the direction of the scattered
wave is defined as θB ≡ π=2 − θ. Figure 1 shows the differ-
ential cross sections at two plasma temperatures for the cases
where the scattering wave is nearly perpendicular to the
background magnetic field (θB ¼ 84°) and nearly parallel to
it (θB ¼ 1°).3

FIG. 1. Thomson scattering spectra from electron and positron plasma in a magnetic field. The solid red line represents the
contribution from particles oscillating in the direction of the electric field of the incident electromagnetic wave, and the blue dashed line
represents the contribution from the drift motion of the particles. The green dot-dashed line represents the spectrum when the cold
plasma limit is taken (see Sec. III E for details). The analysis is conducted using the parameters listed in Table I. (a) kBTe ¼ 153 keV and
the direction of the scattered wave is almost perpendicular to the magnetic field. (b) kBTe ¼ 153 keV and the direction of the scattered
wave is almost parallel to the magnetic field. (c) kBTe ¼ 5 keV and the direction of the scattered wave is almost perpendicular to the
magnetic field. (d) kBTe ¼ 5 keV and the direction of the scattered wave is almost parallel to the magnetic field. The magnetic field
value (cyclotron frequency) was chosen to show the spectrum clearly. Note that actual magnetic field strength strongly depends on the
radius from the magnetar center. On a magnetar surface, the cyclotron frequency is several orders higher than radio frequencies. This
leads to a scattering spectrum where only the peak at ω0 is pronounced, and higher frequency peaks beyond the second become less
noticeable.

TABLE I. Parameters used for the differential cross sections
plotted at two different temperatures.

Parameter Value1 Value2

ω0½GHz=2π� 1
ωc½GHz=2π� 2
ne½cm−3� 6 × 105

Te½keV� 153 5

3The reason for not choosing the scattered wave to be
completely perpendicular or parallel is that it would result in
the differential cross sections having delta-functionlike peaks.
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First, in σ̂Electric, when the direction of the scattered wave
is perpendicular to the background magnetic field (see the
left side of Fig. 1), the first significant peak appears at the
angular frequency ω0 of the incident electromagnetic wave
and the following peaks at frequencies ω0 þ nωc (n is a
natural number) decrease the height as n becomes large.
Moreover, as the temperature decreases, the peak width and
height on the high-frequency side become smaller. As will
be shown later, Thomson scattering spectrum in the cold
plasma limit has a delta-function peak localized at the
frequency ω0 of the incident electromagnetic wave. This
corresponds to the case where single-particle scattering is
considered. The peaks separated by the cyclotron frequency
arise for finite temperature plasma because particles in the
plasma, initially moving at integer multiples of the cyclo-
tron frequency, are excited by the incident electromagnetic
wave as density fluctuations. As the thermal motion of the
particles becomes smaller, the peaks on the high-frequency
side are suppressed, and the ω0 peaks become dominant.
Next, in σ̂Electric, when the scattered wave propagates

parallel to the background magnetic field (see left side of
Fig. 1), the peaks separated by the cyclotron frequency
become less distinguishable. As the temperature decreases,
the intensity on the high-frequency side diminishes.
Finally, for σ̂Drift, the rough configuration is the same as

for σ̂Electric, but it has a more complicated shape due to its
dependence on the electric susceptibility. The spectrum
shows a spiky shape near the zero point of the longitudinal
dielectric function (εL ¼ 0), i.e., near the eigenmodes of
electron and positron plasma in a magnetic field. The
dependence of the scattering spectrum on the electric
susceptibility, i.e., the collective effect, is suppressed at
higher frequencies. This is because the electric susceptibil-
ity has a wavelength dependence

Hðk;ωÞ ∝ ω2
p

k2v2th
∼
�

λ

λDe

�
2

; ð57Þ

from Eq. (48), and becomes smaller at shorter wavelengths,
i.e., higher frequencies. Here

λDe ≡
�

kBTe

8πe2ne

�1
2 ¼ vthffiffiffi

2
p

ωp

ð58Þ

is the Debye length.

E. Cold plasma limit

In this section, we estimate the spectral density function
and calculate the scattering cross section per particle in the
limit where the thermal motion of plasma particles is
negligible, and the background magnetic field is large.
First, we evaluate the part of the spectral density function
that depends on the electric susceptibility H. The electric
susceptibility (48) is expanded using the Taylor series
around k⊥vth=ωc and kxvth=ðω ∓ lωcÞ, assuming that the

thermal velocity is sufficiently small. The infinite sum of
the modified Bessel functions converges quickly enough in
k⊥vth=ωc ≪ 1. Then the main orders of the electric
susceptibility H and the longitudinal dielectric function,
εL ¼ 1þ 2H, appear only for l ¼ −1, 0, 1 and are
expressed as

Hðk;ωÞ ¼ −
1

2

k2x
k2

�
ωp

ω

�
2

þ 1

2

k2⊥
k2

ω2
p

ω2
c

�
1 −

ω2

ω2 − ω2
c

�
þO

��
kvth
ω

��
: ð59Þ

Then, the following Taylor expansion can be made on the
order of cyclotron frequency

H�
εL

����
ω1−ω0

¼ 1þO
��

ω1 − ω0

ωc

�
2
�
: ð60Þ

Next, we evaluate the linear couplings (54) and (55) of the
spectral density functions appearing in the differential cross
section (30). If the angular frequency of the scattered wave
is sufficiently smaller than the cyclotron frequency, i.e., if
the magnetic field is sufficiently strong, only the term l ¼ 0
needs to be considered. Furthermore, in the cold plasma
limit, the approximation vthk⊥

ωc
≪ 1 holds. Given the above

approximations, the infinite sum part of the spectral density
function is evaluated as

Xþ∞

l¼−∞
exp

�
−
1

2

�
vthk⊥
ωc

�
2
�
Il

�
1

2

�
vthk⊥
ωc

�
2
	

×
exp ½−ðω−lωc

kxvth
Þ2�

kxvth
∼ 2

ffiffiffi
π

p exp ½−ð ω
kxvth

Þ2�
kxvth

: ð61Þ

Finally, the sums of the spectral density functions are
represented by the following delta function in the cold
plasma limit

ðSþþ þ S−− þ Sþ− þ S−þÞjkx;ky;kz−k0;ω−ω0

∼ 4
ffiffiffi
π

p exp ½−ðω−ω0

kxvth
Þ2�

kxvth
!vth→0

4πδðω − ω0Þ; ð62Þ

ðSþþ þ S−− − Sþ− − S−þÞjkx;ky;kz−k0;ω−ω0

!vth→0
4πδðω − ω0Þ: ð63Þ

The physical meaning of the spectral density function in the
cold plasma limit is that the thermal motion of the plasma is
sufficiently small that the spectrum of the scattered wave is
localized to the frequency of the incident electromag-
netic wave.
By substituting Eqs. (54) and (55) into Eq. (30), we

obtain the cold plasma limit of the differential cross section
per particle,
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dσð1Þcold

dΩdω1

¼ r2e

��
ω2
0

ω2
0 − ω2

c

�
2

ð1 − sin2θsin2φÞ

þ
�

ω0ωc

ω2
0 − ω2

c

�
2

sin2θ
	
δðω1 − ω0Þ: ð64Þ

Then, the total cross section per particle can be obtained by
integrating over the frequency and solid angle of the
scattered wave

σð1Þcold ¼
1

2
σT

��
ω0

ω0 þ ωc

�
2

þ
�

ω0

ω0 − ωc

�
2
	
: ð65Þ

This is the same as when considering single particle
scattering (11).

IV. DISCUSSION

A. Difference from the case without
background magnetic fields

The Thomson scattering in unmagnetized e� plasma was
studied by Sincell and Krolik [65]. Their research con-
cluded that the collective effects completely cancel out.
Consider the radiation emitted by an electron oscillated by
an external electric field. Around this electron are clouds of
electrons and positrons, which attempt to neutralize the
radiation of this electron due to the effect of Debye
shielding. The electron cloud emits radiation in the oppo-
site phase to the electron, and the positron cloud attempts to
do the same.4 The crucial point is that the accelerations of
the electron and positron, when oscillated by the external
electric field, are in opposite phases. Due to the Lienard-
Wiechert potential, where the electric field from radiation is
proportional to the acceleration of the radiating particles β̇,
these opposing accelerations cause the radiation of the
positron cloud to be in the same phase as the electron. As a
result, the radiations from the electron and positron clouds
cancel each other out. Thus, the effect of Debye shielding
does not appear in the radiation from the electron under-
going acceleration motion in e� plasma. The same argu-
ment applies to the radiation from positrons.5

On the other hand, when a magnetic field is present, the
collective effects in the scattering within e� plasma do not
entirely cancel out. From Eq. (54), it can be seen that the
density fluctuations due to the motion of scattering particles
in the direction of the incident electric field are entirely
canceled by the collective effects, similar to the case without
a background magnetic field. However, according to
Eq. (55), the density fluctuations due to driftmotion direction
retain some collective effects. This is because the acceler-
ation of the radiating particle β̇ has both a component
dependent on the charge sign in the direction of the incident
electric field and a component independent of the charge sign
in the driftmotion direction [seeEqs. (3)]. Thus, the radiation
originating from the drift does not cancel out.
In any case, as shown in the previous section, in strongly

magnetized cold plasma limit, the scattering cross section per
particle is equal to that of the case of single particle scattering
[see Eqs. (11) and (65)], i.e., the collective effect can be
neglected. The reason why the collective effect is negligible
can be interpreted by focusing on the behavior of density
fluctuations. In the case of a largemagnetic field, ifwe look at
Eq. (57) that shows the dependence of the electric suscep-
tibility on the Debye length and the plasma fluctuation
wavelength, we find that in the limit of small Debye length
(zero temperature limit), or in the limit where thewavelength
of the plasma fluctuation is large, it approachesH�=εL → 1.
For example, focusing on the electron density fluctuation
Eq. (36), in these limits, when considering the motion of a
single electron, the other electron clouds make a response by
shielding that motion, i.e., the noncollective term cancels out
some of the collective terms. Eventually, the electron density
fluctuations are dominated by the collective term that the
positron cloud responds to when focusing on a single
electron motion, and the net scattering effect turns out to
be exactly the same as for a single particle.

B. Why is the scattering not canceled
out by the drift motion?

When considering the scattering of electrons and positrons
in a background magnetic field, one could think that the
particles will drift in the same direction as the incident
electromagnetic wave vector, leading to a cancellation of
currents, and thus, scattering is almost negligible (see
Appendix B). However, when taking into account the scatter-
ing from density fluctuations in e� plasma (see Sec. III), it
becomes evident that the cross section per particle remains
unchanged compared to the case of considering single-particle
scattering. Physically, the latter description is more accurate.
The difference in scattering intensities between the two

pictures (Appendix B vs Sec. III) arises from the distinct
initial conditions of particles just before scattering at t ¼ 0.
For instance, we focus on the differential cross section
attributed to the drift motion of particles in cold plasma.
In the first scenario (Appendix B), it is assumed that an
electron and a positron are at rest and separated by a

4When considering acoustic waves, charged particle clouds
oscillate irrespective of the charge sign. However, acoustic waves
are hardly excited within the linear density fluctuations in e�
plasma. Therefore, this study will not address the inherent
oscillations of acoustic waves.

5Even when incorporating the electric field produced by the
longitudinal eigenmode into the motion equation of the scattered
particles (13), the cancellation of the collective effect is guaran-
teed. This holds especially when considering the nonlinear
ponderomotive force arising from coupling the incident electric
field and the eigenmode. The ponderomotive force acts similarly
on both electrons and positrons, leading to a cancellation within
the pair plasma. As a result, it does not generate an electric field in
the plasma and is believed not to contribute to the radiation.
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distance d prior to scattering. The differential cross section
is estimated from Eq. (B1) as

dσð2Þdrift

dΩ
∝ jgEradj2

∝ ðeik·rþ − eik·r−Þðe−ik·rþ − e−ik·r−Þ

∝ 2½1 − cosðkxdÞ�
dσð1Þdrift

dΩ
: ð66Þ

The term involving different particles, i.e., the cross-term
eik·ðrþ−r−Þ þ c:c., takes a finite value and significantly alters
the scattering intensity. On the other hand, when consid-
ering scattering from density fluctuations (Sec. III), the
squared absolute value of the radiative electric field is
represented as in Eq. (24), and the differential cross section
is estimated as

dσðNþþN−Þ
drift

dΩ
∝ hjgδnþ − gδn−j2iensemble

∝
��XN−

j¼1

eik·rjðt¼0Þð� � �Þ −
XNþ

h¼1

eik·rhðt¼0Þð� � �Þ
��XN−

s¼1

e−ik·rsðt¼0Þð� � �Þ −
XNþ

g¼1

e−ik·rgðt¼0Þð� � �Þ
��

ensemble

∝
�XNþ

j¼s

ð� � �Þ þ
XN−

h¼g

ð� � �Þ
�

ensemble

−
�X

j≠sð� � �Þ þ
X

j;g
ð� � �Þ þ

X
h;s
ð� � �Þ þ

X
h≠gð� � �Þ

�
ensemble

∝ ðNþ þ N−Þ
dσð1Þdrift

dΩ
þ 0: ð67Þ

Here, the cross-terms in the differential cross section (the
second row from the bottom) become zero when averaging
over position and velocity, providing a correct depiction.
The mistake in the first scenario is the failure to consider
the statistical nature of plasma particles, which are distrib-
uted randomly following a particular distribution prior to
scattering.

C. Observational implications of scattering spectra

Hankins and Eilek [74] showed that the interpulse has
several spectral bands in their observations of theCrabpulsar.
They also showed that the spacing between adjacent peak
frequency bands of interpulse increases in proportion to
frequency, i.e., ν ∝ Δν. The emission mechanism respon-
sible for explaining such a spectrum is not fully understood.
CTS from plasma may explain the spectrum bands of the

pulsar. As seen from Fig. 1, when electromagnetic waves
are scattered in magnetized thermal plasma, the scattered
spectrum has peaks separated by the cyclotron frequency.
Also, from Eq. (65), if the magnetic field is large enough,
the total scattering cross section depends on σ ∝ ðν=νcÞ2.
Hence, the higher-frequency electromagnetic waves are
scattered more in the larger-magnetic field region, resulting
in larger peak separations at higher frequencies, which
qualitatively agrees with their observation.

D. Optical depth for fast radio bursts to induced
Compton scattering

Based on the discussion of Thomson scattering in
magnetized plasma and the collective effect, we will
evaluate the effective optical depth for induced Compton

scattering of X-mode electromagnetic waves in e� plasma
in a strong magnetic field.
It should be noted that the scattering cross section derived

fromCTS is valid onlywithin the rangewhere plasmadensity
fluctuations can be treated perturbatively. In situations with
strong nonlinear effects, such as inducedCompton scattering
of large amplitude electromagnetic waves, there is no
guarantee that the differential scattering cross section for
CTS, given by Eq. (30), can be applied. However, we will
proceed with the discussion, assuming its applicability.
We simplify our analysis by providing an order-of-

magnitude estimate for the effective optical depth of
induced Compton scattering. Taking both the electron
recoil and quantum corrections to the Thomson scattering
cross section into account, as indicated in previous studies
[39,75], we incorporate our calculations to the lowest order
of Planck constant ℏ. In order to avoid the substantial
increase in complexity, our final expression omits to
incorporate angular dependence.
In discussing induced Compton scattering, we first review

the case without a magnetic field, then examine the mag-
netized case by applying the same framework. The effective
cross section for induced Compton scattering without a
magnetic field is briefly derived. TheBoltzmann equation for
photons consideringCompton scattering in the collision term
is expressed as

∂

∂t
Nðω;ΩÞþcðΩ ·∇ÞNðω;ΩÞ

¼ne

Z
d3k0d3k00½Pðk0→k00Þ−Pðk00→k0Þ�δðk−k00Þ: ð68Þ
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Let Nðω;ΩÞ be the photon occupation number at angular
frequency ω in the directionΩ ¼ ðθ;φÞ, and Pðk0 → k00Þ be
the probability that an electromagnetic wave with wave-
number k0 transitions to k00. The transition probability can be
formulated in terms of Compton scattering as

Pðk → k0Þd3kd3k0
¼ cdσNðω;ΩÞ½1þ Nðω0;Ω0Þ�δðω0 − ωþ ΔωÞdω0d3k;

ð69Þ

where cdσNðω;ΩÞ represents a scattered photon number
flux, that is dσ represents a differential cross section,
and Δω ¼ ω − ω0 is frequency change due to Compton
scattering.
First, we consider the low-energy limit of unpolarized

Compton scattering without a background magnetic field

Δω ¼ ℏωω0

mec2
ð1 − cos θÞ; ð70Þ

dσ
dΩ

¼ 1

2
r2e

�
ω0

ω
þ ω

ω0−1þ cos2θ

�
þO

��
ℏω
mec2

�
2
�
; ð71Þ

where the first-order low-energy expansion of the Klein-
Nishina’s formula is employed as the differential cross
section. Then the evolution equation for photons due to
induced Compton scattering is derived as [35,37]

dN
dt

≃
3σT
8π

neN
Z

dΩ0ð1þ cos2θÞ ℏ
mec

ð1−cosθÞ ∂

∂ω
ðω2N0Þ:

ð72Þ

If the radiation is collimated, as in the case far from the
source, the small factor ð1 − cos θÞ reduces the scattering
within the beam. On the other hand, when the scattering
from the beam into the background radiation outside the
beam dominates, the scattering enhances the initially weak
background exponentially [39].
We define the effective optical depth as the amplification

factor of the scattered light and substitute N ¼ N0eτind as
the formal solution to the basic Eq. (72). Then, the order
evaluation reveals the following:

τind
Δt

∼
3σT
8π

neΔΩ
ℏ

mec
1

ω
ω2N0; ð73Þ

where Δt and ΔΩ are the pulse width and opening angle of
the incident electromagnetic wave, respectively. The spec-
tral flux at the scattering point and the isotropic luminosity
are expressed by

Fν ∼ 2 ×
2πℏ
c2

ΔΩν3N0;

Lγ ∼ 4πr2νFν: ð74Þ

Here r is the distance from the center to the scattering point,
and ω ¼ 2πν. From the above, the effective optical depth of
induced Compton scattering is evaluated in the following:

τind ∼ neσTcΔt
3πLγ

4r2meω
3
: ð75Þ

Next, we consider induced Compton scattering of
X-mode waves in a strong magnetic field. We refer to
the discussion by Gonthier et al. [52] for the differential
cross section and frequency shift of Compton scattering in a
strong magnetic field. We impose the following assump-
tions in deriving the details:

(i) A uniform magnetic field B0 ¼ ðB0; 0; 0Þ exists in
the x-axis direction.

(ii) Consider an electron or positron in its rest frame and
assume that the wave number vector of the incident
electromagnetic wave is oriented in the direction of
the magnetic field, i.e., the x direction. The direction
of this wave number vector is realized by the Lorentz
aberration when the particle is in ultra-relativistic
motion in a laboratory system, as viewed in the rest
frame of particles.

(iii) Assume that the electron or positron is in the lowest
Landau level.

In the strong magnetic field, the frequency shift of photons
due to Compton scattering and the differential cross section
for photons polarized perpendicular to the background
magnetic field can be expressed by [52]

Δω ¼ ω −
2ω

1þ ℏω
mec

ð1 − cos θBÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1þ ℏω

mec
ð1 − cos θBÞg2 − 2 ℏω

mec
sin2θB

q ; ð76Þ

dσ⊥
dΩ

≈
3σT
32π

ωω02

ð2ω − ω0Þ ð1þ cos2θBÞ
�

1

ðω − ωcÞ2
þ 1

ðωþ ωcÞ2
	
; ð77Þ

where, ω, ω0, and θB represent the angular frequencies of the incident photon, scattered photon, and the angle between the
background magnetic field and the direction of the scattered photon, respectively. The frequency shift due to Compton
scattering can be expanded up to the first order in the quantum correction parameter ℏω

mec
as
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Δω ¼ ℏω2

mec

�
1

2
ð1þ cos2θBÞ − cos θB

�
þO

��
ℏω
mec2

�
2
�
:

ð78Þ

Depending on whether a magnetic field is present, there is a
significant difference in the treatment of the differential cross
section dσ in Eqs. (68) and (69).Without amagnetic field, the
quantum correction from the Klein-Nishina’s formula ap-
pears in the second order, as seen inEq. (71).However,with a
magnetic field, the quantum correction to the differential
cross section given in Eq. (77) emerges in the first order, the
same as the frequency shift. Therefore, we will consider
quantum corrections to the differential cross section up to the
first order in the following discussion.
Substituting the differential cross section (77) and the

frequency shift (78) into Eq. (69), the evolution equation for
photons due to induced Compton scattering is derived as

dN
dt

≃
3ne
16π

σT

��
ω

ω−ωc

�
2

þ
�

ω

ωþωc

�
2
	
N

×
Z

dΩ0ð1þ cos2θBÞ
ℏ

mec

�
1

2
ð1þ cos2θBÞ− cosθB

�
×
1

ω

∂

∂ω
ðω3N0Þ: ð79Þ

Focusing on the θB dependence in Eq. (79), we find that
scattering from beam to beam is suppressed. On the other
hand, scattering from the beam to the background radiation is
exponentially amplified, becoming the dominant scattering,
akin to the case without a magnetic field. Therefore, by
estimating the order of magnitude, the effective optical depth
for photons due to induced Compton scattering can be
expressed by

τ⊥ind ∼
�
ω

ωc

�
2

neσTcΔt
3πLγ

4r2meω
3
: ð80Þ

The effective cross section of the induced Compton scatter-
ing of X-mode waves is roughly suppressed by ðω=ωcÞ2 in a
strong magnetic field. We note that this result was obtained
agnostically, assuming the availability of collectiveThomson
scattering results, and not the final conclusion.

V. SUMMARY

In this study, we estimated the Thomson scattering cross
section for X-mode waves in e� plasma, considering the
collective effect in the presence of a background magnetic
field. The results showed that the order of magnitude of the
cross section per particle remains unchanged compared to
the case of single-particle scattering. In a strong magnetic
field, the motion of electrons and positrons is dominated
by drift motion, and one could think that the currents of
electrons and positrons cancel with each other, and the

scattering is suppressed significantly. However, since the
plasma particles and density fluctuations follow a thermal
distribution before the scattering, the correlation between
different particles during scattering becomes negligible,
and the scattering cancellation effect is absent.
Furthermore, it was revealed that the collective effect in

e� plasma is not entirely canceled out when a background
magnetic field is present, contrary to what was previously
demonstrated in studies without a background magnetic
field [65]. The effects of density fluctuations can be
separated into contributions arising from the motion of
particles in the direction of the incident electric field and
the drift motion. The contribution from the motion in the
direction of the incident electric field exhibits complete
cancellation of the collective effect, similar to the case
without a background magnetic field. On the other hand, in
the contribution arising from the drift motion, the behavior
of density fluctuations is independent of the charge sign.
Thus, the collective effect is not canceled.
In a background magnetic field, the radiation energy

response of e� plasma differs significantly between curva-
ture radiation and Thomson scattering of X-mode electro-
magnetic waves. This distinction is rooted in the directional
relationship between the background magnetic field and
the plasma’s response. While plasma particles can move
unrestrictedly parallel to the background magnetic field,
their movement is confined within the Larmor radius in the
perpendicular direction. The plasma’s response aligns with
the background magnetic field’s direction for curvature
radiation due to the trajectory of radiating particles along
the curved field, leading to radiation suppression. In
contrast, during Thomson scattering of X-mode waves,
the plasma’s response direction is perpendicular to the
background field, limiting its ability to counteract the
scattered wave and resulting in less radiation suppression.
Plotting the differential cross section for X-modewaves in

e� plasma following the Maxwellian distribution revealed
that the scatteringwave spectrumexhibits peaks separated by
the cyclotron frequency if the scattering wave propagates
nearly perpendicular to the background magnetic field.
If observed in pulsars and FRBs, such distinctive spectral
features could provide valuable information about the
scattering region’s plasma and magnetic field strength.
Moreover, considering the effects of background mag-

netic fields and the collective effect, we speculated on the
induced Compton scattering of X-mode waves in a strong
magnetic field and cold plasma. For the first time, we treat
the induced Compton scattering of electromagnetic waves
polarized perpendicular to a strong magnetic field using the
most plausible method. As a result, the effective optical
depth was found to be suppressed by the square of the
cyclotron frequency, specifically ðν=νcÞ2, compared to
without the magnetic field.
When considering FRBs propagating through the mag-

netosphere of a magnetar, it is found that FRBs propagating
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as X-mode waves in pair plasma have an expanded region
from which they can escape the magnetosphere due to the
effects of the background magnetic field. Additionally, by
taking into account the relativistic effects of the scattering
medium, it is indicated that the required Lorentz factor is
smaller than in cases without a magnetic field.
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APPENDIX A: THOMSON SCATTERING
IN ELECTRON-POSITRON PLASMA

WHEN ω ≪ ωc;ωp

Gil et al. [54] estimated the curvature radiation from
charged particles moving along an infinitely strong curved
magnetic field, taking into account the response of the
plasma. The results showed that the radiation is suppressed
by a factor of roughly ðω=ωpÞ2 compared to curvature
radiation in vacuum. In this chapter, we estimate how the
response of the plasma corrects the radiation intensity in
Thomson scattering of X-mode electromagnetic waves in a
strong magnetic field.
We impose the following assumptions in deriving the

details:
(i) The e� plasma is uniformly distributed with a

number density ne.
(ii) A uniform magnetic field B0 ¼ ðB0; 0; 0Þ exists in

the x-axis direction.
(iii) Assume an electron as a scattering particle.
(iv) The X-mode wave is incident on the magnetic

field at a wave number vector k0 and angular
frequency ω0.

(v) The motion of a particle in the wave field is
approximated as nonrelativistic.

In plasma, the wave equation for the electromagnetic
potential is modified from the case in vacuum when the
response of the plasma is taken into account. The Liénard-
Wiechert potential, which describes radiation from charged
particles in a vacuum, is not applicable. Therefore, to
estimate the radiation intensity from a charged particle, the

work done by the radiative electric field on the emitting
particle must be calculated directly.
The wave equation for the electromagnetic potential is

derived by considering the response of the plasma. First,
the wave equation of the Fourier-transformed electromag-
netic field potential can be written as�

k2 −
ω2

c2

�
ϕ̃ðk;ωÞ ¼ 4πρ̃ðk;ωÞ;�

k2 −
ω2

c2

�
Ãðk;ωÞ ¼ 4π

c
j̃ðk;ωÞ: ðA1Þ

We can substitute the current density and charge density
produced by the plasma in the source term. The plasma
current can be written as

j̃plasma ¼ σ · Ẽ ¼ i
ω

c
σ · Ã − iσ · kϕ̃: ðA2Þ

Here, σ is the conductivity tensor of the cold e� plasma

σ ≡ i
ω2
p

4πω

0BB@
1 0 0

0 1
1−u 0

0 0 1
1−u

1CCA; ðA3Þ

where we define the following

u≡
�
ωc

ω

�
2

; s≡
�
ωp

ω

�
2

: ðA4Þ

The charge density produced by the plasma is obtained
from the continuity equation,

∂ρ

∂t
þ∇ · j ¼ 0 ⇒ ρ̃plasma ¼

k
ω
· j̃plasma: ðA5Þ

By moving the plasma response term to the left-hand side
and the source term to the right-hand side, the wave
equations can be written as follows:�
k2 −

ω2

c2

�
ϕ̃− 4πi

�
k · ðσ · ÃÞ

c
−
k · ðσ · kÞ

ω
ϕ̃

�
¼ 4πρ̃particle;�

k2 −
ω2

c2

�
Ã−

4πi
c

�
ω

c
σ · Ã− σ · kϕ̃

�
¼ 4π

c
j̃particle:

ðA6Þ

The above equation is a four-simultaneous equation
for four-potential fAα ≡ ðϕ̃; Ãx; Ãy; ÃzÞ with four-current
j̃αparticle ≡ ðcρ̃; j̃x; j̃y; j̃zÞ as the source term, and can be
solved algebraically. As a radiating particle, we assume
an electron oscillating in the X-mode wave field and
the background magnetic field. Then, from Eq. (3), the
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four-current produced by the radiating particle is described
up to the order of ðω0=ωcÞ1 as follows:

j̃zðk;ωÞ ≃
2πe2E0

meωc
δðω − ω0Þ;

j̃αparticle ¼
�
ckz
ω

; 0; 0; 1

�
j̃z: ðA7Þ

From the above, by solving for the four-potential, we can
obtain the electromagnetic field produced by the oscillating
particle, taking the response of the plasma into account. We
are interested in the limit where the angular frequency of
the incident electromagnetic wave is sufficiently smaller
than the cyclotron and plasma frequencies. That is, the
following simultaneous limits can be considered

1

s
¼

�
ω

ωp

�
2

≪ 1;
1

u
¼

�
ω

ωc

�
2

≪ 1:

Define α as follows:

α≡
�
ωc

ωp

�
2

¼ u
s
; ðA8Þ

and Taylor expansion in 1=s while keeping α constant. In
the lowest-order expansion, the radiative electric field is
estimated as follows:

Ẽ ¼

0BBBBB@
0

i kzky
ω
cα

2

fk2α−ω2

c2
ð1þαÞgfk2xα−ω2

c2
ð1þαÞg

i
ω
cαfðk2xþkz2Þα−ω2

c2
ð1þαÞg

fk2α−ω2

c2
ð1þαÞgfk2xα−ω2

c2
ð1þαÞg

1CCCCCA
4π

c
ejz: ðA9Þ

The energy radiated per unit time by a particle in the
X-mode electromagnetic waves is equal to the work done
by the radiative electric field on the oscillating particle if the
radiative energy loss of the particle is ignored. In other
words, the time-averaged power of the radiation from the
oscillating particle is

hPiT ¼ −
�Z

d3rRe½jpartz ðr; tÞ�Re½Ezðr; tÞ�
�

T

¼ −
1

4ð2πÞ8
Z

d3rd3k3d3k0dωdω0½heifðk0−kÞ·r−ðω0−ωÞtgiT
× ejzðk0;ω0ÞẼ�

zðk;ωÞ
þ he−ifðk0−kÞ·r−ðω0−ωÞtgiTj̃�zðk0;ω0ÞẼzðk;ωÞ�: ðA10Þ

The integral is calculated using the following procedure:
first, apply the delta function for ω, ω0, x, k0x, k0y, z, and k0z.
Second, perform complex integration for ky. Finally,
carry out the remaining two-dimensional integrals for kx

and kz. A concrete calculation process is shown below.
Substituting the radiative electric field (A9) and source
current (A7), the integration can be written as follows:�

d2P
dμdν

�
T
¼ −i

e4E2
0ω

3
0

8π2m2
ec4ω2

c

ðμ2 þ ν2Þ − αþ1
α

ν2 − αþ1
α

Z
dyδðyÞ

×
Z þ∞

−∞
dky

�
eikyy

k2y − ðω0þiε
c Þ2ðαþ1

α − μ2 − ν2Þ

−
eikyy

k2y − ðω0−iε
c Þ2ðαþ1

α − μ2 − ν2Þ

	
:

Here

μ≡ kzc
ω0

; ν≡ kxc
ω0

; ðA11Þ

are dimensionless quantities of kz and kx, respectively.
Applying the residue theorem to the ky integral, a case
separation arises depending on the magnitude of μ and ν as
follows:�

d2P
dμdν

�
T
¼ −i

e4E2
0ω

3
0

8π2m2
ec4ω2

c

ðμ2 þ ν2Þ − αþ1
α

ν2 − αþ1
α

×

8<:
2πic
ω0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ1
α −μ2−ν2

p
�
μ2 þ ν2 ≤ αþ1

α



0

�
μ2 þ ν2 ≥ αþ1

α


 :

Finally, by performing the remaining μ and ν integrals,
the time-averaged radiative energy per unit time can be
calculated as

hPiT ¼ e4E2
0

4πm2
ec3

�
ω0

ωc

�
2
Z
μ2þν2≤αþ1

α

dμdν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ1
α − μ2 − ν2

q
αþ1
α − ν2

¼ e4E2
0

4m2
ec3

�
ω0

ωc

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ωp

ωc

�
2

s
:

Next, we evaluate the scattering cross section of the
radiation process under consideration. In e� plasma, the
group velocity of X-mode waves deviates from the speed
of light, according to the dispersion relation of X-mode
waves

c2k2

ω2
¼ 1 −

s
1 − u

!1=s;1=u≪1
1þ 1

α
: ðA12Þ

Therefore, we can evaluate the group velocity of X-mode
waves as follows:

vXg ¼ dω
dk

!1=s;1=u≪1
c

1ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

α

q : ðA13Þ
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Hence, Thomson scattering cross section with the X-mode
electromagnetic wave considering the plasma response is
evaluated as follows:

σ ¼ 8π

vXg E2
0

·
e4E2

0

4m2
ec3

�
ω0

ωc

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ωp

ωc

�
2

s

¼ 3

4
σT

�
ω0

ωc

�
2
�
1þ

�
ωp

ωc

�
2
�
: ðA14Þ

The effect of plasma response can be evaluated as

3

4

�
1þ

�
ωp

ωc

�
2
�
∼ 1; ðA15Þ

in the case of ωc > ωp ≫ ω0 such as in the magnetar
magnetosphere. This value is nearly similar to the vac-
uum case.
The effect of the response of e� plasma in the background

magnetic field on the radiation energy is quite different
between curvature radiation and Thomson scattering of X-
mode electromagnetic waves. This can be interpreted physi-
cally by looking at the relationship between the direction of
the backgroundmagnetic field and the direction in which the
plasma responds. In the presence of a background magnetic
field, plasma particles are free to move in the direction
parallel to the background magnetic field but only within the
Larmor radius in the direction perpendicular to the back-
ground magnetic field. In the case of curvature radiation, the
response of the plasma is in the direction of the background
magnetic field because the radiating particles are moving
along the curvedmagnetic field. Hence, the plasma responds
so that the radiation is canceled, thereby suppressing the
radiation. On the other hand, in the case of Thomson
scattering of X-mode electromagnetic waves, the plasma’s
direction of response is perpendicular to the background
magnetic field, so the plasma cannot freely respond to the
scattered wave, and the radiation is not suppressed so much.

APPENDIX B: MISLEADING IDEA ON
THOMSON SCATTERING IN e� PLASMA
WITH A STRONG MAGNETIC FIELD

This section presents a misleading idea about the
scattering in e� plasma with a strong magnetic field.
Since drift motion dominates the motion of charged
particles under the incident electromagnetic field in a
strong magnetic field, one could think that electrons and
positrons cancel out the scattering everywhere. This incor-
rect picture appears where initially static free electrons and
free positrons simultaneously scatter X-mode waves.
Specifically, consider Thomson scattering in e� plasma
with a strong magnetic field in the following situation:

(i) Suppose initially that an electron with charge −e at
ð− d

2
; 0; 0Þ and a positron with charge þe at ðd

2
; 0; 0Þ

are at rest. That is, suppose that the electron and
positron are separated from each other by a micro-
scopic distance d.

(ii) A uniform magnetic field B0 ¼ ðB0; 0; 0Þ exists in
the x-axis direction.

(iii) The X-mode wave is incident on the magnetic
field at a wave number vector k0 and angular
frequency ω0.

(iv) The motion of a particle in the wave field is
approximated as nonrelativistic.

As in Appendix A, determine the current density and
electric field produced by the radiating particles. The
current can be obtained by adding the electron and positron
contributions,

jparticleðr; tÞ ¼
�
evþδ

�
x −

d
2

�
− ev−δ

�
xþ d

2

�	
δðyÞδðzÞ:

ðB1Þ
Then, from Eq. (3), substituting the motion of the particles,
the current density is obtained as follows:

ejyðk;ωÞ ¼ i
4πe2E0ω0

meðω2
0 − ω2

cÞ
cos

�
kxd
2

�
δðω − ω0Þ

≃ i
4πe2E0ω0

meðω2
0 − ω2

cÞ
δðω − ω0Þ;

ejzðk;ωÞ ¼ −i
4πe2E0ω0

meðω2
0 − ω2

cÞ
sin

�
kxd
2

�
δðω − ω0Þ

≃ −i
4πe2E0ω0

meðω2
0 − ω2

cÞ
kxd
2

δðω − ω0Þ: ðB2Þ

Here, we approximated that the wavelength of the incident
electromagnetic wave is sufficiently large compared to
the average distance between the electrons and positrons,
that is

kxd ∼
d
λ
≪ 1: ðB3Þ

The electromagnetic potential is calculated to find the
radiated electric field. The electromagnetic potential can be
obtained by substituting the source into the following wave
equation for the electromagnetic potential�

k2 −
ω2

c2

�
Ãðk;ωÞ ¼ 4π

c
j̃particle:

The radiated electric field is obtained as follows:

fEyðk;ωÞ ¼
ðk2y − ω2

c2 Þω0 þ kykz
kxd
2
ωc

ω
c fk2 − ðωþiεÞ2

c2 g

×
16π2e2E0

mecðω2
0 − ω2

cÞ
δðω − ω0Þ; ðB4Þ
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fEzðk;ωÞ ¼ −
ðk2z − ω2

c2Þ kxd2 ωc þ kykzω0

ω
c fk2 − ðωþiεÞ2

c2 g

× i
16π2e2E0

mecðω2
0 − ω2

cÞ
δðω − ω0Þ: ðB5Þ

The time-averaged energy radiated by an electron-
positron pair per unit time can be obtained by estimating
the work done by the radiative electric field on the
oscillating particle as in Appendix A

Pð2Þ ¼ Pð2Þ
y þ Pð2Þ

z

¼ 4e4E2
0

3m2
ec3

ω4
0

ðω2
0 − ω2

cÞ2
þ 2e4E2

0

15m2
ec3

ω2
0ω

2
c

ðω2
0 − ω2

cÞ2
�
ω0d
c

�
2

:

ðB6Þ

Eventually, the scattering cross section per particle is
obtained as follows:

σð1Þ ≃ 2

�
σT

�
ω0

ωc

�
4

þ σT

�
ω0

ωc

�
2 1

10

�
ω0d
c

�
2
	
: ðB7Þ

We give a physical interpretation of the scattering cross
section for an electron-positron pair scattering with an
X-mode electromagnetic wave in a background magnetic
field. The first term in Eq. (B7) represents the contribution
of the incident electromagnetic wave oscillating in the
electric field direction, and the second term represents the
contribution of the particles oscillating in the drift direction.
Since the motion in the drift direction does not depend on
the charge sign, electrons and positrons cancel each other’s
current, and a factor ððω0dÞ=cÞ2 appears in the scattering
cross section.
We estimate the scattering cancellation effect due to

drift for FRBs of typical frequencies propagating through
the magnetar magnetosphere. Assuming that the average
interparticle distance between electrons and positrons
is d ∼ n−1=3e ∼ 2 × 10−5 cm, the cyclotron frequency is
ωc ∼ 106 GHz and the FRB angular frequency is 1 GHz,
the scattering suppression effect is estimated as follows:

σð1Þ ∼ σT

�
ω0

ωc

�
2

max

�
10−12

ω2
9

ω2
c;15

; 10−13
ω2
9

d2−5

�
: ðB8Þ

Thomson scattering in e� plasma appears significantly
suppressed when the scattering cancellation effect due to
drift motion is considered. However, as shown in this
paper, when properly accounting for the particle statistics
of the plasma, such cancellation effects do not occur
[see Eq. (65)].

APPENDIX C: DETAILED DERIVATION
OF THE POSITRON/ELECTRON

DENSITY FLUCTUATION

In this section, positron/electron density fluctuations in
e� plasma are derived from the Vlasov equation.

1. Vlasov equations for charged particles

First, the Vlasov equation for the positron/electron
distribution function is written down by separating the
equilibrium state distribution function F0� and the first-
order perturbation of the distribution function δF�. The
Vlasov equation for the positron/electron distribution
function can be written as follows:

∂F0�
∂t

þ ∂δF�
∂t

þ v ·

�
∂F0�
∂r

þ ∂δF�
∂r

�
� e
me

�
Eþ v × B0

c

�
·

�
∂F0�
∂v

þ ∂δF�
∂v

�
¼ 0: ðC1Þ

Considering the electric field E produced by the plasma and
the perturbation δF� of the distribution function as pertur-
bative quantities, the Vlasov equation can be divided into
nonperturbative and perturbative components as follows:

∂F0�
∂t

þ v ·
∂F0�
∂r

� e
mec

ðv×B0Þ ·
∂F0�
∂v

¼ 0;

∂δF�
∂t

þ v ·
∂δF�
∂r

� e
mec

ðv×B0Þ ·
∂δF�
∂v

� e
me

E ·
∂F0�
∂v

¼ 0:

ðC2Þ
The second of (C2) is the equation to be satisfied by the first-
order perturbation of the distribution function. The Lorentz
force term, in the second equation [Eq. (C2)] can be
simplified as follows by converting the differential variable
from v to the angle φðtÞ between the velocity component
perpendicular to the background magnetic field B0 ¼
ðB0; 0; 0Þ and the y axis [see Eq. (34)]

ðv × B0Þ ·
∂δF�
∂v

¼ vzB0

∂δF�
∂vy

− vyB0

∂δF�
∂vz

¼ B0

�
vz

�
vy
v⊥

∂δF�
∂v⊥

−
vzcos2φ

v2y

∂δF�
∂φ

�
− vy

�
vz
v⊥

∂δF�
∂v⊥

þ cos2φ
vy

∂δF�
∂φ

��
¼ −B0

∂δF�
∂φ

: ðC3Þ

In the end, the equation for the fluctuations of the distribution
function is as follows:

∂δF�
∂t

þ v ·
∂δF�
∂r

∓ eB0

mec
∂δF�
∂φ

� e
me

E ·
∂F0�
∂v

¼ 0: ðC4Þ
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2. Derivation of the density fluctuations

Equation (C4) for the fluctuations of the distribution
function is Fourier-Laplace transformed for space and time
as follows:

fδF�ðk;v;ωÞ¼
Z

∞

0

dte−iðω−iεÞt
Z

d3rδF�ðr;v;tÞeik·r: ðC5Þ

Then, the density fluctuations appearing in the spectral
density function are represented by fluctuations in the
distribution function as follows:

gδn�ðk;ωÞ ¼ Z
∞

0

dte−iðω−iεÞt
Z

d3rδn�ðr; tÞeik·r

¼
Z

d3vfδF�ðk; v;ωÞ: ðC6Þ

Fourier-Laplace transform of Eq. (C4) leads to the follow-
ing first-order differential equation for gδF� with φ as a
variable

iðω − iε − k · vÞgδF�ðk; v;ωÞ ∓ ωc
∂gδF�ðk; v;ωÞ

∂φ

¼ gδF�ðk; v; t ¼ 0Þ ∓ e
me

Ẽðk;ωÞ · ∂F0�
∂v

: ðC7Þ

This differential equation can be solved using the variation
of constants,

gδF�ðk; v;ωÞ ¼
1

ωc

Z
dφ0 exp

�
∓
�
i
ω − iε − kxvk

ωc
φ0 − ik⊥rL sinφ0

�	�
∓ gδF�ðk; v; t ¼ 0Þ þ e

me
Ẽðk;ωÞ · ∂F0�

∂v

�
× exp

�
�
�
i
ω − iε − kxvk

ωc
φ − ik⊥rL sinφ

�	
: ðC8Þ

In the following, we will perform φ0 integrals and represent the fluctuations of the distribution function using special
functions. First, the exponential function is expanded using the infinite sum formula of the Bessel function

eiz sinφ ¼
Xþ∞

l¼−∞
JlðzÞeilφ; ðC9Þ

as follows:

gδF�ðk; v;ωÞ ¼
1

ωc

Z
dφ0 exp

�
∓

�
i
ω − iε − kxvk

ωc
φ0
�	 Xþ∞

l¼−∞
Jlð�k⊥rLÞeilφ0

�
∓ gδF�ðk; v; t ¼ 0Þ þ e

me
Ẽðk;ωÞ · ∂F0�

∂v

�
× exp

�
�
�
i
ω − iε − kxvk

ωc
φ − ik⊥rL sinφ

�	
: ðC10Þ

With respect to the second term in (C10), we decompose the velocity derivative into directions perpendicular and parallel to
the background magnetic field,

Xþ∞

l¼−∞

Z
dφ0 exp

�
∓
�
i
ω − iε − kxvk ∓ lωc

ωc
φ0
�	

Ẽðk;ωÞ · ∂F0�
∂v

Jlð�k⊥rLÞ

¼
Xþ∞

l¼−∞

Z
dφ0 exp

�
∓
�
i
ω − iε − kxvk ∓ lωc

ωc
φ0
�	�fEk

∂F0�
∂vk

þ fE⊥ cosφ
∂F0�
∂v⊥

�
Jlð�k⊥rLÞ

¼ �i
Xþ∞

l¼−∞

ωc

ω − iε − kxvk ∓ lωc
Ẽk

∂F0�
∂vk

Jlð�k⊥rLÞ exp
�
∓

�
i
ω − iε − kxvk ∓ lωc

ωc
φ

�	

þ
Xþ∞

l¼−∞

Z
dφ0 exp

�
∓
�
i
ω − iε − kxvk

ωc
φ0
�	

Jlþ1ð�k⊥rLÞ þ Jl−1ð�k⊥rLÞ
2

Ẽ⊥
∂F0�
∂v⊥

eilφ
0
: ðC11Þ

Here, in the transformation from line 2 to line 3, the trigonometric functions cosφ were decomposed into exponential
functions and absorbed into Bessel functions using Eq. (C9). We now define the following differential operator
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Ẽk
∂F0�
∂vk

� Ẽ⊥
∂F0�
∂v⊥

l
k⊥rL

≡ Ẽ ·
∂F0�
∂v�

: ðC12Þ

Using the Bessel function formula

Jlþ1ðzÞ þ Jl−1ðzÞ ¼
2l
z
JlðzÞ; ðC13Þ

the fluctuations of the distribution function can be organized as follows:

gδF�ðk; v;ωÞ ¼ −i
Xþ∞

l¼−∞

Xþ∞

m¼−∞

Jlð�k⊥rLÞJmð�k⊥rLÞeiðl−mÞφ

ω − iε − kxvk ∓ lωc

�gδF�ðk; v; t ¼ 0Þ ∓ e
me

Ẽ ·
∂F0�
∂v�

�
: ðC14Þ

Hence, the positron/electron density fluctuation can be written as

gδn�ðk;ωÞ ¼ −i
X
l;m

Z
d3v

Jlð�k⊥rLÞJmð�k⊥rLÞeiðl−mÞφ

ω − iε − kxvk ∓ lωc

�gδF�ðk; v; t ¼ 0Þ ∓ e
me

Ẽ ·
∂F0�
∂v�

�
: ðC15Þ

Then, for the first term of (C15), the fluctuations of the distribution function just before the plasma scatters the
electromagnetic waves (at time t ¼ 0) can be written in terms of individual particlelike representations as follows:

gδF�ðk; v; t ¼ 0Þ ¼
XN�

j¼1

Z
d3reik·rδðr − r�jð0ÞÞδðv − v�jð0ÞÞ ¼

XN�

j¼1

eik·r�jð0Þδðv − v�jð0ÞÞ: ðC16Þ

Substituting this into the expression (C15), we can write

gδn�ðk;ωÞ ¼ −i
XN�

j¼1

X
l;m

eik·r�ð0Þ
Jlð�k⊥rLÞJmð�k⊥rLÞeiðl−mÞφjð0Þ

ω − iε − kxvk ∓ lωc

� 4πe
mek2

X
l;m

Z
d3v

Jlð�k⊥rLÞJmð�k⊥rLÞeiðl−mÞφ

ω − iε − kxvk ∓ lωc
ρ̃ðk;ωÞk · ∂F0�

∂v�
: ðC17Þ

Note that the Maxwell equation Ẽ ¼ 4πi
k2 kρ̃ is applied to the second term in (C15). In the velocity integral in the second term

of (C17), the following orthogonal relation from the angle integralZ
2π

0

eiðl−mÞφdφ ¼
�
2π l ¼ m

0 l ≠ m
ðC18Þ

can be used to simplify the infinite sum of Bessel functions for l and m. Using the equation for the electric susceptibility of
electrons/positrons in magnetized plasma [equivalent to Eq. (43)]

H�ðk;ωÞ≡
Z

d3v
4πe2ne
mek2

Xþ∞

l¼−∞
k ·

∂f�
∂v�

J2l ð�k⊥rLÞ
ω − iε − kxvk ∓ lωc

; ðC19Þ

the density fluctuations can be organized as follows:

gδn�ðk;ωÞ ¼ −i
XN�

j¼1

X
l;m

eik·r�jð0Þ Jlð�k⊥rLÞJmð�k⊥rLÞeiðl−mÞφjð0Þ

ω − iε − kxvk ∓ lωc
∓ H�ðk;ωÞ

e
ρ̃ðk;ωÞ: ðC20Þ

Finally, the charge density can be obtained in a self-consistent manner because the charge density is expressed as a linear
combination of electron-positron density fluctuations as follows:
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ρ̃ðk;ωÞ ¼ egδnþðk;ωÞ − egδn−ðk;ωÞ: ðC21Þ

The longitudinal dielectric tensor is defined by the electric susceptibility of the magnetized plasma as follows:

εLðk;ωÞ ¼ 1þHþðk;ωÞ þH−ðk;ωÞ: ðC22Þ

Then the charge density is expressed as follows:

ρ̃ðk;ωÞ ¼ −i
e
εL

�
i
XNþ

j¼1

X
l;m

eik·rþjð0Þ Jlðk⊥rLÞJmðk⊥rLÞeiðl−mÞφjð0Þ

ω − iε − kxvk − lωc

−
XN−

h¼1

X
l;m

eik·r−hð0Þ
Jlð−k⊥rLÞJmð−k⊥rLÞeiðl−mÞφhð0Þ

ω − iε − kxvk þ lωc

	
: ðC23Þ

Substituting this again into Eq. (C20), we obtain the final expression for the density fluctuation

gδn�ðk;ωÞ ¼ −i
��

1 −
H�
εL

�XN�

j¼1

eik·r�jð0Þ
X
l;m

Jlð�k⊥rLÞJmð�k⊥rLÞ
ω − iε − kxvk ∓ lωc

eiðl−mÞϕ0j

þH�
εL

XN∓

h¼1

eik·r∓hð0Þ
X
l;m

Jlð∓ k⊥rLÞJmð∓ k⊥rLÞ
ω − iε − kxvk � lωc

eiðl−mÞϕ0h

	
; ðC24Þ

where φð0Þ ¼ ϕ0 is the initial phase of particles [see Eq. (34)].
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